
© 2013, IJARCSSE All Rights Reserved Page | 524

 Volume 4, Issue 10, October 2014 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Testability Quantification of Object Oriented Design: A Revisit
 Shahida Khatoon

 *
 Dr. Rahul Kumar

R.K.G.IT, Ghaziabad, I.E.M. Lucknow,

 India India

Abstract— Testability is an elusive concept, its correct measurement or evaluation is a difficult exercise. It is

extremely hard to get an understandable view on all the possible factors that have an effect on software testability.

Software testability is an external software quality attributes that estimate the complexity and effort required for

testing software. The support provided by software testability is important throughout development life cycle and

quality assurance.

The most important concern of this review paper will be systematic study of software testability considering in view by

its factors and metrics implementation of testability keeping in mind to supports the testing process and facilitates the

creation of better quality software. In this paper primarily study accomplishes a systematic literature review to have

extensive facts of testability research and its quality factors and related measurements. Finally study does a

comparative analysis on software testability proposed by various experts/researchers including their contribution and

limitation. Finally our endeavour is to get the known comprehensive and complete model or framework for evaluating

the testability of object oriented design at an initial stage.

Keywords— Software Testability, Testability Quantification, Object Oriented Design Characteristics, Software

Quality, Software testing.

I. INTRODUCTION
In today’s world, the importance of delivering high quality reliable, testable and maintainable software is no longer an

advantage but a necessary factor. Sorry to say, most of the software industries not only fail to produce a quality product

to their customers, but in addition do not understand the appropriate quality attributes [1], [25]. With the rising

complexity of software applications, software industry are lack to produce the quality software to their customer and

even some time some quality attributes are ignored. In present very competitive software market, companies are

frequently trying to meet the release dead line that usually reduces the testing time [14]. For this reason the software

quality may not be appropriately checked for the probable defects. As a result we cannot take carelessly the quality

promise of each software product. Fault prevention and fault recognition have to be considered in every possible phase of

development life cycle.

 At the present time, testing events are also less than priority so that it turns into easy and effective to find and treat bugs.

Software testing is one of the most important activities in the software development life cycle. It is a verification and

validation procedure which aims to disclose software faults by executing software product. Software testing is an

extremely important means of detecting the software fault [15]. It is too well known truth that more than 50% of the

whole software development costs is associated to the software testing activities [22]. For this reason it is one of the most

costly phases of software development life cycle in terms of money as well as time. Consequently it is all the time the

challenging research area in reducing the cost of testing and producing high quality software within time and budget [16],

[17]. Several researchers have paying attention their study for the solutions to reduce the testing cost and effort. If the

testability of software can be improved, after that it is possible to decrease the software development cost along with high

quality software.

The overall target of software engineering is to produce quality oriented software that is maintainable, testable,

committed, and produced inside time, financial plan and as well fulfilled its specific requirements. With number of

researches devoting towards the testing phase, a few of the researches have been truly focusing in the direction of the

software testability as well. Most important intention will be making the testing procedure effortless and detecting the

defects in successful, positive way. With the growing value of testability in software, it is easier to occur the incorrect

output in case of presence of defect in the software [18], [19]. The testability approach increases the possibility of

revealing the faults finally making software fault recognition process easier.

II. SOFTWARE TESTABILITY
Software testability is defined by IEEE as “the degree to which a system or component facilitates the establishment of

test criteria and the performance of tests to determine whether those criteria have been met” [28]. ISO has defined

software testability as a functionality and it defines functionality as “the set of attributes of software that bear on the

effort needed to validate the software product” [31]. The concept of the software testability given by different authors, it

can be in broad-spectrum defined as the degree to which a software artifact make easy procedure of testing. Software

testability not simply point out the test process helpfulness but gives new viewpoint on code development [26].

http://www.ijarcsse.com/

Shahida et al., International Journal of Advanced Research in Computer Science and Software Engineering 3 (4),

March - 2013, pp. 524-529

© 2013, IJARCSSE All Rights Reserved Page | 525

Testability is an elusive concept. It is extremely hard to get an understandable view on all the possible factors that have

an effect on software testability. The research on software testability firstly appeared in 1975. It is accepted in McCall

and Boehm software quality model, which make the basis of ISO 9126 quality model. From the time when 1990s,

software engineering society began to start quantitative research on software testability. Software testability study has

been a vital research direction since 1990s and became more persistent in 21st century [27], [28].

Fig 1: Testability Fish Bone [22]

III. TESTABILITY ESTIMATION AT DESIGN PHASE
Practitioners and researchers frequently advocate that testability should be planned early in the design stage [18], [19],

[20]. The greater part of the studies evaluates testability or more accurately the attributes that have force on testability but

at the source code level. Despite the fact that, testability quantification at the source code level is a good indicator of

effort estimation, it leads to the late appearance of information in the development process. A judgment to modify the

design in order to get better testability after coding has started may be extremely expensive and error-prone [23], [24]. At

the same time as estimating testability near the beginning in the development process significantly reduce the overall

development cost. As an outcome, hence, it seems extremely advantageous and significant to put into practice testability

at the design stage of development life cycle.

Table 1

Fig 2: Testability Estimation at Design Phase consider by various expert [30]

Shahida et al., International Journal of Advanced Research in Computer Science and Software Engineering 3 (4),

March - 2013, pp. 524-529

© 2013, IJARCSSE All Rights Reserved Page | 526

IV. OBJECT ORIENTED CHARACTERISTICS
Procedural-oriented languages centre of attention on procedures, through function as the basic unit. You require to first

figure out all the functions and after that think about how to represent data. The object-oriented languages focal point on

components that the user perceives, by means of objects as the fundamental unit. You figure out all the objects by putting

all the data and operations that illustrate the user's interaction with the data. Object-Oriented technology has a lot of

remuneration:

 Simplicity in software design as you could assume in the problem space relatively than the machine's bits and bytes.

In OOD you are dealing with high-level concepts and abstractions. Easiness in design direct to more dynamic

software development process.

 No difficulty in software maintenance: object-oriented software is easier to understand, as a result easier to test,

debug, and maintain.

Object Oriented Programming has great advantages over other programming styles: The object-oriented technology is

very well-liked in software development atmosphere in recent years. More and more organizations are launching object

oriented technique and languages into their software development practices [14]. Object Oriented Software tactics is an

approach of structuring software as a group of distinct objects reflecting real-world entities and mapping them into

design constructs to characterize relationships and functionality powerfully. It is a sign of an accepted view of the domain

and handles inherent complexity improved. Object oriented method presents prospective benefits over traditional

software development approach. The function of object oriented technology to systems development has brought a lot of

compensation and benefits as well as new demanding issues [29].

The object-oriented technology is more authoritative to design the software in order to make available the product of

higher quality. The acceptance of the object-oriented approach is probable to produce improved and cheaper software [1].

Three significant concepts make a distinction the object-oriented approach from conventional software engineering:

Coupling, Encapsulation, and Inheritance & Polymorphism [1].These concepts play significant role of design properties

in object-oriented software product quality assessment. Finally, show the light on the function of a variety of object

oriented design properties such as polymorphism, encapsulation, inheritance, coupling and cohesion on quality attributes

such as efficiency, flexibility, understandability and reusability in order to assess the object oriented software product

quality.

V. LITERATURE REVIEW
A number of testability theories have been published till date and the testability concept has been grown with different

research areas. At this study we talk about a number of the important theories specified by some researches in their paper

and we will relate those all research through our thesis in order to encourage our work. Various studies below provide

some inspiration regarding the related work on this area. Binder describes software testability as the comparative ease

and cost of revealing software faults i.e., the software sensitivity to faults [7]. Binder offers an accurate analysis of the

testability factors which are contributing to the software testability estimation of object oriented design [21], [23]. He

claims that testability of an object-oriented system, in broad sense, is a result of six most important factors:

 Characteristics of the illustration

 Characteristics of the completion

 Built-in test capabilities

 The test suite

 The test support environment

 The software development process

Binder furthermore listed a few of the testability metrics from encapsulation metric, inheritance metric and

polymorphism metric. Encapsulation metric cover up LCOM (Lack of Cohesion in Methods), PAD (Public Access to

Data members) even as several of the inheritance metric are NOC (Number of Children),DIT (Depth of Inheritance Tree)

and in the same way Polymorphism metric include OVR(Percentage of non-overloaded calls), DYN (Percent of dynamic

calls) etc.

COMPRATIVE STUDY OF VARIOUS APPROACHES
In this part study assess the above testability model approaches. Study states the donation of each authors and major

issue of every one approach.

Table 2

S.

No.

Authors/App

roach

Year Donation Major Issue/Problem

I Khan et al.

[1]

2012 Investigate empirically the relationship in the

middle of the understand ability, complexity

model and testability of classes at design

level.

 Design an empirical study using object

 Further study on large

sample of data is needed.

Shahida et al., International Journal of Advanced Research in Computer Science and Software Engineering 3 (4),

March - 2013, pp. 524-529

© 2013, IJARCSSE All Rights Reserved Page | 527

oriented artifacts.

II Kout et al.

[2]

UML

2011

 Study empirically has the relationship

between the model and testability of classes

at the source level that design level.

 Propose an empirical study by object

artifacts.

 Estimate the ability of the model to forecast

testability of classes with using statistical

tests.

 Not enough for Self

descriptiveness And both

structural and behavioral

architecture

III Khalid et al.

[3]

UML

2010 broaden the object oriented design metrics

 achieve the proven results

 calculate complexity of design precisely

 Accountability

 Accessibility

IV Yogesh Singh

et al. [24]

UML &

Software

Contract

2010 Software developers can make utilize of

software contracts to decrease the testing

attempt.

 Software developers can make use of

software contracts to recover the testability

of the software.

 Communicativeness.

 Not satisfactory for Self-

Descriptiveness.

V Khan R A

&

K Mustafa

[4]

UML

2009

 Validate model with structural and functional

information

 express the models’ ability to estimate

overall testability from design information

 The model is extra useful in environment

having quantitative data on testability

 The software developer can apply data to

preparation and monitor testing activities

 Accountability

 Accessibility

 Communicativeness

 Not enough for Self

Descriptiveness

 The tester can utilize testability record to

determine on what module to focus during

testing

 accessibility of built-in

test job

VI Sharma

&Mall[6]

UML

2009

 Build up a system state model of an object-

oriented system from the applicable UML

models.

 The created developed state model is used to

produce test specifications for transition

coverage at design level.

 Communicativeness.

 Not adequate for Self-

Descriptiveness.

VII Zheng

& Bundell[7]

Test contracts

2008

 Software testability quality factors are:

traceability, component observability,

component controllability, component

Understand ability and component test

support capability.

 advance structure model-based component

 Testability at design phase.

 Not enough for Self

Descriptiveness.

 Not enough for both

structural and

behavioural structural

design.

VIII Bruntink

& Van

Deursen[8]

Quality

model

2006

 Maintain quality of the performance with

understandable documentation at design era.

 Have a preference the reusability and

structure of the test suite quality factors.

 The assessment of the test support tools used

the process capabilities and quality factors.

 Factors that manipulate the figure of test

cases required for testing

 Accountability.

 Accessibility.

IX Mouchawrab

et.al[9]

2005 They investigated on how to measure

testability based on design artifacts at design

level

 Proposed a framework that may help to

estimate testability of design that is mainly

modelled with theUML.

 Testability investigation at early

 Their designs need

operational guidelines on

how to continue in a

organized and structured

manner

Shahida et al., International Journal of Advanced Research in Computer Science and Software Engineering 3 (4),

March - 2013, pp. 524-529

© 2013, IJARCSSE All Rights Reserved Page | 528

development stage can yield the highest

payoff if focused

X Ortega

&

Rojas[10]

Quality

model

2003

 Demonstrate requirements model, design

model at design phase, and execution quality

model (programming).

 The model enlarge understanding of the

relationship among the attributes

(characteristics) and the sub-attributes (sub

characteristics) of quality

 The quality attributes are maintainability,

usability, efficiency, reliability, portability,

and functionality.

 Accountability.

 Critical Accessibility.

XI Baudry et

al.[11]

 UML

2002

 Build up a model to take into custody class

interactions and classify artifact (inheritance

and dynamic binding) to evaluation their

Cost in terms of number of defined test

cases.

 The goal of such testing

is not evidently stated.

 Assumes that numerous

paths between classes are

redundant, from a

semantic point of view

that is expensive to test.

XII Jungmayr et

al.[12]

2002 Model relates testability to dependencies

between components (e.g., classes) as the

more dependencies.

 the additional tests

required to exercise their

interfaces

XIII Voas and

Miller[13]

1995

 Tells the tester and developer where to give

attention to testing effort as this indicates

locations in the code where faults could

easily hide.

 Testing completed as in the early hours as

probable that is design point.

 The mistake seeding

process which can result

in a very large number of

Executions (high cost) if

every possible location

for fault seeding is

considered.

VI. IMPORTANT OBSERVATIONS

After successful completion of the organized literature review a number of important observations are enumerated as

follows.

 Testability estimation at design phase in the software development life cycle is highly recommended by

researchers and practitioners.

 In order to quantifying testability of object oriented design study requires to identify a minimal set of testability

factors for object oriented development process.

 Object oriented software characteristics have to be identified and subsequently the set of testability factors relevant

at the design phase should be finalized.

 Further, object oriented testability metrics required to be selected suited at the design phase for the reason that

metric selection is a vital step in testability estimation of objects oriented design.

VII. CONCLUSION

A lot of approaches have been planned in the available literature for quantifying software testability. A review of the

appropriate literature shows that greatest efforts have been put at the later phase of software development life cycle. A

judgment to modify the design in order to get better testability after coding has started is high costly and error-prone. For

that reason, it is a noticeable truth that quantifying testability early in the development process greatly reduces overall

cost, effort, and rework. On the other hand, the lack of testability at early stage may not be compensated during

subsequent development life cycle.

ACKNOWLEDGMENT

I am very much thankful to Dr. Rahul Kumar for their valuable suggestions and support.

REFERENCES

[1] Testability Estimation Model (TEMOOD): M. Nazir & R.A.Khan, Lecture Notes of the Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering, Vol. 85, Meghanathan, Natarajan; Chaki,

Nabendu; Nagamalai, Dhinaharan (Eds.), Volume 85, Part 3, LNICST, Springer-Verlag, 2012, pp 178-187,

(ISBN 978-3-642-27307-0). January 2012.

[2] Kout, A., Toure, F., & Badri, M. (2011). An empirical analysis of a testability model for object-oriented

programs. ACM SIGSOFT Software Engineering Notes, 36(4), 1. doi:10.1145/1988997.1989020

Shahida et al., International Journal of Advanced Research in Computer Science and Software Engineering 3 (4),

March - 2013, pp. 524-529

© 2013, IJARCSSE All Rights Reserved Page | 529

[3] Khalid, S., Zehra, S., & Arif, F. (2010). Analysis of object oriented complexity and testability using object

oriented design metrics. Proceedings of the 2010 National Software Engineering Conference on - NSEC ’10, 1–

8. doi:10.1145/1890810.1890814

[4] Khan, R. a., & Mustafa, K. (2009). Metric based testability model for object oriented design (MTMOOD). ACM

SIGSOFT Software Engineering Notes, 34(2), 1. doi:10.1145/1507195.1507204

[5] Briand, L. C., Labiche, Y., & He, S. (2009). Automating regression test selection based on UML designs.

Information and Software Technology, 51(1), 16–30. doi:10.1016/j.infsof.2008.09.010

[6] Sarma, M., & Mall, R. (2009). Automatic generation of test specifications for coverage of system state

transitions. Information and Software Technology, 51(2), 418–432. doi:10.1016/j.infsof.2008.05.002

[7] Zheng, W., & Bundell, G. (2008).Contract-Based Software Component Testing with UML Models. Computer

Science and its Applications, 2008. CSA ’08. International Symposium on, 978-0- 7695(13 - 15 October 2008),

83–102.

[8] Bruntink, M., & Van Deursen, A. (2006). An empirical study into class testability. Journal of Systems and

Software, 79(9), 1219–1232. doi:10.1016/j.jss.2006.02.036

[9] Samar Mouchawrab et. Al, Carleton University, Technical Report SCE-05-05, 2005

[10] Ortega, M., & Rojas, T. (2003). Construction of a systemic quality model for evaluating a software product.

Software Quality Journal, 11:3(July), 219–242.

[11] B. Baudry, Y. Le Traon, and G. Sunyé, “Testability Analysis of a UML Class diagram”, Proceedings of the

Eighth IEEE Symposium on Software Metrics [METRICS.02], IEEE 2002.

[12] S. Jungmayr, “Design for Testability”, CONQUEST 2002, pp. 57-64.

[13] J Voas and Miller , “Improving the software development process using testability research”, Proceedings of the

3
rd

 international symposium on software Reliability Engineering, p. 114--121, October, 1992, RTP, NC,

Publisher: IEEE Computer Society.

[14] Khan R. A. & Nazir M (2007): Testability Quantification of Object Oriented Software: A Critical Review,

Proceedings, International Conference on Information & Communication Technology, Dehradun, pp. 960-962.,

July 26-28, 2007.

[15] E. Mulo, “Design for Testability in Software Systems”, Master’s Thesis, 2007.

URL:swerl.tudelft.nl/twiki/pub/Main/ResearchAssignment/RA-Emmanuel-Mulo.pdf

[16] Pettichord, B. Design for Testability. In Proc. of Pacific Northwest Software Quality Conference, 2002.

[17] Jimenez, G., Taj, S., and Weaver, J. Design for Testability. In Proceedings of the 9th Annual NCIIA

Conference, 2005.

[18] Jungmayr, S. Testability Quantification and Software Dependencies. In Proceedings of the 12th International

Workshop on Software Quantification, pp. 179–202, October 2002.

[19] DinoEsposito, “Design Your Classes for Testability”, 2008. URL:http://dotnetslackers.com/articles/nnet/Design-

Your-Classes-for-Testability.aspx

[20] S. Mouchawrab, L. C. Briand, and Y. Labiche, “A quantification framework for object-oriented software

testability”, Info. and Software Technology, Volume 47, Issue 15, Pages 979-997.December 2005.

[21] A. Zaidman et. al, “On how developers test open source software systems”, Technical Report TUD-SERG-

2007- 012, Delft University of Technology, Software Engineering Research Group, 2007.

[22] S. Mouchawrab et al, “A quantification framework for object-oriented software testability,” Carleton University,

Technical Report, SCE-05-05, year 2005.

[23] R. V. Binder, “Design for Testability in Object-Oriented Systems,” Communication of the ACM, vol. 37 (9), pp.

87-101, 1994.

[24] Yogesh Singh, Anju Saha ,” Prediction of testability using the design metrics for object–oriented software”,

International Journal of Computer Applications in Technology, Volume 44, Number 1/2012, Pages 12-22, July

2012.

[25] Pratima Singh ,Anil Kumar Tripathi,” Testing issues” International Journal of Software Engineering &

Applications , Issues in Testing of Software with NFR, 3(4), 61 - 76. August 2012.

[26] L. Zhao, “A new approach for software testability analysis”, International Conference on Software Engineering,

Proceeding of the 28th international conference on Software Engineering, Shanghai, pp. 985–988. 2006.

[27] Y. Wang, “Design for Test and Software Testability”, University of Calgary, 2003.

URL:http://www.ucalgary.ca/~ageras/wshop/abstracts/2003/design-for-estability.htm

[28] J. Gao and Ming-Chih Shih, component testability model for verification and quantification, In Proc. of the 29th

Annual International Computer Software and Applications Conference, pages 211–218. IEEE Comp Society

2005.

[29] M. Nazir, Khan R A & Mustafa K. (2010): A Metrics Based Model for Understandability Quantification,

Journal of Computing, Vol. 2, Issue 4, , pp.90-94. April 2010.

 [30] Mahfuzul Huda, Dr.Y.D.S.Arya, Dr. M. H. Khan: Measuring Testability of Object Oriented Design: A

Systematic Review, International Journal of Scientific Engineering and Technology Volume No.3 Issue No.10,

pp: 1313-1319, 2014

[31] ISO.International standard ISO/IEC 9126.information technology: Software product evaluation: quality

characteristics and guidelines for their use, 1991.

