
© 2014, IJARCSSE All Rights Reserved                                                                                                           Page | 920 

                            Volume 4, Issue 2, February 2014                                  ISSN: 2277 128X 

International Journal of Advanced Research in 
  Computer Science and Software Engineering 
                                                      Research Paper  
                                Available online at: www.ijarcsse.com 

FPGA-based Hardware Architecture of Elgamal Encryption 

using Carry Save Adder 
Vivek Kumar, Ashish Joshi, Banit Negi 

CSE-Department, THDC-IHET 

India 

 

Abstract— In this paper an efficient implementation of the Elgamal Encryption algorithm on an FPGA is presented. 

The main purpose of the implementation is the time-cost reduction which is achieved by using efficient modular 

multiplication algorithm of Montgomery in conjunction with Carry Save Adder. The paper describes the underlying 

architecture of the implemented design and shows the results obtained. 

 

Keywords— FPGA, Montgomery multiplication, Carry Save Adder, Crypto-accelerator, Digital Signature 

 

I. INTRODUCTION 

Public key or asymmetric key security algorithms are widely  used methods for digital signatures and forms an integral 

part of the authentication scheme. Various software approaches have been applied to implement the algorithms but, 

because the algorithms are computationally intensive (where the order of key may be upto 1024 bits), it demands the use 

of a dedicated hardware to perform the computation efficiently. A crypto-accelerator is a dedicated hardware which 

performs the function of encryption as well as decryption, works independently and acts as a co-processor. Computation 

are now performed without the intervention of the primary CPU. FPGA are useful for implementing the prototype 

because they offer high performance hardware at a lower cost in comparison with Application specific Integrated Circuits 

(ASIC). In this paper Elgamal algorithm, which is a public key algorithm and is used for digital signature is implemented 

on an FPGA and is used for digital signatures. The algorithm was developed by Taher Elgamal in 1984. In the next 

chapter there is a brief theoretical introduction that shows the working of Elgamal  algorithm [1], followed by a section 

describing the hardware implementation of the encryption algorithm. In the end result of the implementation on a re-

programmable structure is presented. 

 

II. THEORETICAL OVERVIEW 

Elgamal is a public key cryptosystem based on the discrete logarithm [2] problem in contrast to RSA or Rabin which 

use prime factorization problem as there trapdoor functions. If p is a very large prime and e1 is a primitive root in the 

group G=< Z*p,×> with r as an integer, then e2=e
r
1mod p is easy to compute using the fast exponential algorithm, but 

given e2,e1 and p, it is infeasible to calculate r = loge1e2 mod p, this is called discrete logarithm problem. Figure 2.1 

shows key generation, encryption and decryption in Elgamal. 

Elgamal cryptosystem uses two ciphertext C1 and C2, the Plain-text P is encrypted using equation (1) and (2) 

 

                                                               C1 = e
r
1 mod p                                                                                                       (1) 

 

                                                C2 = (e
r
2 × P) mod p                                                (2) 

 

 
FIG 1. KEY GENERATION, ENCRYPTION, AND DECRYPTION IN ELGAMAL ALGORITHM 

http://www.ijarcsse.com/


Vivek  et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2), 

February - 2014, pp. 920-924 

© 2014, IJARCSSE All Rights Reserved                                                                                                           Page | 921 

where e1,e2 and p are public key while r is a random integer in group G = <Z∗
p, × >. The plain-text is obtained using  

equation (3). 

 

                                                                    P = [C2 × (C
d

1)
−1

] mod p                                                        (3) 

 

The algorithm used for exponentiation is the right-to-left algorithm 1 where we can employ two parallel modular 

multipliers to achieve it. The parallelism is achieved as the modification of S and T variables in a single iteration is 

independent of each other. Unlike left-to-right modular exponentiation where only one variable S is modified in each 

iteration, here instead two variables are used. 

 

INPUT: A,M and K are all n bit binary numbers. 

OUTPUT S = A
K 

mod M. 

1: S←1 and T←A 

2: for i=0 to n−1 do 

3:  if Ki = 1 then 

4:     S←S.T mod M                              // multiplication 

5:  end if 

6:      T←T
2
 mod M                                   // squaring 

7: end for 

8: return S 

                                                          

                                                         Algorithm 1 Right-to-left modular exponentiation 

 

For multiplication purpose Montgomery modular multiplication [4] algorithm 2 is used. The algorithm produces output, 

with an extra factor of 2
−n

. 

 

INPUT: X,Y< M< 2
n
, with 2

n−1
 < M< 2

n
 and M=2t+1, 

with t ∈N. 

OUTPUT P = X.Y.2
−n

 mod M. 

n: number of bits in X. 

Xi: i
th

 bit in X 

1: P←0 

2: for i=0 to n−1 do 

3:  P←P + Xi.Y 

4: if Pi=1 then 

5:      P ← P + M 

6:      end if 

7: P←P/2 

8: end for 

9: if P≥M then 

10: P ← P − M 

11: end if 

12: return P 

 

Algorithm 2 Montgomery Modular Multiplication 

 

III.   HARDWARE IMPLEMENTATION 

The Elgamal module implementation is based on the two major operation which are exponentiation and multiplication. 

Exponentiation module uses the multiplication module iteratively. Designing has been done using the top down approach 

which first describes the exponentiation and then the multiplication module. 

The module which performs the Elgamal encryption is shown in  Fig 2. e1, e2, p and P are  32 bit  operands  where 

e1, e2 and p are the public key and P is the plain-text to be encrypted. The module is synchronized  with the  use  of  

clk while clear is use to reset the circuit. C1 and C2 are the output ports which hold the encrypted data which is available 

in the ports when the done signal is high. Figure 3 shows the exponentiation module which carries out the exponentiation 

using the multiplication sub modules. The algorithm used for exponentiation is the Right-to-left modular exponentiation 

(Algorithm 2). The Modular exponentiation module uses 2 montgomery multiplication modules. Input ports are p, m, r, 

e1, clk, clear and p1 where p holds the multiplication output from first montgomery module, p1 holds the multiplication 

output from the second Montgomery module, both of the module work in parallel, r is a random number and m is the 

modular no. In algorithm 2 in each iteration equation 4 is used. 

 

                                                                        T ← T.T(mod M)                                    (4) 

 

The first montgomery module is employed to carry out this equation while equation 5 is used whenever ki equals 1 



Vivek  et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2), 

February - 2014, pp. 920-924 

© 2014, IJARCSSE All Rights Reserved                                                                                                           Page | 922 

 

                                                                        S ← S.T(mod M)                                      (5) 

  

 
Fig. 1  Elgamal Module Entity 

 

 

 
Fig. 3 Modular Exponentiation 

 

This modular multiplication is carried out by the second montgomery module. The respective output p and p1 are feed 

back into the exponential module. Exponential output is obtained at the expo output port. This modular exponentiation 

module is used by the elgamal module which calculates equation 1 and equation 2.The module will be used twice for one 

encryption once for calculating e
r
1 mod p (C1) and once for calculating e

r
2 mod p, finally modular multiplication will be 

used for calculating multiplication of plaintext P and and output of e
r
2 mod p (C2). Figure 4 shows the architecture of 

montgomery modular multiplication. The algorithm is implemented by using one carry save adder(CSA)[5]. On the basis 

of x[i] either y or 0 is selected using mux 1, selected value is stored in ytemp. Ptemp is a temporary register which is 

initialize to 0. X-Ored value of ptemp[0] and ytemp[0] is fed as a selection line for mux 2 which selects either m or 0. 

The output of mux2 is stored in temporary register mtemp. ptemp, ytemp and mtemp is fed as input in a CSA.The output 

of the carry save adder is stored again in ptemp variable. The value of ptemp is divided by 2 which can be performed by 

shifting ptemp one position to right. 



Vivek  et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2), 

February - 2014, pp. 920-924 

© 2014, IJARCSSE All Rights Reserved                                                                                                           Page | 923 

 
Fig. 4 : Montgomery Circuit 

 

CSA is a type of digital adder which is used to add three or more n-bit number. CSA is better than Carry Propagation 

Adder(CPA) and Carry Look-ahead Adder(CLA). CSA generates sum and carry in a single clock pulse while in CPA, 

carry has to propagate through the entire addition, which increases delay. CLA reduces this delay but it is not too much 

helpful for very large integers. When dealing with 512-bit to 2048-bit number that are  required in  public- key 

cryptography, CLA is not of much help. 

IV.   RESULTS 

After the implementation of Elgamal Encryption Algorithm on 3S400FG456 FPGA the following (table 1) device 

utilization summary was obtained for encryption of 32-bit message. 

 

Table 1 : Device Utilization Summary of 32-bit for Elgamal encryption 

 

Devices Used Available Area(%) 

Number of Slices 294 3584 8 

Number of Slice Flip Flops 177 7168 2 

Number of 4 Input LUTs 557 7168 7 

Number of IOs 195   

Number of bounded IOBs 98 264 37 

Number of GCLKs 1 8 12 

    

Table 2 shows the timing summary for encrypting different message size, ranging from 32 to 256 bit of data. 

Table 2: Device utilization Summary of 32-bit for Elgamal  encryption 

 

Bits Min. Period Min. Input arrival 

time 

Max. output 

required time 

32 16.801ns 14.421ns 6.216ns 

64 20.567ns 18.187ns 6.216ns 

128 27.841ns 25.461ns 6.216ns 

256 42.978 40.598ns 6.216ns 

 

V. CONCLUSION 

In this paper, the Elgamal encryption technique is implemented on FPGA of type 3S400FG456.The design successful 

implemented the encryption using the carry save adder for montgomery multiplication. As is presented in previous 

section, physical resources of FPGA used to implement Elgamal encryption system are very small, compared with the 

FPGA capacity, allowing further development of algorithms with higher encryption capacity. 



Vivek  et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(2), 

February - 2014, pp. 920-924 

© 2014, IJARCSSE All Rights Reserved                                                                                                           Page | 924 

REFERENCES 

[1] T. Elgamal,“A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, ” Lecture Notes in 

Computer Science, vol.196, pp. 10-18 , 1985. 

[2] K.S. McCurley,“The Discrete Logarithm Problem, ” Proceedings of Symposia in Applied Mathematics, vol. 42, 

1990. 

[3] J.A.Menezes, C.P. Oorschot, and A.S Vanstone, Hand- book of Applied Cryptography,CRC Press, 1997. 

[4] P. Montgomery,“Modular Multiplication without Trial Division, ” Mathematics of Computation, vol. 44,pp. 519-

521, 1985. 

[5] D. Narh Amanor,C. Paar, J. Pelzl, V. Bunimov and M. Schimmler ,“Efficient hardware architectures for modular 

multiplication on FPGAs”,Field Programmable Logic and Applications,pp. 539 - 542, 2005. 


