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Abstract: Finding an optimal schedule of tasks for an application in distributed environment is critical in general. 

Task assignment is an extremely NP complete problem. This type of problem can be resolved by heuristic algorithms 

efficiently because the traditional methods such as dynamic programming and the back tracking need more time for 

solving this NP complete problem. Particle Swarm Optimization (PSO) is a newly developed meta-heuristic global 

optimization technique. It was originally designed only for continuous optimization problems. In task scheduling, the 

particles are represented as discrete values. It is obvious that the classical PSO cannot be used to solve discrete 

problems directly because its positions are real-valued.  Some conversion techniques are needed to operate PSO in 

discrete domain. This paper presents a modified PSO called Discrete PSO (DPSO). In DPSO, no conversion 

techniques are needed because the velocity and positions are redefined to operate the PSO in a discrete domain 

directly. In this paper, the scheduler aims at minimizing make span, flow time and reliability cost simultaneously in 

distributed systems for scheduling of independent tasks using DPSO. Benchmark instances of Expected Time to 

Complete (ETC) model are used to test the DPSO. Based on the simulations and comparisons, the DPSO algorithm is 

viable approach for the task scheduling problem.  
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I. INTRODUCTION 
Heterogeneous Computing (HC) systems consist of mixed group of machines, communication protocols and 

programming environments and offer a diversity of architectural capabilities that has different execution requirements. 

One of the key challenges of HC system is the task scheduling problem. In general, scheduling is concerned with 

distribution of limited resources to certain tasks to optimize few performance criterions, like the completion time, waiting 

time. Task assignment problems can be classified into two categories based on the types of tasks [1]: scheduling a meta-

task composed of independent tasks with no data dependencies and assigning an application composed of tasks with 

precedence constraints. There are more than a few conflicting objectives in multi-objective optimization problems to be 

optimized and it is hard to identify the best solution. For example, a bike manufacturer wish to maximize its turnover and 

minimize its manufacturing cost at a time. These objectives are conflicting to each other. A higher turnover would raise 

the manufacturing cost. There is no single optimal solution. The most traditional approach to solve a multi-objective 

optimization problem is to summative the objectives into a single objective by using a weighting sum.  
Particle Swarm Optimization (PSO) is a population based heuristic robust stochastic optimization algorithm proposed 

by Kennedy and Eberhart [2] in 1995, motivated by the flocking behaviour of birds. This has been applied in wide area 

and different fields such as engineering, physics, mathematics, chemistry and etc. In PSO, each particle is a candidate 

solution in the search space. All particles have fitness values calculated by a fitness function, and have velocities to direct 

the flying of the particles. Compared with Genetic Algorithm (GA), PSO has some striking characteristics [3]. It has 

memory, and the knowledge of good solutions is shared by all particles. In this way, PSO can update its particles‘ 

positions according to individuals‘ memory and swarm‘s greatest information iteratively. With the collective intelligence 

of these particles, the swarm can converge to an optimum or near-optimum. PSO has a flexible and well-balanced 

method to improve and adjust to the global and local exploration and exploitation abilities within a short computation 

time. These characteristics make PSO highly reasonable to be used for solving single objective and also multi-objective 

optimization problems.  
The performance of PSO greatly depends on its control parameters such as inertia weight and acceleration coefficients. 

Slightly different parameter settings may direct to very different performance. A significant development in the 

performance of PSO with adaptive inertia weight over the generations was suggested by J C Bansal [4]. The adaptive 

control parameter concepts have been used in PSO [1], [5] with Single Objective Optimization (SOO) problems. Initially 

the development of PSO has intended in continuous search space. Recently many researchers proposed different 

conversion techniques such as Smallest Position Value (SPV), Ranked-Order-Value (ROV) and Truncation of the real 

values for mapping continuous positions of particles in PSO to the discrete values. So, that the original PSO algorithm 

spends a lot of computation time in conversion of real values to integer values. Kang [1] proposed PSO called Discrete 

PSO, which can update their particles in the discrete domain directly without any conversion techniques. This paper uses 
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Discrete PSO with adaptive inertia weight to optimize multiple objectives and also uses the weighted aggregation method 
[6] for calculating the fitness value. The remainder of the paper is organized as follows: The Section specifies a problem 

statement. Section 3 reviews related algorithms for task scheduling problem. Section 4 presents the brief introduction to 

PSO. The proposed DPSO is presented in Section 5. Experimental results are reported in Section 6. Finally, Section 7 

concludes the paper. 

II. PROBLEM DEFINITION 

A Heterogeneous Computing (HC) system consists of a number of connected heterogeneous Processor Elements (PEs). 

Let T = {T1, T2…, Tn} indicate the n number of independent tasks to be scheduled on m processors P = {P1, P2..., Pm}. 

Because of the heterogeneous nature of the processors and disparate nature of the tasks, the expected execution times of a 

task executing on different processors are different. Every task has an Expected Time to Compute (ETC) on a specific 

processor. The ETC values are assumed to be known in advance. An ETC matrix is an n x m matrix in which m is the 

number of processors and n is the number of tasks. One row of the ETC matrix represents estimated execution time for a 
specified task on each PE also one column of the ETC matrix consists of the estimated execution time of a specified PE 

for each task. 

The task scheduling problem is formulated based on the following assumptions: 

1.  All tasks are non pre-emptive 

    2.  Every processor can execute only one task at a time.  

    3. Every task is processed on one processor at a time. 

This paper presents the scheduling of independent tasks on a set of heterogeneous processors in order to minimize the 

make span, reliability cost and flow time simultaneously. 

Most popular optimization criterion is minimization of make span [1] i.e. the finishing time of the newest task. Make 

span computes the throughput of the HC system. Assume that (i ε{1,2,...,n}, j ε {1,2,...,m}) is the execution time for 

performing  ith task in jth processor  and  (j ε {1,2,...,m}) is the previous workload of  . According to the above 

definition, make span can be estimated using the equation (1). 

Make span=max {  }  j ε (1, 2, 3…, m)       (1) 

                     task i allocated to processor j     

 

Reliability is defined to be the probability that the system will not fail during the time that it is executing the tasks. The 
Reliability Cost [7, 8] as like a meter of how reliable a given system is when a group of tasks are allocated to it. The 

lesser the reliability cost increases the reliability. In this model, processor failures are assumed to be independent, and 

follow a Poisson Process with a constant failure rate. Failures of communication links are not considered here. The 

reliability cost of a task on a processor  is the product of 's failure rate (PFR) λj and 's execution time on 

 .Thus, the reliability cost of a schedule is the summation over all tasks' reliability costs based on the given schedule. 

According to the above definition, the reliability cost is defined in the equation (2), where  indicates that task 

is allocated to  

 Reliability Cost =        (2) 

 

Flow time [9] is the sum of the finishing times of tasks. Flow time measures the Quality of Service of the HC system. 

The flow time can be estimated using the equation (3), where   is the finishing time of on a processor  

                            Flow time=                              (3) 

                                      task i allocated to processor j 
 

III. RELATED WORK 

In general, finding optimal solutions for the task assignment problem in a HC system is NP-complete. Therefore, only 

small-sized instances of the problem can be solved optimally using precise algorithms. For large scale instances, most 

researchers have spotlighted on developing heuristic algorithms that give up near-optimal solutions within a reasonable 

computation time. Braun [10] elucidated 11 heuristics for scheduling tasks and assessed them on different types of 

heterogeneous computing environments. The 11 heuristics examined are Opportunistic Load Balancing, Minimum 

Execution Time, Minimum Completion Time, Min-min, Max-min, Duplex, Genetic Algorithm, Simulated Annealing, 
Tabu, and A* .The authors illustrated that the Genetic Algorithm can obtain better results in comparison with others. The 

above stated heuristics intended to minimize a single objective, the make span of the schedule. 

Izakian [11] recommended an efficient heuristic called min-max for scheduling meta-tasks in heterogeneous 

computing systems. The effectiveness of proposed algorithm is investigated with 5 popular pure heuristics min-min, 

max-min, LJFR-SJFR, sufferage, and Work Queue for minimizing make span and flow time. The author also considers 

the effect of these pure heuristics for initializing Simulated Annealing (SA) meta-heuristic approach for task scheduling 

on heterogeneous environments. 

Meta-heuristic algorithms have been initiated to reach a better solution quality for the task scheduling problem such as 

SA, Tabu Search, GA and Swarm Intelligence (SI). SI consists of two successful techniques of Particle Swarm 

Optimization (PSO) and Ant Colony Optimization algorithm (ACO). Abraham [12] stated the usage of a number of 
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nature inspired meta-heuristics (SA, GA, PSO, and ACO) for task scheduling in computational grids using single and 
multi-objective optimization techniques. PSO yields faster convergence when compared to GA, because of the balance 

between exploration and exploitation in the search space. 

The inertia weight in PSO significantly affects the convergence and exploration-exploitation of search process. So, 

that the performance of PSO greatly depends on its control parameter such as inertia weight.  Slightly different parameter 

setting may direct to very different performance in PSO. Kennedy [2] developed PSO with no inertia weight. Shi and 

Eberhart [13] first time presented the concept of inertia weight with constant value. Further, many researchers introduced 

dynamical adjusting of inertia weight which can increase the capabilities of PSO. Bansal [5] presented a comparative 

study on 15 strategies to set inertia weight in PSO. The author concluded chaotic inertia weight is the best strategy for 

better accuracy and random inertia weight strategy is best for better efficiency. Kaushik [14] proposed an adaptive inertia 

weight which is the Euclidean distance of the particles of a particular generation from the global best. Xin [15] presented 

Linearly Decreasing Inertia weight for enhancing the efficiency and performance of PSO. 
The main advantages of PSO algorithm are précised as: simple concept, easy implementation, robustness to control 

parameters, and computational effectiveness when compared with mathematical algorithm and other heuristic 

optimization techniques [16]. However, these greater characteristics make PSO a highly feasible candidate to be used for 

solving multi-objective optimization problems. In fact, there have been several recent proposals to extend PSO to handle 

multi-objectives: The swarm metaphor of Ray and Liew [17], Dynamic neighbourhood PSO proposed by Hu and 

Eberhart [2], the Multi-objective PSO (MOPSO) by Coello and Lechuga [18]. 

Different criteria can be used for evaluating the effectiveness of scheduling algorithms. All the existing works 

investigated a number of these heuristics for minimizing make span or make span and flow time, However no attempts 

has been made to minimize make span, flow time and reliability cost simultaneously for scheduling meta tasks on 

heterogeneous systems using DPSO. 

IV. PARTICLE SWARM OPTIMIZATION 

PSO is an optimization algorithm based on population. The system is initialized with a population of random solutions 
(particles). The population in PSO is called a swarm. Each particle moves in the D-dimensional problem space with a 

velocity. The velocity is dynamically changed based on the flying knowledge of its own (Personal best) and the 

knowledge of the swarm (Global best). The velocity of a particle is controlled by three components, namely, inertial 

momentum, cognitive, and social. The inertial component simulates the inertial behaviour of the bird to fly in the previous 

direction. The cognitive component models the memory of the bird about its previous best position, and the social 

component models the memory of the bird about the best position among the particles.  

PSO is different from other GA. It does not have the selection, crossover and mutation operators. It means that the 

members of the entire swarm are preserved through the search procedure, so that information is socially shared between 

particles to direct the search towards the optimum position in the search space. PSO can be easily implemented because it 

has no filtering operators (selection, crossover and mutation). It is computationally economical because its memory and 

CPU speed necessities are low [19]. 
The movement of the particle towards the best solution is directed by updating its velocity and position characteristics. 

The velocity and position of the particles are updating by using the equation (4) and (5), where i=1, 2, 3…POP, j=1, 2, 

3…D, POP is the number of particles in the swarm, W is the inertia weight which is used to control the impact of the 

previous history of velocities on the current velocity of a given particle, is the jth element of the velocity vector of 

the ith particle in tth iteration which determines the direction in which a particle needs to move, is jth 

element of ith particle (solution) in tth iteration.  and are random values in range[0, 1] sampled from a uniform 

distribution, C1 and C2 are positive constants, called acceleration coefficients which control the influence of Personal best 

(Pbest) and Global best (Gbest) on the search process. 

(j) -                  

       (j) -                                                                                                        

                                                                                       (4)   

                                                                                                                                                                 

                                            

                                                                         (5) 

The pseudo code of classical PSO algorithm for task scheduling is given in Fig 1. 

begin  

      Randomly initialize the swarm;  

      Position and velocity of the particle is initialized randomly;  

      Calculate fitness value of each particle and find the Pbest and the Gbest;  

          repeat  

              Velocity and Position of each particle is updated using (4) and (5). 

              Evaluate fitness value of each particle. 

                 Update Pbest for each particle. 
                 Update Gbest. 

          until stopping condition is true; 

Fig 1.Pseudo code of classical PSO algorithm 
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V. PROPOSED DISCRETE PARTICLE SWARM OPTIMIZATION 
The classical PSO was originally designed only for continuous optimization problems. This cannot be used to solve 

discrete problems directly because its positions are real-valued, so that the conversion techniques are needed to operate 

PSO in discrete domain. In proposed PSO, no conversion techniques are needed because the velocity and positions are 

redefined to operate in a discrete domain directly and hence much computation time can be saved. The asymptotic 

complexity of the proposed algorithm has same as the original PSO because the algorithm follows the same pseudo code 

of the classical PSO in Fig 1. Only the way of updating the velocity and position are different from classical PSO. The 

proposed DPSO called Linearly decreasing Inertia weight DPSO (LIDPSO) because the value of inertia weight (W) is 

varying linearly from large value to small value instead of constant value in classical PSO. The flow diagram of LIDPSO 

is shown in Fig.2 

The equation (6) and (7) shows the updation of the particle‘s velocity and position in discrete domain. In LIDPSO, the 

above equation (4) and (5) are rewritten in equation (6) and (7). [11], [22] 

(j)                                                            (6)                                        

                                                                

                                                                                        (7) 

The operator in equation (7) is defined as follows: 

Consider the multi-processor scheduling with n tasks and N particles (N is a population size). A particle P is a list of n 

tasks. A new particle P' is obtained when exchanging task  and task  in particle P. The swap operator, for example 

(  then the swap operation is denoted in equation (8) 

                  (8) 

For example: 

      Particle 1: (1, 2, 3, 4)   

      Particle 1‘s new position: (1, 2, 3, 4) + SO (1, 3) = (3, 2, 1, 4) 

A Set of Swap Operator (SSO) is created, when  are imposed to a particle continuously. This 

process can be depicted in equation (9). 

                                 (9) 

The equation (8) is rewritten in equation (10).            

 

                                      (10) 

Assume A and B are two vectors. An impose of SSO to A and B when updating the position of the 

particle.(i.e.) . So minus operation in equation (6) between two vectors is defined in equation (11) 

                   (11) 

In equation (6), (j) –  and (j) - are defined as SSO2 and SSO3 respectively. 

The new velocity  consists of three SSO‘s: old velocity (SSO1), (j) - (j) - 

. The ―U‖ operator act as a merging of three SSO‘s into single SSO called new velocity. The equation (6) is 

rewritten in equation (12). 

            U  U               (12) 

Inertia Weight plays an important role to attain a good balance between the exploration and the exploitation of the 

search space. A high inertia weight is more suitable for global search and a small inertia weight helps local search. The 

LIDPSO uses the inertia weight in (6), which linearly decreases from large value to small value through the search 

process of identifying the global optima. The linearly decreasing inertia weight is calculated in equation (13), where 

 is the maximum number of iterations and  is the current iteration number. Typically, this 

algorithm started with a large inertia weight (Wmax), which is decreased over time. The value of Wt is permitted to reduce 

linearly with iteration from Wmax to Wmin. 

         (13) 

 

The performance of LIDPSO is compared with Constant control parameters DPSO called CDPSO and Linearly 

decreasing Inertia with Time varying acceleration DPSO called LTDPSO. In CDPSO, the control parameters W, C1 and 

C2 are constant during the whole run of the algorithm. In LTDPSO algorithm, the inertia weight is calculated using 

equation (13) and acceleration coefficient C1 and C2 are calculated using equation (14) and (15), where  is the 

maximum number of iterations and  is the current iteration number. Larger values of C1 guarantee larger 

deviation of the particle in the search space, while the larger values of C2 signify the convergence to the present global 

best (gbest). C1 has been permitted to reduce from its initial value of  while C2 has been raised 

from .  
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                                                                                  (14)                                                                                                                                       

                                                                                                             (15) 
 

A. Particle representation and population initialization 

The DPSO begins from a random initial population (Swarm) like other evolutionary algorithms. Population 

initialization consists of two parts: Particle generation and Processor allocation. Number of tasks and population size are 

required to generate particles. The initial population consists of randomly generated particles. The individual position is 

obtained from the task permutation algorithm. For the permutation form, the position of a task in the permutation vector 

represents the sequence the task is scheduled, and the corresponding value of each element indicates a node index 
number.  

In this paper, the solutions (Particles) are represented by permutation-based definition. 

 

 

 

 

 

 

 

 

 

 

 

                                                        

Fig.2.Flow diagram for LIDPSO 

 

This definition provides n! number of solutions. The example is represented in Fig 3(a).                                                              

After generating the particles, the processors are allocated to the task in a particle, randomly. Generated particles and 

number of processors are required to generate processor allocation matrix. If a task assigned to a processor is represented 

by ‗1‘ further it‘s not assigned to any other processors. The example is represented in Fig 3(b).It shows the scheduling for 

the generated particle 1 in Fig 3(a) can be scheduled on 2 processors P1 and P2. 

B. Particle Evaluation 

The three objectives, make span, flow time and reliability cost are calculated as given in equation (1), (2) and (3). 
Randomly Assigned Weighted Aggregation (RAWA) method [2] is used to calculate the weights for DPSO. For the 

RAWA, the weights can be generated in the equation (16), (17) and (18). 

                                   (16)                         (17) 

                                (18)                                                      

The function  is a sum of three objectives, the make span, reliability cost and flow time. For three 

objective functions, the weighted single objective function  is obtained using the equation (19). 

                                            (19) 

C. Particle’s Movement 
The particle position is updated during the each iteration based on two types of experiences: personal best and global best 

experiences. The personal best experience ( ) is the experienced position by particle which obtains the 

smallest fitness value during flying. The  represents the best particle found in the entire population of each 
generation. For each iteration, the particle modifies its velocity and position through each dimension j by referring to 

 and the swarm‘s best experience  using equation (6) and (7).  

 

VI.   EXPERIMENTAL EVALUATION 

The experimental results are attained using a set of benchmark instances [20] for the distributed heterogeneous 

systems. All algorithms are coded in C and executed on an Ubuntu platform.  
 

A. Benchmark description 

The simulation is performed on the benchmark [20] instances which are categorized in 12 types of ETC‗s based on the 

3 following metrics: task heterogeneity, machine heterogeneity and consistency. In this benchmark, quality of the ETC 

matrices are varied in an attempt to simulate various possible heterogeneous computing environments by setting the 

values of parameters ,  and , which represent the mean task execution time, the task heterogeneity, 
and the machine heterogeneity respectively. In ETC matrices, the amount of variance among the execution time of tasks 

in the meta-task for a given processor is defined as task heterogeneity. Machine heterogeneity represents the distinction 

among the execution times for a given task across all the processors [20]. The Coefficient of Variation Based (CVB) 

Particle 
Initialization 

Evaluation of 
Particles 

Update Pbest and 
Gbest 

Update Velocity 

and Position in 

Discrete domain 

                Adaptive control parameters (W) 

Stopping condition 

Gbest solution 

(Optimal 

solution) 

False True 
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ETC generation method gives a larger control over the spread of execution time values than the common range based 
method proposed by Braun [13]. 

The CVB type ETC matrices generation method works as follows: First, a column vector of the expected task 

execution time with the preferred task heterogeneity, s, is created following gamma distribution with mean  and 

stand deviation .The input parameter   is desired coefficient of variation of values in s. The value 

of  is high for high task heterogeneity, and small for low task heterogeneity. Each element of s is then used to 

produce one row of the ETC matrix following gamma distribution with mean q[i] and standard deviation s[i]  

such that the desired coefficient of variation of values in each row is . The value of  is large for high 
machine heterogeneity, and small for low machine heterogeneity. Task and machine heterogeneities are modelled by 

using different and  values: high heterogeneity is represented by setting  and  equal to 0.6, 

and low heterogeneity is modelled using  and  equal to 0.1. [1] 
 

 

Fig.3. (a) Particle Initialization (b) Processor allocation  (c) Objective calculation 

 

To capture other possible characteristics of real scheduling problems, three different ETC consistencies namely 
consistent, inconsistent and semi-consistent are used. An ETC matrix is considered consistent if a processor Pi executes 

task Tj faster than processor Pj, then Pi executes all the jobs faster than Pj. Inconsistency indicates that a processor is 

quicker for a few jobs and slower for some others. An ETC matrix is considered semi-consistent if it includes a 

consistent sub-matrix. A semi consistent ETC matrix is characterized by an inconsistent matrix which has a consistent 

sub-matrix of a predefined size. 

B. Algorithms comparison 

Simulations were carried out to compare the performance analysis of LIDPSO with respect to: a) CDPSO   b) 

LTDPSO 

All the algorithms are stochastic based algorithms. Each independent run of the same algorithm on a particular 

problem instance may yield a different result. To make a good comparison of the algorithms each experiment was 

repeated 10 times with different random seeds and the average of the results are reported. 

C. Parameter setup 
The following parameters are initialized for simulating the CDPSO, LIDPSO and LTDPSO algorithms. 

 Population size (N) = 100 and Number of iteration =50 for all the algorithms. 

 The Failure rate for each processor is uniformly distributed [10, 11] in the range from 0.95×10−6   /h to 1.05×10−6/h. 

 The values of control parameters for CPSO are W=0.8, C1 = 1 and  C2=1  

 Values for linearly decreasing inertia weight and time varying acceleration coefficients [5]:  

o Inertia weights  =0.8 and  =0. 

o Acceleration coefficients  = 2.5,  = 0.5,  = 0.5,  = 2.5. C1 has been allowed to 

decrease from its initial value of 2.5 to 0.5, while C2 has been increased from 0.5 to 2.5 

 

a) Particle Initialization:                                                                           b) Processor Allocation: 

 Number of Task= 4 (1,2,3,4)                                                       P1: 1     0     1      0 

 Population Size= 3                                                                       P2: 0     1     0      1 

 

Particle 1:  1    2    3    4     

Particle 2:  3    1    2    4  

Particle 3:  2    4     3   1                                                                             ETC Matrix: (Execution time 

in seconds) 

 P1 P2 

T1 4 5 

T2 3 6 

T3 7 4 

T4 8 1 

c) Objective Calculation: 

PFR for P1=0.00000095;  PFR for P2=0.000001s 

                            

Particle 1:     P1                                               
                                 

                      P2                                    

 

Make span=11 seconds                            

Reliability cost:                                                                

 P1=(4*0.00000095)+(7*0.00000095) =0.00001045 

 P2=(6*0.000001)+(1*0.000001)=0.000007 

Reliability cost= 0.00001045+0.000007=0.00001745  

Flow time=4+6+11+7=28  seconds           

T3 T1 

11   4 0 
T2   T4 

7   6 0 
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D. Performance comparisons 
To make the comparison fair, the swarms for all the methods were initialized using the same random seeds. All 

instances consisting of 20 tasks and 2 or 3 processors are classified into 12 different types of ETC matrices according to 

the 3 metrics. All the algorithms are applied on all 12 problem instances and the results plotted from Fig.4 to Fig.10. 

The instances are labelled as g_a_bb_cc as follows: 

 g means gamma distribution used in generating the matrices. 

 a shows the type of inconsistency; c means consistent, i means inconsistent, and s means semi-consistent. 

 bb indicates the heterogeneity of the tasks; hi means high and lo means low. 

 cc represents the heterogeneity of the machines; hi means high and lo means low. 

The average Relative Percentage Deviation (RPD) [1] is used for comparing the results of the proposed LIDPSO with 

CDPSO and LTDPSO. It is calculated in equation (20), where P is the average result of the proposed algorithm and  
is the average result provided by CDPSO and LTDPSO for each instance. 

            (20)                                                                    
Table I shows the comparison of the LIDPSO with CDPSO and LTDPSO in terms of the average fitness value for 

scheduling the meta-tasks on 2 processors and 3 processors. In most of the benchmark instances, the LIDPSO provides 

better results than CDPSO and LTDPSO. On average fitness value, the improvement of LIDPSO over CDPSO and 

LTDPSO is 1.19%, 4.77% respectively for scheduling tasks on 2 processors and the improvement for scheduling tasks on 

3 processors is 1.48%, 5.05% respectively across all instances. 

In Fig 4, the result of CDPSO is improved compared with LIDPSO and LTDPSO in most of the benchmark instances 

for scheduling tasks on 2 processors. On average fitness value under consistent model, the improvement of CDPSO over 

LIDPSO and LTDPSO is 0.29% and 2.06% across all instances respectively. The LIDPSO provides better results than 

CDPSO and LTDPSO are shown in Fig 5. On average fitness value under consistent model, the improvement of LIDPSO 

over CDPSO and LTDPSO is 3.81% and 1.71% across all instances respectively. 

 
 Fig.4.Comparison of average fitness value on 2 processors with consistent model 

  
Fig.5.Comparison of average fitness value on 3 processors with consistent model 
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Fig.6.Comparison of average fitness value on 2 processors with semi-consistent model 

 
 Fig.7.Comparison of average fitness value on 3 processors  with semi-consistent model 

 

 
Fig.8.Comparison of average fitness value on 2 processors with inconsistent model 
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TABLE I COMPARISON OF AVERAGE RESULTS BETWEEN LIDPSO WITH CDPSO AND LTDPSO OVER FITNESS VALUE 

 

 

 
Fig.9.Comparison of average fitness value on 3 processors  with inconsistent model 

Type of 

heterogeneity 

2 Processors 3 Processors 

CDPSO LIDPSO LTDPSO CDPSO LIDPSO LTDPSO 

c_li_li 

447.705765 

 
445.1753235 

 

457.808594 

 
263.558884 

 

267.920212 

 

275.9220735 

 

c_li_hi 
626.0338745 

 
638.5205995 

 
615.036285 

 
374.7586215 

 
361.160538 

 
384.057648 

 

c_hi_lo 

282.208679 

 
278.112961 

 

278.450821 

 

176.7502975 

 
168.6026155 

 

183.1452105 

 

c_hi_hi 

540.369217 

 
540.0888065 

 

584.13913 

 

307.465439 

 

283.694763 

 
256.791458 

 

s_li_li 
443.5552825 

 

448.1753235 

 

457.808594 

 
257.743935 

 

259.7317045 

 

276.1615905 

 

s_li_hi 
549.531677 

 
502.535034 

 
563.104904 

 
299.751999 

 
375.9031065 

 
378.9714815 

 

s_hi_lo 

282.09082 

 
276.9756775 

 

277.3663485 

 

173.3772965 

 
170.766464 

 

182.801636 

 

s_hi_hi 

487.420395 

 
473.897522 

 

614.3197635 

 

238.143692 

 
222.6656495 

 

266.9108125 

 

i_li_li 

444.03923 

 

447.440613 

 
439.7098235 

 

256.5464095 

 
248.7847065 

 

258.365059 

 

i_li_hi 

657.205078 

 
613.578644 

 

621.9611815 

 

384.8706205 

 
356.4942475 

 

378.811142 

 

i_hi_lo 

285.6050875 

 
278.723343 

 

309.4141845 

 

180.922913 

 

180.3042145 

 
180.279396 

 

i_hi_hi 
488.8827365 

 

526.415497 

 

511.6748045 

 

264.345665 

 
235.6744615 

 

267.6668095 
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TABLE II COMPARISONS OF AVERAGE RESULTS BETWEEN LIDPSO WITH CDPSO AND LTDPSO OVER MAKE SPAN IN 

SECONDS 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

The improvement of LIDPSO is increased compared with CDPSO and LTDPSO for scheduling task on 2 processors. 

This is shown in Fig 6. On average fitness value under semi-consistent model, the improvement of LIDPSO over CDPSO 

and LTDPSO is 3.58% and 12.40% across all instances respectively. In Fig 7, the CDPSO provides better results than 

LIDPSO and LTDPSO in most of the benchmark instances for scheduling tasks on 3 processors. On average fitness value 
under semi-consistent model, the improvement of CDPSO over LIDPSO and  LTDPSO is 6.20% and 14.02% across all 

instances respectively. On average fitness value under inconsistent model, the improvement of LIDPSO over CDPSO 

and LTDPSO is 0.51%, 0.90% respectively for scheduling on 2 processors and the improvement for scheduling on 3 

processors is 6.40% and 6.25% across all instances respectively.  

 

TABLE III COMPARISONS OF AVERAGE RESULTS BETWEEN LIDPSO WITH CDPSO AND LTDPSO OVER FLOW TIME IN 

SECONDS 

Type of 

heterogeneity 

2 Processors 3 Processors 

CDPSO LIDPSO LTDPSO CDPSO LIDPSO LTDPSO 

c_li_li 
15133 

 

15159 

 

15413.5 

 

7350.5 

 
7323.5 

 

7490.5 

 

c_li_hi 

19336.5 

 

18630 

 
18482 

 

8892 

 
8497.5 

 

9245.5 

 

c_hi_lo 

9612.5 

 
8945.5 

 

9273.5 

 

4697 

 

4770 

 
4690.5 

 

c_hi_hi 
13089 

 

14520.5 

 

15914 

 
5272.5 

 

6076 

 

6451.5 

 

s_li_li 
14908.5 

 

15159 

 

15413.5 

 

7311.5 

 
7279.5 

 

7509 

 

s_li_hi 

18557.5 

 
17023.5 

 

18731.5 

 
8481.5 

 

9023 

 

9838.5 

 

s_hi_lo 

9660 

 
8788 

 

9358.5 

 

4913 

 

4785 

 
4748.5 

 

s_hi_hi 
15067.5 
 

16854.5 
 

19263 
 

5539 
 

5686 
 

7173.5 
 

i_li_li 
14638 

 

15083 

 

14881.5 

 

7261 

 
7039 

 

7290 

 

i_li_hi 

19961 

 
18533.5 

 

18823.5 

 

10514 

 
9445.5 

 

10345 

 

i_hi_lo 

9579.5 

 
9034.5 

 

10307 

 

4867 

 

4602 

 
4565 

 

i_hi_hi 
15598.5 

 

16543.5 

 

16606.5 

 

5782.5 

 
5869.5 

 

6726.5 

 

Type of 

heterogeneity 

2 Processors 3 Processors 

CDPSO LIDPSO LTDPSO CDPSO LIDPSO LTDPSO 

c_li_li 
5145 
 

5143 
 

5248 
 

4055.5 
 

4169.5 
 

4364 
 

c_li_hi 
8401 

 

8674 

 

8466 

 

5942.5 

 
5905 

 

6085 

 

c_hi_lo 
3176 

 

3359.5 

 

3295 

 

3061 

 
2479 

 

3177 

 

c_hi_hi 
6172.5 

 

6224 

 

6964.5 

 
3631.5 

 

5524 

 

4397.5 

 

s_li_li 

5149 

 
5143 

 

5248 

 
3887 

 

3922.5 

 

4302 

 

s_li_hi 

6516.5 

 
6031.5 

 

6502.5 

 
4604.5 

 

5273.5 

 

6229.5 

 

s_hi_lo 

3126 

 
3055.5 

 

3204.5 

 
2681 

 

2552.5 

 

3123.5 

 

s_hi_hi 
6556.5 

 

7095.5 

 

7794.5 

 

3813.5 

 
3453.5 

 

4546.5 

 

i_li_li 

5329 

 
5138.5 

 

5059.5 

 

3877.5 

 
3765 

 

3990 
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Table II shows the comparisons of the LIDPSO with CDPSO and LTDPSO in terms of the average make span value 

for scheduling on 2 processors and 3 processors. The performance of LIDPSO is improved than CDPSO and LTDPSO in 

most of the benchmark instances. The improvement of LIDPSO over CDPSO and LTDPSO is 0.28% and 3.51% 

respectively on 2 processors and 0.90%, 8.16% of improvement on 3 processors across all instances respectively. 

 
TABLE IV COMPARISONS OF AVERAGE RESULTS BETWEEN LIDPSO WITH CDPSO AND LTDPSO OVER RELIABILITY 

COST 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

TABLE V COMPARISONS OF AVERAGE OBJECTIVE RESULTS OF CDPSO, LIDPSO AND LTDPSO UNDER ETC 

CONSISTENCIES 

 

i_li_hi 

8942 

 
8533 

 

8452.5 

 

6287 

 
6052.5 

 

6242.5 

 

i_hi_lo 
3345 
 

3358 
 

3592.5 
 

2964.5 
 

2844.5 
 

3061 
 

i_hi_hi 

6334.5 

 
6250 

 

6569.5 

 

5029.5 

 
3448 

 

3899.5 

 

Type of 

heterogeneity 

2 Processors 3 Processors 

CDPSO LIDPSO LTDPSO CDPSO LIDPSO LTDPSO 

c_li_li 
0.009857 
 

0.0098145 
 

0.009897 
 

0.009558 
 

0.0096935 
 

0.009767 
 

c_li_hi 

0.012482 

 

0.012341 

 
0.012304 

 

0.011588 

 
0.0112975 

 

0.0122315 

 

c_hi_lo 
0.0059885 

 

0.0062055 

 

0.006136 

 

0.006213 

 
0.006116 

 

0.0063265 

 

c_hi_hi 
0.010528 

 

0.010657 

 

0.0110025 

 
0.00756 

 

0.0085895 

 

0.007647 

 

s_li_li 
0.009778 

 

0.0098145 

 

0.009897 

 

0.009612 

 
0.0095815 

 

0.009881 

 

s_li_hi 

0.012496 

 
0.011405 

 

0.012339 

 
0.01115 

 

0.0112155 

 

0.013345 

 

s_hi_lo 
0.005932 

 

0.006108 

 

0.006049 

 

0.006211 

 
0.0061745 

 

0.0063535 

 

s_hi_hi 
0.010532 

 

0.011302 

 

0.011545 

 

0.007461 

 
0.0074205 

 

0.008656 

 

i_li_li 

0.0097135 

 

0.009800 

 
0.009702 

 

0.009489 

 
0.009367 

 

0.0095305 

 

i_li_hi 

0.0127195 

 

0.012262 

 
0.012202 

 

0.0135 

 
0.0124725 

 

0.013187 

 

i_hi_lo 
0.0059875 

 

0.006200 

 

0.006296 

 
0.0062245 

 

0.006232 

 

0.0061065 

 

i_hi_hi 
0.010888 
 

0.0110365 
 

0.010523 
 

0.0078425 
 

0.006996 
 

0.0080025 
 

 

 

Objectives 

 

Mean value 

of ETC 

consistency 

 

Appropriate 

Algorithm 

for 

scheduling 

on 2 

processors 

 

Percentage of 

Improvements 

(%) 

 

Appropriate 

Algorithm 

for 

scheduling 

on 3 

processors 

 

Percentage of 

Improvements 

(%) 

 

 

Make span 

Consistent CDPSO 2.21%,4.71% CDPSO 8.31%,7.80% 

 

Semi-

consistent 
LIDPSO 0.11%,6.68% CDPSO 1.44%,21.46% 

 

Inconsistent LIDPSO 2.90%,1.70% LIDPSO 12.72%,6.72% 

 

 

 

Flow time 

Consistent CDPSO 0.15%,3.34% CDPSO 1.73%,6.36% 

 

Semi-

consistent 
LIDPSO 0.64%,8.54% CDPSO 2.01%,11.52% 

 

Inconsistent LIDPSO 0.98%,2.41% LIDPSO 5.45%,7.31% 
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The comparison of the LIDPSO with CDPSO and LTDPSO in terms of the average flow time for scheduling the meta-

tasks on 2 processors and 3 processors are shown in Table 3.From Table III, the improvement of LIDPSO over CDPSO 

and LTDPSO is 0.50%, 4.70% respectively for scheduling tasks on 2 processors and the improvement for scheduling 

tasks on 3 processors is 0.60%, 7.06% respectively. 
Table IV shows the comparisons of the LIDPSO with CDPSO and LTDPSO in terms of the average reliability cost 

value. The performance of LIDPSO is better than CDPSO and LTDPSO in most of the benchmark instances for 

scheduling the meta-tasks on 2 processors and 3 processors.   

 

TABLE VI COMPARISON OF OVER ALL AVERAGE FITNESS VALUE OF ALL THE THREE ALGORITHMS FOR 2 PROCESSORS 

VERSUS 3 PROCESSORS 

 

The improvement of LIDPSO over CDPSO and LTDPSO is 0.05%, 0.90% respectively for scheduling tasks on 2 

processors and 1.20%, 5.60% of improvement for scheduling tasks on 3 processors across all instances respectively. The 

results obtained in Table V shows the LIDPSO gives better results compared with CDPSO and LTDPSO in most of the 

ETC consistencies. The improvement of   LIDPSO over CDPSO and LTDPSO is 2.67% and 9.82% across all instances 
respectively. These results indicate that the LIDPSO is a viable alternative for task scheduling problem. 

Table VI and Fig 10 show the comparisons of over all average fitness value for scheduling the meta-tasks on 2 

processors versus 3 processors of LIDPSO, CDPSO and  LTDPSO across all instances. All the three algorithms are 

found to be more efficient when tasks are being scheduled in 3 processors. 

 

 
Fig.10 Comparison of over all average fitness value for scheduling on 2 processors versus 3 processors 

 

The improvement of CDPSO with 3 processors over 2 processors is 74.14%, LIDPSO with 3 processors over 2 

processors is 74.65% and LTDPSO with 3 processors over 2 processors is 74.20% across all instances. 

All the above results show that the proposed algorithm is a feasible substitute for task scheduling problem in 

distributed system. 

VII.    CONCLUSION 

Achieving an optimal solution for scheduling of tasks on processors is crucial for distributed systems due to their 
highly heterogeneous nature. In this paper a new, efficient Discrete PSO algorithm called LIDPSO has been successfully 

applied to the multi-objective multiprocessor task scheduling problem to find optimal schedules for meta-tasks to 

minimize the make span, flow time and reliability cost simultaneously. In the discrete PSO, the representation of position 

and velocity of the particle is extended from continuous value vector to discrete value vector. As a result, the mapping 

from continuous to discrete for particles are not needed and hence much computation time can be saved. The LIDPSO 

includes the inertia weight which linearly decreases from large value to small value through the search process of 

identifying the global optima. This adaptiveness of inertia weight permits it to reach an excellent balance between the 

 

 

 
Reliability 

cost 

Consistent CDPSO 0.16%,1.25% CDPSO 2.22%,3.01% 

 

Semi-
consistent 

LIDPSO 0.29%,3.12% LIDPSO 0.13%,11.18% 
 

Inconsistent LTDPSO 1.51%,1.49% LIDPSO 5.67%,5.02% 

 

Mean fitness 

value of all 

types of 
heterogeneity 

instances 
2 Processors 3 Processors 2 Processors 3 Processors 

2 

Processors 

3 

Processors 

CDPSO CDPSO LIDPSO LIDPSO LTDPSO LTDPSO 

461.2206535 264.852981 455.803279 260.975224 477.5662 274.15703 
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exploration and the exploitation of the search space. The proposed algorithm was tested with 12 different types of ETC 
matrices available in the literature. The simulation results and comparisons prove that the LIDPSO is better compared to 

other algorithms which have constant control parameters and time varying control parameters. Over all the CDPSO, 

LIDPSO and LTDPSO algorithms are found to perform efficiently when tasks are being scheduled on 3 processors. 

The future work will investigate scheduling tasks with large data set and the task with precedence constraint which are 

pre-emptive in nature or in dynamic environments. 
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