
© 2014, IJARCSSE All Rights Reserved Page | 8

 Volume 4, Issue 10, October 2014 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Verification and Validation of Embedded Systems - The Good, the

Bad and the Ordinary
 Adnan Shaout

*
 Cassandra Dusute

 The University of Michigan – Dearborn The University of Michigan – Dearborn

The Electrical and Computer Engineering Department The Electrical and Computer Engineering Department

 Dearborn, United States Dearborn, United States

Abstract - Verification and validation are two major parts of a product’s life cycle. Combined, they ensure that the

product meets requirements and that the software and hardware are built correctly. For embedded applications, it is

important that the systems pass verification and validation not only for quality purposes, but for safety as well. The

objective for this paper review existing verification and validation methods, discover what works and what doesn’t

work and propose a new process for verification and validation for embedded systems using those working processes

called VVResPCT.

Keywords - real-time embedded systems, verification, validation, GM ignition switch, software, hardware.

I. INTRODUCTION

An embedded system is a combination of hardware and software that is made to fulfill a dedicated function. For

example, a car’s airbags are controlled by an embedded system. Some embedded systems depend on real-time accuracy

to operate correctly. It is important that an embedded system is built with quality in mind to prevent serious

consequences [1].

How is quality defined? Quality can be broken down into many parts. Is the system reliable? Is it safe and functional? Is

it usable? These questions need to be addressed throughout a system’s lifecycle. They all can be answered by applying

validation and verification activities from the start.

What is validation and verification? The following can quickly sum up validation and verification:

 Validation - Am I building the right product?

 Verification - Am I building the product right?

Validation determines if the final software meets the needs and requirements of the user. Verification determines if the

product has been built according to the design specifications and requirements after each phase of development.

Validation is usually run at the end of development, however it is suggested that both validation and verification be done

throughout development [5]. Since the cost of making a change increases the further into a project you are, detecting any

discrepancies between requirements and the product early will lower this cost.

A company can use in-house teams to conduct validation and verification activities. However, it is suggested that an

independent validation and verification team is used to run through a product. In some situations where safety is

involved, companies are required to conduct certified tests on the product they are building. These teams, who are often

certified, should be involved in the development early on, so that they are familiar with the system. The team will help

remove bias from tests and the familiarity with the system will ensure that nothing goes untested, and the final product is

of high quality [7].

Functionality and usability can be easily addressed with basic validation and verification activities. Safety and

reliability, however, need more extensive testing.

A. Common misconceptions

During development, there are three fundamental concepts applied to achieve successful software. These three can

often be confused for one another. Although they serve to achieve the same goal, they are all different and meaningful in

their own way. The three concepts are:

 Verification

 Debugging

 Testing

As stated above, verification proves that a program meets a given requirement. This differs from debugging and

testing slightly. Debugging looks into already known errors to determine the cause of the error and how it can be fixed.

Testing identifies these errors, looking at the differences between expected and actual results. While both verification and

validation are often mislabeled as testing, it is important to remember that testing is a part of validation and verification,

not the other way around.

http://www.ijarcsse.com/

Shaout et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp. 8-15

© 2014, IJARCSSE All Rights Reserved Page | 9

Testing is a dynamic activity. It can take real-world conditions and apply them to the system as a whole. Since it is

dynamic, testing usually can’t be used in early development. However, static testing is a good replacement. In fact,

validation and verification activities start off static early in development, and become more dynamic as development

progresses.

The paper is organized as follows: section 2 presents some of the current software processes used in industry, section

3 presents validation and verification processes used, section 4 presents a new lifecycle called VVResPCT, section 5

presents where did GM went wrong and section 6 presents concluding remarks.

II. CURRENT PROCESSES

 Currently, there is one well-known lifecycle model that stresses the importance of both verification and validation

during hardware and software development. During the V-model lifecycle, each development phase has a corresponding

testing phase that is done in parallel [9]. Figure 1 shows an example of a V-Model Lifecycle.

 The verification track, or development, is boiled down into four main phases:

 Requirements - important phase of the development track. All requirements are understood based on the

customer’s point of view. During this phase, the design for Acceptance tests is created.

 System Design - during this phase, the complete system should be designed. This includes hardware design as

well as how components will communicate. During this phase, the design for System tests is created.

 Architecture Design - the system design from the previous phase is taken and broken down into more specific

modules and is more clearly understood in this phase. During this phase, the design for Integration tests is created.

 Module Design - individual modules are designed, keeping in mind that they need to be compatible with other

system modules. The architecture of the system is used to make sure that modules will work nicely together.

During this phase, the design for Unit tests is created.

Figure 1. Example of a V-model Lifecycle.

The corresponding validation side includes these phases:

 Unit Testing - these tests are run at the code level. They help to prevent bugs in the future.

 Integration Testing - these tests are used to test how the system communicates with each internal module.

 System Testing - these tests check the compatibility between the hardware and software used. They are also used

to see how the system works with external modules.

 Acceptance Testing - these are the tests performed by the customer to make sure the product meets all of their

requirements. This is usually the phase that uncovers compatibility issues with the end-users environment.

The v-model lifecycle is good because it is easy to use and manage. However, the v-model does not work well with

large projects that are ongoing or have changing requirements. Also, the v-model doesn’t produce any working program

until the end of the lifecycle.

If the V-model isn’t the lifecycle currently being used, there is a validation and verification process that can be added

to whatever testing phase that is currently being used by the company. That process includes six steps and changes

depending on how far into development the system is.

 Planning and control – how will the validation and verification process (activities) be managed and performed.

 Preparation – what will be achieved by the activity and what techniques should be used for the activity?

 Specification – define activities (for example, what environment is the activity in, what test cases should the

activity use?)

Shaout et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp. 8-15

© 2014, IJARCSSE All Rights Reserved Page | 10

 Implementation – test data and tools for running activities.

 Execution – run activity.

 Wrap-up – evaluate any results you get after running the activity.

Implementation and execution will change depending on where the system is in development. If validation and

verification activities are running during the beginning of development, implementation will be lacking test data.

III. VALIDATION AND VERIFICATION METHODS

In this section we will present a review of the validation and verification methods use for software systems.

A. Static vs. Dynamic

Validation and verification methods can be summarized into two main categories: static and dynamic. While

both have their advantages, the best choice depends on what type of coverage needs to be added. Static methods, like

model checking, check the requirements and design implementation for correctness without testing time constraints.

While this is good for checking logic, these methods don’t cover timing, which is crucial in real-time embedded systems.

Here’s where dynamic methods come in. Dynamic methods use time to model how a system will behave. A combination

of both methods will provide full coverage for any system.

B. Static Analysis

This method, more formally known as Code review, is a static method that helps uncover missing, redundant,

deficient or non-required functionality. The method analyzes the program without actually running it. When used early in

development, it helps to ensure quality programming and reduces unnecessary bugs.

There are two forms of Static Analysis: walkthrough and inspection. During a walkthrough, the object execution

is simulated; then, test data is walked through step by step to discover awkward algorithmic solutions. Inspection is a

more technical code review. Static analysis is often applied to testing requirements and the design of a system.

C. Formal Methods

For more logic based validation and verification methods, the use of formal methods is suggested. Formal

methods use math to demonstrate the correctness of a system [3]. The two main formal methods are model checking and

theorem proving.

While these methods are very useful, they can be hard to use since they require an extensive knowledge of

advanced mathematical techniques. However, as computer systems advance, both methods are becoming more and more

popular within leading software companies. This is probably because they are becoming increasingly user-friendly and

are some of the best when it comes to detecting logical errors.

D. Model Checking

In model checking, a model – for example, a prototype or finite state automata – is used to describe a working

system. Then, a specific property of that system is turned into a logical function, and the model is explored to verify that

property. Model checking is good for testing requirements, finding deadlock within the system, and discovering

unreachable or orphaned modules.

Model checking usually consists of three main phases:

 Create a model of the system

 Provide a system property that needs to be proved

 Run a model checking tool to prove that property

Figure 2 shows a more detailed model checking workflow.

Figure 2. Model Checking workflow.

Shaout et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp. 8-15

© 2014, IJARCSSE All Rights Reserved Page | 11

 Although model checking is the easier of the two formal methods, it does have a dark side. In large systems, model

checking faces the danger of state-space explosion, where there are too many states that are rapidly forming. This

prevents the user from seeing every possible interaction between states. With advances in technology, however, the

model checking method is capable of checking many more states than it has in previous years.

 Model checking is sometimes used with Kripke Structures to represent reachable states and transitions in a system. An

example of a Kripke Structure is the ever-popular coffee-vending machine. Figures 3 and 4 show the coffee vending

machine example.

Figure 3. Coffee Vending Machine Example as a Kripke Structure [4].

Figure 4. First Few Reachable States of Coffee Vending Machine.

As you can see in Figure 4, the number of states can quickly become overwhelming. In fact, this diagram can

continue for infinite states. Since it is repetitive, this example is excluded from state-space explosion, as we know what

types of interactions are possible.

E. Theorem Proving

Developed in the 70’s by Tony Hoare and Edsger Dijkstra, theorem proving proves the correctness of a system

by meeting a theorem [4]. Theorem proving uses a precondition and executable code to find a post condition. The

theorem states that if a precondition is true before the program is executed, then the post condition must also be true.

Since theorem proving uses such extreme math and logic, it is rarely used as a verification method. It is also a

time consuming method, because the user has to guide the process along. For example, the user has to continuously think

about what proof should apply to the given step, and then wait for the result.

F. Simulation

 Dynamic methods begin with simulation. Simulations accurately depict the software, and allow a user to test

that the software is correct. They can be used on large models without worrying about state-space explosion. Simulations

are one of the easier methods to use and one of the most popular; however they don’t offer as robust coverage as other

methods. For example, validating a simulation is a manual process instead of automatic. Also, simulations are capable of

exposing erroneous behavior, but there’s no guarantee that it will point out bad behavior.

G. Prototyping and Emulation

 Prototyping and emulation take simulations to the next level. They are a close representation of the actual

program, and provide close to accurate results. They are executed in real-life speeds and are put into real-life

environments and situations.

Prototyping and emulation do have some disadvantages. They are time consuming to make, and may be

expensive since they need to match closely with the actual system. Also, they can’t be created until the design of the

original system is done, putting off important testing. These disadvantages can be countered, though. Using cheaper

hardware will make prototyping less expensive, and waiting until the design is complete will ensure that the prototype

matches the system. Since dynamic methods aren’t executed until later in development anyway, the timing of creating the

prototype isn’t a great deterrent.

Shaout et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp. 8-15

© 2014, IJARCSSE All Rights Reserved Page | 12

H. Integration Testing

 While integration testing isn’t usually classified as a verification or validation method, it’s still an important part

of testing an embedded system. For this reason, it is listed as a current process. Integration testing is important because it

not only makes sure that hardware and software work together, it also makes sure that the system as a whole is integrated

properly. It also exposes many different types of errors. For example, integration testing can detect inadequate timing,

which is a huge factor for some embedded systems. It can also detect when interrupt handling is being done wrong,

which may also affect some embedded systems.

IV. PROPOSED LIFECYCLE

 A new lifecycle, called Validation Verification Research Prototyping Coding and Test (VVResPCT) software process

method, which involves more robust validation and verification coverage, is proposed in this paper. Figure 5 shows how

that new process is separated into different phases. To further the new process, we integrated it into our own personal

process, ResPCT [10].

A. Embedded System Life cycle

 The ResPCT life cycle [10] consists of four main phases: research, prototype, code, and test. We have broken

down the new process for embedded systems and combined it with the ResPCT process. The new process has been

broken down as follows:

1. Research

o Define Product Requirements

 understand customer requirements

 create test plan and test cases

 create Validation and Verification activity plan

Figure 5. New Validation and Verification Process Integrated with ResPCT (VVResPCT).

2. Prototype

o Separate HW/SW Components

 design the system architecture including hardware and software components

 distinguish what needs to be done for the next phase

3. Code

o Software Development

 see Figure 7.

o Hardware Development

 see Figure 6.

4. Test

o Integrate Hardware and Software

 run integration tests

o Validate and Verify

 prepare techniques - Model-checking and prototyping

 gather test data

 run activities

 analyze

o Release and Maintain

 user acceptance testing

 After reviewing current validation and verification methods, a method was chosen from each dynamic and static

activity that proves to work the best. Those are model checking and prototyping methods. Both static and dynamic

methods were chosen because of the way that validation and verification migrate between the two. At the beginning of

development, a more static approach (model-checking) should be used to keep development on course and prevent any

unnecessary bugs. As development continues, prototyping will help in making sure that the system is accurate and error

free.

Shaout et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp. 8-15

© 2014, IJARCSSE All Rights Reserved Page | 13

B. Hardware Development Life Cycle

As you can see in Figure 6, the hardware development life cycle adds more steps to the coding phase of ResPCT

[10]. In fact, you’ll find that both the hardware and software life cycles use their own ResPCT process to add more

coverage as follows:

1. Research

a. review requirements

b. if contracting out, determine manufacturer

2. Prototype

3. Code

a. build product to specs

4. Test

a. certified testing

b. HW/SW integration

Figure 6. Hardware Development Life Cycle.

Figure 7. Software Development Life Cycle.

C. Software Development Life Cycle

 Similar to the hardware life cycle, the software life cycle uses its own iteration of ResPCT. Here’s how it is

broken down:

1. Research

a. review requirements

2. Prototype

a. software architecture

b. code modeling

3. Code

a. generate code

4. Test

a. validate and verify (run same process as above).

b. HW/SW integration

V. WHERE GM WENT WRONG

 The recent GM ignition switch recalls was researched in this paper. More specifically, we wanted to look into what

their validation and verification plan was for the ignition switch, as well as what their process for approval was. Since the

ignition switch was manufactured by Delphi, we will look into their approval process for the switch.

 The ignition switch was originally built with the ease of use in mind. GM had received complaints about their ignition

switches being too hard to turn, so for the newer early 2000 models, they decided to lessen the torque required to turn the

key. They didn’t realize that the decrease in torque required would increase the chances of the key turning into Accessory

instead of run, thus turning off power to the airbags and power steering. Thirteen years - and 13 deaths - later, they finally

recalled the faulty switch.

A. GM Validation Plan

GM’s Validation Plan for the ignition switch includes three major parts: performance tests, validation tests, and

component specifications. Figures 8, 9 and 10 will show each of these validation plans. As you can see in Figure 10, GM

had specific requirements for the torque of the ignition switch. The torque - or how much force is required to turn the key

in the ignition - required for the ignition switch should be between 15 and 25 N-cm (Newton centimeters). Based on the

validation report in Figure 11, the ignition switch did not fall in that range. In fact, only a handful of switches made it

above the minimum requirement.

Shaout et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp. 8-15

© 2014, IJARCSSE All Rights Reserved Page | 14

Figure 8. GM Ignition Switch Performance Tests [8].

Figure 9. GM Ignition Switch Validation Tests [8].

Figure 10. GM Ignition Switch Torque Requirements [8].

Figure 11. GM Ignition Switch Validation Report [2].

Shaout et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp. 8-15

© 2014, IJARCSSE All Rights Reserved Page | 15

B. Process for Approving the Switch

 When Delphi works with larger customers, like GM, they use their own process for approval known as

Production Part Approval Process (PPAP) [6]. The steps for PPAP are as follows:

1. Purchaser (GM) provides the design and specifications for the part

2. The product is built to specifications and tested against those specs

3. The results of the testing are then given to the purchaser for final approval

 During the PPAP, Delphi had noted multiple times that the ignition switch did not meet GM’s minimum torque

requirements. However, if the purchaser approves a product that has known errors, Delphi is obligated, per their contract,

to deliver those products. Such was the case with the GM ignition switch. From GM’s side, the approval process seemed

to involve only one man, the lead engineer. That man, Ray DeGiorgio, approved the switch for production because he

was not aware of any performance issues or effects on the safety of the car due to the underperforming switches.

C. Changes

 While there are many ways a recall could’ve been prevented, we’ve narrowed it down to the three easiest and

most obvious solutions. First, the faulty ignition switch should have been fixed early in development so that the torque

fell within the acceptable range. Second, GM should have performed better test coverage on how other components

within the cars reacted when the ignition switch changed states. Finally, the approval process for the switch should

include more than just Delphi’s testing results and a one-person sign-off.

The trouble with using an outside manufacture to create products is that they often don’t have complete access

to see how their product will integrate with other components. It is up to the purchaser to perform integration tests on all

modules. For example, if GM had thoroughly tested the ignition switch against other components, they would have

known earlier that, the ease of turning the key might be cause for concern.

VI. CONCLUSION

 In many situations, verifying and validating a product could mean the world. In the case of a real-time embedded

system, it could mean someone’s life. Throughout this paper, validation and verification have been defined, current

methods and processes for each validation and verification have been discussed, and a new process, called VVResPCT,

using methods that seem to work best has been proposed. GM’s ignition switch was also discussed, including their

approval process and where the product engineers went wrong.

REFERENCES

[1] Laplante, P. A., Ovaska S. J. (2012). Real-time Systems Design and Analysis. Hoboken, NJ: John Wiley &

Sons, Inc.

[2] Svoboda, T., General Motors. (2000). Analysis/Development/Validation Plan & Report (ADVP & R) for

Suppliers: Delta Z Ignition Switch.

http://democrats.energycommerce.house.gov/sites/default/files/documents/GM-Analysis-Validation-Report-

Torque-2002-5-21.pdf

[3] Geilen, M. C. W. (2002). Formal Techniques for Verification of Complex Real-Time Systems. Eindhoven:

Eindhoven University of Technology.

[4] Reinbacher, T. (2008). Introduction to Embedded Software Verification. Vienna: University of Applied

Sciences Technikum Wien.

[5] Herrman, J. (2001). Guideline for Validation & Verification Real-Time Embedded Software Systems.

http://www.dess-itea.org/deliverables/ITEA-DESS-D162-V01P.pdf

[6] Waxman, H. DeGette, D. Schakowsky, J. (2014). Democrats Request Details about GM Approval of Faulty

Ignition Switches. http://democrats.energycommerce.house.gov/index.php?q=news/democrats-request-details-

about-gm-approval-of-faulty-ignition-switches

[7] Aldec, Inc. (2010). Meeting Growing Verification Demands. http://www.aldec.com/

[8] DeGiorgio, Ray. (2001). Component Technical Specification.

http://democrats.energycommerce.house.gov/sites/default/files/documents/GM-Component-Technical-

Specification.pdf.

[9] Tutorials Point. (2014). SDLC V-Model. http://www.tutorialspoint.com/sdlc/sdlc_v_model.htm

[10] Adnan Shaout and Cassandra Dusute, (2013),” ResPCT – A new Software Engineering Method”, International

Journal of Application or Innovation in Engineering & Management (IJAIEM) 12/2013; Volume 2(Issue 12):

Page 436 – 442, Impact Factor: 2.379.

http://www.aldec.com/
http://democrats.energycommerce.house.gov/sites/default/files/documents/GM-Component-Technical-Specification.pdf
http://democrats.energycommerce.house.gov/sites/default/files/documents/GM-Component-Technical-Specification.pdf
http://www.tutorialspoint.com/sdlc/sdlc_v_model.htm
https://www.researchgate.net/researcher/2042356350_Adnan_Shaout/

