
© 2014, IJARCSSE All Rights Reserved Page | 304

 Volume 4, Issue 2, February 2014 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

A Comparative Study of Different Types of comparison

Based Sorting Algorithms in Data Structure
 Kamlesh Kumar Pandey

1
, Rajesh Kumar Bunkar

2
Kamlesh Kumar Raghuvanshi

3

 Computer Science, IGNTU Amarkantak. Asst.Professor,PGDAV College Delhi

 India India

Abstract— there are many popular problems in different practical fields of computer science, record applications,

Networks and Artificial intelligence. These basic operation and problems is sorting algorithm; the sorting problem has

attracted a great deal of research. This research paper presents the different types of comparison Based sorting

algorithms of data structure like insertion, selection, bubble, quick and merges. Each algorithm is solving to specific

sorting problem in a different formats. This research provides a detailed study of how all the five algorithms work and

their algorithm, advantage, disadvantage and then compares them on the basis of various parameters like time

complexity and space complexity.

Keywords— Comparisons, Insertion Sort, Selection Sort, Bubble Sort, Quick Sort, Merge Sort, Time Complexity.

I. INTRODUCTION

A sorting algorithm is an algorithm that puts elements of a list in a certain order, such as increasing and decreasing. The

most-used orders are numerical order and lexicographical order. A number of sorting algorithms have been developed

like include insertion sort , selection sort , bubble sort, quick sort and merge sort are comparison based sort .There is

another class of sorting algorithms which are non comparison based sort. This paper gives the brief introduction about

comparison based sorting algorithms and compare to each sorting in different most important parameter like time

complexity, space complexity, Stability etc. When we sort to any type of List, array etc. then time we compare one

element to another element on the list after that we swap this element. This type of sorting is called comparison based

sorting. Algorithm and property are every sorting algorithm is different because every algorithm is sort the data in

different time and different memory allocation technique.

The sorting methods can be divided into two categories:

1. Internal Sorting: - if data are sorted at a time in main memory this type of sorting is called internal sorting.

2. External Sorting: - if data are sorted in auxiliary memory (hard disk, floppy, tape etc) this type of sorting is called

External Sorting

II. WORKING PROCEDURE OF COMPARISON BASED SORTING ALGORITHMS

1. Insertion Sort

 Insertion sort is a naive algorithm that belongs to the family of comparison sorting. Insertion sort is an example of

an incremental algorithm; it builds the sorted sequence one number at a time. In this sorting we can read the given

elements from 1 to n, inserting each element into its proper position through comparison. Here n-1 pass (step) are

require for sorting time. For example, the card player arranging the cards dealt to him. The player picks up the card and

inserts them into the appropriate position. At each step, we place in the item into its proper place.

Algorithm:- Here K,J is a variable which value is a element position and A is Array[1-N].

 INSERTION_SORT (A)

1. For K=2 to length[A] (for pass)

 2. item= A [K], J=K-1 (for minimum number K-1 comparison)

 3. WHILE J>0 and item<A[J]

 4. A[J+1]=A[J]

 5. J=J-1

 END WHILE LOOP

6. A [J+1]=item

.END FOR LOOP

Example:

http://www.ijarcsse.com/

Pandey et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 304-309

© 2014, IJARCSSE All Rights Reserved Page | 305

2 .Selection Sort

 Selection sort belongs to the family of in-place comparison sorting. This algorithm is called selection sort because

it works by selecting a minimum element in each pass (step) of the sort. In this method, to sort the data in increasing

order, the first element is compared with all the elements. If first element is greater than smallest element than

interchanged the position of elements. So after the first pass, the smallest element is placed at the first position. The same

procedure is repeated for 2nd element and so on until the element of list is sorted.

Algorithm: - Here I, K,LOC is a variable which value is a element position, A is Array [1-N] and min is minimum

value of array A.

SELECTION_SORT (A)

1. for I=1 to length[A]-1 (finding minimum value for pass)

 2. min=A [I]

 3. for K=I+1 to length[A] (for comparison)

 4. if (min>A [I])

 5. min=A [K], Loc=K

 [End if]

 [End of inner loop]

 6. Swap (A [Loc],A[I])

 [End of OUTER loop]

7. Exit

Example:

3. Bubble Sort

 Bubble sort belongs to the family of comparison sorting. The Bubble Sort is the simplest sorting technique and

multiple swapping process to apply to every pass, in which smallest data element are moved („bubbled up‟) to the top of

the list. In this sorting method, we compare the adjacent members of the list to be sorted, if the top of item is greater than

the item immediately below it, they are swapped. Unfortunately, it is a slowest sorting method as a compare selection and

insertion sort.

Algorithm:- Here I,K is a variable which value is a element position and A is Array[1-N].

BUBBLE_SORT (A)

1.For I=1 to length[A]-1 (for pass)

 2. For k=1 to length[A]-I(for comparison)

 3. If A[K]>A[K+1]

 4. Swap [A(K) , A(K+1)]

Pandey et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 304-309

© 2014, IJARCSSE All Rights Reserved Page | 306

 [End if]

 [End of inner loop]

[End of outer loop]

5.Exit

Example:

4. Quick Sort:

 Quick sort was developed by Sir Charles Antony Richard Hoare (Hoare 1962). It belongs to the family of

exchange sorting. Quick sort is an in-place, divide-and-conquer, massively recursive sort and it is also known as a

partition-exchange sort.

Divide: firstly divided the list by choosing a partitioning element (pivot element) . one list contains all element lass

than or equal to the partitioning element and the other list contains all element greater than the partitioning element .

Conquer: after these two list are recursively partitioned in the same way till the resulting lists become trivially small

to sort by comparison.

Combine: at last we then go on combining the sorted smaller list to produce the sorted list of the entire input element.

Algorithm: Here A is Array of [1-N] element

 QUICK_SORT (A,N)

 1.QUICK(A,1, N)

 2.Exit

Given a sub array A[p …. r] such that p <= r -1,this subroutine rearranges the input sub array into two sub arrays,

 A[p .. q-1] and A[q +1.. r], so that each element in A[p .. q-1] is less than or equal to A[q] and each element in

 A[q +1..r] is greater than or equal to A[q] .Then the subroutine outputs the value of q.

QUICK(A, p, r)

1. if p >=r then return

2. q = PARTITION(A, p, r)

3. QUICK(A, p, q - 1) Recursive call to Quick

4. QUICK(A, q +1, r)

5.Exit

Use the initial value of A[r] as the pivot in the sense that the keys are compared against it. Scan the keys A[p..r -1]

from left to right and Flush to the left all the keys that are greater than or equal to the pivot.

PARTITION(A, p, r)

1. x = A[r]

2. i = p -1

3. for j = p to r - 1 do

 4. if A[j] <=x then

 5. i =i+1

 6. Exchange A[i] and A[j]

 END IF

7. Exchange A[i+1] and A[r]

Pandey et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 304-309

© 2014, IJARCSSE All Rights Reserved Page | 307

8. return i+1

END FOR LOOP

9. Exit

Example:

5. Merge Sort

 Merge sort was invented by John von Neumann and belongs to the family of comparison-based sorting. This

algorithm is also based on Divide-and-Conquer approach.

Divide: Given a sequence of N elements A[1],….,A[N], the general idea is to breaks into two data sets

A[1],….A[N/2] and A[n/2+1],….,A[N].

Conquer: Each set is individually sorted by recursively

Combine: finally resulting sorted sequence are merged to produce a single sorted sequence of N elements

 Conceptually, a merge sort works as follows

 Divide the unsorted list into n sub lists, each containing 1 element (a list of 1 element is considered sorted).

 Repeatedly merge sub lists to produce new sub lists until there is only 1 sub list remaining. This list will be

sorted.

Algorithm :- To sort the entire sequence A[1 .. N], make the first call to the procedure MERGE-SORT (A, 1, N).

 MERGE_SORT (A, p, r)

1. IF p < r then // Check for base case

 2. q = FLOOR[(p + r)/2] // Divide step

 3. MERGE (A, p, q) // Conquer step.

 4. MERGE (A, q + 1, r) // Conquer step.

 5. MERGE (A, p, q, r) // Conquer step.

 End if

6. Exit

MERGE (A, p, q, r)

1. n1 ← q − p + 1

 2. n2 ← r − q

 3. Create arrays L[1 . . n1 + 1] and R[1 . . n2 + 1]

 4. FOR i ← 1 TO n1

 5. DO L[i] ← A[p + i – 1]

 Exit for

 6. FOR j ← 1 TO n2

 7. DO R[j] ← A[q + j]

 Exit for

 8. L[n1 + 1] ← ∞

 9. R[n2 + 1] ← ∞

 10. i ← 1

 11. j ← 1

 12. FOR k ← p TO r

 13. IF L[i] ≤ R[j] then

 14. A[k] ← L[i]

Pandey et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 304-309

© 2014, IJARCSSE All Rights Reserved Page | 308

 15. i ← i + 1

 16. ELSE A[k] ← R[j]

 17. j ← j + 1

 Exit if

 Exit for

18. Exit

Example:

III. COMPARITIVE STUDY OF ALL ALGORITHMS

TABLE I COMPARISON OF COMPARISON BASED SORTING TECHNIQUES ON VARIOUS PARAMETERS

Pandey et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 304-309

© 2014, IJARCSSE All Rights Reserved Page | 309

TABLE 2 ADVANTAGE/DISADVANTAGE OF COMPARSION BASED SORTING TECHNIQUES

IV. CONCLUSIONS

 This paper discusses five comparison based sorting algorithms and their example. Merge Sort and Quick Sort are

faster for large lists as a compare Bubble Sort, Selection Sort and Insertion Sort. In this region quick sort is best

algorithm. We have compared the various sorting algorithm on the basis of various factors like complexity, memory

required, working concept, advantage, disadvantage etc.

REFERENCES

[1] Eshan Kapur, Parveen Kumar and Sahil Gupta,”Proposal Of A Two Way Sorting Algorithm And Performance

Comparison With Existing Algorithms” International Journal of Computer Science, Engineering and

Applications (IJCSEA) Vol.2, No.3, June 2012.

[2] C.A.R. Hoare, Quicksort, Computer Journal, Vol. 5, 1, 10-15 (1962)

[3] Knuth, D.E., 1988. The Art of programming-Sorting and Searching. 2nd Edn.,Addison Wesley, ISBN:

020103803X.

[4] Cormen, T.H. et al. Introduction to Algorithms. 2nd Edn., 2001. ISBN: 0262032937

[5] H. M. Mahmoud, R. Modarres, and R. T. Smythe. Analysis of quickselect: An algo-rithm for order statistics. ITA

– Theoretical Informatics and Applications, 29(4):255–276, 1995.

[6] Ahmed M. Aliyu, Dr. P. B. Zirra “A Comparative Analysis of Sorting Algorithms on Integer and Character

Arrays” The International Journal Of Engineering And Science (IJES) Volume 2,Issue 7,Pages 25-30,2013

ISSN(e): 2319 – 1813 ISSN(p): 2319 – 1805

[7] Madhavi Desai, Viral Kapadiya “Performance Study of Efficient Quick Sort and Other Sorting Algorithms for

Repeated Data” National Conference on Recent Trends in Engineering & Technology 13-14 May 2011

[8] Ashutosh Bharadwaj, Shailendra Mishra, “Comparison of Sorting Algorithms based on Input Sequences”

International Journal of Computer Applications (0975 – 8887) Volume 78 – No.14, September 2013

[9] Comparison of Sorting Algorithms (On the Basis of Average Case) Pankaj Sareen.

[10] A Comparison Based Analysis of Four Different Types of Sorting Algorithms in Data Structures with Their

Performances.

[11] Data Structures by Seymour Lipschutz and G A Vijayalakshmi Pai (Tata McGraw Hill companies), Indian adapted

edition-2006,7 west patel nagar,New Delhi-110063

[12] Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, fifth Indian printing

(Prentice Hall of India private limited), New Delhi-110001

[13] Data structures using c and c++ by Yedidyah langsam,Aaron M. Tenenbaum second Indian printing (Prentice

Hall of India private limited), New Delhi-110001

[14] An Introduction to Data Structures with Application by Jean-paul Tremblay Tata McGraaw Hill

