
© 2014, IJARCSSE All Rights Reserved Page | 510

 Volume 4, Issue 2, February 2014 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Task Scheduling in Distributed Systems using Discrete

Particle Swarm Optimization
S.Sarathambekai

*
, K.Umamaheswari

IT Department,

PSG College of Technology, India

Abstract: Finding an optimal schedule of tasks for an application in distributed environment is critical in general.

Task assignment is an extremely NP complete problem. This type of problem can be resolved by heuristic algorithms

efficiently because the traditional methods such as dynamic programming and the back tracking need more time for

solving this NP complete problem. Particle Swarm Optimization (PSO) is a newly developed meta-heuristic global

optimization technique. It was originally designed only for continuous optimization problems. In task scheduling, the

particles are represented as discrete values. It is obvious that the classical PSO cannot be used to solve discrete

problems directly because its positions are real-valued. Some conversion techniques are needed to operate PSO in

discrete domain. This paper presents a modified PSO called Discrete PSO (DPSO). In DPSO, no conversion

techniques are needed because the velocity and positions are redefined to operate the PSO in a discrete domain

directly. In this paper, the scheduler aims at minimizing make span, flow time and reliability cost simultaneously in

distributed systems for scheduling of independent tasks using DPSO. Benchmark instances of Expected Time to

Complete (ETC) model are used to test the DPSO. Based on the simulations and comparisons, the DPSO algorithm is

viable approach for the task scheduling problem.

Keyword- Distributed system, Heterogeneous systems, Heuristic, Task Scheduling, Particle Swarm Optimization

I. INTRODUCTION
Heterogeneous Computing (HC) systems consist of mixed group of machines, communication protocols and

programming environments and offer a diversity of architectural capabilities that has different execution requirements.

One of the key challenges of HC system is the task scheduling problem. In general, scheduling is concerned with

distribution of limited resources to certain tasks to optimize few performance criterions, like the completion time, waiting

time. Task assignment problems can be classified into two categories based on the types of tasks [1]: scheduling a meta-

task composed of independent tasks with no data dependencies and assigning an application composed of tasks with

precedence constraints. There are more than a few conflicting objectives in multi-objective optimization problems to be

optimized and it is hard to identify the best solution. For example, a bike manufacturer wish to maximize its turnover and

minimize its manufacturing cost at a time. These objectives are conflicting to each other. A higher turnover would raise

the manufacturing cost. There is no single optimal solution. The most traditional approach to solve a multi-objective

optimization problem is to summative the objectives into a single objective by using a weighting sum.
Particle Swarm Optimization (PSO) is a population based heuristic robust stochastic optimization algorithm proposed

by Kennedy and Eberhart [2] in 1995, motivated by the flocking behaviour of birds. This has been applied in wide area

and different fields such as engineering, physics, mathematics, chemistry and etc. In PSO, each particle is a candidate

solution in the search space. All particles have fitness values calculated by a fitness function, and have velocities to direct

the flying of the particles. Compared with Genetic Algorithm (GA), PSO has some striking characteristics [3]. It has

memory, and the knowledge of good solutions is shared by all particles. In this way, PSO can update its particles‘

positions according to individuals‘ memory and swarm‘s greatest information iteratively. With the collective intelligence

of these particles, the swarm can converge to an optimum or near-optimum. PSO has a flexible and well-balanced

method to improve and adjust to the global and local exploration and exploitation abilities within a short computation

time. These characteristics make PSO highly reasonable to be used for solving single objective and also multi-objective

optimization problems.
The performance of PSO greatly depends on its control parameters such as inertia weight and acceleration coefficients.

Slightly different parameter settings may direct to very different performance. A significant development in the

performance of PSO with adaptive inertia weight over the generations was suggested by J C Bansal [4]. The adaptive

control parameter concepts have been used in PSO [1], [5] with Single Objective Optimization (SOO) problems. Initially

the development of PSO has intended in continuous search space. Recently many researchers proposed different

conversion techniques such as Smallest Position Value (SPV), Ranked-Order-Value (ROV) and Truncation of the real

values for mapping continuous positions of particles in PSO to the discrete values. So, that the original PSO algorithm

spends a lot of computation time in conversion of real values to integer values. Kang [1] proposed PSO called Discrete

PSO, which can update their particles in the discrete domain directly without any conversion techniques. This paper uses

http://www.ijarcsse.com/

Sarathambekai et al., International Journal of Advanced Research in Computer Science and Software Engg. 4(2),

February - 2014, pp. 510-522

© 2014, IJARCSSE All Rights Reserved Page | 511

Discrete PSO with adaptive inertia weight to optimize multiple objectives and also uses the weighted aggregation method
[6] for calculating the fitness value. The remainder of the paper is organized as follows: The Section specifies a problem

statement. Section 3 reviews related algorithms for task scheduling problem. Section 4 presents the brief introduction to

PSO. The proposed DPSO is presented in Section 5. Experimental results are reported in Section 6. Finally, Section 7

concludes the paper.

II. PROBLEM DEFINITION

A Heterogeneous Computing (HC) system consists of a number of connected heterogeneous Processor Elements (PEs).

Let T = {T1, T2…, Tn} indicate the n number of independent tasks to be scheduled on m processors P = {P1, P2..., Pm}.

Because of the heterogeneous nature of the processors and disparate nature of the tasks, the expected execution times of a

task executing on different processors are different. Every task has an Expected Time to Compute (ETC) on a specific

processor. The ETC values are assumed to be known in advance. An ETC matrix is an n x m matrix in which m is the

number of processors and n is the number of tasks. One row of the ETC matrix represents estimated execution time for a
specified task on each PE also one column of the ETC matrix consists of the estimated execution time of a specified PE

for each task.

The task scheduling problem is formulated based on the following assumptions:

1. All tasks are non pre-emptive

 2. Every processor can execute only one task at a time.

 3. Every task is processed on one processor at a time.

This paper presents the scheduling of independent tasks on a set of heterogeneous processors in order to minimize the

make span, reliability cost and flow time simultaneously.

Most popular optimization criterion is minimization of make span [1] i.e. the finishing time of the newest task. Make

span computes the throughput of the HC system. Assume that (i ε{1,2,...,n}, j ε {1,2,...,m}) is the execution time for

performing ith task in jth processor and (j ε {1,2,...,m}) is the previous workload of . According to the above

definition, make span can be estimated using the equation (1).

Make span=max { } j ε (1, 2, 3…, m) (1)

 task i allocated to processor j

Reliability is defined to be the probability that the system will not fail during the time that it is executing the tasks. The
Reliability Cost [7, 8] as like a meter of how reliable a given system is when a group of tasks are allocated to it. The

lesser the reliability cost increases the reliability. In this model, processor failures are assumed to be independent, and

follow a Poisson Process with a constant failure rate. Failures of communication links are not considered here. The

reliability cost of a task on a processor is the product of 's failure rate (PFR) λj and 's execution time on

 .Thus, the reliability cost of a schedule is the summation over all tasks' reliability costs based on the given schedule.

According to the above definition, the reliability cost is defined in the equation (2), where indicates that task

is allocated to

 Reliability Cost = (2)

Flow time [9] is the sum of the finishing times of tasks. Flow time measures the Quality of Service of the HC system.

The flow time can be estimated using the equation (3), where is the finishing time of on a processor

 Flow time= (3)

 task i allocated to processor j

III. RELATED WORK

In general, finding optimal solutions for the task assignment problem in a HC system is NP-complete. Therefore, only

small-sized instances of the problem can be solved optimally using precise algorithms. For large scale instances, most

researchers have spotlighted on developing heuristic algorithms that give up near-optimal solutions within a reasonable

computation time. Braun [10] elucidated 11 heuristics for scheduling tasks and assessed them on different types of

heterogeneous computing environments. The 11 heuristics examined are Opportunistic Load Balancing, Minimum

Execution Time, Minimum Completion Time, Min-min, Max-min, Duplex, Genetic Algorithm, Simulated Annealing,
Tabu, and A* .The authors illustrated that the Genetic Algorithm can obtain better results in comparison with others. The

above stated heuristics intended to minimize a single objective, the make span of the schedule.

Izakian [11] recommended an efficient heuristic called min-max for scheduling meta-tasks in heterogeneous

computing systems. The effectiveness of proposed algorithm is investigated with 5 popular pure heuristics min-min,

max-min, LJFR-SJFR, sufferage, and Work Queue for minimizing make span and flow time. The author also considers

the effect of these pure heuristics for initializing Simulated Annealing (SA) meta-heuristic approach for task scheduling

on heterogeneous environments.

Meta-heuristic algorithms have been initiated to reach a better solution quality for the task scheduling problem such as

SA, Tabu Search, GA and Swarm Intelligence (SI). SI consists of two successful techniques of Particle Swarm

Optimization (PSO) and Ant Colony Optimization algorithm (ACO). Abraham [12] stated the usage of a number of

Sarathambekai et al., International Journal of Advanced Research in Computer Science and Software Engg. 4(2),

February - 2014, pp. 510-522

© 2014, IJARCSSE All Rights Reserved Page | 512

nature inspired meta-heuristics (SA, GA, PSO, and ACO) for task scheduling in computational grids using single and
multi-objective optimization techniques. PSO yields faster convergence when compared to GA, because of the balance

between exploration and exploitation in the search space.

The inertia weight in PSO significantly affects the convergence and exploration-exploitation of search process. So,

that the performance of PSO greatly depends on its control parameter such as inertia weight. Slightly different parameter

setting may direct to very different performance in PSO. Kennedy [2] developed PSO with no inertia weight. Shi and

Eberhart [13] first time presented the concept of inertia weight with constant value. Further, many researchers introduced

dynamical adjusting of inertia weight which can increase the capabilities of PSO. Bansal [5] presented a comparative

study on 15 strategies to set inertia weight in PSO. The author concluded chaotic inertia weight is the best strategy for

better accuracy and random inertia weight strategy is best for better efficiency. Kaushik [14] proposed an adaptive inertia

weight which is the Euclidean distance of the particles of a particular generation from the global best. Xin [15] presented

Linearly Decreasing Inertia weight for enhancing the efficiency and performance of PSO.
The main advantages of PSO algorithm are précised as: simple concept, easy implementation, robustness to control

parameters, and computational effectiveness when compared with mathematical algorithm and other heuristic

optimization techniques [16]. However, these greater characteristics make PSO a highly feasible candidate to be used for

solving multi-objective optimization problems. In fact, there have been several recent proposals to extend PSO to handle

multi-objectives: The swarm metaphor of Ray and Liew [17], Dynamic neighbourhood PSO proposed by Hu and

Eberhart [2], the Multi-objective PSO (MOPSO) by Coello and Lechuga [18].

Different criteria can be used for evaluating the effectiveness of scheduling algorithms. All the existing works

investigated a number of these heuristics for minimizing make span or make span and flow time, However no attempts

has been made to minimize make span, flow time and reliability cost simultaneously for scheduling meta tasks on

heterogeneous systems using DPSO.

IV. PARTICLE SWARM OPTIMIZATION

PSO is an optimization algorithm based on population. The system is initialized with a population of random solutions
(particles). The population in PSO is called a swarm. Each particle moves in the D-dimensional problem space with a

velocity. The velocity is dynamically changed based on the flying knowledge of its own (Personal best) and the

knowledge of the swarm (Global best). The velocity of a particle is controlled by three components, namely, inertial

momentum, cognitive, and social. The inertial component simulates the inertial behaviour of the bird to fly in the previous

direction. The cognitive component models the memory of the bird about its previous best position, and the social

component models the memory of the bird about the best position among the particles.

PSO is different from other GA. It does not have the selection, crossover and mutation operators. It means that the

members of the entire swarm are preserved through the search procedure, so that information is socially shared between

particles to direct the search towards the optimum position in the search space. PSO can be easily implemented because it

has no filtering operators (selection, crossover and mutation). It is computationally economical because its memory and

CPU speed necessities are low [19].
The movement of the particle towards the best solution is directed by updating its velocity and position characteristics.

The velocity and position of the particles are updating by using the equation (4) and (5), where i=1, 2, 3…POP, j=1, 2,

3…D, POP is the number of particles in the swarm, W is the inertia weight which is used to control the impact of the

previous history of velocities on the current velocity of a given particle, is the jth element of the velocity vector of

the ith particle in tth iteration which determines the direction in which a particle needs to move, is jth

element of ith particle (solution) in tth iteration. and are random values in range[0, 1] sampled from a uniform

distribution, C1 and C2 are positive constants, called acceleration coefficients which control the influence of Personal best

(Pbest) and Global best (Gbest) on the search process.

(j) -

 (j) -

 (4)

 (5)

The pseudo code of classical PSO algorithm for task scheduling is given in Fig 1.

begin

 Randomly initialize the swarm;

 Position and velocity of the particle is initialized randomly;

 Calculate fitness value of each particle and find the Pbest and the Gbest;

 repeat

 Velocity and Position of each particle is updated using (4) and (5).

 Evaluate fitness value of each particle.

 Update Pbest for each particle.
 Update Gbest.

 until stopping condition is true;

Fig 1.Pseudo code of classical PSO algorithm

Sarathambekai et al., International Journal of Advanced Research in Computer Science and Software Engg. 4(2),

February - 2014, pp. 510-522

© 2014, IJARCSSE All Rights Reserved Page | 513

V. PROPOSED DISCRETE PARTICLE SWARM OPTIMIZATION
The classical PSO was originally designed only for continuous optimization problems. This cannot be used to solve

discrete problems directly because its positions are real-valued, so that the conversion techniques are needed to operate

PSO in discrete domain. In proposed PSO, no conversion techniques are needed because the velocity and positions are

redefined to operate in a discrete domain directly and hence much computation time can be saved. The asymptotic

complexity of the proposed algorithm has same as the original PSO because the algorithm follows the same pseudo code

of the classical PSO in Fig 1. Only the way of updating the velocity and position are different from classical PSO. The

proposed DPSO called Linearly decreasing Inertia weight DPSO (LIDPSO) because the value of inertia weight (W) is

varying linearly from large value to small value instead of constant value in classical PSO. The flow diagram of LIDPSO

is shown in Fig.2

The equation (6) and (7) shows the updation of the particle‘s velocity and position in discrete domain. In LIDPSO, the

above equation (4) and (5) are rewritten in equation (6) and (7). [11], [22]

(j) (6)

 (7)

The operator in equation (7) is defined as follows:

Consider the multi-processor scheduling with n tasks and N particles (N is a population size). A particle P is a list of n

tasks. A new particle P' is obtained when exchanging task and task in particle P. The swap operator, for example

(then the swap operation is denoted in equation (8)

 (8)

For example:

 Particle 1: (1, 2, 3, 4)

 Particle 1‘s new position: (1, 2, 3, 4) + SO (1, 3) = (3, 2, 1, 4)

A Set of Swap Operator (SSO) is created, when are imposed to a particle continuously. This

process can be depicted in equation (9).

 (9)

The equation (8) is rewritten in equation (10).

 (10)

Assume A and B are two vectors. An impose of SSO to A and B when updating the position of the

particle.(i.e.) . So minus operation in equation (6) between two vectors is defined in equation (11)

 (11)

In equation (6), (j) – and (j) - are defined as SSO2 and SSO3 respectively.

The new velocity consists of three SSO‘s: old velocity (SSO1), (j) - (j) -

. The ―U‖ operator act as a merging of three SSO‘s into single SSO called new velocity. The equation (6) is

rewritten in equation (12).

 U U (12)

Inertia Weight plays an important role to attain a good balance between the exploration and the exploitation of the

search space. A high inertia weight is more suitable for global search and a small inertia weight helps local search. The

LIDPSO uses the inertia weight in (6), which linearly decreases from large value to small value through the search

process of identifying the global optima. The linearly decreasing inertia weight is calculated in equation (13), where

 is the maximum number of iterations and is the current iteration number. Typically, this

algorithm started with a large inertia weight (Wmax), which is decreased over time. The value of Wt is permitted to reduce

linearly with iteration from Wmax to Wmin.

 (13)

The performance of LIDPSO is compared with Constant control parameters DPSO called CDPSO and Linearly

decreasing Inertia with Time varying acceleration DPSO called LTDPSO. In CDPSO, the control parameters W, C1 and

C2 are constant during the whole run of the algorithm. In LTDPSO algorithm, the inertia weight is calculated using

equation (13) and acceleration coefficient C1 and C2 are calculated using equation (14) and (15), where is the

maximum number of iterations and is the current iteration number. Larger values of C1 guarantee larger

deviation of the particle in the search space, while the larger values of C2 signify the convergence to the present global

best (gbest). C1 has been permitted to reduce from its initial value of while C2 has been raised

from .

Sarathambekai et al., International Journal of Advanced Research in Computer Science and Software Engg. 4(2),

February - 2014, pp. 510-522

© 2014, IJARCSSE All Rights Reserved Page | 514

 (14)

 (15)

A. Particle representation and population initialization

The DPSO begins from a random initial population (Swarm) like other evolutionary algorithms. Population

initialization consists of two parts: Particle generation and Processor allocation. Number of tasks and population size are

required to generate particles. The initial population consists of randomly generated particles. The individual position is

obtained from the task permutation algorithm. For the permutation form, the position of a task in the permutation vector

represents the sequence the task is scheduled, and the corresponding value of each element indicates a node index
number.

In this paper, the solutions (Particles) are represented by permutation-based definition.

Fig.2.Flow diagram for LIDPSO

This definition provides n! number of solutions. The example is represented in Fig 3(a).

After generating the particles, the processors are allocated to the task in a particle, randomly. Generated particles and

number of processors are required to generate processor allocation matrix. If a task assigned to a processor is represented

by ‗1‘ further it‘s not assigned to any other processors. The example is represented in Fig 3(b).It shows the scheduling for

the generated particle 1 in Fig 3(a) can be scheduled on 2 processors P1 and P2.

B. Particle Evaluation

The three objectives, make span, flow time and reliability cost are calculated as given in equation (1), (2) and (3).
Randomly Assigned Weighted Aggregation (RAWA) method [2] is used to calculate the weights for DPSO. For the

RAWA, the weights can be generated in the equation (16), (17) and (18).

 (16) (17)

 (18)

The function is a sum of three objectives, the make span, reliability cost and flow time. For three

objective functions, the weighted single objective function is obtained using the equation (19).

 (19)

C. Particle’s Movement
The particle position is updated during the each iteration based on two types of experiences: personal best and global best

experiences. The personal best experience () is the experienced position by particle which obtains the

smallest fitness value during flying. The represents the best particle found in the entire population of each
generation. For each iteration, the particle modifies its velocity and position through each dimension j by referring to

 and the swarm‘s best experience using equation (6) and (7).

VI. EXPERIMENTAL EVALUATION

The experimental results are attained using a set of benchmark instances [20] for the distributed heterogeneous

systems. All algorithms are coded in C and executed on an Ubuntu platform.

A. Benchmark description

The simulation is performed on the benchmark [20] instances which are categorized in 12 types of ETC‗s based on the

3 following metrics: task heterogeneity, machine heterogeneity and consistency. In this benchmark, quality of the ETC

matrices are varied in an attempt to simulate various possible heterogeneous computing environments by setting the

values of parameters , and , which represent the mean task execution time, the task heterogeneity,
and the machine heterogeneity respectively. In ETC matrices, the amount of variance among the execution time of tasks

in the meta-task for a given processor is defined as task heterogeneity. Machine heterogeneity represents the distinction

among the execution times for a given task across all the processors [20]. The Coefficient of Variation Based (CVB)

Particle
Initialization

Evaluation of
Particles

Update Pbest and
Gbest

Update Velocity

and Position in

Discrete domain

 Adaptive control parameters (W)

Stopping condition

Gbest solution

(Optimal

solution)

False True

Sarathambekai et al., International Journal of Advanced Research in Computer Science and Software Engg. 4(2),

February - 2014, pp. 510-522

© 2014, IJARCSSE All Rights Reserved Page | 515

ETC generation method gives a larger control over the spread of execution time values than the common range based
method proposed by Braun [13].

The CVB type ETC matrices generation method works as follows: First, a column vector of the expected task

execution time with the preferred task heterogeneity, s, is created following gamma distribution with mean and

stand deviation .The input parameter is desired coefficient of variation of values in s. The value

of is high for high task heterogeneity, and small for low task heterogeneity. Each element of s is then used to

produce one row of the ETC matrix following gamma distribution with mean q[i] and standard deviation s[i]

such that the desired coefficient of variation of values in each row is . The value of is large for high
machine heterogeneity, and small for low machine heterogeneity. Task and machine heterogeneities are modelled by

using different and values: high heterogeneity is represented by setting and equal to 0.6,

and low heterogeneity is modelled using and equal to 0.1. [1]

Fig.3. (a) Particle Initialization (b) Processor allocation (c) Objective calculation

To capture other possible characteristics of real scheduling problems, three different ETC consistencies namely
consistent, inconsistent and semi-consistent are used. An ETC matrix is considered consistent if a processor Pi executes

task Tj faster than processor Pj, then Pi executes all the jobs faster than Pj. Inconsistency indicates that a processor is

quicker for a few jobs and slower for some others. An ETC matrix is considered semi-consistent if it includes a

consistent sub-matrix. A semi consistent ETC matrix is characterized by an inconsistent matrix which has a consistent

sub-matrix of a predefined size.

B. Algorithms comparison

Simulations were carried out to compare the performance analysis of LIDPSO with respect to: a) CDPSO b)

LTDPSO

All the algorithms are stochastic based algorithms. Each independent run of the same algorithm on a particular

problem instance may yield a different result. To make a good comparison of the algorithms each experiment was

repeated 10 times with different random seeds and the average of the results are reported.

C. Parameter setup
The following parameters are initialized for simulating the CDPSO, LIDPSO and LTDPSO algorithms.

 Population size (N) = 100 and Number of iteration =50 for all the algorithms.

 The Failure rate for each processor is uniformly distributed [10, 11] in the range from 0.95×10−6 /h to 1.05×10−6/h.

 The values of control parameters for CPSO are W=0.8, C1 = 1 and C2=1

 Values for linearly decreasing inertia weight and time varying acceleration coefficients [5]:

o Inertia weights =0.8 and =0.

o Acceleration coefficients = 2.5, = 0.5, = 0.5, = 2.5. C1 has been allowed to

decrease from its initial value of 2.5 to 0.5, while C2 has been increased from 0.5 to 2.5

a) Particle Initialization: b) Processor Allocation:

 Number of Task= 4 (1,2,3,4) P1: 1 0 1 0

 Population Size= 3 P2: 0 1 0 1

Particle 1: 1 2 3 4

Particle 2: 3 1 2 4

Particle 3: 2 4 3 1 ETC Matrix: (Execution time

in seconds)

 P1 P2

T1 4 5

T2 3 6

T3 7 4

T4 8 1

c) Objective Calculation:

PFR for P1=0.00000095; PFR for P2=0.000001s

Particle 1: P1

 P2

Make span=11 seconds

Reliability cost:

 P1=(4*0.00000095)+(7*0.00000095) =0.00001045

 P2=(6*0.000001)+(1*0.000001)=0.000007

Reliability cost= 0.00001045+0.000007=0.00001745

Flow time=4+6+11+7=28 seconds

T3 T1

11 4 0
T2 T4

7 6 0

Sarathambekai et al., International Journal of Advanced Research in Computer Science and Software Engg. 4(2),

February - 2014, pp. 510-522

© 2014, IJARCSSE All Rights Reserved Page | 516

D. Performance comparisons
To make the comparison fair, the swarms for all the methods were initialized using the same random seeds. All

instances consisting of 20 tasks and 2 or 3 processors are classified into 12 different types of ETC matrices according to

the 3 metrics. All the algorithms are applied on all 12 problem instances and the results plotted from Fig.4 to Fig.10.

The instances are labelled as g_a_bb_cc as follows:

 g means gamma distribution used in generating the matrices.

 a shows the type of inconsistency; c means consistent, i means inconsistent, and s means semi-consistent.

 bb indicates the heterogeneity of the tasks; hi means high and lo means low.

 cc represents the heterogeneity of the machines; hi means high and lo means low.

The average Relative Percentage Deviation (RPD) [1] is used for comparing the results of the proposed LIDPSO with

CDPSO and LTDPSO. It is calculated in equation (20), where P is the average result of the proposed algorithm and
is the average result provided by CDPSO and LTDPSO for each instance.

 (20)
Table I shows the comparison of the LIDPSO with CDPSO and LTDPSO in terms of the average fitness value for

scheduling the meta-tasks on 2 processors and 3 processors. In most of the benchmark instances, the LIDPSO provides

better results than CDPSO and LTDPSO. On average fitness value, the improvement of LIDPSO over CDPSO and

LTDPSO is 1.19%, 4.77% respectively for scheduling tasks on 2 processors and the improvement for scheduling tasks on

3 processors is 1.48%, 5.05% respectively across all instances.

In Fig 4, the result of CDPSO is improved compared with LIDPSO and LTDPSO in most of the benchmark instances

for scheduling tasks on 2 processors. On average fitness value under consistent model, the improvement of CDPSO over

LIDPSO and LTDPSO is 0.29% and 2.06% across all instances respectively. The LIDPSO provides better results than

CDPSO and LTDPSO are shown in Fig 5. On average fitness value under consistent model, the improvement of LIDPSO

over CDPSO and LTDPSO is 3.81% and 1.71% across all instances respectively.

 Fig.4.Comparison of average fitness value on 2 processors with consistent model

Fig.5.Comparison of average fitness value on 3 processors with consistent model

Sarathambekai et al., International Journal of Advanced Research in Computer Science and Software Engg. 4(2),

February - 2014, pp. 510-522

© 2014, IJARCSSE All Rights Reserved Page | 517

Fig.6.Comparison of average fitness value on 2 processors with semi-consistent model

 Fig.7.Comparison of average fitness value on 3 processors with semi-consistent model

Fig.8.Comparison of average fitness value on 2 processors with inconsistent model

Sarathambekai et al., International Journal of Advanced Research in Computer Science and Software Engg. 4(2),

February - 2014, pp. 510-522

© 2014, IJARCSSE All Rights Reserved Page | 518

TABLE I COMPARISON OF AVERAGE RESULTS BETWEEN LIDPSO WITH CDPSO AND LTDPSO OVER FITNESS VALUE

Fig.9.Comparison of average fitness value on 3 processors with inconsistent model

Type of

heterogeneity

2 Processors 3 Processors

CDPSO LIDPSO LTDPSO CDPSO LIDPSO LTDPSO

c_li_li

447.705765

445.1753235

457.808594

263.558884

267.920212

275.9220735

c_li_hi
626.0338745

638.5205995

615.036285

374.7586215

361.160538

384.057648

c_hi_lo

282.208679

278.112961

278.450821

176.7502975

168.6026155

183.1452105

c_hi_hi

540.369217

540.0888065

584.13913

307.465439

283.694763

256.791458

s_li_li
443.5552825

448.1753235

457.808594

257.743935

259.7317045

276.1615905

s_li_hi
549.531677

502.535034

563.104904

299.751999

375.9031065

378.9714815

s_hi_lo

282.09082

276.9756775

277.3663485

173.3772965

170.766464

182.801636

s_hi_hi

487.420395

473.897522

614.3197635

238.143692

222.6656495

266.9108125

i_li_li

444.03923

447.440613

439.7098235

256.5464095

248.7847065

258.365059

i_li_hi

657.205078

613.578644

621.9611815

384.8706205

356.4942475

378.811142

i_hi_lo

285.6050875

278.723343

309.4141845

180.922913

180.3042145

180.279396

i_hi_hi
488.8827365

526.415497

511.6748045

264.345665

235.6744615

267.6668095

Sarathambekai et al., International Journal of Advanced Research in Computer Science and Software Engg. 4(2),

February - 2014, pp. 510-522

© 2014, IJARCSSE All Rights Reserved Page | 519

TABLE II COMPARISONS OF AVERAGE RESULTS BETWEEN LIDPSO WITH CDPSO AND LTDPSO OVER MAKE SPAN IN

SECONDS

The improvement of LIDPSO is increased compared with CDPSO and LTDPSO for scheduling task on 2 processors.

This is shown in Fig 6. On average fitness value under semi-consistent model, the improvement of LIDPSO over CDPSO

and LTDPSO is 3.58% and 12.40% across all instances respectively. In Fig 7, the CDPSO provides better results than

LIDPSO and LTDPSO in most of the benchmark instances for scheduling tasks on 3 processors. On average fitness value
under semi-consistent model, the improvement of CDPSO over LIDPSO and LTDPSO is 6.20% and 14.02% across all

instances respectively. On average fitness value under inconsistent model, the improvement of LIDPSO over CDPSO

and LTDPSO is 0.51%, 0.90% respectively for scheduling on 2 processors and the improvement for scheduling on 3

processors is 6.40% and 6.25% across all instances respectively.

TABLE III COMPARISONS OF AVERAGE RESULTS BETWEEN LIDPSO WITH CDPSO AND LTDPSO OVER FLOW TIME IN

SECONDS

Type of

heterogeneity

2 Processors 3 Processors

CDPSO LIDPSO LTDPSO CDPSO LIDPSO LTDPSO

c_li_li
15133

15159

15413.5

7350.5

7323.5

7490.5

c_li_hi

19336.5

18630

18482

8892

8497.5

9245.5

c_hi_lo

9612.5

8945.5

9273.5

4697

4770

4690.5

c_hi_hi
13089

14520.5

15914

5272.5

6076

6451.5

s_li_li
14908.5

15159

15413.5

7311.5

7279.5

7509

s_li_hi

18557.5

17023.5

18731.5

8481.5

9023

9838.5

s_hi_lo

9660

8788

9358.5

4913

4785

4748.5

s_hi_hi
15067.5

16854.5

19263

5539

5686

7173.5

i_li_li
14638

15083

14881.5

7261

7039

7290

i_li_hi

19961

18533.5

18823.5

10514

9445.5

10345

i_hi_lo

9579.5

9034.5

10307

4867

4602

4565

i_hi_hi
15598.5

16543.5

16606.5

5782.5

5869.5

6726.5

Type of

heterogeneity

2 Processors 3 Processors

CDPSO LIDPSO LTDPSO CDPSO LIDPSO LTDPSO

c_li_li
5145

5143

5248

4055.5

4169.5

4364

c_li_hi
8401

8674

8466

5942.5

5905

6085

c_hi_lo
3176

3359.5

3295

3061

2479

3177

c_hi_hi
6172.5

6224

6964.5

3631.5

5524

4397.5

s_li_li

5149

5143

5248

3887

3922.5

4302

s_li_hi

6516.5

6031.5

6502.5

4604.5

5273.5

6229.5

s_hi_lo

3126

3055.5

3204.5

2681

2552.5

3123.5

s_hi_hi
6556.5

7095.5

7794.5

3813.5

3453.5

4546.5

i_li_li

5329

5138.5

5059.5

3877.5

3765

3990

Sarathambekai et al., International Journal of Advanced Research in Computer Science and Software Engg. 4(2),

February - 2014, pp. 510-522

© 2014, IJARCSSE All Rights Reserved Page | 520

Table II shows the comparisons of the LIDPSO with CDPSO and LTDPSO in terms of the average make span value

for scheduling on 2 processors and 3 processors. The performance of LIDPSO is improved than CDPSO and LTDPSO in

most of the benchmark instances. The improvement of LIDPSO over CDPSO and LTDPSO is 0.28% and 3.51%

respectively on 2 processors and 0.90%, 8.16% of improvement on 3 processors across all instances respectively.

TABLE IV COMPARISONS OF AVERAGE RESULTS BETWEEN LIDPSO WITH CDPSO AND LTDPSO OVER RELIABILITY

COST

TABLE V COMPARISONS OF AVERAGE OBJECTIVE RESULTS OF CDPSO, LIDPSO AND LTDPSO UNDER ETC

CONSISTENCIES

i_li_hi

8942

8533

8452.5

6287

6052.5

6242.5

i_hi_lo
3345

3358

3592.5

2964.5

2844.5

3061

i_hi_hi

6334.5

6250

6569.5

5029.5

3448

3899.5

Type of

heterogeneity

2 Processors 3 Processors

CDPSO LIDPSO LTDPSO CDPSO LIDPSO LTDPSO

c_li_li
0.009857

0.0098145

0.009897

0.009558

0.0096935

0.009767

c_li_hi

0.012482

0.012341

0.012304

0.011588

0.0112975

0.0122315

c_hi_lo
0.0059885

0.0062055

0.006136

0.006213

0.006116

0.0063265

c_hi_hi
0.010528

0.010657

0.0110025

0.00756

0.0085895

0.007647

s_li_li
0.009778

0.0098145

0.009897

0.009612

0.0095815

0.009881

s_li_hi

0.012496

0.011405

0.012339

0.01115

0.0112155

0.013345

s_hi_lo
0.005932

0.006108

0.006049

0.006211

0.0061745

0.0063535

s_hi_hi
0.010532

0.011302

0.011545

0.007461

0.0074205

0.008656

i_li_li

0.0097135

0.009800

0.009702

0.009489

0.009367

0.0095305

i_li_hi

0.0127195

0.012262

0.012202

0.0135

0.0124725

0.013187

i_hi_lo
0.0059875

0.006200

0.006296

0.0062245

0.006232

0.0061065

i_hi_hi
0.010888

0.0110365

0.010523

0.0078425

0.006996

0.0080025

Objectives

Mean value

of ETC

consistency

Appropriate

Algorithm

for

scheduling

on 2

processors

Percentage of

Improvements

(%)

Appropriate

Algorithm

for

scheduling

on 3

processors

Percentage of

Improvements

(%)

Make span

Consistent CDPSO 2.21%,4.71% CDPSO 8.31%,7.80%

Semi-

consistent
LIDPSO 0.11%,6.68% CDPSO 1.44%,21.46%

Inconsistent LIDPSO 2.90%,1.70% LIDPSO 12.72%,6.72%

Flow time

Consistent CDPSO 0.15%,3.34% CDPSO 1.73%,6.36%

Semi-

consistent
LIDPSO 0.64%,8.54% CDPSO 2.01%,11.52%

Inconsistent LIDPSO 0.98%,2.41% LIDPSO 5.45%,7.31%

Sarathambekai et al., International Journal of Advanced Research in Computer Science and Software Engg. 4(2),

February - 2014, pp. 510-522

© 2014, IJARCSSE All Rights Reserved Page | 521

The comparison of the LIDPSO with CDPSO and LTDPSO in terms of the average flow time for scheduling the meta-

tasks on 2 processors and 3 processors are shown in Table 3.From Table III, the improvement of LIDPSO over CDPSO

and LTDPSO is 0.50%, 4.70% respectively for scheduling tasks on 2 processors and the improvement for scheduling

tasks on 3 processors is 0.60%, 7.06% respectively.
Table IV shows the comparisons of the LIDPSO with CDPSO and LTDPSO in terms of the average reliability cost

value. The performance of LIDPSO is better than CDPSO and LTDPSO in most of the benchmark instances for

scheduling the meta-tasks on 2 processors and 3 processors.

TABLE VI COMPARISON OF OVER ALL AVERAGE FITNESS VALUE OF ALL THE THREE ALGORITHMS FOR 2 PROCESSORS

VERSUS 3 PROCESSORS

The improvement of LIDPSO over CDPSO and LTDPSO is 0.05%, 0.90% respectively for scheduling tasks on 2

processors and 1.20%, 5.60% of improvement for scheduling tasks on 3 processors across all instances respectively. The

results obtained in Table V shows the LIDPSO gives better results compared with CDPSO and LTDPSO in most of the

ETC consistencies. The improvement of LIDPSO over CDPSO and LTDPSO is 2.67% and 9.82% across all instances
respectively. These results indicate that the LIDPSO is a viable alternative for task scheduling problem.

Table VI and Fig 10 show the comparisons of over all average fitness value for scheduling the meta-tasks on 2

processors versus 3 processors of LIDPSO, CDPSO and LTDPSO across all instances. All the three algorithms are

found to be more efficient when tasks are being scheduled in 3 processors.

Fig.10 Comparison of over all average fitness value for scheduling on 2 processors versus 3 processors

The improvement of CDPSO with 3 processors over 2 processors is 74.14%, LIDPSO with 3 processors over 2

processors is 74.65% and LTDPSO with 3 processors over 2 processors is 74.20% across all instances.

All the above results show that the proposed algorithm is a feasible substitute for task scheduling problem in

distributed system.

VII. CONCLUSION

Achieving an optimal solution for scheduling of tasks on processors is crucial for distributed systems due to their
highly heterogeneous nature. In this paper a new, efficient Discrete PSO algorithm called LIDPSO has been successfully

applied to the multi-objective multiprocessor task scheduling problem to find optimal schedules for meta-tasks to

minimize the make span, flow time and reliability cost simultaneously. In the discrete PSO, the representation of position

and velocity of the particle is extended from continuous value vector to discrete value vector. As a result, the mapping

from continuous to discrete for particles are not needed and hence much computation time can be saved. The LIDPSO

includes the inertia weight which linearly decreases from large value to small value through the search process of

identifying the global optima. This adaptiveness of inertia weight permits it to reach an excellent balance between the

Reliability

cost

Consistent CDPSO 0.16%,1.25% CDPSO 2.22%,3.01%

Semi-
consistent

LIDPSO 0.29%,3.12% LIDPSO 0.13%,11.18%

Inconsistent LTDPSO 1.51%,1.49% LIDPSO 5.67%,5.02%

Mean fitness

value of all

types of
heterogeneity

instances
2 Processors 3 Processors 2 Processors 3 Processors

2

Processors

3

Processors

CDPSO CDPSO LIDPSO LIDPSO LTDPSO LTDPSO

461.2206535 264.852981 455.803279 260.975224 477.5662 274.15703

Sarathambekai et al., International Journal of Advanced Research in Computer Science and Software Engg. 4(2),

February - 2014, pp. 510-522

© 2014, IJARCSSE All Rights Reserved Page | 522

exploration and the exploitation of the search space. The proposed algorithm was tested with 12 different types of ETC
matrices available in the literature. The simulation results and comparisons prove that the LIDPSO is better compared to

other algorithms which have constant control parameters and time varying control parameters. Over all the CDPSO,

LIDPSO and LTDPSO algorithms are found to perform efficiently when tasks are being scheduled on 3 processors.

The future work will investigate scheduling tasks with large data set and the task with precedence constraint which are

pre-emptive in nature or in dynamic environments.

REFERENCES

[1] Qinma Kang, and Hong He,―A novel discrete particle swarm optimization algorithm for meta-task assignment in

heterogeneous computing systems‖, Elsevier Microprocessors and Microsystems ,pp 10–17,2011

[2] Kennedy,J, and Eberhart.R ,―Particle swarm optimization‖, In proceeding of the fourth IEEE International

conference on Neural Networks,Perth,Australia.IEEE Service Center,1995

[3] S.Sarathambekai and K.Umamaheswari, ―Comparison among four Modified Discrete Particle Swarm Optimization
for Task Scheduling in Heterogeneous Computing Systems‖, International Journal of Soft Computing and

Engineering (IJSCE),ISSN: 2231-2307, Vol-3, Iss-2,2013

[4] J. C. Bansal, P. K. Singh,Mukesh Saraswat, Abhishek Verma, Shimpi Singh Jadon and Ajith Abraham, ―Inertia

Weight Strategies in Particle Swarm Optimization‖, IEEE Third World Congress on Nature and Biologically

Inspired Computing (NaBIC), ISBN 978-1-4577-1122-0,pp 633 – 640,2011

[5] S.N.Sivanandam, P.Visalakshi and A.Bhuvaneswari, ―Multiprocessor Scheduling Using Hybrid Particle Swarm

Optimization with Dynamically Varying Inertia‖, International Journal of Computer Science & Applications, Vol. 4

Issue 3, pp 95-106,2007

[6] Yaochu Jin, Tatsuya Okabe and Bernhard Sendhoff ,―Solving three objective optimization problems using

Evolutionary dynamic weighted aggregation: Results and Analysis‖, Genetic and Evolutionary Computation

Conference. Springer, Berlin, pages 636—637,2003

[7] Xiao Qin,Hong Jiang,―Dynamic, Reliability-driven Scheduling of Parallel Real-time Jobs in Heterogeneous
Systems‖, IEEE International conference on Parallel Processing,pp 113-122,2001

[8] Wei Luo, Xiao Qin, and Kiranmai Bellamssss,―Reliability-Driven Scheduling of Periodic Tasks in Heterogeneous

Real-Time Systems‖, IEEE International Symposium on Embedded Computing,Ontario, Canada,2007

[9] Hesam Izakian, Behrouz Tork Ladani, Ajith Abraham,Vaclav Snasel, ―A Discrete Particle Swarm Optimization

Approach For Grid Job Scheduling‖, International Journal of Innovative Computing, Information and Control, ISSN

1349-4198 Volume 6, Number 9,2010

[10] H.J. Braun et al, ―A comparison of eleven static heuristics for mapping a class of independent tasks onto

heterogeneous distributed computing systems‖, Journal of Parallel and Distributed Computing, Vol 61, No.6, 2001.

[11] H. Izakian, A. Abraham and V. Snasel, ―Performance comparison of six efficient pure heuristics for scheduling

meta-tasks on heterogeneous distributed environments‖, Neural Network World, vol.19,no.6, pp.695-710,2009

[12] A. Abraham, H . Liu, C. Grosan, F. Xhafa, ―Nature inspired meta-heuristics for grid scheduling: single and multi-
objective optimization approaches‖, Studies in Computational Intelligence, Springer Verlag: Heidelberg, Germany,

pp. 247–272,(2008)

[13] Y. Shi and R. Eberhart., ―A modified particle swarm optimizer‖, In Evolutionary Computation Proceedings, 1998.

IEEE World Congress on Computational Intelligence., pages 69–73,2002

[14] Kaushik Suresh, Sayan Ghosh, Debarati Kundu, Abhirup Sen, Swagatam Das and Ajith Abraham,―Inertia-Adaptive

Particle Swarm Optimizer for Improved Global Search‖, IEEE International conference on Intelligent systems and

design,pp 253-258,2008

[15] J. Xin, G. Chen, and Y. Hai.,―A Particle Swarm Optimizer with Multistage Linearly-Decreasing Inertia

Weight‖,IEEE International Joint Conference on Computational Sciences and Optimization, volume 1, pages 505–

508,2009

[16] J. Park, K. Lee, J. Shin, and K. Y. Lee, "A Particle Swarm Optimization for Economic Dispatch with Nonsmooth

Cost Function", IEEE Trans. on Power Systems, Vol. 20, No.1, pp. 34-42,2005
[17] T. Ray, and K. Liew, "A swarm metaphor for multiobjective design optimization", Engineering Optimization, Vol.

34, pp. 141-153,2002.

[18] C.A. Coello Coello, and M. Salazar Lechuga, "MOPSO: A proposal for multiple objective particle swarm

optimization", Congress on Evolutionary Computation IEEE Service Center, Piscataway, New Jersey, pp. 1051-

1056,2002

[19] Ozgur Uysal1 and Serol Bulkan2, ―Comparison Of Genetic Algorithm And Particle Swarm Optimization for

Bicriteria Permutation Flowshop Scheduling Problem‖, International Journal of Computational Intelligence

Research, ISSN 0973-1873 Vol.4, No.2, pp.159–175 ,2008

[20] S. Ali, H.J. Siegel, ―Representing task and machine heterogeneities for heterogeneous computing systems‖,

Tamkang Journal of Science and Engineering, Vol. 3, No. 3, pp. 195-207, 2000

[21] Kaushik Suresh, Sayan Ghosh, Debarati Kundu, Abhirup Sen, Swagatam Das and Ajith Abraham, ―Inertia-Adaptive
Particle Swarm Optimizer for Improved Global Search‖, IEEE International conference on Intelligent systems and

design,pp 253-258,2008

[22] Xiaohong Kong1,2, Jun Sun1 and Wenbo Xu1, ―Permutation-based Particle Swarm Algorithm for Tasks Scheduling

in Heterogeneous systems with Communication Delays‖, International Journal of Computational Intelligence

Research ISSN 0973-1873 Vol.4, No.1, pp. 61–70,2008

