Volume 4, Issue 10, October 2014 ISSN: 2277 128X
International Journal of Advanced Research in

Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com

Min-Max Selection Sort Algorithry Improved Version of
Selection Sort

Mahesh Goyant Mohammad Chharchhodawala Bhargav Mendapara
ComputerEngineeringDepartment, = Computer Engineering Department Computer Engineering Department
Gujarat Technological University Gujarat Technological University Gujarat Technological University

Gujarat, India Guijarat, hdia Guijarat, India

www.ijarcsse.com

Abstractd Sorting is the important operation and well-studied problem in computer science. Sorting refers to the
operation of arranging data in some given order such as ascending or descending, with numerical data, or
lexicographical order. Data being sorted may be single valued or it may be satellite data. So according to the cost of
memory and cost of write operations, sorting technique must be chosen. Sorting algorithms are compared based on
complexity (number of comparisons, number of swaps, number of write operations etc), methods used like
comparison-based or non-comparison based, internal sorting or external sorting etc. There are many sorting
algorithms have been proposed to meet the particular application. This paper shows a way to improve the performance
of traditional selection sort algorithm. Results show that the proposed approach outperforms the traditional selection
sort algorithm in terms of number of comparisons.

Keywords - Sorting, Complexity, Selection sort, Insertion sort, Bubble sort.

l. INTRODUCTION

Sating is most common ingredienf computer science [1]. Sorting algorithms are problem specific, means no single
sorting technique is best suited for all application. Soigngidely used in many computer algdwits like searching an
element, database operations, frequency distribution alggridbnvex hulls and many more. Some sorting algorghm
work on less number of elements, some are suitable for float numbers, some are good for specific range, some are used
for huge number of data, and some are used if the list has repeated values. A sort can be classified as being internal if the
records that it is sorting are in main memory or external if some of the records that it is sorting are in auxiliarjl$torage
There is a direct correlation between the complexity of an algorithm and its relative effectiveness [2].

Three of the most important efficiency consideratiohsorting algorithms include the amount of time that must be
spent by the programmer in codiagparticular sorting program, the amount of machine time necessary for running the
program, and the amount of space necessary for the program [1].

Space complexity of an algorithm is the amount of memory it needs for the completion of operation ané the tim
complexity of an algorithm is the amount of computer time it needs to solve the prdflef®[[[3]. Performance
evaluation can be divided into major phases as a priori estimates and a posteriori testing [3].

The complexity of algorithm is generally iten in a form known aBig ohi O(n) notation, where th® represents
the complexity of the algorithm and a valueepresents the size of the set the algorithm runs against. The two groups of
comparisorbased sorting algorithms a@r’), which includes the bubble, insertion, selection, and shell sorts which is
slower for larger arrays; andog,n which includes the, merge, quick and heap sqrti@, [5].

All sorting algorithms are problem specific. When the data to be sortedissmajlbnot o f it i nto a p!
memory and can be randomly accessed then in this case selection sort, bubble sort or inseatierbstier suited
When the external sorting is required then merge sort algorithm is preferred. When the size ot ikesmallior data
are nearly sortedhen insertion sort is preferred and when the size of the ispioo largeand data are randomly
scatteredhen quick sort, merge sort, or heap sort is preferred. When the input elements are uniformly distribimted with
the range [0, 1) then bucket sort is preferred and when the data available in the input list are repeated more times than
counting sort is preferred.

In merge sort, quick sort, heap sort uses divide and conquer approach. The principle of thandieaeuer
algorithm design is that it is easier to solve several small instances of a problem than one large grdilem [6

Quick sort is considered to be a better sorting algorithm in cache performance and average theoretic complexity [8]

[9].

Il. TRADITI ONAL SELECTION SORT
Traditional selection sort works as follows: First, find the minimum element in the array and swap it with the first
element (itself if the first entry is already the smallest),[LD1]. Then, find the next minimum element and swagitith
the second entry. Iterate this way until the entire array is sorted. This algorithm is called selection sort because it works
by repetitively selecting the smallest remaining item [18t getssorted from beginning. In every iteration, problem
size reduce by one element.

© 2014, 1JARCSSE All Rights Reserved Page | 664

http://www.ijarcsse.com/

Goyani et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),
October - 2014, pp. 664-669

The selection sort improves on the bubble sort by reducing the number of swaps necesgayjram®©(n) [13] but,
the number of comparisons remai@gr). In applications where the cost of swapping items is high, selectiorissor
good candidate of choice [L4part from this, selection sort outperforms almost all algorithms where write operations is
very costly. Selection sort performs maximum O(n) writes in worst case.

Selection sort is a simple sorting anebilace methodhiat is easy to understand [15]. And it is easy to implement and
is characterized by the following two signature properties:

1). Running time is unaffected to input. The process of finding the smallest item on one pass through the array does
not give much nformation about where the smallest item might be on the next pass. This property can be
disadvantageous in some situations.

2). Data movement is minimal. Each of the next changes the value of two array entries, so selection sort uses N
exchanged the numler of array accesses is a linear function of the array size. None of the other sorting algorithms that
we consider have this property (most involve linearithmic or quadratic growth).

Pseudaode for traditional selection sort is shown below:

A. Pseudo code
Selection SorfAn])

for(i =0ji <n- i ++)

min=i

for(j=i+%j<mj++)
if (A[j] < Almin])

min=j

swarfAli|, Amin])
end

Algorithm is simulated for random array [57, 30, 5, 58, 76, 40, 64, 22]. All passes are shown in below table

Tablel: Simulation of traditional selection sort algorithm

DATA [57]30]5 [58[76[40]64]22
1*Pass |5 |30 |57 |58 |76 |40 |64 |22
2"Pass |5 |22 |57 |58 |76 |40 |64 |30
39Pass |5 | 22|30 |58 |76 |40 |64 |57
4"Pass |5 |22 (30|40 |76 |58 |64 |57
5"Pass |5 |22 |30 |40 |57 |58 |64 |76
6"Pass |5 |22 |30 |40 |57 |58 |64 |76
7"Pass |5 |22 |30 |40 |57 |58 |64 |76

B. Complexity Analysis
During each pass, one element is compavrigd remaining(n-1) elements. So t sélfsexplanatory that the total number
of comparisongver all pass would be:

=(n-2)+(n- 2)+..+1

=8 i=n(n-1) 2:O(n2)

i=1

M. PROPOSEDMIN-M AX SELECTION SORT

Selection sort finds minimum element in edtdration and place it to its desired location. This requir@sl)/2
comparisons to sort n elements.

Finding minimum element usén-1) comparisons. Our new algorithm is based on simultaneously finding minimum
and maximum element invery iteration. Fhding the minimum and maximum independently, ugimd) comparisons
for eachelement needmtal of 2*(n-1) comparisons.

More optimized algorithm can find both the minimum and the maximumetéments usin@(n) comparisons, which
is asymptotically optimal. In fact, at mo3t(n/2) comparisons are sufficient to find the minimum and the maximum
rather thar2*(n-1) comparisons [17]. Instead of processing each element of the input by comparing it with the current
minimum element and aximum element, at a cost of 2 comparisons per element, it processes elements in pairs. It
compares pairs of input elements first with each other, and then it compares the smaller element to the current minimum
element and the larger element to the cumesxtimum element, at a cost of 3 comparisons for every pairs.

© 2014, 1JARCSSE All Rights Reserved Page | 665

Goyani et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),
October - 2014, pp. 664-669

If n is even, it performs 1 comparison on the first 2 elements to determine the initial values of the minimum element
and maximum element, and then we process the rest of the elements ikqra@rgen number of elements, it performs
one comparison followed 8#(n-2) / 2comparisons, for a total 8¢(n/2)1 2.

Our new improved selection sort sorts the data from starting index and last index of the array and finishes the
execution of outer loopvhen it reaches at the middle of the array. In its first iteration it finds the minimum and
maximum elements of array and put those in their desired locations, then it finds the next minimum and maximum
elements from the remaining array and put thosheir hext respective locations in the array. In this way it executes half
the iteration of the outer loop, while old Selection Sort only finds either minimum or maximum (but not both) element of
array and requires the full iteration of outer loop. If nursb&f elements are odd, then it finds maximum element and
place it on desired location and then process the rest ¢fi-thieelements in the case for even elements.

This algorithm require8/8 * (n’) comparisons to sort the data, which is 25% improvemeert Selection Sort.

A. Pseudo Code
MinMax_ Selection_Sortf{ Aln|X

if (nisodd)
max=0
for(i =2i <n;i++)

if (Ai]> Amax)

max=i
swatAn - 1, Amax)
n=n-1
forgézo;i <D;i ++8
c 2 =
if (Ali]< Ali +1])
max=i+1
min=i
else
max=i
min=i+1
for(j=i+2j<(n-i)j=j+2)
if (Aj+1<AjD
minindex=j +1
maxindex= j
else
maxindex=j +1
minindex= j
if (A/maxinde > Almax)
max = maxindex
if (AminindeX < Aimin])
min = minindex
}
swagAli], Amin])
if (i = max)
max=min;
}

} swafAn- i - 1], Amax)

Simulation for the same data pattern is shown in tablk $brts data from d&ith the end simultaneously. In each pass it
sorts two elements. So this approach needs only n/2 passes rather than n passes.

© 2014, 1JARCSSE All Rights Reserved Page | 666

Goyani et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

B. Complexity Analysis

Tablell: Simulation of Min Max Selection sort algorithm
DATA |57 |30|5 |58 |76 |40 |64 |22

1% Pass 30|57 (58 |22|40 |64 |76

39 pPass 22130 |40 |57 |58 | 64|76

5
2"Pas |5 | 22|57 |58 |30 |40 |64 |76
5
5

4" Pass 22 130|40 |57 |58 |64 |76

Complexity analysis forneennumberof elements in list

=2l0- 2+ (- 9+ (-) +(n- 8.+ 2+

_3eén(n- 2)

=26 -[2+4+6+8+.
3én?

282

e ez go

€2 é.z W
:g:”Z -n-éaziug+g

e =z WM

8 e &

e , %ﬁ%

3€n Al n
=—é—-n-2 1+ —
285 "R

2 1 9

e ¢
_3¢én? . é&n-Z%g%+
=2 n-§

282 &2 5
3en? 1(, n
:—é——n——(—2n)ﬁ+—
282 2
30> 3n . n
== = 4+

8 4 2
_3n%-2n

8

Complexity analysis for even

As we have proved that complexity for teennumberof elemengin list is% "2

=2 n-[n-2)+(n- 4)+(o-)+..+ 2o+

g, Nn
..+(n- 2)]H+E

u

NS

number of elements in list:

2 n

Now putn =ni 1in above equation anghi 1) comparisons to find maximum element.

2
F-1f n-1, 4
8 4
3(n2- 2n+1) n-1
- +
8 4

n-1

3n*-6n+3 2n-2 8n-8

8 8 8

3n%-6n+3-2n+2+8n- 8
8

_3n%-3
8

© 2014, IJARCSSE All Rights Reserved

October - 2014, pp. 664-669

Page | 667

V. RESULT ANALYSIS AND DISCUSSION

Complexity analysis of traditional selection sort and Min Max selection sort shows that the proposed approach out
performs the existing approachhough the order of comparisons does not changi¢hleuactual number of comparison
reduces by a large factdBelow table describes the number of comparisons required in both approaches in best case.
Comparison is made against various probserasto check the robustness of new approach.

TablellI: Number of comparison for best case

No of Selection Proposed
Elements Sort Algorithm
10 45 35
50 2450 925
100 4950 3725
500 124750 93625
1000 499500 374750
10000 49995000 37497500
100000 4999950000 3749975000
V. CONCLUSION

Goyani et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),

October - 2014, pp. 664-669

Logic of new proposed algohiin is based on the selection sort algorithm. The main difference in selection sort and
our new proposed algorithm is that the selection sort finds only minimum element in one iteration, but proposed
algorithm finds minimum and maximum elements and redpoaislem size by 2 rather than 1. Proposed algorithm sorts
data in half iterations as compared to selection sort. Tabl®ws that proposed algorithm has approximately 25% less
comparisons than Straight Selection Sort algorithm.

REFERENCES

[1]

(2]
3]

[4]

[5]
[6]

[7]
(8]

[9]

[10]
[11]
[12]
[13]

[14]
[15]

[16]
[17]

[1]

2]
(3]

[4]

© 2014, IJARCSSE All Rights Reserved

LangsamYed d y a h , Tenenbaum Aa
Hall, 2nd edition, 1995.

Hoare, C.A.R. "Algorithm 64: Quick sort". Comm. ACM 4,7 (July 1961), 321.

Sartaj Sahni , ElI'l i s Hor owidame nSaanl gsu t ohfe v@a mpRuatj ear
Press, 2nd edition, 2008.

Soubhik Chakraborty, Mausumi Bose, and Kumar Sushant, A Research thesis, On Why Parameters
Distributions Need be Taken Into Account For a More Precise Evaluationoofplgxity for Certain
Algorithms.

Madhavi Desai, Viral Kapadiya, Performance Study of Efficient Quick Sort and Other Sorting Algorithi
Repeated Data, National Conference on Recent Trends in Engineering & TechnoladgyWag 2011.
DeanC.,AA Si mple Expected Running Time Analysis
Computer Journal of Discrete Applied Mathematics, vol. 154, no. 1-pp2Q06.

Ledl eyR. AProgramming and Utilizing Digital Co
D.S. Malik, C++ Programming: Program Design Including Data Structures, Course Technology(Tt
Learning), 2002, www.course.com.

J. L. Bentley and R. Sedgewick. "Fast Algorithms for Sorting and Searching Strings";SA&M SODA
97, 360369, 1997.

Vinu V. Das.o0Principles of Data Structures Us
Ni kIl ausWirth. oAl guareist kms$r+io gD atnes 0St rPucetnt i ce Ha
Robert Sedgewick. oAl gorithms in C: F u n ddadme nR
Education, 3rd Edition, 2008.

J. Al ni houd and R. Ma ns i ,i nAigA nA |l Enohra nt chermsedn, t | onft
Information Technology, vol. 7, no. 1, (2010), pp-&G&

Robert Lafore.fiData Structures and Al gorithms
D. E. Knuth, 0The Arrtamnfi n@Qq miBwtrdari nRr @aWedleyS2adaedittoh, ivof
3, 1998.

AnanylLevitin. Al ntroduction t o t heWeBleys3rddeditiorg 2081. .
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Steimddioiction to Algorithms”. MIT Press
Cambridge, MA, 2nd edition, 2001.
LangsamYedi dyah,
Hall, 2nd edition , 1995.

Hoare, C.A.R. "Algorithm 64: Quick sort". Com®CM 4,7 (July 1961), 321.

Sartaj Sahni, ElIlis Horowitz, Sangut hevar Raj a
Press, 2nd edition, 2008.

Soubhik Chakraborty, Mausumi Bose, and Kumar Sushant, A Research thesis, On Why Paodrimgtat
Distributions Need be Taken Into Account For a More Precise Evaluation of Complexity for C
Algorithms.

Augenstein Moshe J.,

Augenstein Moshe J., Tenenba

Page | 668

Goyani et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10),
October - 2014, pp. 664-669

[5] Madhavi Desai, Viral Kapadiya, Performance Study of Efficient Quick Sort and Other Sorting Algorithi
Repeated Data, Nation@bnference on Recent Trends in Engineering & Technologi4ligay 2011.

[6] Dean C. , AA Simple Expected Running Time Ana
Computer Journal of Discrete Applied Mathematics, vol. 154, no. 1-pp2Q06.

[7] Ledl eyR. AProgramming and Utilizing Digital Co

[8] D.S. Malik, C++ Programming: Program Design Including Data Structures, Course Technology(Tt
Learning), 2002, www.course.com.

[9] J. L. Bentley and R. Sedgewick. "Eadgorithms for Sorting and Searching Strings", AGIAM SODA

97, 360369, 1997.
[10] Vinu V. Das.oPrinciples of Data Structures Us
[11] Ni kl ausWirth. 0Al gorithms + Dat aedBionfl9%t ur es =

[12] Robert Sedgewick. 0Al gorithms in C : Funda.meh:
Education, 3rd Edition, 2008.

[13] J. Al ni houd and R. Mansi , AAn Enhance me nlournal bf
Information Technology, vol. 7, no. 1, (2010), pp-&G&

[14] Robert Lafore.fiAiData Structures and Al gorithms

[15] D. E. Knuth, 0oThe Art of Comput er ddisia@/eseynand edgign, v&
3, 1998.

[16] AnanylLevitin.Alntroduction to t heWebleys3rddeditiorg 20al. .
[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein."Introduction to Algorithms". MIT,F
Cambridge, MA, 2nd edition, 2001.

© 2014, 1JARCSSE All Rights Reserved Page | 669

