
© 2014, IJARCSSE All Rights Reserved Page | 664

 Volume 4, Issue 10, October 2014 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Min-Max Selection Sort Algorithm ï Improved Version of

Selection Sort
Mahesh Goyani* Mohammad Chharchhodawala Bhargav Mendapara

Computer Engineering Department,

Gujarat Technological University

Computer Engineering Department,

Gujarat Technological University

Computer Engineering Department,

Gujarat Technological University

Gujarat, India Gujarat, India Gujarat, India

Abstractð Sorting is the important operation and well-studied problem in computer science. Sorting refers to the

operation of arranging data in some given order such as ascending or descending, with numerical data, or

lexicographical order. Data being sorted may be single valued or it may be satellite data. So according to the cost of

memory and cost of write operations, sorting technique must be chosen. Sorting algorithms are compared based on

complexity (number of comparisons, number of swaps, number of write operations etc), methods used like

comparison-based or non-comparison based, internal sorting or external sorting etc. There are many sorting

algorithms have been proposed to meet the particular application. This paper shows a way to improve the performance

of traditional selection sort algorithm. Results show that the proposed approach outperforms the traditional selection

sort algorithm in terms of number of comparisons.

Keywords - Sorting, Complexity, Selection sort, Insertion sort, Bubble sort.

I. INTRODUCTION

Sorting is most common ingredient of computer science [1]. Sorting algorithms are problem specific, means no single

sorting technique is best suited for all application. Sorting is widely used in many computer algorithms like searching an

element, database operations, frequency distribution algorithm, convex hulls and many more. Some sorting algorithms

work on less number of elements, some are suitable for float numbers, some are good for specific range, some are used

for huge number of data, and some are used if the list has repeated values. A sort can be classified as being internal if the

records that it is sorting are in main memory or external if some of the records that it is sorting are in auxiliary storage [1].

There is a direct correlation between the complexity of an algorithm and its relative effectiveness [2].

Three of the most important efficiency considerations of sorting algorithms include the amount of time that must be

spent by the programmer in coding a particular sorting program, the amount of machine time necessary for running the

program, and the amount of space necessary for the program [1].

Space complexity of an algorithm is the amount of memory it needs for the completion of operation and the time

complexity of an algorithm is the amount of computer time it needs to solve the problem [1], [2[, [3]. Performance

evaluation can be divided into major phases as a priori estimates and a posteriori testing [3].

The complexity of algorithm is generally written in a form known as Big oh ï O(n) notation, where the O represents

the complexity of the algorithm and a value n represents the size of the set the algorithm runs against. The two groups of

comparison based sorting algorithms are O(n
2
), which includes the bubble, insertion, selection, and shell sorts which is

slower for larger arrays; and nlog2n which includes the, merge, quick and heap sort [2], [4], [5].

All sorting algorithms are problem specific. When the data to be sorted is small enough to fit into a processorôs main

memory and can be randomly accessed then in this case selection sort, bubble sort or insertion sort are better suited.

When the external sorting is required then merge sort algorithm is preferred. When the size of the input is small or data

are nearly sorted then insertion sort is preferred and when the size of the input is too large and data are randomly

scattered then quick sort, merge sort, or heap sort is preferred. When the input elements are uniformly distributed within

the range [0, 1) then bucket sort is preferred and when the data available in the input list are repeated more times than

counting sort is preferred.

In merge sort, quick sort, heap sort uses divide and conquer approach. The principle of the divide-and-conquer

algorithm design is that it is easier to solve several small instances of a problem than one large problem [6], [7].

Quick sort is considered to be a better sorting algorithm in cache performance and average theoretic complexity [8],

[9].

II. TRADITI ONAL SELECTION SORT

Traditional selection sort works as follows: First, find the minimum element in the array and swap it with the first

element (itself if the first entry is already the smallest) [10], [11]. Then, find the next minimum element and swap it with

the second entry. Iterate this way until the entire array is sorted. This algorithm is called selection sort because it works

by repetitively selecting the smallest remaining item [12]. List gets sorted from beginning. In every iteration, problem

size reduces by one element.

http://www.ijarcsse.com/

Goyani et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp. 664-669

© 2014, IJARCSSE All Rights Reserved Page | 665

The selection sort improves on the bubble sort by reducing the number of swaps necessary from O(n
2
) to O(n) [13] but,

the number of comparisons remains O(n
2
). In applications where the cost of swapping items is high, selection sort is

good candidate of choice [14]. Apart from this, selection sort outperforms almost all algorithms where write operations is

very costly. Selection sort performs maximum O(n) writes in worst case.

Selection sort is a simple sorting and in-place method that is easy to understand [15]. And it is easy to implement and

is characterized by the following two signature properties:

1). Running time is unaffected to input. The process of finding the smallest item on one pass through the array does

not give much information about where the smallest item might be on the next pass. This property can be

disadvantageous in some situations.

2). Data movement is minimal. Each of the next changes the value of two array entries, so selection sort uses N

exchangesðthe number of array accesses is a linear function of the array size. None of the other sorting algorithms that

we consider have this property (most involve linearithmic or quadratic growth).

Pseudo code for traditional selection sort is shown below:

A. Pseudo code

[]()nASortSelection_

()++-<= iniifor ;1;0

 i=min

()++<+= jnjijfor ;;1

[] []()minAjAif <

 j=min

 [][]()min, AiAswap

end

Algorithm is simulated for random array [57, 30, 5, 58, 76, 40, 64, 22]. All passes are shown in below table

Table I: Simulation of traditional selection sort algorithm

DATA 57 30 5 58 76 40 64 22

1
st
 Pass 5 30 57 58 76 40 64 22

2
nd

 Pass 5 22 57 58 76 40 64 30

3
rd
 Pass 5 22 30 58 76 40 64 57

4
th
 Pass 5 22 30 40 76 58 64 57

5
th
 Pass 5 22 30 40 57 58 64 76

6
th
 Pass 5 22 30 40 57 58 64 76

7
th
 Pass 5 22 30 40 57 58 64 76

B. Complexity Analysis

During each pass, one element is compared with remaining (n-1) elements. So itôs self-explanatory that the total number

of comparisons over all pass would be:

()() 1...21 ++-+-= nn

() ()2
1

1

21 nOnni

n

i

=·-==ä
-

=

III. PROPOSED M IN-M AX SELECTION SORT

Selection sort finds minimum element in each iteration and place it to its desired location. This requires n(n-1)/2

comparisons to sort n elements.

Finding minimum element uses (n-1) comparisons. Our new algorithm is based on simultaneously finding minimum

and maximum element in every iteration. Finding the minimum and maximum independently, using (n-1) comparisons

for each element needs total of 2*(n-1) comparisons.

More optimized algorithm can find both the minimum and the maximum of n elements using O(n) comparisons, which

is asymptotically optimal. In fact, at most 3*(n/2) comparisons are sufficient to find the minimum and the maximum

rather than 2*(n-1) comparisons [17]. Instead of processing each element of the input by comparing it with the current

minimum element and maximum element, at a cost of 2 comparisons per element, it processes elements in pairs. It

compares pairs of input elements first with each other, and then it compares the smaller element to the current minimum

element and the larger element to the current maximum element, at a cost of 3 comparisons for every pairs.

Goyani et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp. 664-669

© 2014, IJARCSSE All Rights Reserved Page | 666

If n is even, it performs 1 comparison on the first 2 elements to determine the initial values of the minimum element

and maximum element, and then we process the rest of the elements in pairs. For even number of elements, it performs

one comparison followed by 3*(n-2) / 2 comparisons, for a total of 3*(n/2) ï 2.

Our new improved selection sort sorts the data from starting index and last index of the array and finishes the

execution of outer loop when it reaches at the middle of the array. In its first iteration it finds the minimum and

maximum elements of array and put those in their desired locations, then it finds the next minimum and maximum

elements from the remaining array and put those in their next respective locations in the array. In this way it executes half

the iteration of the outer loop, while old Selection Sort only finds either minimum or maximum (but not both) element of

array and requires the full iteration of outer loop. If numbers of elements are odd, then it finds maximum element and

place it on desired location and then process the rest of the (n-1) elements in the case for even elements.

This algorithm requires 3/8 * (n
2
) comparisons to sort the data, which is 25% improvement over Selection Sort.

A. Pseudo Code

[](){__ nASortSelectionMinMax

()oddisnif

 0max=

 ()++<= iniifor ;;1

 [] []()maxAiAif >

 i=max

 [][]()max,1 AnAswap -

 1-=nn

 ö
÷

õ
æ
ç

å
++<= i

n
iifor ;

2
;0

 [] []()1+< iAiAif

 1max +=i

 i=min

 else

 i=max

 1min +=i

()(){2;;2 +=-<+= jjinjijfor

])[]1[(jAjAif <+

 1min +=jindex

 jindex=max

 else

 1max +=jindex

 jindex=min

[] []()maxmax AindexAif >

 indexmaxmax=

[]()[min]min AindexAif <

 indexminmin=

}

[][]()min, AiAswap

(){max=iif

 min;max=

}

[][]()max,1 AinAswap --

}

}

Simulation for the same data pattern is shown in table II. It sorts data from both the end simultaneously. In each pass it

sorts two elements. So this approach needs only n/2 passes rather than n passes.

Goyani et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp. 664-669

© 2014, IJARCSSE All Rights Reserved Page | 667

Table II: Simulation of Min Max Selection sort algorithm

DATA 57 30 5 58 76 40 64 22

1
st
 Pass 5 30 57 58 22 40 64 76

2
nd

 Pass 5 22 57 58 30 40 64 76

3
rd
 Pass 5 22 30 40 57 58 64 76

4
th
 Pass 5 22 30 40 57 58 64 76

B. Complexity Analysis

Complexity analysis for even number of elements in list:

()()()()[]
2

2...8642
2

3 n
nnnn +++-+-+-+-=

()
()[]

2
2...8642

2

2

2

3 n
n

nn
+ù
ú

ø
é
ê

è
-+++++-

-
=

()()()[]
2

2...642
22

3 2 n
nnnn

n
+ù
ú

ø
é
ê

è
++-+-+---=

2
2

22

3 2 n
in

n z

zn

zi

+

ù
ù
ù
ù

ú

ø

é
é
é
é

ê

è

ù
ù
ù
ù

ú

ø

é
é
é
é

ê

è

--= ä

-

=

2
2

22

3

1

2 n
in

n z

zn

i

+

ù
ù
ù
ù

ú

ø

é
é
é
é

ê

è

ö
ö
ö
ö

÷

õ

æ
æ
æ
æ

ç

å

--= ä

-

=

222

2

22

3 2 nnn
n

n
+ù
ú

ø
é
ê

è
ù
ú

ø
é
ê

è
ö
÷

õ
æ
ç

å
ö
÷

õ
æ
ç

å-
--=

()
2

2
4

1

22

3 2
2 n

nnn
n

+ù
ú

ø
é
ê

è
---=

24

3

8

3 2 nnn
+-=

8

23 2 nn -
=

Complexity analysis for even number of elements in list:

As we have proved that complexity for the even number of elements in list is
48

3 2 nn
-

Now put n = n ï 1 in above equation and (n ï 1) comparisons to find maximum element.

 =
()

1
4

1

8

13
2

-+
-

-
-

n
nn

()

1
4

1

8

123 2

-+
-

-
+-

= n
nnn

=
8

88

8

22

8

363 2 -
+

-
-

+- nnnn

 =
8

8822363 2 -++-+- nnnn

8

33 2-
=

n

Goyani et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp. 664-669

© 2014, IJARCSSE All Rights Reserved Page | 668

IV. RESULT ANALYSIS AND DISCUSSION

Complexity analysis of traditional selection sort and Min Max selection sort shows that the proposed approach out

performs the existing approach. Though the order of comparisons does not change but the actual number of comparison

reduces by a large factor. Below table describes the number of comparisons required in both approaches in best case.

Comparison is made against various problem sizes to check the robustness of new approach.

Table II I: Number of comparison for best case

No of

Elements

Selection

Sort

Proposed

Algorithm

10 45 35

50 2450 925

100 4950 3725

500 124750 93625

1000 499500 374750

10000 49995000 37497500

100000 4999950000 3749975000

V. CONCLUSION

Logic of new proposed algorithm is based on the selection sort algorithm. The main difference in selection sort and

our new proposed algorithm is that the selection sort finds only minimum element in one iteration, but proposed

algorithm finds minimum and maximum elements and reduces problem size by 2 rather than 1. Proposed algorithm sorts

data in half iterations as compared to selection sort. Table 3 shows that proposed algorithm has approximately 25% less

comparisons than Straight Selection Sort algorithm.

REFERENCES

[1] LangsamYedidyah, Augenstein Moshe J., Tenenbaum Aaron M.òData Structures Using C and C++ò. Prentice

Hall, 2nd edition, 1995.

[2] Hoare, C.A.R. "Algorithm 64: Quick sort". Comm. ACM 4,7 (July 1961), 321.

[3] SartajSahni, Ellis Horowitz, Sanguthevar Rajasekaran.òFundamentals of Computer Algorithmsò. Universities

Press, 2nd edition, 2008.

[4] Soubhik Chakraborty, Mausumi Bose, and Kumar Sushant, A Research thesis, On Why Parameters of Input

Distributions Need be Taken Into Account For a More Precise Evaluation of Complexity for Certain

Algorithms.

[5] Madhavi Desai, Viral Kapadiya, Performance Study of Efficient Quick Sort and Other Sorting Algorithms for

Repeated Data, National Conference on Recent Trends in Engineering & Technology, 13-14 May 2011.

[6] Dean C., ñA Simple Expected Running Time Analysis for Randomized Divide and Conquer Algorithms,ò

Computer Journal of Discrete Applied Mathematics, vol. 154, no. 1, pp. 1-5, 2006.

[7] LedleyR.ñProgramming and Utilizing Digital Computersò, McGraw Hill, 1962.

[8] D.S. Malik, C++ Programming: Program Design Including Data Structures, Course Technology(Thomson

Learning), 2002, www.course.com.

[9] J. L. Bentley and R. Sedgewick. "Fast Algorithms for Sorting and Searching Strings", ACM-SIAM SODA

97, 360-369, 1997.

[10] Vinu V. Das.òPrinciples of Data Structures Using C and C++ò. New age Publishers, 2008.

[11] NiklausWirth.òAlgorithms + Data Structures = Programsò. Prentice Hall, 1st edition, 1976.

[12] Robert Sedgewick.òAlgorithms in C: Fundamentals, Data Structures, Sorting, Searching, Parts 1-4ò. Pearson

Education, 3rd Edition, 2008.

[13] J. Alnihoud and R. Mansi, ñAn Enhancement of Major Sorting Algorithmsò, International Arab Journal of

Information Technology, vol. 7, no. 1, (2010), pp. 55-62.

[14] Robert Lafore.ñData Structures and Algorithms in Javaò. Sams Publishing, 2nd edition, November 16, 2002.

[15] D.E.Knuth,òThe Art of Computer Programming, Sorting and Searchingò. Addision-Wesley, 2nd edition, vol.

3, 1998.

[16] AnanyLevitin.ñIntroduction to the Design and Analysis of Algorithmsò Addison-Wesley, 3rd Edition, 2011.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein."Introduction to Algorithms". MIT Press,

Cambridge, MA, 2nd edition, 2001.

[1] LangsamYedidyah, Augenstein Moshe J., Tenenbaum Aaron M.òData Structures Using C and C++ò. Prentice

Hall, 2nd edition , 1995.

[2] Hoare, C.A.R. "Algorithm 64: Quick sort". Comm. ACM 4,7 (July 1961), 321.

[3] SartajSahni, Ellis Horowitz, Sanguthevar Rajasekaran.òFundamentals of Computer Algorithmsò. Universities

Press, 2nd edition, 2008.

[4] Soubhik Chakraborty, Mausumi Bose, and Kumar Sushant, A Research thesis, On Why Parameters of Input

Distributions Need be Taken Into Account For a More Precise Evaluation of Complexity for Certain

Algorithms.

Goyani et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp. 664-669

© 2014, IJARCSSE All Rights Reserved Page | 669

[5] Madhavi Desai, Viral Kapadiya, Performance Study of Efficient Quick Sort and Other Sorting Algorithms for

Repeated Data, National Conference on Recent Trends in Engineering & Technology, 13-14 May 2011.

[6] Dean C., ñA Simple Expected Running Time Analysis for Randomized Divide and Conquer Algorithms,ò

Computer Journal of Discrete Applied Mathematics, vol. 154, no. 1, pp. 1-5, 2006.

[7] LedleyR.ñProgramming and Utilizing Digital Computersò, McGraw Hill, 1962.

[8] D.S. Malik, C++ Programming: Program Design Including Data Structures, Course Technology(Thomson

Learning), 2002, www.course.com.

[9] J. L. Bentley and R. Sedgewick. "Fast Algorithms for Sorting and Searching Strings", ACM-SIAM SODA

97, 360-369, 1997.

[10] Vinu V. Das.òPrinciples of Data Structures Using C and C++ò. New age Publishers, 2008.

[11] NiklausWirth.òAlgorithms + Data Structures = Programsò. Prentice Hall, 1st edition, 1976.

[12] Robert Sedgewick.òAlgorithms in C : Fundamentals, Data Structures, Sorting, Searching, Parts 1-4ò. Pearson

Education, 3rd Edition, 2008.

[13] J. Alnihoud and R. Mansi, ñAn Enhancement of Major Sorting Algorithmsò, International Arab Journal of

Information Technology, vol. 7, no. 1, (2010), pp. 55-62.

[14] Robert Lafore.ñData Structures and Algorithms in Javaò. Sams Publishing, 2nd edition, November 16, 2002.

[15] D.E.Knuth,òThe Art of Computer Programming, Sorting and Searchingò. Addision-Wesley, 2nd edition, vol.

3, 1998.

[16] AnanyLevitin.ñIntroduction to the Design and Analysis of Algorithmsò Addison-Wesley, 3rd Edition, 2011.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein."Introduction to Algorithms". MIT Press,

Cambridge, MA, 2nd edition, 2001.

