
© 2014, IJARCSSE All Rights Reserved Page | 678

 Volume 4, Issue 10, October 2014 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Assessment of SQL Injection Solution Approaches

Jignesh Doshi, Bhushan Trivedi

MCA, LJ Institute of Management Studies MCA,

GLS Institute of Computer Technology, India

Abstract— Online banking (Net banking) has become the most common way for executing financial transactions in

recent past. As a result, the web has become Centre for e-marketplace and network as a backbone. Cyber attacks have

increased in numbers and became more sophisticated. Almost 60% of web resources are vulnerable. Web applications

have been facing challenges against data (loss, confidentiality and integrity) and availability. In this paper, the

authors performed an evaluation of Web application security solution techniques. We conclude that there is utmost

urgency to use hybrid (mixed) security solutions for web applications against attacks.

Keywords— Vulnerability,SQL Injection,Attack,Security,Threat

I. INTRODUCTION

Day by day more and more transactions are taking place via the internet. Web applications have become backbone

for business and economy in recent days. The web application usage and attacks are growing hand to hand. As per

Netcraft survey [1], the number of attacks has increased drastically in the past few years. Almost 75% of total attacks

come from web applications and 60% of web sites are vulnerable. As per CERT, Approx. 59% of cyber security

incidents are related to web applications [3].

As per OWASP the top 5 attacks out of 10 are related to information theft and database security and one of the top

most database attack is SQL Injection [2]. There attacks are now sophisticated and evolved. The web security Company

Trust wave studied (5) computer security of the last 30 years and discovered (refer Table I).

Table I Evolution of Computer Security

Decade  1980s 1990s 2000s

Evolution (DB

Applications)

Desktop Network Based Web / Internet Based

Physical Attack Vector Server

room

access

Weak Password a) Sensitive Data Left in Plain View

b) Unlocked Accessible Computer Systems

c) Data Cabling Accessible from Public Areas

Network Attack Vector None Infected Network a) Weak or Blank Administrator Passwords

b) Database Servers Accessible

c) ARP Cache Poisoning

Application Attack

Vector

None a) Logic Flaws

b) Authorization

Bypass

a) SQL Injection

b) Logic Flaws

c) Authorization Bypass

Asset on Risk Files/Data Web and Database

Servers

Web and Database Servers and Data

As per OWASP, Structure Query Language (SQL) based attacks is most commonly used attacks and become

under top ten attacks for past few years. An attacker can use SQL statements to retrieve or manipulate data. This

paper provides an evaluation of various solutions exists to detect and prevent SQL based attacks.

This paper is organized as follows: In section 2, we discuss the importance of attacks, and suggested tools for

SQL Injection attacks. In Section 3, we review techniques and tools. In section 4, we discuss finding. Conclusion and

future work are provided in section 5 & 6 respectively.

II. LITERATURE SURVEY

2.1 Motivation

As per the ISC internet domain survey (July 2012), internet host count has grown 9 times in just 11 years [4][17].

More and more number of financial transactions are taking place via online banking or net banking.

As per OWASP, 2013, SQL Injection based attacks are in the top – 10 since past few years. They are easy to execute.

Developers and organizations have realized the importance of web application security and it cannot be ignored.

As per Gartner statistical analysis, 75% attacks come from web applications and 2/3 web applications are vulnerable

[18].

http://www.ijarcsse.com/

Doshi et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp.678-682

© 2014, IJARCSSE All Rights Reserved Page | 679

2.2 SQL Injection

2.2.1 SQL Injection- SQLI (crafted or modified SQL statements) are used most commonly in database attacks and are

in top -10 attacks since 2010 [1] -[3], [5] -[7]. The Major reason why SQLI based attacks are more popular is simple in

execution, SQL statement includes user input and may contain hard coded values.

2.2.2 Types of SQLI Attacks

In SQL Injection (SQLI) attacker craft or modify or suppliant SQL statements to gain access of database and retrieve

data. Attacker enters queries and additions to the database via web form (application input field). There are four types of

SQLI attacks: SQL manipulation, Code injection, Function call Injection and buffer overflow. SQLI can be classified

into two categories: first order and second order attacks.

Table II: Types of SQLI [5]

Types of First

Order Attack

Attack Type Working Methods Purpose

Tautologies SQL Manipulation Crafted queries Get data / information

Logically

Incorrect

Queries

SQL Manipulation Using error messages to find

useful data for injection

 Get table name, column

name details along with the

error message

Union Query Code Injection Existing query is augmented

with the safe union query

To Get data / information

Stored

Procedure

Function Call Injection Execute built in stored

procedures

Get meta data and data

Piggybacked

Queries

Code Injection Additional malicious queries are

inserted

To perform DML operations

Inference: -

Blind Injection

Code Injection and

Buffer overflow

Exploiting database

vulnerability based on answer

true or false

Retrieve / Steal data

Inference -

Timing Attacks

Code Injection and

Buffer overflow

Using response time Collect data

Alternate

Encodings

SQL Manipulation Use hex characters in place of

regular characters

Collect data

2.2.3 SQL Injection attacks Mechanisms

Crafted / modified SQL statements can be injected into vulnerable web site using different mechanisms like: inject

using user input, inject using cookies, inject through server variables or second order injection [10].

2.2.4 Intent of SQL Injection attacks

SQLI attacks can be classified based on intent of attacking. The major intent behind the attack are: 1) Database

finger printing (collected metadata information), Retrieving sensitive or regular data, performing data manipulation,

Performing attacks (like Denial or service, bypassing authentication etc.), or executing remote commands [10].

2.2.5 Root Cause of SQL Injection attacks

Three Major root causes of SQL injection attacks are: a) Poor Web site administration b) Weak Input validation

techniques c) Non standard error reporting.

2.2.6 Impact of SQLI Attacks

The impact of SQLI may be severe to business in terms of Loss of data, Data Secrecy and data tempore. While

indirectly it may cause in loss of customer trust and loyalty.

III. SQLI DETECTION AND PREVENTION TECHNIQUES

SQLI works at the application level so it is difficult to handle it easily. Researchers have suggested many solutions

for SQLI. Most common approaches used to handle web application attacks are categorized into defensive coding or

hardening (filtering) [10]. However, they are not enough to stop attacks [11].

For the purpose of our study, we have divided solution approaches into 4 categories; 1) Defensive Coding, 2)

Detection and Prevention techniques, 3) Monitoring and 4) Hardening.

3.1 Defensive Coding Techniques

This approach, focus is to prevent the attack. The defensive coding approach can be used to mitigate the major root

cause of insufficient input validation. Defensive coding is implemented using key best practices like input type

checking, encoding the inputs, positive input matching, identification of all input sources, etc. [7]. Defensive coding is

one of the best ways to prevent SQLI.

Doshi et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp.678-682

© 2014, IJARCSSE All Rights Reserved Page | 680

Key problems identified are summarized as below [7] [9] [10] [11] [12] [13]:

1) The chances of human error are always possible like developer forgot to add checks at some locations etc.

2) It requires skilled manpower to implement

3) Extra efforts and cost required

4) Can be implemented when there is a new web application development

5) Need lots work to prevent new types of attacks

3.2 Detection and Prevention

This approach, the focus is to detect and prevent the attack. Using this approach we can overcome human error and

improper type checking problems of defensive coding [10]. Proposed Solutions of researchers are of different types as

below:

3.2.1 Static Code Checkers

This type of solution checks static code with runtime checks queries generated dynamically i.e. perform runtime

monitoring. JDBC-checker technique statically check the type correctness of dynamically runtime generated queries [19].

It mitigates risk “improper type checking”. Wasserman proposed solution, which perform static analysis of checking

tautology [20]. CANDID dynamically check the query structure for user input to the actual query issued to detect SQLIA

[21].

Major Drawbacks of this approach are [7] -[14], [19] -[21]:

1) The scope is limited of detecting and preventing tautologies

2) Cannot catch other types of attacks

3.2.2 Static and Dynamic Analysis

This type of techniques performs static and dynamic runtime monitoring [7]. In static phase all queries which can be

executed in the application are used to build a model, In dynamic phase, tool intercept queries executed and checks

against the model. Queries not matching will not be executed. In SQL Guard and SQL Check verify the query structure

before and after user input and allow only legal queries [22] [23]. AMNESIA performs static and runtime monitoring of

queries. Here queries are intercepted before they are sent to database[24].

Major Drawback of this approach is that the Success depends on accuracy of static analysis build a model [9] -[13],

[22] -[24].

3.2.3 Black-box testing dynamically

The focus of this type solutions is to test web applications [7]. This type of solutions first use web crawler to identify

the points which can be used for SQLIA [9] -[13]. Secondly, it will build attacks using known patterns and lastly apply

attack techniques. Improved version of this technique is penetration testing.. WAVES, SecuBat, AppScan, ScanDo, and

WebInspect are in this category.

 Major Drawback of this approach is [9] -[13], [25]:

1) The testing cannot guarantee completeness of code and need code for testing.

2) Need to know exact knowledge of the application

3.3 Intrusion Detection Systems

This type of solutions uses training sets to build models and monitor application for queries that do not match the

model [7] [26]. Mainly used for detection of SQLIA.

The drawbacks of this approach are [9] -[13], [26]:

1) Success is dependent on the quality of training set used for model building.

2) May generate a large number of false positive and negatives

3.4 Hardening (Filtering)

In this type of tools, set of input validation rules and constraints are defined to filter data [7] [13]. The tool will

monitor queries executed and filters the matching one.

The drawbacks of this approach are [9] -[13], [27]:

1) The developer needs to know what data needs filtering and filtering rules to apply

2) Skill of developer is required

IV. TECHNIQUES EVALUATION

4.1 Approach Evaluations

In this section, evaluates approaches discussed in the previous section using different aspects of software

engineering. We consider approaches and key aspects of software engineering for evaluation.

Table III Comparison of approaches with respect to Software Engineering Key aspects

Approach Developer Suitable for

New Web

Application

Scalable

for New

Attack

Source code

Required

Web Server

Access

Required
Skill Effort

Doshi et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp.678-682

© 2014, IJARCSSE All Rights Reserved Page | 681

Development Types

Defensive Coding Yes Yes Yes No Yes -

Static Analysis Yes Yes Yes No Yes -

Static and Dynamic

analysis

Yes Yes Yes No Yes -

Black-box/

Penetration

 Testing

Yes Yes Yes Yes Yes Yes

IDS Yes Yes Yes Yes No(*) Yes

Hardening Yes Yes Yes Yes No(*) Yes

Not: (*) – Not required for deployment of technique.

We can summarize that all techniques required skilled Developers, Development efforts and cost. Also need either source

code or access to the web server.

4.2 Review Findings and Gaps

Our Findings from the study are:

1. Tools focus is towards SQL statements or input validation.

2. Every solution needs developer skills

3. Every solution proposed has led towards developer overhead like

i. The extra effort required in the development, modification/enhancement

ii. The extra effort required during testing

iii. Extra efforts required if the new SQLI type of attack discovered.

Future solutions should focus on

1. Towards sensitive data exposure prevention like password, credit card number etc.

2. Prevention of static super database accounts and packages access

3. Code Fix is Not a Solution for Every Applications i.e. utility

4. Scalable solutions as attacks are never always similar but found complex and hybrid

V. CONCLUSIONS

All these techniques either attempt to keep the integrity of SQL structure or examine the correctness of the SQL

statements. Also, existing security policies are not sufficient. We need a mechanism, which will check the overall

application for SQLI risk and provide alerts. Which is independent of application and consisting of all types of SQLI

checks.

Last but not less significant,

1. Tomorrow, if any, new type of SQLI attack is found, each suggested tool will require humongous efforts to

mitigate it.

2. Unable to cover all SQL statements of applications as many third party tools are used in the application for which

it will be difficult

3. In real word, 80% of total coding efforts are towards maintaining of existing code. Most of the tools suggested are

good when we do new application development, but very difficult when existing system is modified, enhanced or

migrated.

REFERENCES

[1] OWASP. Top Ten projects 2013.https://www.owasp.org/index.php/Category: OWASP_Top_Ten_Project:

accessed 31
st
 May 2014.

[2] OWASP: https://www.owasp.org/index.php/Top_10_2014-A1-Injection: accessed 31
st
 May 2014.

[3] Common Weakness Enumeration: http://cwe.mitre.org/data/definitions/89.html : accessed 3rd June 2014

[4] SQL Injection: http://www.us-cert.gov/security-publications/sql-injection: accessed 31
st
 May 2013

[5] Puspendra Kumar, R K Pateriya: A Survey on SQL injection attacks, Detection and Prevention Techniques,,

ICCCNT 2012, 26- 28 July 2012 Coimbtore, India, IEEE-20I80

[6] Stop SQL Injection Attacks Before They Stop You: http://msdn.microsoft.com/en-us/magazine/cc163917.aspx:,

accessed 3
rd

 June 2013

[7] A. Tajpour, M. Massrum and M. Z. Heydari, “Comparison of SQL Injection Detection and Prevention

Techniques”, 2nd International Conference on Education Technology and Computer (ICETC), 2012

[8] Rahul Johri and Pankaj Sharma “ A Survey on Web Application Vulnerabilities(SQLIA and XSS) Exploitation

and Security Engine for SQL Injection”, IEEE 2012 , 978-0-7695-4692-6/12

[9] Diallo Abdoulaye and Al-Sakib Khan Pathan, ” A Survey on SQL Injection: Vulnerabilities, attacks AND

Prevention Techniques”, IEEE 15
th

 International Symposium on Consumer Electronics, 2011

[10] William G J Halfond, Jeremy Viegas, A Orso: A Classification of SQL Injection attacks and Countermeasures,

Copyright IEEE 2006

https://www.owasp.org/index.php/Category%20:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Top_10_2014-A1-Injection
http://www.us-cert.gov/security-publications/sql-injection

Doshi et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp.678-682

© 2014, IJARCSSE All Rights Reserved Page | 682

[11] A. Tajpour, M. JorJor Zade Shooshtari, “Evaluation of SQL Injection Detection and Prevention Techniques”,

2010 International Conference on Computational Intelligence, Communication systems and Networks, 978-0-

7695-4158-7/10

[12] A. Tajpour, M. Masrom and M. Z. Heydari, Suhaimi Ibrahim: “SQL Injection Detection and Prevention Tools

Assessment”, 978-1-4244-5540-9/10 @ 2010 IEEE

[13] A S Yeole, B B Meshram: Analysis of Different Technique for Detection of SQL Injection”, International

Conference and Workshop on Emerging Trends in Technology (ICWET 2011), ACM 978-1-4503-0449-8/11/02

[14] You Yu, Yuanyuan Yang, Jian GU and Lian Shen:”Analysis and Suggestions for the Security of Web

Applications”, 2011 International conference on Computer Science and Network Technology, 978-1-4577-

1587-7/11 IEEE

[15] Kasra Amirtahmasebi, Syed Reza Jalalinia and Saghar Khadem: A Survey of SQL Injection Defense

Mechanism, 2009 The Institute of Electrical and Electronics Engineers, Inc

[16] Raju Halder, Agostino Cortesi: Obfuscation-based Analysis of SQL Injection Attacks; IEEE 2010, 978-1-4244-

7755-5/10

[17] Gartner Press Releases: http://www.gartner.com

[18] Netcraft, Total Sites Across All domains August 1995 – 2010, http://news.netcraft.com

[19] C. Gould, Z. Su, and P. Devanbu. JDBC Checker: A Static Analysis Tool for SQL/JDBC Applications. In

Proceedings of the 26
th

 International Conference on Software Engineering (ICSE 04) –Formal Demos, pages

697–698, 2004

[20] G. Wassermann and Z. Su. An analysis framework for security in web applications. In Proceedings of the FSE

Workshop on Specification and Verification of Component-Based Systems (SAVCBS 2004), pages 70–

78,October 2004.

[21] Bisht, P., Madhusudan, P., and Venkatakrishnan, V.N., CANDID: Dynamic Candidate Evaluations for

Automatic Prevention of SQL Injection Attacks. ACM Transactions on Information and System Security,

Volume 13 Issue 2, (2010), doi>10.1145/1698750.1698754.

[22] G. Buehrer, B.W. Weide, P.A.G. Sivilotti, Using Parse Tree Validation to Prevent SQL Injection Attacks, in:

5th International Workshop on Software Engineering and Middleware, Lisbon,Portugal, 2005, pp. 106–113

[23] Z. Su and G. Wassermann. The Essence of Command Injection Attacks in Web Applications. In The 33rd

Annual Symposium on Principles of Programming Languages (POPL 2006), Jan. 2006

[24] William G.J. Halfond, Allesandro Orso,“AMNESIA: Analysis and Monitoring for NEutralizing SQL Injection

Attacks”, ACM, USA,2005, pp 174-183

[25] MeiJunjin: An approach for SQL injection vulnerability detection, 2009 Sixth International Conference on

Information Technology: New Generations, 978-0-7695-3596-8/09 $25.00 © 2009 IEEE

[26] Kemalis, K. And T. Tzouramanis. SQL-IDS: A Specification-based Approach for SQL Injection Detection.

SAC’08. Fortaleza, Ceará, Brazil, ACM (2008), 2153 2158

http://www.gartner.com/
http://news.netcraft.com/

