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Abstract— In open vehicle routing problems, the vehicles are not required to return to the depot after completing 

service. In  this paper, we extend the problem to be more realistic by including the uncertainty of customer demands. 

Each customer  has a demand and each customer must be serviced by a single vehicle and no vehicle may serve a set 

of customers whose total demand exceeds its capacity. Each vehicle route must start at the depot and end at the last 

customer it serves. The objective is to define the set of vehicle routes that minimizes the total costs. We solve the 

stochastic model using a strategy of releasing nonbasic variables from their bounds, combined with the “active 

constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their 

neighborhood integer points. A study of criteria for choosing a nonbasic variable to work with in the integerizing 

strategy has also been made.  
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I. INTRODUCTION 

The standard version of Vehicle Routing Problems (VRPs), it is defied that the vehicles are required to return to the 

depot after completing service (see for example [26]). In some instances the vehicles involved are not required to return 

to the depot. This kind of version is called  open VRP. From graph stands of view, we can say that  the vehicle routes are 

not closed paths but open ones, starting at the depot and ending at one of the customers.  

At first sight, having open routes instead of closed ones looks like a minor modification. Indeed, if travel costs are 

asymmetric, there is essentially no difference between the open and closed versions: to transform the open version into 

the closed one, it suffices to set the cost to zero for traveling from any customer to the depot. However, if travel costs are 

symmetric, things are more subtle. Indeed, we prove in the next section that, somewhat surprisingly, the open version 

turns out to be more general than the closed one, in the sense that any closed VRP on n customers can be transformed 

into an open VRP on n customers, but there is no transformation in the reverse direction.  

 This sort of VRP version naturally can occur,  for example, when a company does not own a vehicle fleet and all its 

deliveries from a central depot are undertaken by hired vehicles that are not obliged to return to the depot. In such 

situations, the cost of the distribution may be proportional to the distance travelled while loaded. A practical case study 

of this type is described in [34] and [35]. The same model can also be used for pick-ups, where vehicles start empty at 

any customer and must pick up the demands of each customer on their route and deliver them to the depot. 

There are also applications where the vehicles start at the depot, deliver to a set of customers and then are required to 

visit the customers in reverse order, picking up items that are required to be backhauled to the depot. If, for each 

customer, the pick-up demand is no larger than the delivery demand, then an open VRP model can be used. An 

application of this type for an air express courier is mentioned by [32] in an early article describing features of practical 

routing problems. 

Two further areas of application are described by [11]. The first involves the planning of train services, starting or 

ending at the Channel Tunnel. The second involves planning a set of school bus routes where in the morning pupils are 

picked up at various locations and brought to school, and in the afternoon, the routes are reversed to take pupils home. 

That  includes a description of a problem of express airmail distribution in the USA that is essentially an open pick-up 

and delivery VRP with capacity constraints and time windows. 

Open VRPs are easily seen to be strongly NP-hard by reduction from the Hamiltonian path problem. Research on 

open VRPs has therefore up to now concentrated on devising effective heuristics for solving them. For the version 

involving only capacity constraints, [31] presented two-phase heuristic involving minimum spanning trees, [34] present a 

population-based heuristic, and [35] present a heuristic of the threshold-accepting type. For a more general variant 

involving both capacity and route-length constraints, [4] and [11], [12] describe tabu search heuristics, [14] present a 

record-to-record travel heuristic, and [24] present an adaptive neighborhood search heuristic. Heuristics have also been 

devised for open VRPs with other kinds of constraints; see for example [29] and [2]. 

The classical Vehicle Routing Problem (VRP) determines the optimal set of routes used by a fleet of vehicles to serve 

a given set of customers on a predefined graph; it aims at minimizing the total travel cost (proportional to the travel times 

or distances) and operational cost (proportional to the number of vehicles used). The Stochastic VRP (SVRP) arises 

whenever some parameters of the VRP are random (e.g. demand and travel time). 

http://www.ijarcsse.com/
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In this paper we present the Capacitated Open Vehicle Routing Problem (COVRP), which is defined as follows. A 

complete undirected graph  is given, with . Vertex 0 represents the depot, the other vertices 

represent customers. The cost of travel from vertex  to vertex  is denoted by , and we assume costs are symmetric, 

so  . A fleet of K identical vehicles, each of capacity , is given. Each customer  has a demand , with  

. Each customer must be serviced by a single vehicle and no vehicle may serve a set of customers whose 

total demand exceeds its capacity. Each vehicle route must start at the depot and end at the last customer it serves. The 

objective is to define the set of vehicle routes that minimizes the total costs. 

 

II. MINIMUM UNMET DEMAND ROUTES 

We now formulate our problem into a mixed integer programming (MIP) model. We first introduce the notation used 

and formulate the deterministic version of the problem. We then compare different uncertainty models for this problem. 

 

A. Notation 

We consider a set K of vehicles and a set D of demand nodes. We identify an additional node, node 0, as the supply 

node (depot) and let C = D {node 0} represent the set of all nodes. Indexed on sets K and C, we define the following 

deterministic parameters: 

n : initial number of vehicles at the supply node (depot) 

s : amount of supplies at the supply node (depot) 

ck : load capacity of vehicle k 

dli : service deadline at demand node i. 

We use M as a large constant used to express nonlinear relationships through linear constraints. We also consider the 

following two parameters to represent the uncertain travel time and demand, respectively 

τi,j,k : time required to traverse arc(i, j) for vehicle k 

ζi : amount of demand needed at node i. 

Finally, we define the binary and non-negative decision variables as follows, indexed on sets K, C: 

Binary: 

Xi,j,k :  flow variables, equal to 1 if (i, j) is traversed by vehicle k and 0 otherwise  

Si,k : service variables, equals to 1 if node i can be serviced by vehicle k 

Non-negative: 

Yi,j,k :  amount of commodity traversing arc(i, j) using vehicle k 

Ui : amount of unsatisfied demand of commodity at node i 

Ti,k : visit time at node i of vehicle k 

δi,k : delay incurred by vehicle k in servicing i. 

 

B. Deterministic Model 

The deterministic, minimize unmet demand problem can be expressed as follows 

,
,

minimize
DP : 

subject to constraints (1) (17),

i i k
i D i D k K

U T
  
  



 

where the constraints are explained in detail below. 

The objective of model DP is to minimize the weighted sum of the total unmet demands over all demand nodes and 

the total visit time at demand nodes of all vehicles. The κ value usually is set to be very small to make the total travel 

time a secondary objective compared with the unmet demand quantity. However, the travel time is a necessary term in 

the objective function to guide the route generation after the deadline. Since we model the routing problem in response to 

a large-scale emergency, the service start times (arrival times) directly associate with when the supply will be shipped 

and used at the dispensing sites. We would like to serve the dispensing sites as early as possible for life-saving purposes, 

so the arrival time is a much more important indicator of the service quality than the conventional objectives such as 

travel times or operational time. 

We group the constraints into four parts: route feasibility constraints, time constraints, demand flow constraints and 

node service constraints. The following constraints (1)-(6) characterize the vehicle flows on the path and enforce the 

route feasibility. 
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Constraints (1) and (2) specify that the number of vehicles to service must not exceed the available quantity ready at 

the supply node at the beginning of the planning horizon. The number of vehicles to service is stated by the total number 

of vehicles flowing from and back to the depot. Constraint (3) represents each vehicle flow from and back to the depot 

only once. Constraints (4) and (5) state that each demand node must be visited only once. Constraint (6) requires that all 

vehicles who flow into a demand point must flow out of it. 

Constraints (7)-(10) guarantee schedule feasibility with respect to time considerations. 

0, 0 ( )kT k K            (7) 

, , , , , ,( ) (1 ) ( , )i k i j k j k i j kT T X M i j C k K                                 (8) 

, , , ,0 ( )i k i k i j k

j C

T X i D k K


            (9) 

, , , ,0 ( )i k i k i i j k

j C

T dl X i D k K


          (10) 

The fact that all vehicles leave the depot at time 0 is specified by constraint (7). Constraint (8) enforces the time 

continuity based on the node visiting sequence of a route. Constraint (9) sets the visit time to be zero if the vehicle does 

not pass a node. The variable δi,k represents the delay of the visit time if a vehicle reaches the node after the deadline and 

is set to zero if it arrives before the deadline in constraint (10). 

This model primarily accommodates the emergency situation where late deliveries could lead to fatalities. To 

maximize the likelihood of saving lives, medication should be received by the affected population within the specified 

hours of the onset of symptoms to impact the patient survival. This is the rationale behind the preference of using a hard 

deadline constraint instead of the soft deadline. However, for problems where late deliveries are possible we can translate 

the proposed model to soft deadlines, having the penalty on the violation represent the worsening in patient condition due 

to late arrival. 

Constraints (11)-(13) state node service constraints. 
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, , , ( , )i k i j k
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 
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Binary decision variables Si,k are used to indicate whether a node i can be serviced by vehicle k (when it equals to 1). That 

is, if the vehicle k visits node i before the deadline, then the vehicle can drop off some commodities at this node. 

However, the vehicle does not necessarily do it when Si,k equals to 1 since there might not be enough supply at the depot 

so the vehicle may not carry any commodities when it visits a later node in the route. We use these binary variables to 

keep the feasible region of this problem non-empty all the time. Constraints (4) and (5) will still enforce each node to be 

visited once and only once no matter before or after the deadline; however, those visits after the deadline cannot service 

the node any more. Constraint (11) states the deadline constraint and it can only be violated when Si,k equals to zero. 

Constraint (12) illustrates the relationship between the binary flow variables and the binary service variables. It implies 

the service variable can only be true when a vehicle physically passes a node. Constraint (13) requires that no commodity 

flows in a node after the deadline. On the other hand, there is no compulsory dropping-off commodities at nodes visited 

before the deadline since there may not be enough supplies to meet the demand. It establishes the connection between the 

commodity flow and the vehicle flow. 

Constraints (14)-(16) state the construction on the demand flows. 
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Constraint (14) requires the total shipment of commodity from the depot not exceeding its current supply inventory level. 

Constraint (15) enforces the balanced material flow requirement for the demand nodes. 

Constraint (16) allows the flow of commodities as long as there is sufficient vehicle capacity. It also connects the 

commodity flow and the vehicle flow. 

Xi, j, k, Si, j  binary;    Yi, j, k  0;      Ui   0;    Ti, k   0;    i, k  0     (17) 

Constraint (17) states the binary and non-negativity properties of the decision variables. 
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C. Stochastic Model 

The parameters τi,j,k in constraint (8) and ζi in constraint (15) represent the uncertain travel time and demand 

parameters of our problem, respectively. If we ignore the uncertainty and replace these random quantities by repre-

sentative values, such as their mean µτ i,j,k and µζi or mode values, we can solve a deterministic problem DP to obtain a 

simple solution for this problem. This deterministic solution will be helpful as a benchmark to compare the quality of 

routes and demonstrate the merits of other more sophisticated methods we discuss next. There are two other ways to 

handle uncertainty that for this problem lead to the solution of a single deterministic problem DP: chance constrained 

programming and robust optimization. The solution of this routing problem through other methods of representing 

uncertainty, such as stochastic programming and markov-decision processes require more involved solution procedures 

and will not be explored in this paper. 

In chance constrained programming (CCP) we assume that the parameters τi,j,k and ζi are unknown at the time of 

planning but follow some known probability distributions. We assume they are uniformly and independently distributed. 

We let αD and αT represent the confidence level of the chance constraints defining the unmet demand at each node and the 

arrival time of each vehicle at each node respectively. Thus, the constraints with stochastic parameters must hold with 

these given probabilities. For a given distribution on τi,j,k and ζi, we can rewrite constraint (8) and constraint (15) in the 

chance constrained fashion with levels αT and αD as follows: 

, , , , , ,{ ( ) (1 ) } 1 ( , )i k i j k j k i j k TP T T X M i j C k K          
   

   (18) 

, , , , 0 1 ( )j i k i j k i i D
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   
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We call this chance constrained model (CCP model), which is modified based on the DP model in section 3.2, by 

replacing constraints (8) and (15) with constraints (18) and (19). Under some assumption of their distribution, constraint 

(18) and constraint (19) can be transformed to their deterministic counterpart. From this point onward in this paragraph, 

we use short notation τ and ζ to substitute τi,j,k and ζi for simplicity. For example, we assume τ and ζ follow a lognormal 

distribution with mean µτ and standard deviation στ and mean µζ and standard deviation σζ respectively. The logarithm 

log(τ), log(ζ) are normally distributed as normal(
' ',   ) and normal(

' ',   ). The relationship between the parameters 

of lognormal distribution and normal distribution is stated as: µ = logµ - 1
2
 

2
,  

2
 = log(

2 2

2

 




). We let κT and κD 

represent the Z value for the normal distribution corresponding to the confidence level αT and αD and we call them “safety 

factors” in the later experimental results section. Therefore, the deterministic counterpart of constraint (18) and constraint 

(19) can be expressed as: 
' '
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III.  CHANCE-CONSTRAINED PROGRAMMING 

A large class of optimization problems arising from important planning and design applications in uncertain 

environments involve service level or reliability constraints. Consider, for example, the problem of locating service 

centers for responding to medical emergencies. Requiring 100% coverage over all possible emergency scenarios is physi-

cally and economically impractical and so typically emergency preparedness plans calls for some minimum response 

reliability [1, 4]. Service level agreements in telecommunication contracts require network providers to guarantee, with 

high probability, that packet losses will not exceed a certain percentage [19, 37]. In financial portfolio planning, investors 

often require that, with high probability, portfolio losses do not exceed some threshold (value-at-risk) while maximizing 

expected returns [13, 23]. Mathematical models for planning/designing reliability constrained systems such as these lead 

to optimization with chance constraints or probabilistic constraints. 

A generic chance-constrained optimization problem can be formulated as 

min ( )  subject to  Pr{ ( , ) 0} 1 ,
x X

f x G x  


  
       

   (22) 

where 
nX    represents a deterministic feasible region, : nf    represents the objective to be minimized,   is 

a random vector whose probability distribution is supported on set 
n  , G : 

n d m     is a constraint 

mapping, 0 is an m-dimensional vector of zeroes, and   (0, 1) is a given risk parameter (significance level). 

Formulation (22) seeks a decision vector x from the feasible set X that minimizes the function f(x) while satisfying the 

chance constraint G(x, )  0 with probability at least    1 -  . It is assumed that the probability distribution of   is 

known. 

By way of illustration, consider the following simple facility sizing example. We need to decide capacities of n 

facilities servicing uncertain customer demand. The cost-per-unit capacity installed for each facility is given, as is the 

joint demand distribution. The goal is to determine the cheapest capacity configuration so as to guarantee that the 

installed capacity exceeds demand with probability 1 - . This chance-constrained problem can be formulated as follows. 
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0 1
min subject  to  Pr{ 0, 1,..., } 1 .

n

i i
x i

c x i xi i n 
 

          (23) 

Here xi, ci and i denote the capacity, cost, and random demand for facility i, respectively. It is assumed that the (joint) 

probability distribution of the random vector = (1, …, n) is known (otherwise the probabilistic constraint in (23) is not 

defined). Note that the probabilistic (chance) constraint of (23) can be considerably weaker than trying to satisfy the 

demand for all possible realizations of . Note also that (23) is an example of (22) with G(x, ) =  - x. 

In this example, we require that the reliability requirement be applied to all facilities jointly. One could also consider 

the individual chance constraints Pr{ } 1i i ix    , i = 1, …, n, applied to each facility separately. This leads to a 

much simpler problem, since Pr{ } 1i i ix     is equivalent to 
1( ) 1i i iF x    , where Fi is the cumulative 

distribution function (cdf) of i. Note, however, that in order to ensure the joint chance constraint by enforcing the 

individual chance constraints, the corresponding risk parameters i should be considerably smaller than especially when n 

is large. 

Beginning with the work of Charnes, Cooper and Symonds [8], chance-constrained stochastic programs have been 

extensively studied. In addition to the facility location, telecommunication and finance examples cited earlier, chance 

constrained models have been used in numerous other applications including production planning [20, 17], chemical 

processing [15, 16] and water resources management [28, 33]. See [27] for background and an extensive list of 

references. Despite important theoretical progress and practical importance, chance-constrained stochastic problems of 

the form (22) are still largely intractable except for some special cases. There are two primary reasons for this difficulty. 

1.  In general, for a given x  X, computing Pr{G(x, )}  0 accurately, i.e., checking whether x is feasible to (1), can 

be hard. In multidimensional situations this involves calculation of a multivariate integral which typically cannot 

be computed with a high accuracy. 

2.  The feasible region defined by a chance constraint generally is not convex even if G(x, ) is convex in x for every 

possible realization of . This implies that even if checking feasibility is easy, optimization of the problem remains 

difficult. For example, the facility sizing example (23) with n facilities and m equiprobable realizations of the 

demand vector is equivalent to a maximum clique problem on a graph with n nodes and m edges, and is therefore 

strongly NP-hard, [18]. 

 

In light of the above difficulties, existing approaches for chance-constrained stochastic programs can be classified as 

follows. First are the approaches for problems where both difficulties are absent, i.e., the distribution of  is such that 

checking feasibility is easy, and the resulting feasible region is convex. A classical example of this case is when 

( , ) TG x v x    and  has a multivariate normal distribution with mean   and covariance matrix . Then for  (0, 

0.5), 

   : Pr{ } 1 : 0n T n T Tx x v x v x z x x             , 

where z = 
-1

(1 - ) is the (1 - )-quantile of the standard normal distribution. In this case, under convexity of X, the 

chance-constrained problem reduces to a deterministic convex optimization problem. The second class of approaches are 

for problems where only the second difficulty is absent, i.e., the feasible region of the chance constraint is guaranteed to 

be convex. The best known example of this case is when G(x, ) =  - Ax, where A is a deterministic matrix and  has a 

log-concave distribution. In this case the chance constraint feasible set is convex [25]. However it may still be difficult to 

compute Pr{G(x, )}  0 exactly. Solution methods in this class are primarily based on classical nonlinear programming 

techniques adapted with suitable approximations of the chance constraint function and its gradients (see [26]). The third 

class of approaches are for problem where the first difficulty is absent, i.e., computing Pr{G(x, )}  0 is easy, e.g., when  

 has a finite distribution with a modest number of realizations (in this case the feasible region is typically non-convex). 

A number of approaches based on integer programming and global optimization have been developed for this class of 

problems [9, 10, 30]. Finally, more recently, a number of approaches have been proposed to deal with both difficulties [6, 

7, 21, 22, 3]. The common theme in these approaches is that they all propose convex approximations of the non-convex 

chance constraint that yield solutions which are feasible, or at least highly likely to be feasible, to the original problem. 

Thus the difficulty of checking feasibility as well as non-convexity is avoided. Unfortunately, often, the solutions 

produced by these approaches are quite conservative. 

In this paper we consider an approximation of the chance constraint problem (22) where the true distribution of  is 

replaced by an empirical distribution corresponding to a Monte Carlo sample. The resulting sample average 

approximation problem can be used to provide good candidate solutions along with optimality gap estimates. The 

sampled approximation problem is a chance-constrained problem with a discrete distribution and can be quite difficult. 

We discuss integer programming based approaches for solving it. 

 

IV. SAMPLE AVERAGE APPROXIMATION 

In order to simplify the presentation we assume, without loss of generality, that the constraint function G : 
n d     in (22) is scalar valued. Of course, a number of constraints Gi(x, )  0, i = 1, …, m, can be equivalently 

replaced by one constraint    G(x, ) := max1im Gi(x, )  0. The chance-constrained stochastic program (22) can be 

rewritten as 
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min ( ) subject to ( )
x X

f x q x 


       (24) 

where q(x) := Pr{G(x, ) > 0} 

Now let 1
, … N

 be an independent identicaly distributed (iid) sample of N realizations of random vector . Given x  

X let 

1

(0, )
1

ˆ ( ) : 1 ( ( , )),
N

j

N
j

q x N G x 




   

where (0, )1 :    is the indicator function of (0, ). That is, ˆ ( )Nq x  is equal to the proportion of realizations with 

( , )jG x   > 0 in the sample. For some given   (0, 1) consider the following optimization problem associated with a 

sample 1
, …, N

, 

ˆmin ( ) subject to ( )N
x X

f x q x 


       (25) 

We refer to problems (24) and (25) as the true and sampled average approximate (SAA) problems, respectively, at the 

respective risk levels  and . 

The SAA problem is a chance-constrained stochastic problem with a different (discrete) distribution and a different 

risk level than (24). Unless N is prohibitively large, the chance-constrained problem SAA does not suffer from the first 

difficulty (computing ˆ ( )Nq x  mentioned in Section 1, however it may still be difficult to solve. Assuming we have a 

scheme for solving SAA, what can we say about an optimal solution and the optimal value of SAA in relation to that of 

the true problem (24)? Intuitively, assuming N is large enough, if   , then a feasible solution of SAA is likely to be 

feasible to the true problem, and     if then the optimal value of SAA is likely to be a lower bound to that of the true 

problem. Thus the SAA problem can be used to obtain both candidate feasible solutions to the true problem as well as 

optimality gap estimates. Next we discuss these concepts slightly more rigorously. 

We assume that X is compact, f(.) is continuous, G(x, .) is measurable for every 
nx , and ( , )G   is continuous 

for almost every . Then the functions q(x) and ˆ ( )Nq x  are lower-semicontinuous, and the true problem (24) and the SAA 

problem (25) are guaranteed to have optimal solutions if they are feasible. Let X
*
() and ˆ ( )NX   denote the set of 

optimal solutions of the true and SAA problems, respectively, v() and ˆ ( )Nv   denote the optimal value of the true and 

SAA problems, respectively. 

 

V.  SOLVING SAMPLE APPROXIMATIONS 

We have seen that we can generate as well as validate candidate solutions to the chance constrained problem (24) by 

solving (several) sampled approximations (4). In this section we explore approaches for solving these problems. 

If   = 0 then the SAA problem reduces to 

min ( ) ( , ) 0, 1,...,j

x X
f x subject to G x j N


                                            (26) 

When the functions f() and G(, 
j
) for  j = 1, …, N are convex (linear) and the set X is convex (polyhedral) then (26) is a 

convex (linear) program, and can usually be solved efficiently using off-the-shelf software. We can then consider 

increasing the risk level  in the SAA problem. However with  > 0 the SAA problem is a chance constrained 

optimization problem (with a finite distribution) and is NP-hard even in very simple settings [18]. A wide variety of 

approaches have been proposed to solve different classes of chance-constrained optimization problems under finite 

distributions (cf. [9, 10, 27] and references therein). In this tutorial we consider an integer programming based approach. 

The SAA problem (25) can be formulated as the following mixed-integer problem (MIP) 

1

min ( )

subhect to

( , ) 1,...,

{0,1}

j

j j

N

j
j

j

f x

G x M z j N

z N

z

x X






 

 





       (27) 

where zj is a binary variables and Mj is a large positive number such that Mj  maxxX G(x, 
j
) for all j = 1, …, N. Note 

that if zj is 0 then the constraint G(x, 
j
)  0 corresponding to the realization j in the sample is enforced. On the other hand 

zj = 1 does not pose any restriction on G(x, 
j
). The cardinality constraint 1

N

j jz N   requires that at least N of the N 

constraints G(x, 
j
)  0  for j = 1, …, N are enforced. 
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Even in a linear setting (i.e., the functions f and G are linear in x and the set X is polyhedral) moderate sized instances 

of the MIP (10) are typically very difficult to solve as-is by state-of-the-art MIP solvers. The difficulty is due to the fact 

that the continuous relaxation of (27) (obtained by dropping the integrality restriction on the z variables) provides a weak 

relaxation, and hence slows down the branch-and-bound algorithm that is the work-horse of MIP solvers. This difficulty 

can be alleviated by strengthening the formulation (27) by addition of valid inequalities or reformulation. Such improved 

formulations have tighter continuous relaxation gaps and can serve to significantly cut down solve times. 

A variety of approaches for strengthening special classes of the MIP (27) have been proposed. Here we discuss an 

approach for the case of joint probabilistic constraints where the uncertain parameters only appear on the right-hand side, 

i.e., 

1,...,
( , ) max{ ( )}i i

i m
G x G x 


   

Note that the facility sizing example (23) is of this form. By appropriately translating, we assume that 0i

j   for all i 

and j. The MIP (27) can then be written as 

1

min ( )

subject to     

( ) 1,...,

1,..., , 1,...,

{0,1} 1,...,

, 0 1,...,

i i

j j

i i j i

N

j j

j

i

f x

G x v i m

v z i m j N

z N

z j N

x X v i m

 



 

   

 

 

  

      (28) 

Note that we have introduced the auxiliary variables vi for i = 1, …, m to conveniently represent Gi(x). As before, if zj is 0 

then the constraints ( ) j

i iG x  for i = 1, …, m corresponding to the realization j in the sample is enforced. 

 

VI. THE ALGORITHM 

Let ,    be the (continuous) solution of the relaxed problem,  is the integer component 

of non-integer variable  and    is the fractional component. 

Step 1. Get row  the smallest integer infeasibility, such that  

 
Step 2. Calculate  

 
This is a pricing operation. 

Step 3. Calculate  

 With  corresponds to   

I. For nonbasic  at lower bound 

 If  and  calculate  

 If    and  calculate  

 If    and  calculate  

 If   and  calculate   

 

II. For nonbasic  at upper  bound 

  If  and  calculate  

  If    and  calculate  

 If   and  calculate  

 If    and  calculate  
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Otherwise go to next non-integer nonbasic or superbasic  (if available). Eventually the column  is to be increased 

form LB or decreased from UB. If none go to next . 

Step 4. Calculate 

 
 i.e. solve  for .  

step 5. Ratio test; there would be three possibilities for the basic variables in order to stay feasible due to the releasing 

of nonbasic  from its bounds. 

  If   lower bound 

 Let 

 

 

 
 The maximum movement of  depends on: 

     

 If   upper bound 

 Let 

 

 

 
 The maximum movement of j* depends on: 

   

step 6. Exchanging basis for the three possibilities 

 1.  If     or    

  becomes nonbasic at lower bound  

  becomes basic (replaces ) 

  stays basic (non-integer) 

 

 2.  If     or    

  becomes nonbasic at upper bound  

  becomes basic (replaces ) 

  stays basic (non-integer) 

 

 3.  If     or    

  becomes basic (replaces ) 

  becomes superbasic at integer-valued 

 

 Repeat from step 1. 

 

VII. CONCLUSION 

The Stochastic VRP (SVRP) arises whenever some parameters of the VRP are random (e.g. demand and travel time). 

In this paper we present the Capacitated Open Vehicle Routing Problem (COVRP), in which the demand is uncertain. 

The model of the problem turns out to be a chance-constrained stochastic program. We use Sample Average 

Approximation that transforms the model into a mixed integer programming model. Then we solve the integer model 

using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. 
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