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Abstract— Software testing is one of the most labor-intensive and expensive phase of the software development life 

cycle. Software testing includes test case generation and test suite optimization that has a strong impact on the 

effectiveness and efficiency of software testing. Over the past few decades, there has been active research to automate 

the process of test case generation but the attempts have been constrained by the size and the complexity of software. 

The use of metaheuristic global search techniques for software test data generation has been the focus of researchers 

in recent years. Many new techniques and hybrid methods have also been proposed to tackle the problem more 

effectively. This study proposes a novel approach based on genetic algorithm to generate test data for a program. The 

performance of the proposed approach is evaluated based on data flow dependencies of a program by comparing it 

with random testing. Based on the experimental results on a number of C programs, it is shown that the proposed 

approach outperforms random testing in test data generation and optimization. 
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I. INTRODUCTION 

Software testing is the process of executing software with the aim of detecting as many defects as possible so as to assess 

the quality of the developed software. Software testing increases programmers’ as well as the users’ confidence in the 

correctness and reliability of the software. Exhaustive testing is not possible as the input search space grows 

exponentially with the number of input variables [23]. The goal of software testing is to generate an optimal test suite (set 

of test cases) that reveals as many errors as possible according to a test adequacy criterion.A test adequacy criterion 

distinguishes good test cases from bad ones and determines whether the testing process is finished. There have been 
constant attempts to reduce the efforts and time required for software testing by automating the process of software test 

data generation. In the early period of software testing automation, most of the test data generators were based on the 

gradient descent and local metaheuristic search (MHS) algorithms such as Tabu Search (TS) and Hill Climbing (HC). 

However, these algorithms are inefficient and time-consuming, and could return a local optimal solution in the input 

search space [13] [29]. Other global MHS algorithms, such as Simulated Annealing (SA) [24], have been employed for 

test data generation; however, there are still chances of obtaining a local optimal solution. In the past two decades, 

evolutionary search based algorithms, such as Genetic Algorithm (GA) [2] [3] [13] [18] [23], have been widely employed 

for test data generation as a better alternative. Each of these search based algorithms is strongly dependent on the domain 

of the problem under consideration because they use heuristics or the knowledge related to the problem domain. The 

widespread application of MHS algorithms for test data generation problem is because of the fact that it can be 

formulated as an optimization problem. The approach has come to be known as Search Based Software Testing (SBST, 

the term originally coined by Harman and Jones in 2001) and includes Evolutionary Testing as a sub-field.  
This study proposes a new approach based on Genetic Algorithm to automatically generate test data using data flow 

dependencies of a program. The performance of the proposed approach is compared with random testing due to its 

simplicity, efficiency and efficacy in terms of achieving coverage and the number of test cases generated.  

The rest of the document is organized as follows: Section 2 provides an overview of software testing and automated 

software test data generation process. Section 3 provides a brief description of genetic algorithm. Section 4 describes the 

proposed approach. Section 5gives the experimental results and section 6 gives the conclusion. The various repositories 

and search engines that have been referenced for literary articles and papers for this study are ACM Digital Library, 

IEEE Explore, Springer Verlag, Science Direct, Google Scholar and CiteSeer. 

 

II. SOFTWARE TESTING 

Software testing [7] only reveals the presence of errors in a program but never guarantees their absence. It increases the 
programmers’ as well as the users’ confidence in the correctness and reliability of the software. Software testing 

techniques are classified into two categories – static testing and dynamic testing. In static software testing, specification 
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documents, design documents and source code of the software under test (SUT) are examined. Static analysis methods 

(desk checking, code reviews) are highly dependent on the reviewers’ experience and ability. In dynamic software 

testing, the output is observed by executing the SUT on input test data. The SUT is tested for its functionality (functional 

or specifications-based or black box testing) or for its structure (structural or program-based or white box testing).  
In black-box testing, test data is generated from the specifications of the SUT. The black-box testing techniques include 

equivalence partitioning, boundary-value analysis, cause-effect graphing etc. 

In white-box testing, the internal structure of the SUT is examined by executing the code such that every statement in the 

SUT should be executed at least once (Statement Testing); or every possible outcome of all decisions/predicates in the 

SUT should be exercised at least once (Branch Testing); or every possible path in the SUT should be exercised at least 

once (Path Testing). Branch testing includes statement coverage and is a stronger criterion than statement coverage. Path 

testing includes statement coverage and branch coverage and thus is a stronger criterion than statement and branch 

testing. In data-flow testing, the focus is on the definition and use of variables within a program by utilising the concept 

of a program graph. 

A. Data Flow Testing 

Data-flow testing is important because it augments control-flow testing criteria and concentrates on how a variable is 

defined and used, which could lead to more efficient and targeted test suites. For each variable, the definition occurrences 
and the use occurrences are identified. A definition occurrence of a variable is where a value is associated with the 

variable. A use occurrence of a variable is where the value of the variable is referred. Each use occurrence is further 

classified as a computational use (c-use) or a predicate use (p-use). Test data for data flow testing should cause the 

traversal of sub-paths from a variable definition to either some or all of the p-uses, c-uses, or their combination. 

However, empirical evidences show that the all-uses criterion is the most effective criterion compared to the other data 

flow criteria. It requires the traversal of at least one sub-path (def-clear path) from each variable definition to every p-use 

and every c-use of that definition. A def-clear path is a path from definition node to use node such that the variable is not 

defined again at any of the intermediate nodes. 

Control Flow Graph (CFG): A CFG is a directed graph that represents the flow of control through a program. It 

describes the sequence in which the statements of a program are executed. Each node represents a basic block i.e. a 

sequence of consecutive statements that executes without any halt or branching except at the end. Each edge represents 
the flow of control from one basic block to another. All edges are labelled with a condition or a branch predicate. If a 

node has more than one outgoing edge the node represents a condition and the edge represents branch. A CFG has two 

special nodes: the entry node, through which control enters into the flow graph, and the exit node, through which all 

control flow leaves.  

Data Dependency Graph (DDG): A DDG, also known as a data flow graph, represents data dependencies between the 

statements of a program. Nodes in a data flow graph represent statements where memory references are made i.e. 

variables are defined or used. Edges represent data dependencies between nodes. A data dependency is said to exist 

between statements S1 and S2 of a program, if S2 references a variable defined in S1 and there is a feasible run-time path 

from S1 to S2 on which the variable is not defined again; then (S1, S2) is a definition-use pair. A DDG can be generated 

from a CFG by using data dependency information. 

This study will focus on structural testing as it is the most widely practiced form of testing and more specifically on data-

flow testing as it has received little attention [28]. Moreover, data-flow testing could lead to more efficient and targeted 
test suites as it augments control flow testing criteria with the definition and usage of variables. 

B. Automated Software Test Data Generation 

Software testing has two main aspects: test data generation and application of a test adequacy criterion. Structural test 

data can be generated using static methods or dynamic methods. Symbolic execution and evaluation is a typical static tool 

for generating test data. In symbolic execution, expressions are assigned to program variables as a path is followed 

through the code structure to derive constraints in terms of the input variables [24]. However, symbolic execution suffers 

from many drawbacks such as input variable dependent loop conditions and array reference subscripts, module calls and 

pointers [4]. 

Dynamic structural test data generation techniques are based on the execution of the SUT to generate test data. These 

techniques can be classified as random, structural or path-oriented, goal-oriented and data specifications test data 

generation techniques [4] [27]. Random test data generators arbitrarily select test data from the input domain. A random 
test data generator can randomly create a large number of test data and is easy to implement; however, it may fail to find 

test data as the information about test requirements is not incorporated into the test data generation process. Path-

oriented test data generators [6] [12] [13] generally use control flow information (by constructing the program’s control 

flow graph) to identify a set of paths to be covered and generate the appropriate test cases for these paths. The test data 

generator will not work well for infeasible paths or paths that contain loops. Goal-oriented test data generators [4] [11] 

[16] [21] [25] [27] identify test cases covering a selected goal such as a statement or branch, irrespective of the path 

taken. Data specification generators derive test data from specifications (a black-box method).  

Structural testing so far has been the main focus of search based techniques. Test data is generated according to a test 

adequacy criterion (encoded as a fitness function) that is used to guide the search. The fitness function captures a test 

objective that should be maximized or minimized. The search based approach is very generic, because different fitness 

functions can be defined to capture different test objectives, allowing the same overall search based optimization strategy 
to be applied to very different test data generation scenarios.  
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The measures that have been used to assess the effectiveness of a search based technique for structural testing are control 

flow coverage (statement coverage, branch coverage, path coverage), data flow coverage and N-wise coverage (for 

testing combinatorial designs) [28]. Control-flow based coverage criteria, branch coverage in particular, are the most 

often used effectiveness measures. As a result, this problem is now pretty well understood and there is a widely accepted 
standard way of calculating fitness values based on approximation level and branch distance on control flow graphs [23]. 

Data flow coverage criterion [2] [3] [18] [19] [21] has received relatively little attention.  The measures that have been 

used to assess the cost of a search based technique for structural testing are the number of iterations, the cumulative 

number of all individuals in all iterations, the number of fitness evaluations performed to achieve the final solution, size 

of the optimal test suite and the time taken to generate the optimal test suite [28]. The number of iterations and the size of 

the optimal test suite are the most often used cost measures. 

 

III. GENETIC ALGORITHM 

Genetic Algorithm (GA) is a population based search algorithm that works on the principle of natural evolution 

(crossover and mutation) and selection leading to the survival of the fittest individuals. GA has been the most widely 

applied search technique in SBSE. GA creates and maintains a population of individuals represented by chromosomes. 

These chromosomes are typically encoded solutions to a problem. Each chromosome receives a measure of its fitness in 
the environment. The chromosomes then undergo a process of evolution according to rules of selection, mutation and 

reproduction.  Reproduction selects individuals with high fitness values in the population, and through crossover and 

mutation of such individuals, a new population is derived in which individuals may be even better fitted to their 

environment. The process of crossover involves two chromosomes swapping chunks of data (genetic information). 

Mutation introduces slight changes into a small proportion of the population and is representative of an evolutionary step. 

The structure of a simple GA is given below in Figure 1. The algorithm will iterate until the population has evolved to 

form a solution to the problem, or until a maximum number of iterations have taken place (suggesting that a solution is 

not going to be found given the resources available).  

 

 

 
 

 

 

 

 

 

 

Figure 1: A generic genetic algorithm.  

 

 

 

 
There are many variations of genetic algorithm, but the crucial ingredients are the way in which the fitness function 

guides the search and the recombination and the population based nature of the algorithm. 

 

IV. RESEARCH METHODOLOGY 

This paper presents an automatic test data generation technique based on GA that is guided by the data flow 

dependencies in the program (test adequacy criteria). The approach can be used for programs with/without loops and 

procedures. The proposed GA accepts as input an instrumented version of the program to be tested, the list of def-use 

associations to be covered, the number of input variables, and the domain and precision of each input variable. The 

algorithm produces a set of test cases, the set of def-use associations covered by each test case, and a list of uncovered 

def-use associations, if any.  

 

A. GA Setup 

1) Chromosome Representation: A chromosome is represented as a binary vector of length l determined by the 

number of input variables in a program and the domain range for each input variable. For example, if there are 3 

variables in a program and value of each variable is represented by 7 bits, then the first 7 bits (MSBs) will map 

to a value in the domain range of first input variable, next 7 bits will map to a value in the domain range of 

second input variable and the last 7 bits (LSBs) will map to a value in the domain range of third input variable; 

total length of the chromosome being 21 bits. 

 

2) Initial Population: Initial population of l-bit binary strings (chromosomes) is generated randomly. Size of the 

population, p, is determined experimentally. Each chromosome in the population is converted to k decimal 

numbers corresponding to the integer input variables x1, x2...xk according to the formula [18] given below: 

xi = ai + 𝑖𝑛𝑡  𝑥𝑖
′ .
𝑏𝑖 − 𝑎𝑖

2m i − 1
  

1. Randomly generate or seed initial population P 

2. Repeat 

3. Evaluate fitness of each individual in P 

4. Select parents from P according to selection 
mechanism 

5. Recombine parents to form new offspring 

6. Construct new population P’ from parents and 
offspring 

7. Mutate P’ 

8. P = P’ 

9. Until Stopping Condition Reached 
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, where [ai, bi] is the domain range of the input variable xi, mi is the number of bits used to represent the value of 

xi in binary and xi’ represents the decimal value of the binary string corresponding to xi. 

 

3) Fitness Function and Selection: Each test case, represented as a chromosome, is evaluated by executing the 
program with it as an input, and recording the def-use paths in the program that are covered by it. The fitness 

value for each chromosome, vi (i=1…p) is calculated as follows:  

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠  𝑣𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑤 𝑑𝑐𝑢 𝑝𝑎𝑡ℎ𝑠 + 𝑑𝑝𝑢 𝑝𝑎𝑡ℎ𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑐𝑢 𝑝𝑎𝑡ℎ𝑠 𝑎𝑛𝑑 𝑑𝑝𝑢 𝑝𝑎𝑡ℎ𝑠
 

 

The fitness value is the only feedback from the problem for the GA. A chromosome is considered effective if its 

fitness value is greater than 0. 

Random selection method [18] is used to select parents according to their fitness for generating the next 

generation of population, if the test adequacy criterion is not achieved. 

 

4) Genetic Operations - Crossover and Mutation: Crossover and mutation operators are used to form a new 
population from the selected parents. Crossover operates at the individual level. A chromosome in the current 

population is selected for crossover according to a crossover probability pc. One point crossover is used for 

experimental setup. Each pair of selected chromosomes is mated at a random position crosspos and is replaced 

by the pair of their offspring. The expected number of chromosomes that will undergo crossover operation is 

given by pc x p. Mutation operation is applied after the crossover operation. In the experiments, mutation is 

applied in two ways: at an individual level and on a bit-by-bit basis. In the first case, a chromosome in the 

current population is selected for mutation according to a mutation probability pm and one bit is flipped 

randomly for each input variable for the selected chromosome. The expected number of chromosomes that will 

undergo mutation operation is given by pm x p. In the second case, for each chromosome in the current 

population, each bit is flipped with the pre-determined probability. The expected number of mutated bits is 

given by pm x l x p. 
 

The population evolves until the desired level of coverage is achieved i.e. when a set of individuals has traversed the 

entire def-use paths of program, if possible. The solution is this set. 

 

B. Overall Algorithm 

The proposed genetic algorithm accepts as input an instrumented version of the program to be tested, the list of def-use 

paths to be covered, the number of input variables, and the domain and precision of each input variable. It also accepts 

the GA parameters: population size, maximum number of generations, and probabilities of the crossover and mutation. 

The algorithm produces a set of test cases, the set of def-use paths covered by each test case, and the list of uncovered 

def-use paths, if any. Instrumentation of programs and generation of the program def-use paths is done manually.   

The algorithm uses an integer vector to indicate whether a def-use path has been covered by some test case or not. In this 
vector, each element (initially zero) corresponds to a def-use path. Whenever a def-use path is covered, corresponding 

element is updated to 1. For each test case, the new def-use paths that are covered by it are recorded to calculate 

incremental coverage achieved and its fitness value. The algorithm keeps track of all the test cases that cover any new 

def-use path. These test cases are stored for later use and form the effective members of the current population. The 

effective members are used to select parents randomly for the next generation. If there are no effective members in the 

current population, then the entire current population is used to select parents randomly for the next generation. When the 

algorithm terminates, elements with value 0, if any, indicate def-use paths that have not been covered by any of the test 

case. 

 

V. EXPERIMENTAL RESULTS 

The proposed algorithm is applied to a number of classical C programs such as quadratic equation problem, triangle 

classification problem, date problem etc. A random test data generator is also implemented for comparison with the 
proposed approach. For the experiments,  

 

 Input variables are of type integer, range 0-100 and 7 bits are used to represent each variable. 

 Population size=5, 10, 20 

 Fitness function, crossover operation and mutation operation are applied as explained in Section 4. 

 Parent selection method: Random selection method 

 Crossover probability=0.8 

 Mutation probability=0.15 

 

The approach is explained on triangle classification problem as given in Figure 2 below. Figure 3 gives the program flow 

graph for the example program. Table 1 provides definition and use nodes for each variable in the example program. 
Table 2 provides the list of dcu-paths and dpu-paths for the example program. 
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#include<stdio.h> 

#include<conio.h> 

1 1 void main() 

2 1 { 

3 1 int a, b, c, valid; 
4 1 printf(“\nEnter the value of three sides: “); 

5 1 scanf(“%d %d %d”, &a, &b, &c); 

6 1 valid=0; 

7 2      

if((a>=0)&&(a<=100)&&(b>=0)&&(b<=100)&&(c>=0)&&(c<=100)) 

8 2 { 

9 3   if(((a+b)>c)&&((c+a)>b)&&((b+c)>a)) 

10 3  { 

11 4   valid=1; 

12 5  } 

13 5 } 

14 6 if (valid==1) 
15 6 { 

16 7  if ((a==b)&&(b==c)) 

17 8          printf(“\nEquilateral triangle.”); 

18 9  else if ((a==b)||(b==c)||(c==a)) 

19 10          printf(“\nIsosceles triangle.“); 

20 11  else 

21 11          printf((“\nScalene triangle.“); 

22 12 } 

23 13 else 

24 13 { 

25 13  printf(“\n Invalid input (out of range or not a triangle)”).; 
26 14 } 

27 15 } 

Figure2: Triangle program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3: Data Dependency Graph 
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TABLE 1 

Definition and Use Nodes for the Variables in the Example Program 

Variable Def 

Node 

c-use 

Node 

p-use Edge 

A 

b 
c 

1 None 2-3 

2-6 
3-4 

3-5 

7-8 

7-9 

9-10 

9-11 

Valid 1,4 None 6-7 

6-13 

 

TABLE 2 

dcu-paths and dpu-paths for the Example Program 

def-use 

Path No. 

def-use Path 

(Terminates with -1 for c-use) 

1 1-2-3 

2 1-2-6 

3 1-3-4 

4 1-3-5 

5 1-7-8 

6 1-7-9 

7 1-9-10 

8 1-9-11 

9 1-6-7 

10 1-6-13 

11 4-6-7 

12 4-6-13 

 

 
Table 3 below shows the results of applying the proposed approach and random testing to the set of chosen programs. 

For each program, infeasible paths, if any, were not considered while measuring coverage according to the def-use 

coverage criterion. 

 

TABLE 3 

Experimental results for various C programs

Program 

No. of  

Variable

s 

No. of def-

use Paths 

Populatio

n Size 

Testing 

Approac

h 

Average No. of  

Generations* No. of 

Test Cases >90% 

Coverage 

100% 

Coverage 

Midval 3 29 5 
GA 2 3 4 

Random 2 3 4 

Quadratic 5 20 10 
GA 2 4 5 

Random 4 7 5 

Triangle 4 11 10 
GA 2 4 4 

Random 3 6 4 

GCD of 2 

Numbers 
3 17 10 

GA 2 4 3 

Random 3 5 3 

Avg. Marks 

of 3 

Subjects 

4 14 10 

GA 2 3 4 

Random 2 4 4 

Previous 

Date 
5 66 20 

GA 19 37 10 

Random 35 95 13 

Power of a 

Number 
3 21 10 

GA 2 3 2 

Random 2 3 2 

Prime 

Number 
2 13 5 

GA 1 2 2 

Random 2 3 2 

* Number of runs of the algorithm=10 
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The proposed approach outperformed random testing in terms of the number of generations needed to achieve desired 

coverage and the size of the final test suite. 

 

VI. CONCLUSION 
Research in the field of search based test data generation for structural testing is now relatively mature with work on 

theoretical and empirical analysis of the problem domain and characteristics, predictive methods for test effort and search 

algorithms that are specially tailored to the structural test data generation problem [17]. The GA-based technique 

presented in this paper is guided by the data flow dependencies in the program to search for test data to fulfil the all-uses 

criterion. This is the main contribution of this paper. The approach can be used in test data generation for programs 

with/without loops and procedures. The proposed GA-based technique accepts as input an instrumented version of the 

program to be tested, the list of def-use paths to be covered, the number of input variables, and the domain and precision 

of each input variable. It also accepts the GA parameters: population size, maximum number of generations, probability 

of crossover operation and probability of mutation operation. The def-use paths that are infeasible (to be identified 

manually) are not considered while calculating coverage with respect to all-uses criterion. The algorithm produces a set 

of test cases (test suite), the set of def-use paths covered by the test suite, and a list of uncovered def-use paths, if any.  

Experiments have been carried out to evaluate the effectiveness of the proposed GA compared to the random testing 
technique The results of these experiments showed that the proposed technique outperformed the random testing 

technique in most of the programs used in the experiment in terms of the number of generations required to achieve the 

same def-use coverage and the size of the resulting test suite. The experiments showed that the proposed technique 

achieved higher coverage percentage in fewer generations than the random testing technique. 

 

FUTURE WORK 

Future work for the proposed approach will focus on the following: 

a) Design and application of a hybrid search technique, which combine the best aspects of existing search algorithms, 

for structural test data generation problem [11] [15] [17].  

b) Multi-objective formulation of test data generation problem, focussing on Pareto optimal optimization techniques 

[16] [17]. 
c) Application of the other highly adaptive search techniques such as Particle Swarm Optimization (PSO) and Ant 

Colony Optimization (ACO) techniques that have yet not been widely applied and studied in search based software 

engineering [17]. 
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