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Abstract—This paper represents the development and implementation of a generalized back propagation multilayer 

perceptron (MLP) architecture described in VLSI hardware description language (VHDL. A Field Programmable 

Gate Array based hardware design of multilayer perceptron (MLP) as a realization of artificial neural network is 

presented on FPGA hardware platform. Such hardware implementation solutions are easy to implement by using 

training of neurons in MLP. MLP work describes a platform that offers a high degree of parameterization, while 

maintaining generalized network design with performance comparable to other hardware-based MLP 

implementations. So the main purpose of this paper lies in studying the effect of changing both the no of hidden 

layers of multilayer perceptron (MLPs) and the no of processing elements that exist in the hidden layers .After 

formation of such a Multilayer perceptron(MLP)  and changing the number of hidden layers, we found that with 

increasing the number of processing elements in the hidden layers. We reach to an optional output results with 

respect to the experimental one. 

 

Keywords—VHDL,MLP,Processing elements, neurons. 

 

I. INTRODUCTION  

Artificial Neural Network present an unconventional computational model characterized by densely interconnected 

simple adaptive nodes. From this model stem, several desirable traits uncommon in traditional computational models; 

most notably, an MLP ability to learn and generalize upon being provided examples. Given these traits, an MPL is well 

suited for a range of problems that are challenging for other computational models like pattern recognition, prediction, or 

optimization [1]–[4]. An MLP ability to learn and solve problems relies in part on the structural characteristics of that 

network. Those characteristics include the number of layers in a network, the number of neurons per layer, and the 

activation functions of those neurons etc. There remains a lack of a reliable means for determining the optimal set of 

network characteristics for a given application. Numerous implementations of MlP already exist [5]–[8], but most of 

them being in software on sequential processors [2]. Software implementations can be quickly constructed, adapted, and 

tested for a wide range of applications. In this work, a multilayer perceptron (MLP) is introduced, which fulfills the 

following requirements. The hardware solution should be application independent, which makes it usable for several 

problems during runtime. This can be achieved by high flexibility. High flexibility can be guaranteed by a highly 

parameterizable design. The neurons (also called perceptrons in this case) transfer function can be freely chosen, which 

makes it adaptable to different scenarios. Additionally, an easy integration of the MLP[9]-[12] . The training of the MLP 

is done directly in software using Xilinx 13.4. A concept is defined and realized to comfortably interact with the MLP. 

Additionally, the resulting design is investigated in terms of the size and performance as well as compared with the trend 

of available hardware resources of different FPGAs over time. Below, the following main contributions are briefly 

described. 

 

 Brief description of the basic concept is given and required parameters of an ANN are investigated [5]. 

 Design of a parameterizable MLP implementation is described [6]. 

 Concept for configuration and interaction with the MLP is presented [8]. 

 The hardware utilization and performance of the developed MLP are presented[10]. 

 

II. BASICS AND DESIGN CONCEPT 

There are many concepts for designing MLPs e.g. fully parallelized, serialized, or even a mixed architecture. 

However, MLPs are well known, established, and suited for a realization in hardware because of their regular structure. 

A three layer MLP is depicted in Figure 1. An MLP consists of several artificial neurons. These neurons are represented 

by perceptions [1].A this layers MLP is realized and each layer contains a set of neurons. The first layer is the input layer 

and represents the input values. The hidden layer is the second layer and is fully meshed to the previous input layer. The 

output layer generates the outputs and receives the values from the hidden layer. To train the MLP, weight factors of the 

connections have to be set depending on a given use case. The determination of the weight factors is called training.  
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Fig 1. MLP architecture 

 

A. Artificial Neuron  

An artificial neuron is the processing unit of the neural network architecture. The neurons' structure includes:  

a. An entry set that receive neurons' input signals[17]; 

b. A synaptic set whose intensity is represented by  an      associated weight[18]; 

c. An activation function that compares entries and their synaptic with the function threshold to give the neuron's 

output [19].  

 In the Fig. 2 each Wi represents the weights associated with each input Xi and Q is the activation function. The result of 

the synaptic is given by the sum of products of the entries vector by the weight vector and the output by the computation 

of Q(u). The most used activation functions are: 

a) Step function  

Q(u) = 1 if u > 0, Q(u) = 0, otherwise 

b) Ramp function  

Q(u) = max{O.O, min{l.0, u + 0.5}} 

c) Sigmoid function  

              Q(u) = a I{ 1 + exp(-bu) } 

 

 

 
Fig 2. Neuron Architecture 

B. Previous work 

Many MLP have already been implemented on FPGAs. The vast majority are static implementations for specific 

offline applications without learning capability [11]-[14]. In these cases, the purpose of using an FPGA is generally to 

gain performance advantages through dedicated hardware and parallelism. Far fewer are examples of FPGA-based MLP 

that make use of the reconfigurability of FPGAs. Flexible Adaptable Size Topology (FAST) [15] is an FPGA based MLP 

that utilizes runtime reconfiguration to dynamically change its size. In this way, FAST is able to skirt the problem of 

determining a valid network topology for the given application. Runtime reconfiguration is achieved by initially mapping 

all possible connections and components on the FPGA, then only activating the necessary connections and components 

once they are needed. FAST is an adaptation of a Kohonen type neural network and has a significantly different 

architecture than our multilayer perceptron (MLP) network. 

C. Platform 

We are focusing on development platform like Xilinx navigator 13.5 which is implemented on FPGA [2]-[5]. While 

our design is not directed exclusively at this platform and is designed to be portable across multiple FPGA platforms, we 

will mention some of the characteristics of the Xilinx 13.5 important to the design and performance of our system. This 

model of the Xilinx navigator 13.5 contains 4080 configurable logic blocks (CLBs), the basic logical units in Xilinx 

FPGAs. Each CLB holds eight logic function generators (in lookup tables), eight storage elements, a number of 
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multiplexers, and carry logic. Relative to the time in which this paper is written, this is considered a large FPGA[12]-

[15]; large enough to test a range of online neural networks of varying size, and likely too large and costly to be 

considered for most commercial applications. 

 

III. LEARNING OF PROCESSING ELEMENT IN MLP 

In reality, during the learning process, the network adjusts its parameters, the synaptic weights, in response to a 

stimulus input so that its actual output response converges to the desired output. At this level the synaptic  weights of 

each processing unit are dynamically modified to reach a defined error level according to an optimization criteria called 

learning algorithm (for example back propagation algorithm) in order to identify  the best architecture with a given 

number of cells for a allow specific problem[13]. When the actual output response is the same as the desired one, the 

network has completed the learning phase.  Then the optimized structure is known [20]-[21]. 

a. number of inputs  

b. number of outputs 

c. number of layers  

d. synaptic weights  

e. transfer function/squashing function 

 

 
Fig. Processing element in MLP 

 

VI.   FPGA  IMPLEMENTATION 

A. Synthesis Tool 

Actually, the synthesis tools allow the use of FPGA resources with schematics entrance as well as an algorithmic 

one[9]-[12]. The algorithmic design is written with VHDL (Very High-speed Integrated Circuits Hardware Description 

Language)[5]. This language permits the design of complex circuits with a structural description (data flow type) or a 

behavioral one. The synthesis software (Viewsynthesis of ViewLogic Company) leads from a VHDL program, and after 

Compilation, to an XNF (Xilinx Netlist Format) file used by the Xilinx tool, and the corresponding schematics by means 

of primitives and X-Bloc components with a logic optimization. The functional simulation insures of the functionality of 

the design before the routing phase of the FPGA (fig 3) 

 

B. Design Architecture 

      Our design approach is based on the separation of simple modular functional components and more complex 

intelligent control oriented components. The functional units consist of signal processing operations (e.g. multipliers, 

adders, squashing function realizations, etc.) and storage components (e.g. RAM containing weights values, input 

buffers, etc.). Control components consist of state machines [16] generated to match the needs of the network as 

configured. During design elaboration, functional components matching the provided parameters are automatically 

generated and connected, and the state machines of control components are tuned to match the given architecture [18]. 

 
Fig 3.The design flow of  the synthesis 
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IV.  RESULT AND CONCLUSION 

The use of run-time reconfiguration of the FPGA of the Xilinx company will allow us to develop and implement some 

different algorithms or developed application on the same circuit but not useful at the same time.  Moreover the 

implementation of the different blocks shown above permits the evaluation and the validation of  the architecture 

proposed for a specific problem. 

 

 

 
Fig 4.Simulation output of PEs 
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