
© 2014, IJARCSSE All Rights Reserved Page | 601

 Volume 4, Issue 2, February 2014 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

An Additional Improvement in Round Robin (AAIRR) CPU

Scheduling Algorithm
Abdulrazaq Abdulrahim*

Department of

Mathematics, Ahmadu Bello

University, Zaria,

Nigeria

Salisu Aliyu

Department of

Mathematics, Ahmadu

Bello University, Zaria,

Nigeria

Ahmad M Mustapha

Department of Computer

Engineering, University

of Maiduguri,Nigeria

Saleh E Abdullahi

Department of

Mathematics, Ahmadu

Bello University, Zaria,

Nigeria

Abstract- Multiprogramming is an important aspect of operating systems (OS); it requires several processes to be kept

simultaneously in the memory, the aim of which is maximum CPU utilization. Among other CPU scheduling

algorithms, like the First Come First Serve (FCFS), Shortest Job First (SJF) and Priority Scheduling (PS); Round

Robin is considered the most widely used scheduling algorithm in time sharing and real time OS for allocating the

CPU to the processes in the memory in order to achieve the aim mentioned above. This paper proposed a more

improvement in the Round Robin CPU scheduling algorithm by improving the algorithm by Manish and AbdulKadir.

By experimental analysis, this proposed algorithm performs better than the simple Round Robin and the Improved

Round Robin CPU scheduling algorithms in terms of minimizing average waiting time, average turnaround time and

number of context switches.

Keywords: operating system, multiprogramming, CPU utilization, CPU scheduling algorithm, Round Robin.

I. INTRODUCTION

An operating system is a program that manages the computer hardware. It also provides a basis for application programs

and acts as an intermediary between the computer user and the system hardware. One of the most important aspects of

operating systems is the ability to multiprogram. Multiprogramming requires several processes to be kept simultaneously

in the memory, the aim of which is maximum CPU utilization. If these several processes in the memory are ready to run

at the same time, the system must choose among them, which process to run. Making this decision is CPU scheduling.

CPU scheduling is the basis of multiprogramming systems. It refers to a set of policies and mechanisms to control the

order of work to be performed by a computer system. It is made by the part of the operating system called the scheduler,

using a CPU scheduling algorithm [7].

II. CPU SCHEDULING ALGORITHMS

There are many different CPU scheduling algorithms. Some basic CPU scheduling algorithms are listed below:

A. First-Come First-Serve (FCFS)

It is by far the simplest CPU scheduling algorithm. The implementation of this algorithm is easily managed with a First-

In-First-Out (FIFO) queue. When a process enters the ready queue, it is inserted onto the tail (rear) of the ready queue

and when the CPU is free, the process to be executed next is removed from the head (front) of the queue. The CPU is

allocated to the processes on the basis of their arrival at the queue. It is simple and has low overhead. But long CPU-

bound processes may dominate the CPU and may force shorter processes to wait for long periods, which minimizes the

average CPU utilization or average throughput [4].

B. Shortest-Job-First (SJF)

This algorithm associates with each process the length of the process’s next CPU burst time. When the CPU is available,

it is assigned the process that has the smallest next CPU burst. If the next CPU bursts of two processes are the same,

FCFS scheduling is used to break the tie.

It gives the minimum average waiting time and minimum average turnaround time for a given set of processes [4]. But, it

is difficult to know the length of the next CPU burst that’s why it cannot be implemented. Long running jobs may starve,

because the CPU has a steady supply of short jobs.

http://www.ijarcsse.com/

Abdulrahim et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 601-610 February - 2014, pp. 601-610

© 2014, IJARCSSE All Rights Reserved Page | 602

C. Priority Scheduling (PS)

Priority scheduling is a more general case of SJF. In which each process is assigned a priority and the process with the

highest priority gets CPU allocated to it first. Equal-priority processes are scheduled in FCFS order. It has a good

response for the highest priority processes. But, it suffers from a major problem known as indefinite blocking, or

starvation, in which a low-priority task can wait forever because there are always some other jobs around that have

higher priority.

D. Round Robin Scheduling (RR)

This is designed for time-sharing systems. It is similar to FCFS scheduling, but preemption is added to the switch

between processes. A small time unit called the time quantum or time slice is defined. The ready queue is maintained as a

circular queue. The CPU scheduler goes round the ready queue, allocating the CPU to each process for a time interval of

up to 1 time quantum. To implement the Round Robin scheduling, we keep the ready queue as a First-In-First-Out

(FIFO) queue of processes. New processes are added to the tail of the ready queue. The CPU scheduler picks the first

process from the ready queue, sets a timer to interrupt after 1 time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of less than 1 time quantum. In this case, the

process itself will release the CPU voluntarily. The scheduler will then proceed to the next process in the ready queue.

Otherwise, if the CPU burst of the currently running burst is longer than 1 time quantum, the timer goes off, and will

cause interrupt to the operating system. A context switch will be executed, and the process will be put at the tail of the

ready queue. This algorithm is effective in a general-purpose, times-sharing system or transaction-processing system. It

gives fair treatment for all the processes and the CPU overhead is low. But, care must be taken in choosing quantum

value because throughput will be low if time quantum is too small or high.

III. SCHEDULING CRITERIA

The various CPU scheduling algorithms have different properties as mentioned above. The choice of a particular

algorithm may favor one class of processes over another. For selection of an algorithm for a particular situation, we must

consider properties of various algorithms [2].

Many criteria have been suggested for comparing CPU scheduling algorithms. Whose characteristics are used for

comparison and can make a substantial difference in which algorithm is judged to be the best. The criteria include the

following:

1. Context Switch: This is process of storing and restoring context (state) of a preempted process, so that execution

can be resumed from same point at a later time. It is usually computationally intensive, lead to wastage of time

and memory, which in turn increases the overhead of scheduler, so the design of operating system is to optimize

only these switches, the goal is to minimize it.

2. Throughput: This is defined as number of processes completed per unit time. Context switching and throughput

are inversely proportional to each other.

3. CPU Utilization: This is a measure of how much busy the CPU is. Usually, the goal is to maximize the CPU

utilization.

4. Turnaround Time: This refers to the total time which is spend to complete the process and is how long it takes

the CPU to execute that process. The time interval from the time of submission of a process to the time of

completion is the turnaround time.

5. Waiting Time: This is the total time a process has been waiting in ready queue. The CPU scheduling algorithm

does not affect the amount of time during which a process executes or does input-output; it affects only the

amount of time that a process spends waiting in ready queue.

6. Response Time: It is the time from the submission of a request until the first response is produced. So the

response time should be low for best scheduling.

So we can conclude that a good scheduling algorithm for real time and time sharing system must possess following

characteristics [1]:

 Minimum context switches.

 Maximum CPU utilization.

 Maximum throughput.

 Minimum turnaround time.

 Minimum waiting time.

Due to a number of disadvantages these scheduling algorithms have, they are severely used except Round Robin

scheduling in timesharing and real time operating system; and considered most widely used CPU scheduling algorithm

[1] [2].

IV. RELATED WORKS

Over a period of time, researchers have developed a number of CPU scheduling mechanisms which have been used for

predictable allocation of CPU. Some of the important works are listed below.

Abdulrahim et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 601-610 February - 2014, pp. 601-610

© 2014, IJARCSSE All Rights Reserved Page | 603

[1] Developed an algorithm and proved the experimental results of its performance over simple Round Robin scheduling

algorithm. This algorithm reduces the number of context switching, average waiting time and average turnaround time.

The algorithm performs by allocating the CPU to every process, at the same time by applying Round Robin scheduling

with an initial time quantum (say k units). After completing first cycle, it doubles the initial time quantum (2k units);

selects the shortest process from the waiting queue and assign the CPU to it and after that, it selects the next shortest

process for execution by excluding the already executed process. After completing this cycle, if any process remains in

the ready queue after doubling the time quantum, it will half the doubled time quantum (i.e. the initial time quantum) and

apply it to the processes in the ready queue. And again, doubles the time quantum if any process remains in the ready

queue. This algorithm assumes that all processes arrive at the time in the ready queue.

[2] developed, analyzed the operation and performance of the Priority based Round Robin CPU Scheduling Algorithm

for Real Time Systems over the simple Round Robin scheduling algorithm and simple priority scheduling algorithm. The

algorithm is more efficient because it has less average waiting time, average turnaround time and number of context

switches as compared to simple Round Robin, in turn reducing the operating system overhead and dispatch latency. Also,

it reduces the problem of starvation as the processes with less remaining CPU burst time are assigned with the higher

priorities and are executed first in the second round of algorithm. [3] Developed an algorithm that describes an

improvement in Round Robin scheduling algorithm. After improvement in Round Robin scheduling algorithm, it has

been found that the waiting time and turnaround time have been reduced drastically. It works by reallocating the process

to CPU if the remaining CPU burst of the process is less than the time quantum.

V. PROPOSED ALGORITHM

The proposed algorithm (AAIRR) focuses on improving more on the improved Round Robin CPU scheduling algorithm

by [3]. The algorithm by [3] reduces the waiting time and turnaround time drastically compared to the simple Round

Robin scheduling algorithm. This proposed algorithm works in a similar way as [3] but with some modification. It works

in three stages:

Stage 1: It picks the first process that arrives to the ready queue and allocates the CPU to it for a time interval of up to 1

time quantum. After completion of process’s time quantum, it checks the remaining CPU burst time of the currently

running process. If the remaining CPU burst time of the currently running process is less or equal to 1 time quantum, the

CPU is again allocated to the currently running process for remaining CPU burst time. In this case this process will finish

execution and it will be removed from the ready queue. The scheduler then proceeds to the next shortest process in the

ready queue. Otherwise, if the remaining CPU burst time of the currently running process is longer than 1 time quantum,

the process will be put at the tail of the ready queue.

Stage 2: The CPU scheduler will then select the next shortest process in the ready queue, and do the process in stage 1.

Stage 3: For the complete execution of all the processes, stage 1 and Stage 2 have to be repeated.

Following is the pseudo code of the proposed AAIRR CPU scheduling algorithm

Step 1: START

Step 2: Make a ready queue of the Processes say REQUEST.

Step 3: Do

Step 4: Pick the first process that arrives to the ready queue and allocate the CPU to it for a time interval of up to 1 time

quantum.

Step 5: If the remaining CPU burst time of the currently running process is less or equal to 1 time quantum

 Reallocate the CPU again to the currently running process for the remaining CPU burst time. After completing

the execution, remove it from the ready queue.

 Otherwise, remove the currently running process from the ready queue REQUEST and put it at the tail of the

ready queue.

Step 6: Pick the next shortest process from the ready queue and allocate the CPU to it for a time interval of up to 1 time

quantum then go to step 5.

Step 7: WHILE queue REQUEST in not empty

Step 8: Calculate Average Waiting Time, Average Turnaround Time and Number of Context Switch.

Step 9: END

Abdulrahim et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 601-610 February - 2014, pp. 601-610

© 2014, IJARCSSE All Rights Reserved Page | 604

The flowchart for proposed algorithm is shown in Figure 1 below.

VI. ILLUSTRATION:

This uses the example in [3]. Considering a ready queue with four processes P1, P2, P3 and P4 arriving at time 0 with

burst times 15, 7, 28 and 20 respectively. Time quantum (TQ) been assumed was 10milliseconds (ms). Our proposed

AAIRR CPU scheduling picks the first process P1 from the ready queue and allocates the CPU to it for a time interval of

10ms. After executing P1 for 10 ms, the remaining CPU burst of P1 is 5ms. Since the remaining CPU burst time of P1 is

less or equals to the TQ, CPU will be reallocated to P1 for a time interval of 5ms. P1 has finished execution; it will be

removed from the ready queue. The shortest process in the ready queue will be the next to be allocated the CPU, and that

is P2 with 7ms CPU burst time. CPU will be allocated to P2 for a time interval of 7ms. P2 will finish execution and it will

be removed from the ready queue. Next shortest process in the ready queue is P4 with 20ms CPU burst time. CPU will be

allocated to P4 for a time interval of 10ms. Since the remaining CPU burst time of P4 is less or equal to the TQ, CPU will

be reallocated to P4 for the remaining burst time i.e. 10ms. P4 will finish execution and it will be removed from the ready

queue.

Next shortest process in the ready queue is P3 with 28 ms CPU burst time. CPU will be allocated to P3 for a time interval

of 10ms. Since the remaining CPU burst time of P3 is not less or equal to the TQ, the CPU is supposed to be allocated to

the next shortest process in the ready queue, but no other process remains in the ready queue. So, the CPU will be

reallocated to P3 for the remaining burst time. P3 will finish its execution and removed from the ready queue.

Start

Burst Time (𝑏𝑡[𝑛]), Process (𝑝𝑟[𝑛]), Ready Queue

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝐶𝑆 = 0, 𝐴𝑊𝑇 = 0, ATAT= 0, Time Quantum =
tq, 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0

𝑟𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 !
= 𝑁𝑢𝑙𝑙

N

Y

Fill the ready queue according to arrival

time

If 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 =
0

Y
A

Pick the first processPr⁡[1]from the

ready queue and assign the CPU to it

for 1 𝑡𝑞

N

Pick the shortest burst

process 𝑃𝑟[𝑛] and assign the CPU

to it for 1 𝑡𝑞

If
𝑏𝑡 𝑛 ≤ 𝑡𝑞

Process Pr 𝑛 is completed,𝐶𝑜𝑢𝑛𝑡𝑒𝑟 =
𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + 1 //remove from ready queue

𝑅𝑒𝑚_𝑏𝑡[𝑛]
= 𝑏𝑡 𝑛 − 𝑡𝑞

If 𝑅𝑒𝑚_𝑏𝑡[𝑛] ≤
𝑡𝑞

N

N

Y

Y

Assign CPU to Pr⁡[𝑛]
for 𝑅𝑒𝑚_𝑏𝑡 𝑛 , 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 =

𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + 1
Put Pr⁡[𝑛]in the tail of ready

queue 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 +
1

End

Calculate AWT, ATAT and

CS

Figure 1: Flowchart for the proposed algorithm

Abdulrahim et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 601-610 February - 2014, pp. 601-610

© 2014, IJARCSSE All Rights Reserved Page | 605

The waiting time is 0ms for P1, 15ms for P2, 42ms for P3 and 22ms for P4, The average waiting time is 19.75ms. Using

the same set of process with same arrival and CPU burst times, the average waiting time is 30.25 and 24.25ms in RR and

IRR respectively. The average turnaround time is 37.25ms in AAIRR, 41.75ms in IRR and 47.75ms in RR.

VII. EXPERIMENTAL ANALYSIS

The experimental analysis that will be adopted in this paper uses all the assumptions and experiments performed in [3]

and then compared the results in the original paper along with the results by the proposed algorithm.

The performance evaluation was taken in two different cases. In the first case, arrival time has been considered zero and

CPU burst time has been taken in increasing, decreasing and random orders. In the second case, arrival time has been

considered non zero and CPU burst time has been taken in increasing, decreasing and random orders.

A. CASE 1 - Zero Arrival Time

In this case arrival time has been considered zero and CPU burst time has been taken in increasing, decreasing and

random orders. Time quantum is 10ms.

1) CPU Burst Time in Increasing Order: The ready queue with five processes P1, P2, P3, P4 and P5 arriving

at time 0 with burst time 5, 12, 20, 26 and 34ms respectively was considered. The comparative results of RR,

IRR and proposed AAIRR are shown in Table 1. Figures 2-4 show the Gantt chart representation of RR, IRR

and AAIRR respectively. Figure 5 shows the bar chart of the comparison.

Table 1: Comparative results of RR, IRR and AAIRR

Algorithm Average

Waiting

Time(ms)

Average

Turnaround

Time (ms)

Number

of Context

Switch

RR 38.4 57.8 10

IRR 30.4 49.8 7

AAIRR 26.4 45.8 6

 0 0 2 10 16 24 0 0 6 14 0 0

 0 5 15 25 35 45 47 57 67 77 83 97

 0 0 0 10 16 24 0 0 0

 0 5 17 27 37 47 57 73 97

 0 0 0 0 16 24 0 0

 0 5 17 37 47 57 73 97

Figure 5: Bar chart of Case 1 (Increasing order)

0

10

20

30

40

50

60

70

Average Waiting

Time(ms)

Average

Turnaround Time

(ms)

Number of

Context Switch

RR

IRR

AAIRR

P1

P2 P4 P3

P5 P2 P3 P4 P5 P5 P4

Figure 2: Gantt chart representation of RR

P1

P2 P4 P3

P5 P3 P4 P5

Figure 3: Gantt chart representation of IRR

P1

P2 P4 P3

P5 P4 P5

Figure 4: Gantt chart representation of AAIRR

Abdulrahim et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 601-610 February - 2014, pp. 601-610

© 2014, IJARCSSE All Rights Reserved Page | 606

2) CPU Burst Time in Decreasing Order: The ready queue with five processes P1, P2, P3, P4 and P5 arriving at

time 0 with burst time 34, 26, 20, 12 and 5ms respectively was considered. The comparative results RR, IRR

and proposed AAIRR are shown in Table 2. Figures 6-8 show the Gantt chart representation of RR, IRR and

AAIRR respectively. Figure 9 shows the bar chart of the comparison.

Table 2: Comparative results of RR, IRR and AAIRR

Algorithm Average

Waiting

Time(ms)

Average

Turnaround

Time (ms)

Number

of

Context

Switch

RR 58 77.4 11

IRR 49 68.4 8

AAIRR 34.4 53.8 7

 0 24 16 10 2 0 14 6 0 0 4 0 0

 0 10 20 30 40 45 55 65 75 77 87 93 97

 0 24 16 10 0 0 14 0 0 0

 0 10 20 30 42 47 57 73 83 97

 0 24 0 0 0 16 14 0 0

 0 10 15 27 47 57 67 81 97

Figure 9: Bar chart of Case 1 (Decreasing order)

3) CPU Burst Time in Random Order: The ready queue with five processes P1, P2, P3, P4 and P5 arriving at time

0 with burst time 20, 34, 5, 12 and 26 respectively was considered. The comparative results of RR, IRR and

proposed AAIRR are shown in Table 3. Figures 10-12 show the Gantt chart representation of RR, IRR and

AAIRR respectively. Figure 13 shows the bar chart of the comparison.

0

10

20

30

40

50

60

70

80

90

Average Waiting

Time(ms)

Average Turnaround

Time (ms)

Number of Context

Switch

RR

IRR

AAIRR

P1

P2 P4 P3

P5 P1 P2 P3 P4

4

P2 P1 P1

Figure 6: Gantt chart representation of RR

P1

P2 P4 P3

P5 P1 P2 P3 P1

44

Figure 7: Gantt chart representation of IRR

P1

P5 P3 P4

P2 P1 P2 P1

Figure 8: Gantt chart representation of AAIRR

Abdulrahim et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 601-610 February - 2014, pp. 601-610

© 2014, IJARCSSE All Rights Reserved Page | 607

Table 3: Comparative results of RR, IRR and AAIRR

Algorithm Average

Waiting

Time(ms)

Average

Turnaround

Time (ms)

Number of

Context

Switch

RR 48 67.4 11

IRR 40.4 59.8 8

AAIRR 31 50.4 6

 0 10 24 0 2 16 0 14 0 6 4 0 0

 0 10 20 25 35 45 55 65 67 77 87 93 97

 0 10 24 0 0 16 0 14 0 0

 0 10 20 30 42 47 57 73 83 97

 0 0 0 0 16 24 0 0

 0 20 25 37 47 57 73 97

Figure 13: Bar chart of Case 1 (Random order)

B. CASE 2 – Non-Zero Arrival Time:

In this case arrival time has been considered non-zero and CPU burst time has been taken in increasing, decreasing and

random orders. Time quantum is 10 milliseconds.

1) CPU Burst Time in Increasing Order: The ready queue with five processes P1, P2, P3, P4 and P5 arriving at

time 0, 4, 10, 15 and 17 with burst time 7, 18, 27, 30 and 36 respectively was considered. The comparative

results of RR, IRR and proposed AAIRR are shown in Table 4. Figures 14-16 show the Gantt chart

representation of RR, IRR and AAIRR respectively. Figure 17 shows the bar chart of the comparison.

0

10

20

30

40

50

60

70

80

Average Waiting

Time(ms)

Average Turnaround

Time (ms)

Number of Context

Switch

RR

IRR

AAIRR

P1

P2 P4 P3

P5 P1 P2 P3

4

P5

4

P5 P2 P2

Figure 10: Gantt chart representation of RR

P1

P2 P4 P3

P5 P1 P2 P5 P1

44

Figure 11: Gantt chart representation of IRR

P1

P3 P5 P4

P2

5

P5 P2

Figure 12: Gantt chart representation of AAIRR

Abdulrahim et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 601-610 February - 2014, pp. 601-610

© 2014, IJARCSSE All Rights Reserved Page | 608

Table 4: Comparison of RR, IRR and AAIRR

Algorithm Average

Waiting

Time(ms)

Average

Turnaround

Time (ms)

Number

of

Context

Switch

RR 42 65.6 11

IRR 32 55.6 9

AAIRR 30 53.6 7

 0 0 8 17 20 26 0 7 10 16 0 0 0

 0 7 17 27 37 47 55 65 75 85 92 102 118

 0 0 0 17 20 26 0 10 16 0 0

 0 7 25 35 45 55 72 82 92 102 118

 0 0 0 17 20 26 0 0 0

 0 7 25 35 45 55 72 92 118

Figure 17: Bar chart of Case 2 (Increasing order)

2) CPU Burst Time in Decreasing Order: The ready queue with five processes P1, P2, P3, P4 and P5 arriving at

time 0, 4, 10, 15 and 17 with burst time 36, 30, 27, 18 and 7 respectively was considered. The comparative

results of RR, IRR and proposed AAIRR are shown in Table 5. Figure 18-20 show the Gantt chart

representation of RR, IRR and AAIRR respectively. Figure 21 shows the bar chart of the comparison.

Table 5: Comparison of RR, IRR and AAIRR

Algorithm Average

Waiting

Time(ms)

Average

Turnaround

Time (ms)

Number

of

Context

Switch

RR 60.6 84.2 12

IRR 51.4 75 9

AAIRR 38 61.6 7

0

10

20

30

40

50

60

70

Average

Waiting

Time(ms)

Average

Turnaround

Time (ms)

Number of

Context Switch

RR

IRR

AAIRR

P1

P2 P4 P3

P5 P2 P3 P4

4

P5

4

P4 P3 P5

Figure 14: Gantt chart representation of RR

P1

P2 P4 P3

P5 P3 P4 P5 P4 P5

Figure 15: Gantt chart representation of IRR

Figure 16: Gantt chart representation of AAIRR

P1

P2 P4 P3

P5 P3 P4 P5

Abdulrahim et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 601-610 February - 2014, pp. 601-610

© 2014, IJARCSSE All Rights Reserved Page | 609

 0 26 20 17 8 0 16 10 7 0 6 0 0 0

 0 10 20 30 40 47 57 67 77 85 95 105 112 118

 0 26 20 17 0 0 16 10 0 0 0

 0 10 20 30 48 55 65 75 92 108 118

 0 26 17 0 0 20 0 0 0

 0 10 20 27 45 55 72 92 118

Figure 21: Bar chart of Case 2 (Decreasing order)

3) CPU Burst Time in Random Order: The ready queue with five processes P1, P2, P3, P4 and P5 arriving at time

0, 4, 10, 15 and 17 with burst time 27, 7, 30, 36 and 18 respectively was considered. The comparative results of

RR, IRR and proposed AAIRR are shown in Table 6. Figure 22-24 show the Gantt chart representation of RR,

IRR and AAIRR respectively. Figure 25 shows the bar chart of the comparison.

Table 6: Comparison of RR, IRR and AAIRR

Algorithm Average

Waiting

Time(ms)

Average

Turnaround

Time (ms)

Number of

Context

Switch

RR 52 75.6 11

IRR 40 63.6 9

AAIRR 34 57.6 7

 0 17 0 20 26 8 7 10 16 0 0 0 0

 0 10 17 27 37 47 57 67 77 85 92 102 118

 0 17 0 20 26 0 0 10 16 0 0

 0 10 17 27 37 55 72 82 92 102 118

0

10

20

30

40

50

60

70

80

90

Average

Waiting

Time(ms)

Average

Turnaround

Time (ms)

Number of

Context

Switch

RR

IRR

AAIRR

P1

P2 P4 P3

P5 P1 P3 P4

4

P5

4

P3 P1 P4

P1

P2 P4 P3

P5 P1 P2 P3 P4

4

P2 P1 P3 P1

Figure 18: Gantt chart representation of RR

P1

P2 P4 P3

P5 P1 P2 P3 P1 P2

Figure 19: Gantt chart representation of IRR

P1

P3 P4 P5

P2 P3 P2 P1

Figure 20: Gantt chart representation of AAIRR

Figure 22: Gantt chart representation of RR

P1

P2 P4 P3

P5 P1 P3 P4 P3 P4

Figure 23: Gantt chart representation of IRR

Abdulrahim et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 601-610 February - 2014, pp. 601-610

© 2014, IJARCSSE All Rights Reserved Page | 610

 0 17 0 0 20 26 0 0 0

 0 10 17 35 45 55 72 92 118

Figure 25: Bar chart of Case 2 (Random order)

VIII. CONCLUSION AND FUTURE SCOPE

In this paper, we have presented a more improved Round Robin CPU scheduling algorithm which improved on the

Improved Round Robin CPU scheduling algorithm [3]. Results have shown that the proposed algorithm gives better

results in terms of average waiting time, average turnaround time and number of context switches in all cases of process

categories than the simple Round Robin CPU scheduling algorithm and the Improved Round Robin CPU scheduling

algorithm The general problem in any form of Round Robin CPU scheduling algorithm is the choice of time quantum

which when it is too small will result in Processor Sharing algorithm and in this case the number of context switches will

be very high, and if the time quantum is very high, then the algorithm will be the same as First Come First Serve (FCFS)

CPU scheduling algorithm [6]. So, a future scope is to determine time quantum dynamically, so as to overcome this

problem.

References

[1] Ajit, S, Priyanka, G and Sahil, B (2010): An Optimized Round Robin Scheduling Algorithm for CPU Scheduling,

International Journal on Computer Science and Engineering (IJCSE), Vol. 02, No. 07, 2383-2385, pp 2382-2385.

[2] Ishwari, S. R and Deepa, G (2012): A Priority based Round Robin CPU Scheduling Algorithm for Real Time

Systems, International Journal of Innovations in Engineering and Technology (IJIET), ISSN: 2319 – 1058, Vol. 1

Issue 3, pp 1-11.

[3] Manish K. M. and Abdul Kadir K. (2012): An Improved Round Robin CPU Scheduling Algorithm, Journal of

Global Research in Computer Science, ISSN: 2229-371X, Volume 3, No. 6, pp 64-69.

[4] Oyetunji, E.O and Oluleye, A. E (2009): Performance Assessment of Some CPU Scheduling Algorithms, Journal of

Information Technology 1(1): 22-26, ISSN: 2041-3114, pp 22-26.

[5] Silberschatz, P. B. Galvin, and G. Gagne, “Operating System Concepts”, 7th Edn., John Wiley and Sons Inc, 2005,

ISBN 0-471-69466-5.

[6] Soraj, H and Roy, K.C: Adaptive Round Robin scheduling using shortest burst approach, based on smart time slice",

International Journal of Data Engineering (IJDE), Volume 2, Issue 3,

www.cscjournals.org/csc/manuscript/Journals/IJDE/.../IJDE-57.pdf‎‎,accessed 10
th

 December 2012.

[7] Suri, P.K and Sumit, M (2012): Design of Stochastic Simulator for Analyzing the Impact of Scalability on CPU

Scheduling Algorithms, International Journal of Computer Applications (0975 – 8887) Volume 49– No.17, pp 4-9.

0

10

20

30

40

50

60

70

80

Average

Waiting

Time(ms)

Average

Turnaround

Time (ms)

Number of

Context Switch

RR IRR AAIRR

P1

P2 P3 P5

P4 P1 P3 P4

Figure 24: Gantt chart representation of AAIRR

