
© 2014, IJARCSSE All Rights Reserved Page | 472

 Volume 4, Issue 2, February 2014 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Automated Software Test Data Generation for Data Flow

Dependencies using Genetic Algorithm
Sapna Varshney

*
, Monica Mehrotra

Department of Computer Science

Jamia Millia Islamia, India

Abstract— Software testing is one of the most labor-intensive and expensive phase of the software development life

cycle. Software testing includes test case generation and test suite optimization that has a strong impact on the

effectiveness and efficiency of software testing. Over the past few decades, there has been active research to automate

the process of test case generation but the attempts have been constrained by the size and the complexity of software.

The use of metaheuristic global search techniques for software test data generation has been the focus of researchers

in recent years. Many new techniques and hybrid methods have also been proposed to tackle the problem more

effectively. This study proposes a novel approach based on genetic algorithm to generate test data for a program. The

performance of the proposed approach is evaluated based on data flow dependencies of a program by comparing it

with random testing. Based on the experimental results on a number of C programs, it is shown that the proposed

approach outperforms random testing in test data generation and optimization.

Keywords—Search Based Software Testing, Automated Test Data Generation, Metaheuristic Search Algorithms,

Evolutionary Algorithms, Genetic Algorithms, Data Flow Dependencies

I. INTRODUCTION

Software testing is the process of executing software with the aim of detecting as many defects as possible so as to assess

the quality of the developed software. Software testing increases programmers’ as well as the users’ confidence in the

correctness and reliability of the software. Exhaustive testing is not possible as the input search space grows

exponentially with the number of input variables [23]. The goal of software testing is to generate an optimal test suite (set

of test cases) that reveals as many errors as possible according to a test adequacy criterion.A test adequacy criterion

distinguishes good test cases from bad ones and determines whether the testing process is finished. There have been
constant attempts to reduce the efforts and time required for software testing by automating the process of software test

data generation. In the early period of software testing automation, most of the test data generators were based on the

gradient descent and local metaheuristic search (MHS) algorithms such as Tabu Search (TS) and Hill Climbing (HC).

However, these algorithms are inefficient and time-consuming, and could return a local optimal solution in the input

search space [13] [29]. Other global MHS algorithms, such as Simulated Annealing (SA) [24], have been employed for

test data generation; however, there are still chances of obtaining a local optimal solution. In the past two decades,

evolutionary search based algorithms, such as Genetic Algorithm (GA) [2] [3] [13] [18] [23], have been widely employed

for test data generation as a better alternative. Each of these search based algorithms is strongly dependent on the domain

of the problem under consideration because they use heuristics or the knowledge related to the problem domain. The

widespread application of MHS algorithms for test data generation problem is because of the fact that it can be

formulated as an optimization problem. The approach has come to be known as Search Based Software Testing (SBST,

the term originally coined by Harman and Jones in 2001) and includes Evolutionary Testing as a sub-field.
This study proposes a new approach based on Genetic Algorithm to automatically generate test data using data flow

dependencies of a program. The performance of the proposed approach is compared with random testing due to its

simplicity, efficiency and efficacy in terms of achieving coverage and the number of test cases generated.

The rest of the document is organized as follows: Section 2 provides an overview of software testing and automated

software test data generation process. Section 3 provides a brief description of genetic algorithm. Section 4 describes the

proposed approach. Section 5gives the experimental results and section 6 gives the conclusion. The various repositories

and search engines that have been referenced for literary articles and papers for this study are ACM Digital Library,

IEEE Explore, Springer Verlag, Science Direct, Google Scholar and CiteSeer.

II. SOFTWARE TESTING

Software testing [7] only reveals the presence of errors in a program but never guarantees their absence. It increases the
programmers’ as well as the users’ confidence in the correctness and reliability of the software. Software testing

techniques are classified into two categories – static testing and dynamic testing. In static software testing, specification

http://www.ijarcsse.com/

Vershney et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 472-479

© 2014, IJARCSSE All Rights Reserved Page | 473

documents, design documents and source code of the software under test (SUT) are examined. Static analysis methods

(desk checking, code reviews) are highly dependent on the reviewers’ experience and ability. In dynamic software

testing, the output is observed by executing the SUT on input test data. The SUT is tested for its functionality (functional

or specifications-based or black box testing) or for its structure (structural or program-based or white box testing).
In black-box testing, test data is generated from the specifications of the SUT. The black-box testing techniques include

equivalence partitioning, boundary-value analysis, cause-effect graphing etc.

In white-box testing, the internal structure of the SUT is examined by executing the code such that every statement in the

SUT should be executed at least once (Statement Testing); or every possible outcome of all decisions/predicates in the

SUT should be exercised at least once (Branch Testing); or every possible path in the SUT should be exercised at least

once (Path Testing). Branch testing includes statement coverage and is a stronger criterion than statement coverage. Path

testing includes statement coverage and branch coverage and thus is a stronger criterion than statement and branch

testing. In data-flow testing, the focus is on the definition and use of variables within a program by utilising the concept

of a program graph.

A. Data Flow Testing

Data-flow testing is important because it augments control-flow testing criteria and concentrates on how a variable is

defined and used, which could lead to more efficient and targeted test suites. For each variable, the definition occurrences
and the use occurrences are identified. A definition occurrence of a variable is where a value is associated with the

variable. A use occurrence of a variable is where the value of the variable is referred. Each use occurrence is further

classified as a computational use (c-use) or a predicate use (p-use). Test data for data flow testing should cause the

traversal of sub-paths from a variable definition to either some or all of the p-uses, c-uses, or their combination.

However, empirical evidences show that the all-uses criterion is the most effective criterion compared to the other data

flow criteria. It requires the traversal of at least one sub-path (def-clear path) from each variable definition to every p-use

and every c-use of that definition. A def-clear path is a path from definition node to use node such that the variable is not

defined again at any of the intermediate nodes.

Control Flow Graph (CFG): A CFG is a directed graph that represents the flow of control through a program. It

describes the sequence in which the statements of a program are executed. Each node represents a basic block i.e. a

sequence of consecutive statements that executes without any halt or branching except at the end. Each edge represents
the flow of control from one basic block to another. All edges are labelled with a condition or a branch predicate. If a

node has more than one outgoing edge the node represents a condition and the edge represents branch. A CFG has two

special nodes: the entry node, through which control enters into the flow graph, and the exit node, through which all

control flow leaves.

Data Dependency Graph (DDG): A DDG, also known as a data flow graph, represents data dependencies between the

statements of a program. Nodes in a data flow graph represent statements where memory references are made i.e.

variables are defined or used. Edges represent data dependencies between nodes. A data dependency is said to exist

between statements S1 and S2 of a program, if S2 references a variable defined in S1 and there is a feasible run-time path

from S1 to S2 on which the variable is not defined again; then (S1, S2) is a definition-use pair. A DDG can be generated

from a CFG by using data dependency information.

This study will focus on structural testing as it is the most widely practiced form of testing and more specifically on data-

flow testing as it has received little attention [28]. Moreover, data-flow testing could lead to more efficient and targeted
test suites as it augments control flow testing criteria with the definition and usage of variables.

B. Automated Software Test Data Generation

Software testing has two main aspects: test data generation and application of a test adequacy criterion. Structural test

data can be generated using static methods or dynamic methods. Symbolic execution and evaluation is a typical static tool

for generating test data. In symbolic execution, expressions are assigned to program variables as a path is followed

through the code structure to derive constraints in terms of the input variables [24]. However, symbolic execution suffers

from many drawbacks such as input variable dependent loop conditions and array reference subscripts, module calls and

pointers [4].

Dynamic structural test data generation techniques are based on the execution of the SUT to generate test data. These

techniques can be classified as random, structural or path-oriented, goal-oriented and data specifications test data

generation techniques [4] [27]. Random test data generators arbitrarily select test data from the input domain. A random
test data generator can randomly create a large number of test data and is easy to implement; however, it may fail to find

test data as the information about test requirements is not incorporated into the test data generation process. Path-

oriented test data generators [6] [12] [13] generally use control flow information (by constructing the program’s control

flow graph) to identify a set of paths to be covered and generate the appropriate test cases for these paths. The test data

generator will not work well for infeasible paths or paths that contain loops. Goal-oriented test data generators [4] [11]

[16] [21] [25] [27] identify test cases covering a selected goal such as a statement or branch, irrespective of the path

taken. Data specification generators derive test data from specifications (a black-box method).

Structural testing so far has been the main focus of search based techniques. Test data is generated according to a test

adequacy criterion (encoded as a fitness function) that is used to guide the search. The fitness function captures a test

objective that should be maximized or minimized. The search based approach is very generic, because different fitness

functions can be defined to capture different test objectives, allowing the same overall search based optimization strategy
to be applied to very different test data generation scenarios.

Vershney et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 472-479

© 2014, IJARCSSE All Rights Reserved Page | 474

The measures that have been used to assess the effectiveness of a search based technique for structural testing are control

flow coverage (statement coverage, branch coverage, path coverage), data flow coverage and N-wise coverage (for

testing combinatorial designs) [28]. Control-flow based coverage criteria, branch coverage in particular, are the most

often used effectiveness measures. As a result, this problem is now pretty well understood and there is a widely accepted
standard way of calculating fitness values based on approximation level and branch distance on control flow graphs [23].

Data flow coverage criterion [2] [3] [18] [19] [21] has received relatively little attention. The measures that have been

used to assess the cost of a search based technique for structural testing are the number of iterations, the cumulative

number of all individuals in all iterations, the number of fitness evaluations performed to achieve the final solution, size

of the optimal test suite and the time taken to generate the optimal test suite [28]. The number of iterations and the size of

the optimal test suite are the most often used cost measures.

III. GENETIC ALGORITHM

Genetic Algorithm (GA) is a population based search algorithm that works on the principle of natural evolution

(crossover and mutation) and selection leading to the survival of the fittest individuals. GA has been the most widely

applied search technique in SBSE. GA creates and maintains a population of individuals represented by chromosomes.

These chromosomes are typically encoded solutions to a problem. Each chromosome receives a measure of its fitness in
the environment. The chromosomes then undergo a process of evolution according to rules of selection, mutation and

reproduction. Reproduction selects individuals with high fitness values in the population, and through crossover and

mutation of such individuals, a new population is derived in which individuals may be even better fitted to their

environment. The process of crossover involves two chromosomes swapping chunks of data (genetic information).

Mutation introduces slight changes into a small proportion of the population and is representative of an evolutionary step.

The structure of a simple GA is given below in Figure 1. The algorithm will iterate until the population has evolved to

form a solution to the problem, or until a maximum number of iterations have taken place (suggesting that a solution is

not going to be found given the resources available).

Figure 1: A generic genetic algorithm.

There are many variations of genetic algorithm, but the crucial ingredients are the way in which the fitness function

guides the search and the recombination and the population based nature of the algorithm.

IV. RESEARCH METHODOLOGY

This paper presents an automatic test data generation technique based on GA that is guided by the data flow

dependencies in the program (test adequacy criteria). The approach can be used for programs with/without loops and

procedures. The proposed GA accepts as input an instrumented version of the program to be tested, the list of def-use

associations to be covered, the number of input variables, and the domain and precision of each input variable. The

algorithm produces a set of test cases, the set of def-use associations covered by each test case, and a list of uncovered

def-use associations, if any.

A. GA Setup

1) Chromosome Representation: A chromosome is represented as a binary vector of length l determined by the

number of input variables in a program and the domain range for each input variable. For example, if there are 3

variables in a program and value of each variable is represented by 7 bits, then the first 7 bits (MSBs) will map

to a value in the domain range of first input variable, next 7 bits will map to a value in the domain range of

second input variable and the last 7 bits (LSBs) will map to a value in the domain range of third input variable;

total length of the chromosome being 21 bits.

2) Initial Population: Initial population of l-bit binary strings (chromosomes) is generated randomly. Size of the

population, p, is determined experimentally. Each chromosome in the population is converted to k decimal

numbers corresponding to the integer input variables x1, x2...xk according to the formula [18] given below:

xi = ai + 𝑖𝑛𝑡 𝑥𝑖
′ .
𝑏𝑖 − 𝑎𝑖

2m i − 1

1. Randomly generate or seed initial population P

2. Repeat

3. Evaluate fitness of each individual in P

4. Select parents from P according to selection
mechanism

5. Recombine parents to form new offspring

6. Construct new population P’ from parents and
offspring

7. Mutate P’

8. P = P’

9. Until Stopping Condition Reached

Vershney et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 472-479

© 2014, IJARCSSE All Rights Reserved Page | 475

, where [ai, bi] is the domain range of the input variable xi, mi is the number of bits used to represent the value of

xi in binary and xi’ represents the decimal value of the binary string corresponding to xi.

3) Fitness Function and Selection: Each test case, represented as a chromosome, is evaluated by executing the
program with it as an input, and recording the def-use paths in the program that are covered by it. The fitness

value for each chromosome, vi (i=1…p) is calculated as follows:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑤 𝑑𝑐𝑢 𝑝𝑎𝑡ℎ𝑠 + 𝑑𝑝𝑢 𝑝𝑎𝑡ℎ𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑐𝑢 𝑝𝑎𝑡ℎ𝑠 𝑎𝑛𝑑 𝑑𝑝𝑢 𝑝𝑎𝑡ℎ𝑠

The fitness value is the only feedback from the problem for the GA. A chromosome is considered effective if its

fitness value is greater than 0.

Random selection method [18] is used to select parents according to their fitness for generating the next

generation of population, if the test adequacy criterion is not achieved.

4) Genetic Operations - Crossover and Mutation: Crossover and mutation operators are used to form a new
population from the selected parents. Crossover operates at the individual level. A chromosome in the current

population is selected for crossover according to a crossover probability pc. One point crossover is used for

experimental setup. Each pair of selected chromosomes is mated at a random position crosspos and is replaced

by the pair of their offspring. The expected number of chromosomes that will undergo crossover operation is

given by pc x p. Mutation operation is applied after the crossover operation. In the experiments, mutation is

applied in two ways: at an individual level and on a bit-by-bit basis. In the first case, a chromosome in the

current population is selected for mutation according to a mutation probability pm and one bit is flipped

randomly for each input variable for the selected chromosome. The expected number of chromosomes that will

undergo mutation operation is given by pm x p. In the second case, for each chromosome in the current

population, each bit is flipped with the pre-determined probability. The expected number of mutated bits is

given by pm x l x p.

The population evolves until the desired level of coverage is achieved i.e. when a set of individuals has traversed the

entire def-use paths of program, if possible. The solution is this set.

B. Overall Algorithm

The proposed genetic algorithm accepts as input an instrumented version of the program to be tested, the list of def-use

paths to be covered, the number of input variables, and the domain and precision of each input variable. It also accepts

the GA parameters: population size, maximum number of generations, and probabilities of the crossover and mutation.

The algorithm produces a set of test cases, the set of def-use paths covered by each test case, and the list of uncovered

def-use paths, if any. Instrumentation of programs and generation of the program def-use paths is done manually.

The algorithm uses an integer vector to indicate whether a def-use path has been covered by some test case or not. In this
vector, each element (initially zero) corresponds to a def-use path. Whenever a def-use path is covered, corresponding

element is updated to 1. For each test case, the new def-use paths that are covered by it are recorded to calculate

incremental coverage achieved and its fitness value. The algorithm keeps track of all the test cases that cover any new

def-use path. These test cases are stored for later use and form the effective members of the current population. The

effective members are used to select parents randomly for the next generation. If there are no effective members in the

current population, then the entire current population is used to select parents randomly for the next generation. When the

algorithm terminates, elements with value 0, if any, indicate def-use paths that have not been covered by any of the test

case.

V. EXPERIMENTAL RESULTS

The proposed algorithm is applied to a number of classical C programs such as quadratic equation problem, triangle

classification problem, date problem etc. A random test data generator is also implemented for comparison with the
proposed approach. For the experiments,

 Input variables are of type integer, range 0-100 and 7 bits are used to represent each variable.

 Population size=5, 10, 20

 Fitness function, crossover operation and mutation operation are applied as explained in Section 4.

 Parent selection method: Random selection method

 Crossover probability=0.8

 Mutation probability=0.15

The approach is explained on triangle classification problem as given in Figure 2 below. Figure 3 gives the program flow

graph for the example program. Table 1 provides definition and use nodes for each variable in the example program.
Table 2 provides the list of dcu-paths and dpu-paths for the example program.

Vershney et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 472-479

© 2014, IJARCSSE All Rights Reserved Page | 476

#include<stdio.h>

#include<conio.h>

1 1 void main()

2 1 {

3 1 int a, b, c, valid;
4 1 printf(“\nEnter the value of three sides: “);

5 1 scanf(“%d %d %d”, &a, &b, &c);

6 1 valid=0;

7 2

if((a>=0)&&(a<=100)&&(b>=0)&&(b<=100)&&(c>=0)&&(c<=100))

8 2 {

9 3 if(((a+b)>c)&&((c+a)>b)&&((b+c)>a))

10 3 {

11 4 valid=1;

12 5 }

13 5 }

14 6 if (valid==1)
15 6 {

16 7 if ((a==b)&&(b==c))

17 8 printf(“\nEquilateral triangle.”);

18 9 else if ((a==b)||(b==c)||(c==a))

19 10 printf(“\nIsosceles triangle.“);

20 11 else

21 11 printf((“\nScalene triangle.“);

22 12 }

23 13 else

24 13 {

25 13 printf(“\n Invalid input (out of range or not a triangle)”).;
26 14 }

27 15 }

Figure2: Triangle program.

Figure 3: Data Dependency Graph

13

14

15

T

Predicate Node 7

8

9

10
11

12

T

T F

F

F Predicate Node

Predicate Node

Predicate Node

Predicate Node

1

4

5

6

2

3

T

T

F

F

Vershney et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 472-479

© 2014, IJARCSSE All Rights Reserved Page | 477

TABLE 1

Definition and Use Nodes for the Variables in the Example Program

Variable Def

Node

c-use

Node

p-use Edge

A

b
c

1 None 2-3

2-6
3-4

3-5

7-8

7-9

9-10

9-11

Valid 1,4 None 6-7

6-13

TABLE 2

dcu-paths and dpu-paths for the Example Program

def-use

Path No.

def-use Path

(Terminates with -1 for c-use)

1 1-2-3

2 1-2-6

3 1-3-4

4 1-3-5

5 1-7-8

6 1-7-9

7 1-9-10

8 1-9-11

9 1-6-7

10 1-6-13

11 4-6-7

12 4-6-13

Table 3 below shows the results of applying the proposed approach and random testing to the set of chosen programs.

For each program, infeasible paths, if any, were not considered while measuring coverage according to the def-use

coverage criterion.

TABLE 3

Experimental results for various C programs

Program

No. of

Variable

s

No. of def-

use Paths

Populatio

n Size

Testing

Approac

h

Average No. of

Generations* No. of

Test Cases >90%

Coverage

100%

Coverage

Midval 3 29 5
GA 2 3 4

Random 2 3 4

Quadratic 5 20 10
GA 2 4 5

Random 4 7 5

Triangle 4 11 10
GA 2 4 4

Random 3 6 4

GCD of 2

Numbers
3 17 10

GA 2 4 3

Random 3 5 3

Avg. Marks

of 3

Subjects

4 14 10

GA 2 3 4

Random 2 4 4

Previous

Date
5 66 20

GA 19 37 10

Random 35 95 13

Power of a

Number
3 21 10

GA 2 3 2

Random 2 3 2

Prime

Number
2 13 5

GA 1 2 2

Random 2 3 2

* Number of runs of the algorithm=10

Vershney et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 472-479

© 2014, IJARCSSE All Rights Reserved Page | 478

The proposed approach outperformed random testing in terms of the number of generations needed to achieve desired

coverage and the size of the final test suite.

VI. CONCLUSION
Research in the field of search based test data generation for structural testing is now relatively mature with work on

theoretical and empirical analysis of the problem domain and characteristics, predictive methods for test effort and search

algorithms that are specially tailored to the structural test data generation problem [17]. The GA-based technique

presented in this paper is guided by the data flow dependencies in the program to search for test data to fulfil the all-uses

criterion. This is the main contribution of this paper. The approach can be used in test data generation for programs

with/without loops and procedures. The proposed GA-based technique accepts as input an instrumented version of the

program to be tested, the list of def-use paths to be covered, the number of input variables, and the domain and precision

of each input variable. It also accepts the GA parameters: population size, maximum number of generations, probability

of crossover operation and probability of mutation operation. The def-use paths that are infeasible (to be identified

manually) are not considered while calculating coverage with respect to all-uses criterion. The algorithm produces a set

of test cases (test suite), the set of def-use paths covered by the test suite, and a list of uncovered def-use paths, if any.

Experiments have been carried out to evaluate the effectiveness of the proposed GA compared to the random testing
technique The results of these experiments showed that the proposed technique outperformed the random testing

technique in most of the programs used in the experiment in terms of the number of generations required to achieve the

same def-use coverage and the size of the resulting test suite. The experiments showed that the proposed technique

achieved higher coverage percentage in fewer generations than the random testing technique.

FUTURE WORK

Future work for the proposed approach will focus on the following:

a) Design and application of a hybrid search technique, which combine the best aspects of existing search algorithms,

for structural test data generation problem [11] [15] [17].

b) Multi-objective formulation of test data generation problem, focussing on Pareto optimal optimization techniques

[16] [17].
c) Application of the other highly adaptive search techniques such as Particle Swarm Optimization (PSO) and Ant

Colony Optimization (ACO) techniques that have yet not been widely applied and studied in search based software

engineering [17].

REFERENCES

[1] A. Bertolino, “Software Testing Research: Achievements, Challenges, Dreams”, in Proc. of the International

Conference on Future of Software Engineering, 2007.

[2] A. S. Andreou, K. A. Economides, and A. A. Sofokleous, “An automatic software test-generation scheme based on

data flow criteria and genetic algorithms”, in Proc. of the IEEE Seventh International Conference on Computer and

Information Technology, pp. 867-872, 2007.

[3] A. S. Ghiduk, M. J. Harrold, and M. R. Girgis, “Using Genetic Algorithms to Aid Test-Data Generation for Data-

Flow Coverage”, in Proc. of the IEEE 14th Asia-Pacific Software Engineering Conference, pp. 41-48, 2007.
[4] B. Korel, “Automated Software Test Data Generation”, IEEE Transactions on Software Engineering, vol. 16(8),

pp. 870-879, 1990.

[5] C. C. Michael, G. E. McGraw, and M. A. Schatz, “Generating Software Test Data by Evolution”, IEEE

Transactions on Software Engineering, vol. 27(12), pp. 1085-1110, Dec. 2001.

[6] D. Gong and X. Yao, “Automatic detection of infeasible paths in software testing”, IET Software, vol. 4(5), pp.

361-370, 2010.

[7] G. J. Myers, The Art of Software Testing, New Jersey: Wiley, 2004.

[8] J. H Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Mutation Analysis for Assessing and Comparing

Testing Coverage Criteria”, Carleton University, TR SCE-06-02, Mar. 2006.

[9] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, Cambridge:

MIT Press, 1992.
[10] K. Lakhotia, “Search-Based Testing”, Doctoral Thesis, Department of Computer Science, King’s College, London,

Oct. 2009.

[11] K. Lakhotia, P. McMinn, and M. Harman, “Automated Test Data Generation for Coverage: Haven’t We Solved

This Problem Yet?”, in Proc. of the 4thTesting Academia and Industry Conference - Practice and Research

Techniques (TAIC PART 09), UK, 2009.

[12] K. Li, Z. Zhang, and J. Kou, “Breeding Software Test Data with Genetic-Particle Swarm Mixed Algorithm”,

Journal of Computers, vol. 5(2), pp. 258-265, Feb. 2010.

[13] M. A. Ahmed, and I. Hermadi, “GA-based multiple paths test data generator”, Elsevier Computers and Operations

Research, vol. 35, pp. 3107-3124, 2007.

[14] M. Harman, “The Current State and Future of Search Based Software Engineering”, in Proc. of the 29th

International Conference on Software Engineering, Minneapolis, USA, 2007.
[15] M. Harman, and P. McMinn, “A Theoretical and Empirical Study of Search Based Testing: Local, Global and

Hybrid Search”, IEEE Transactions on Software Engineering, vol. 36(2), pp. 226-247, 2010.

Vershney et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2),

February - 2014, pp. 472-479

© 2014, IJARCSSE All Rights Reserved Page | 479

[16] M. Harman, K. Lakhotia, and P. McMinn, “A Multi-Objective Approach To Search-Based Test Data Generation”,

ACM GECCO, pp. 1098-1105, 2007.

[17] M. Harman, S. A. Mansouri, and Y. Zhang, “Search Based Software Engineering: A Comprehensive Analysis and

Review of Trends Techniques and Applications”, TR-09-03, Apr. 2009.
[18] M. R. Girgis, “Automatic Test Data Generation for Data Flow Testing Using a Genetic Algorithm”, Journal of

Universal computer Science, vol. 11(6), pp. 898-915, 2005.

[19] N. Nayak, and D. P. Mohapatra, “Automatic Test Data Generation for Data Flow Testing Using Particle Swarm

Optimization”, Springer-Verlag Berlin Heidelberg, pp. 1-12, 2010.

[20] P McMinn, M. Harman, Y. Hassoun, K. Lakhotia, and J. Wegener, “Input Domain Reduction through Irrelevant

Variable Removal and its Effect on Local, Global and Hybrid Search-Based Structural Test Data Generation”,

IEEE Transactions on Software Engineering, vol. 38(2), pp. 453–477, 2012.

[21] P. G. Frankl, and S. N. Weiss, “An Experimental Comparison of the Effectiveness of Branch Testing and Data

Flow Testing”, IEEE Transactions on Software Engineering, vol. 19(8), pp. 774-787, Aug. 1993.

[22] P. McMinn, “An Identification of Program Factors that Impact Crossover Performance in Evolutionary Test Input

Generation for the Branch Coverage of C Programs”, Information and Software Technology, vol. 55(1), pp. 153–

172, Jan. 2013.
[23] P. McMinn, “Search-Based Software Test Data Generation: A Survey”, Journal of Software Testing, Verification

and Reliability, vol. 14(2), pp. 105-156, June 2004.

[24] R. A. DeMillo, and A. J. Ofutt, “Constraint-based automatic test data generation”, IEEE Transactions on Software

Engineering, vol. 17(9), pp. 900-910, Sep. 1991.

[25] R. Ferguson, and B. Korel, “The chaining approach for software test data generation”, ACM Transactions on

Software Engineering and Methodology, vol. 5(1), pp. 63-86, 1996.

[26] R. Malhotra, and M. Garg, “An Adequacy Based Test Data Generation Technique Using Genetic Algorithms”,

Journal of Information Processing Systems, vol. 7(2), pp. 363-384, June 2011.

[27] R. P. Pargas, M. J. Harrold, and R. Peck, “Test-Data Generation Using Genetic Algorithms”, Journal of Software

Testing, Verification and Reliability, vol. 9(4), pp. 263-282, 1999.

[28] S. Ali, L. C. Briand, H. Hemmati, and R. K. P Walawege, “A Systematic Review of the Application and Empirical
Investigation of Search-Based Test Case Generation”, IEEE Transactions on Software Engineering, vol. 36(6), pp.

742-762, Nov./Dec. 2010.

[29] X. S. Yang, Engineering Optimization: An Introduction with Metaheuristic Applications, New Jersey: Wiley, 2010.

