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Abstract—Power consumption has become a critical concern in today’s VLSI system design. The growing market for 

fast floating-point co-processors, digital signal processing chips, and graphics processor has created a demand for 

high speed, area-efficient multipliers. The Modified Booth Recoding method is widely used to generate the partial 

products for implementation of large parallel multipliers, which adopts the parallel encoding scheme. A Wallace tree 

multiplier is an improved version of tree based multiplier architecture and uses carry saveaddition algorithm to reduce 

the latency. This paper presents efficient design of multiplier that combines the features of Wallace tree and Modified 

Booth algorithm, and aimed at reduction of area and improvement in speed.An efficient VerilogHDL code has been 

written, successfully simulated and synthesized for Xilinx FPGA vertex-6 low power (Xc6vlx75tl-1Lff484) device, 

using Xilinx 12.2 ISE and XST. The analyses obtained from implementation show that architecture is 41% faster than 

the Wallace tree architecture with optimal area utilization. 
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I.     INTRODUCTION 

Multipliers are basic elements in several digital signal processing applications,such as filtering,convolution,fast fourier 

transform, discrete cosine transform,compression algorithms,hardware implementation of mathematical functions and so 

on. Thus multiplier optimization in terms of area, power and speed is a major concern for digital designers.Recent 

research activities in the field of arithmetic optimization have shown that the design of arithmetic optimization have 

shown [1-2] that the design of arithmetic components combining operations which share data, can lead to significant 

performance improvements. Based on the observation that an addition can often be subsequent to a multiplication, the 

Multiply-Accumulator (MAC) and Multiply-Add (MAD) units were introduced [3] leading to more efficient 

implementations of DSP algorithms compared to the conventional ones, which use only primitive resources [4].Several 

architectures have been proposed to optimize the performance of the MAC operation in terms of area occupation,critical 

path delay or power consumption [5-6]. As notedin[7], MAC components increase the flexibility of DSP data path 

synthesis as a large set of arithmetic operations can be efficiently mapped onto them. Except the MAC/MAD operations, 

many DSP applications are based on Add-Multiply (AM) operations [8]. The straightforward design of the AM unit, by 

first allocating an adder and then driving its output to the input of a multiplier, increases significantly both area and 

critical path delay of the circuit. For Booth arrays,typically radix-4,their truncation history followed a similar path to that 

of the AND arrays, first followingtruncation [18] and column promotion [19].Exhaustive simulation of the truncated part 

of the Booth array was used to design compensation circuitry based upon the conditional exception of the error [20], or in 

order to construct Karnaugh maps of the ideal correction.Truncated arrays also have been considered for squarers, radix-

4 and 16 and Booth squarers, radix-4 and 16 and Booth squarer arrays [21-23].The structural optimization is performed 

on the conventional Wallace tree multiplier, in such a way that the latency of the total circuit reduces considerably. The 

conventional Wallace tree multiplier architecture[24-25] comprise of an AND array for computing the partial products, a 

carry save adder for adding the partial products so obtained and a carry propagate adder in the final stage. Recently, the 

technique of [10] has been used for the design of high performance flexible coprocessor architectures targeting the 

computationally intensive DSP application [12]. Zimmermann and Tran [11] present an optimized design of [9] which 

results in improvements in both area and critical path. 

This paper is organized as follows architecture is discussed in Section II. In Section III FAM Implementation is 

discussed. In Section IV, the performances of the proposed multipliers are evaluated. Conclusions are drawn in Section 

V. 

 

II.      ARCHITECTURE 

The multiplier is composed of three blocks: the Modified Booth Encoder and multiplicand selector block for formation of 

partial products and Wallace tree section, which adds all of the partial products simultaneously to eventually produce two 

numbers; the third block is the adder section which adds the two numbers obtained from the Wallace tree section as fast 

as possible. 
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Tulasiram et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10), 

October - 2014, pp. 798-802 

© 2014, IJARCSSE All Rights Reserved                                                                                                            Page | 799 

A. Modified Booth 

Modified Booth is a prevalent form used in multiplication [13-15]. It is a redundant signed-digit radix-4 encoding 

technique. Its main advantage is that it reduces by half the number of partial products in multiplication comparing to any 

other radix-2 representation. 

Let us consider the multiplication of 2’s complement numbers X and Y with each number consisting of n=2k bits. The 

multiplicand Y can be represented in Modified Booth form as: 

𝑌 =  𝑦𝑛−1𝑦𝑛−2 …𝑦1𝑦0 = −𝑦2𝑘−1 . 22𝑘−1 +  𝑦𝑖

2𝑘−2

𝑖=0

. 2𝑖 1  

 

     =  𝑦𝑘−1
𝑀𝐵 𝑦𝑘−2

𝑀𝐵 …𝑦1
𝑀𝐵𝑦0

𝑀𝐵 =  𝑦𝑗
𝑀𝐵

𝑘−1

𝑗 =0

. 22𝑗                                                                                        (2) 

𝑦𝐽
𝑀𝐵   =  −2𝑦2𝑗 +1+𝑦2𝑗 +𝑦2𝑗−1.                                                                                                                                          (3) 

 

Digits 𝑦𝑗
𝑀𝐵 ∈  −2, −1,0, +1, +2 , 0 ≤ 𝑗 ≤ 𝑘 − 1correspond to the three consecutive bits 𝑦2𝑗 +1 , 𝑦2𝑗 , 𝑦2𝑗−1 with one bit 

overlapped and considering that𝑦−1 = 0. Table I shows how they are formed by summarizing the Modified Booth 

encoding technique. 

 

Table I modified booth encoding table 

Binary 𝒚𝒋
𝑴𝑩 

𝐘𝟐𝐣+𝟏 𝐲𝟐𝐣 𝐘𝟐𝐣−𝟏 

0 0 0 0 

0 0 1 +1 

0 1 0 +1 

0 1 1 +2 

1 0 0 -2 

1 0 1 -1 

1 1 0 -1 

1 1 1 0 

 

B. Wallace Tree 

The Wallace tree has three steps: Multiply each bit of one of the arguments by each bit of the arguments, by each bit of 

the other, yielding𝑛2results.Depending on position of the multiplied bits, the wires carry different weights for example 

wire of bit carrying result of 𝑎2𝑏3 is 32.Reduce the number of partial products to two by layers of full and half adders 

group the wires in two numbers and add them with a conventional adder.The second phase works as follows. As long as 

there are three or more wires with the same weight and a following layer: Take any three wires with the same weights 

and input them into a full adder. This result will be an output wire of the same weight and an output wire with a higher 

weight for each three input wires. If there are two wires of the same weight left, input them into a half adder. If there is 

just one wire left connect it to the next layer. The advantages of using the Wallace tree architecture is, all the bits of all of 

partial products in each column are added together in parallel independent of other columns.In the conventional 8 bit 

Wallace tree multiplier design more number of addition operations is required. Using adder, three partial product terms 

can be added at a time to form the carry and sum. The sum signal is used by the full adder of next level. The carry signal 

is used by the adder involved in the generation of the next output bit, with a resulting delay proportional to log 3𝑛/2, for 

n number of rows [17]. A multiplier consists of various stages of fulladders, each higher stage adds up to the total delay 

of the system. In the first and second stages of the Wallace structure, the partial products do not depend upon any other 

values other than the inputs obtained from the AND array. However for the immediate higher stages, the final value 

(PP3) depends on the Cout value of previous stage. This operation is repeated for further stages. Hence, the major cause 

of delay is the propagation of the carry out from the total number of stages in the critical path. 

 

III.       FAM IMPLEMENTATION 

In this paper, we focus on AM units which implement the operation𝑍 = 𝑋 ∗ (𝐴 + 𝐵).The design of the AM operator 

requires that its inputs A and B are first driven to n adder and then the input X and the sum Y=A+B are driven to a 

multiplier in order to get output Z. For addition different adders are used if we use the carry look ahead adder it will 

reduced the delay but there will be increase in area occupation and power dissipation.In the FAM design, the multiplier is 

a parallel one based on the MB algorithm. Let us consider the product X*Y.The term Y= (𝑦𝑛−1𝑦𝑛−2…𝑦1𝑦0) is encoded 

based on the MB algorithm and multiplied with X=(𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0).Both X and Y consist of n=2k bits and are in 2’s 

complement form. Equation (4) describes the generation of the K partial products 

𝑃𝑃𝑗 = 𝑋 ∗ 𝑦𝑗
𝑀𝐵 = 𝑝𝑗 ,𝑛     2𝑛 +  𝑝𝑗 ,𝑖 ∗ 2𝑖

𝑛−1

𝑖=0

                                                                                                    (4)  
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For the computation of the least and the most significant bits of the partial product we consider 𝑥−1 = 0 𝑎𝑛𝑑 𝑥𝑛 = 𝑥𝑛−1 

respectively. Note that in case that n=2k+1, the number of the resulting partial products is 𝑛/2 + 1 = 𝑘 + 1 and the 

most significant MB digit is formed based on sign extension of the 2’scomplement number. 

After the partial products are generated, they are added,properly weighted, through a Wallace carry-save adder(CSA) tree 

shown in Fig 1. 

Partial Product Generator

CSA Tree

MB Encoding

Adder

A BX

Result=X(A+B)

 
Fig. 1 Architecture of Add Multiply unit 

 

IV.      RESULT 

In Table shows the detailed report of the analysis done with benchmark circuits implement in Xilinx 6VLX240TFF784-3 

and simulated and synthesized using Xilinx 12.2. The results were taken for both existing Wallace tree multiplier and 

proposed Wallace tree multiplier designed for 8 bit word.The proposed multiplier is optimized according to speed, 

generating partial products and sums. Upon comparison of the speed, we can conclude that Modified Booth recoded and 

Wallace tree multiplier proves to be a better option over conventional multipliers used in several complex VLSI circuits 

since its speed is 1.41 times faster than Wallace tree multiplier [17] and 1.15 times faster than booth recoded Wallace tree 

multiplier [8].The proposed architecture performs 13% faster when compared with architecture [18], and 41% faster 

compared with architecture [17]. The area remains same in proposed and reported architecture [18]. This variation is due 

to reduction in number of partial product i.e. by the factor of 
𝑛

2
+ 1 in modified Booth recoded Wallace tree multiplier.  

 

Table II comparison of different wallace tree multiplier 

S.No Title Delay(ns) Slice Utilized Cell Usage 

1. Wallace tree multiplier [17] 9.099  143 281 

2. Wallace tree multiplier(Carry look ahead 

adder )[8] 

8.933  179 162 

3. Booth recoded Wallace tree 

Multiplier[18] 

7.428  90 90 

4. Modified Booth recoded Wallace tree 

Multiplier 

6.442 92 90 

 

 
Fig.1  Output Waveform for Wallace Tree Multiplier. 
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Fig. 3 Output Waveform for Modified Booth Recoded Wallace Tree Multiplier. 

 

V.     CONCLUSION 

In this paper, we proposednovel high speed architecture for multiplication of two 8 bit numbers, combining the 

advantages of Modified Booth algorithm and Wallace tree multiplier. Further the simulation results of various types of 

Wallace tree were compared and the proposed multiplier is optimized according to speed, generating partial products and 

sums.And speed is 1.41 times faster than Wallace tree multiplier [17] and 1.15 times faster than booth recoded Wallace 

tree multiplier [8]. Our multiplier can be used in high speed applications such as adaptive filter, phase locked loop and 

neural networks. As a future work, the multiplier’s performance could be tested with Filters, ALU and several other 

multipliers. 
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