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Abstract— Modern telecommunication systems require very high transmission rates, therefore, the problem of 

channels identification is a major challenge. The use of blind techniques allows an optimal compromise between a 

suitable bit rate and the quality of the retrieved information. In this research study, we are interested in learning the 

blind channel identification algorithms. We propose a new algorithm that combines the sequence three and four order 

cumulant to improve the channel estimation. 
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I. INTRODUCTION 

The current progress in resolving systems has become more important in the telecommunication systems, especially 

the blind identification channel, including the requirement of modern telecommunications systems that seek to use very 

high transmission rates. In this context, the application of higher-order cumulants is an important technique commonly 

addressed by digital telecommunication systems. The objective of the use of blind identification is to have a good 

estimation of channel parameters, and therefore a good quality of retrieved information. 

In this research study, we present tree algorithms for blind identification based on higher order cumulants [1]. The first 

objective is to present the new algorithm, which combines the cumulants of orders three and four, and then we present a 

comparative study of our algorithm with tree others existing algorithms [1], [2] and [3] to validate the level of estimation 

of a Gaussian white noise channel. 

II.  PROBLEM STATEMENT 

The proposed identification for the non-minimum phase adjusted average model  is represented by the following finite 

difference equation: 

0

Y (k) =  h(j).X(k - j), h(0) = 0 (noiseless output)
a

j 

                                   (1) 

Z(k) = Y (k) + N(k) (noisy output)                                                                     (2) 

The problem is to determine [h(0), h(1),...,h(q)] from a statistical analysis of Z(k) (the channel response) received no 

information about the input signal X(k).  

X(k) is an independent  non-Gaussian component and identically distributed (i.i.d)  zero mean excitation 

N(k) is an independent  white Gaussian noise of the input  X(k). q is the order of the assumed known channel . 

The cumulants for a Gaussian signal is zero, which justifies the use of statistical analysis using higher order 

cumulants. 

 

III. F UNDAMENTAL RELATIONSHIPS 

A. General Equation  

The Brillinger and Rosenblatt formula of identification of channels MA [4], under the above assumptions, can be 

written: 

, 1 1 , 1 1 , 1 1( ,..., ) ( ,..., ) ( ) ( )... ( )m Z m m Y m m x mC C h i h i h i                (3) 

For m = 2, the autocorrelation is: 

2, 2, 2,( ) ( ) ( )Z Y NC C C                                                                                            (4) 

Where  2, ( )NC   is the autocorrelation of the noise skewing the results and  2, ( )YC   is the autocorrelation of the 

noiseless signal given by: 

2

2, 2, 2,

0

( ) ( ) ( ), ( )
q

Y x x x

i

C h i h i    


                                                                 (5) 

From (3) you can easily show [5] that the cumulants of order m and n, m > n, satisfy the following relationship: 
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1

, 1 1 1 , , 1 1

0 0

( ) ( ,..., , ,..., ) ( ) ( ) ( ,..., )
q q m

m Y n n m m n j n Y n

i i j n

h i C i i h i h i C i i       


  

  

 
      

 
        (6) 

 

Where 
,

,

,

m x

m n

n x





 . 

This equation allows establishing relations between the autocorrelation and cumulants. It will also be the starting point 

for the algorithm that we propose. 

 

B. Moments and cumulants estimation 

1)  Moments estimation 

Let 1..    i NX x   a random variable representing scalar N samples of a stationary signal. 

The simplest estimator of order k (conventional estimator) is given by: 

, 1 1

0

1
( ) ( )... ( )

N

k x k

i

m x i x i t x i t
N





                                                                     (7) 

 

2)  Cumulants estimation 

A detailed presentation of the theory of cumulants estimation can be found in [6], [7], [8]. As cumulants are expressed 

in terms of moments for centered N sample, the estimates of cumulants are obtained as follows: 

2, 1 2 1 2 1

3, 1 2 3 1 2

4, 1 2 3 4 1 2 3 2 1 2 2 3 2 2 2 1 3 2 3 2 1 2

ˆ ( ) ( ) ( )

ˆ ( , ) ( , )

ˆ ( , , ) ( , , ) ( ) ( ) ( ) ( ) ( ) ( )

x

x

x

C t C t m t

C t t m t t

C t t t m t t t m t m t t m t m t t m t m t t

 



      

(8) 

 

IV. APPROACH BASED CUMULANTS 

  Methods based only on cumulants 3  are more important when the processed signal is contaminated by additive 

Gaussian noise. 

 

A. Algorithm based on 4th Order Cumulant  using equations q+1: ALG1 

The matrix form of the algorithm is given by ALG1 [1]: 

 

4, 4,

4,

4, 4,

4,

(2 1,2 1, 1) ( , ,0)
' (2 ,2 , )

(2 1,2 1, ) ' ( , ,0) (1)
0

0

( )
0

0 0 ( , , ) '

Y Y

Y

Y Y

Y

C q q q C q q
C q q q

C q q q C q q h

h q

C q q q






   
  

       
          

   
   

                (9) 

 

Where 
4, 4,

4,

( , , ) ( ,0,0)
'

( , ,0)

Y Y

Y

C q q q C q

C q q
   

  Or in more a compact form: 

                                                                               qMh d                                                                         (10) 

 

 

  M is the matrix of size ((1 + q) x q) and the vector of dimension d ((q + 1) x 1) cumulants are compounds with the 

output, Y (k), the RIF system. 

The elements of the vector q representing the parameter h (i) , i = 1, ..., q   to be estimated in  a blind manner, in the 

sense of least squares as follows: 

 

                                                                           
1( )T T

qh M M M d                                               (11) 

 

B. Algorithm based on 4th Order Cumulant  using equations 2q +1: ALG2 

The matrix form of the algorithm is given by ALG2 [2]: 
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3

2
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4, 4, 4,( )
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( )

4,

0 0 ( , ,0)

(0,0, )

0

( , ,0) ( , , ) (0,0,0)

0

(0,0, )

( , , ) 0 0

Y

h q
Y
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Y Y Yh q

h q Y

h q

Y

C q q

C q

C q q C q q q C

C q

C q q q

 
  

   
   
   
   
   
   
      

  
 

                       (12) 

 

  In a more compact form, the system of equations (12) can be written as follows: 

qMb d                                                                                                     (13) 

With M and bq are defined in the equation system (12). The solution in the sense of least squares, LS, of the equation 

system (13) is given by: 
1( )T T

qb M M M d                                                                              (14) 

 

This solution gives us an estimate of the quotient of parameters h
3
(i) and h

3
 (q), by: 

3

3

( )
( ) , 1,...,

( )
q

h i
b i i q

h q

 
  
 

                                                                    (15) 

So, to estimate the parameters  h(i) , i  =  1,...,q  we proceed as follows: 

 

 The parameters ( )h i  for  i  =  1,...,q-1  are estimated from estimates of ( )qb i  values  using the following 

equation: 
2 2 1/3( ) [ ( )( ( )) ]{ ( ( ))( ( )) }q q qh i sign b i b q abs b i b q                                              (16) 

Where 

1, 0;

s ( ) 0, 0;

1 0.

if x

ign x if x

if x




 
 

   and abs (x) = |x| indicates the absolute value of x. 

 The parameter  ( )h q   is estimated as follows: 

 
1/2

1 1
2 ( )

( ) [ ( )] ( ( ))
q

q q b q
h q sign b q abs b q

 
  

 
                                                             (17) 

 

C. The Zhang algorithm 

Using equation (3), Zhang et al. [3] developed an equation, based on cumulants of order n, given by: 

1 3

, , , ,

0

( ) ( , ,...,0) ( ,0,...,0) ( ,0,...,0) ( , ,0,..., 0)
q

n n

n y n y n y n y

i

h i C i t q C t C q C q q 



                  (18) 

 

  For n = 4, from equation (18), we obtain the following equation: 

3

4, 4, 4, 4,

0

( ) ( , ,...,0) ( ,0,...,0) ( ,0,...,0) ( , ,0,..., 0)
q

y y y y

i

h i C i t q C t C q C q q


                      (19) 

  

 For t = -q, -q+1, ..., q, the system of equations (19) is solved according to the least square to estimate the parameters h(i) 

for  i  =  1,...q .The quality of the estimate can be measured by dividing the estimated parameters  ( )h i   by the estimate 

of (0)h  (0)h  is close to 1 in the case of a good estimate. 

 

IV.    PROPOSED METHODS 

In this section we propose to estimate the impulse responses [ (0), (1),..., ( )]h h h q   FIR channel of order q using 

an algorithm that combines the three order cumulants and fourth order cumulants, as previously proposed as a 

hypothesis. 

D. General basic equation 

The relation (6) turns into an equation that links m and n such that m = n+1 follows: 

, 1 1 , , 1 1

0 0

( ) ( ,..., , ) ( ) ( ) ( ,..., )
q q

n y n n m n n n y n

i i

h i C i t i t t h i h i t C i t i t 

 

                                (20) 

 



Elmostafa  et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2), 

February - 2014, pp. 594-600 

© 2014, IJARCSSE All Rights Reserved                                                                                                            Page | 597 

E. Approach using cumulants of orders 3 and 4 together 

The above equation (20) becomes for m = 4 and n = 3: 

4, 1 2 3 4,3 3 3, 1 2

0 0

( ) ( , , ) ( ) ( ) ( , )
q q

y y

i i

h i C i t i t t h i h i t C i t i t
 

                                                     (21) 

We take   t1  =  t2   =  q  and  t3  =   , the equation (21) becomes: 

 

4, 4,3 3,

0 0

( ) ( , , ) ( ) ( ) ( , )
q q

y y

i i

h i C i q i q h i h i C i q i q  
 

                                                         (22) 

Knowing that C4,y(t1,t2,t3)  =  C3,y(t1,t2) =  0, if ti  >  q; the equation (22) becomes: 

 

4, 4,3 3,(0) ( , , ) (0) ( ) ( , )y yh C q q h h C q q                                                                                                 (23) 

 

Therefore, the ( )h    are given by: 

4,

4,3 3,

( , , )

( , )
( ) y

y

C q q

C q q
h




                                                                                                                                              (24) 

 

Where 4,3   are given by (6): 

4,

3,4,3

x

x




                                                                                                                                                         (25) 

F. Estimate of 4,3  

  4,3  is estimated from two approaches, assuming that h(0) = 1, noiseless channel or from Giannakis C(q,k) 

algorithm. 

1)  From h(0)  = 0 

  If we assume that h(0) = 1,  we obtain from equation (26): 

 

4,

3,

( , ,0)

4,3 ( , )

y

y

C q q

C q q
                                                                                                                                                       (26) 

2)  From Giannakis C(q,k)  algorithm 

According to the algorithm C (q, k) Giannakis [9], [10] ,m x   are given by: 

2

,

,

,

( ,0,...,0)

( , ,0...,0)

m y

m x

m y

C q

C q q
                                                                                                                                        (27) 

 

So 
2

4, 3,

4,3 2

4, 3,

( ,0,0) ( , )

( , ,0) ( ,0)

y y

y y

C q C q q

C q q C q
                                                                                                              (28) 

 

When the  ( )h i   are estimated on the divided by (0)h  . 

In the simulation we use this approach   to correct the error of calculation of cumulants. 

 

V. SIMULATION 

To verify the performance of the proposed algorithms compared to ALG1, ALG2 and Zhang we use simulation test. 

The comparison is made using two examples one with non-Gaussian noise and the other with a Gaussian noise. In each 

case, the input excitation X(k) is random (i.i.d) zero mean.  The Z(k), Y(k) and N(k) signals  are connected by the 

equations (1) and (2). To assess the influence of noise, we define the signal to noise ratio (signal-to-noise ratio (SNR)) 

such as: 
2

2
10log

y

N

SNR




 
   

 

                                                                                                                            (29) 

With D   is the variance of D random distribution. 

Similarly, to measure the accuracy of the estimated parameters compared with the real ones, we define the normalized 

mean square error, EQM (mean square error) for each iteration: 



Elmostafa  et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2), 

February - 2014, pp. 594-600 

© 2014, IJARCSSE All Rights Reserved                                                                                                            Page | 598 

2

0

( ) ( )

( )

q

i

h i h i
EQM

h i

 
  

 
                                                                                                                   (30) 

 

The ( )h i  , i = 1,...,q represent the parameters estimated in each iteration, and h(i), i = 1,...q represent the actual 

parameters of the model. 

 We represent EQM of the estimated parameters, with numbers relatively smaller sample (400, 800 and 1200) and for 

100 iterations in the case without noise and in the case with noise with 10 dB of SNR. To compare the estimators for 

different levels of channel we normalize the value of EQM by dividing the order of the channel. 

 

A. Estimation with zero SNR 

The table below summarizes the estimated values for different samples sizes  for zero SNR for a channel impulse 

response h(0) = 1 ,  h(1) = -0,85  et  h(2) = 1. 

 

TABLE I 

 TABLE ESTIMATES OF IMPULSE RESPONSES FOR ZERO SNR  

Sample size 

N         

SNR = 0 

Algorithm h(0) h(1)  h(2) EQM 

                       

400 

ALG1 1,0000  -0,1941    0,2613  1,1411 

ALG2 1,0000 -0,2749   0,4501  0,2534 

Zhang 1,0000 0,1119   0,0086 2,2637 

ALGaT 1,0000 -0,8089   0,3706 0,1328 

                      

800 

ALG1 1,0000 -0,2470   0,1547 1,2177 

ALG2 1,0000 -0,3189  0,4919 0,2162 

Zhang 1,0000 -0,0070 -0,0005 1,9844 

ALGaT 1,0000 -0,4746   0,9646 0,0654 

 

 

1200 

ALG1 1,0000 -0,3285   0,2645 0,9174 

ALG2 1,0000 -0,3390  0,6697 0,1569 

Zhang 1,0000 -0,0021 -0,0009 1,9969 

ALGaT 1,0000 -0,8804  0,4187 0,1131 

 

According to the values summarized in Table I above we can see that the performance generally increases as a 

function of sample size and that the proposed algorithm ALGaT gives satisfactory results for different sample sizes. 

The following figure (Fig.1) shows the curves of the magnitude (dB) for different algorithms for a sample size of 

about 800.  

 
Fig. 1  The curves of the magnitudes responses for different algorithm using 800 sample size with out noise. 

The curve of the magnitude response in dB, black color , given by ALGaT, perfectly follows the curve that represents 

the true real magnitude response curve, blue color, of the magnitude. However curves ALG1 and ALG2 are slightly 

different from the actual curve. But Zhang algorithm is far from perfect. 

 

B. Estimated with the presence of Gaussian noise 

The table below summarizes the estimated values for different samples sizes  for a SNR = 10 dB for a channel impulse 

response h(1) = 1 ,  h(2) = -0,85  et  h(3) = 1. 
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TABLE II 

 TABLE ESTIMATES OF IMPULSE RESPONSES FOR ZERO SNR  

Sample 

size N         

SNR = 10 dB 

Algorithm h(0) h(1)  h(2) EQM 

                       

400 

ALG1 1,0000 -0,6128   0,6365  0,2100 

ALG2 1,0000 -0,6471   0,8994 0,0224 

Zhang 1,0000 -0,0049   0,0001 1,9883 

ALGaT 1,0000 -0,7613   0,8365 0,0125 

                      

800 

ALG1 1,0000 -0,7110   0,8334 0,0545 

ALG2 1,0000 -0,6938   0,8651 0,0173 

Zhang 1,0000 0,0014  0,0007 2,0018 

ALGaT 1,0000 -0,7510   0,9292 0,0062 

 

 

1200 

ALG1 1,0000 -0,7753   0,8578 0,0280 

ALG2 1,0000 -0,8753   1,0492 0,0011 

Zhang 1,0000 0,0043  0,0124 1,9856 

ALGaT 1,0000 -0,8622   1,1428 0,0069 

 

 

According to Table II above the various algorithms we can see that the performance increases with the size of the 

samples. Note the Zhang algorithm has poor performance. However the ALGaT algorithm shows good performance 

estimation compared to other algorithms. 

The following figure (Fig.2) shows the curves of the magnitude (dB) for different algorithms for a sample size of 

about 800. 

 
Fig. 2  The curves of the magnitudes responses for different algorithm using 800 sample size with a 10 dB SNR Gaussian 

noise. 

 

The curve of the magnitude response in dB, black color , given by ALGaT, perfectly follows the curve that represents 

the true real magnitude response curve, blue color, of the magnitude. 

 

VI.    CONCLUSION 

In this research study we propose an algorithm that combines the cumulants of order three and order four. Then we 

compare this algorithm to three other algorithms found in the literature, which depend only on the fourth order 

cumulants. However it depends on the square Zhang cumulants of order four. We notice that the proposed algorithm 

gives good results in the identification of the channel, then ALG1 and ALG2. However the Zhang algorithm is far from 

the best. This can be explained by the increasing error with the square of the cumulants. 

We also observed that the various algorithms depend slightly on the size of the samples for size 400, 800 and 1200.  
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