

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 12, December 2016)

194

A Brief Study and Analysis of Software Reliability
Bishwajeet Kumar

1
, Dr. I. B. Lal

2

1
Research Scholar, B.R.A.Bihar University, Muzaffarpur, Bihar, India

2
Assistant Professor, Deptt. of Information Technology, L.N. Mishra College of Business Management, Muzaffarpur, India

Abstract:- Software reliability has been a crucial issue for

last two decades as computers have been penetrating every

walk of human life, from kitchen to war field, from machine

to market, and much more. The software is changing the

human life style enormously throughout the world. Hence,

delivery of highly reliable fault free software has become a

challenging issue for the software professionals. Software

engineers have been working on software reliability for last

four to five decades. New techniques to study, predict, and

estimate the software reliability are evolving day-by-day, such

as fuzzy logic, neural networks, genetic algorithms, etc.

Various models have been proposed in this regard. The

authors have attempted to study and present an analysis on

the software reliability.

Keywords:-Software reliability, fault, failure, software

reliability prediction, fuzzy logic, artificial neural network,

genetic algorithm.

I. INTRODUCTION

With the increased applicability and usability throughout

the world the software and its development as per real

world modeling have become very much complex. The

major reasons for this complexity can be noted as follows:-

a) the size of software increased due to increased number

of functionality that the software is expected to perform,

b) frequently changing requirements of the

user/environment,

c) code restructuring,

d) entry of software in every walk of life, and

e) the expectation of users and dependencies of the user

community for the fault- free operation with reduced

response time.

These situations have lead the software reliability at

stake with the increased requirements of users,

sophistication in requirements and operations, reduced

failures (possibly zero) and the fault free operation. All

have made software life cycle phases very much complex

and difficult. To develop highly reliable software that

stands up to the expectations of the developer as well as

users, various considerations have to be studied and

evaluated during development of software.

In today’s highly technical world there are numerous

applications such as traffic control, satellite system and

other life sensitive and critical systems that require

hundred percent failure-free, fault-free software with the

probability of occurring errors as “No errors in millions

LOC (Line of code)”. These are the systems that cannot

tolerate a single error (fault). Software reliability is defined

as the probability of failure-free operation of a software or

computer program for a specified period in a specified

environment. It can also be defined as up to what extent

one depends on software for its functionality for a specified

period. J.D. Musa et. al.(1987) defines Software reliability

as "the probability of the execution of software without

failure for some specified interval of natural unit of time. A

Computer system or software is considered reliable if it

functions as per its specifications and produces a correct set

of output values for a given set of input values. For a

computer system or a software system reliable operation is

attained when all components of the system work

according to specifications. Software reliability is also

defined as the probability of failure free software operation

for a specified period of time in a specified environment. It

is one of the attributes of software quality, a

multidimensional property including other customer

satisfaction factors – functionality, usability, performance,

serviceability, capability, installability, maintainability and

documentation. Software reliability is generally considered

to be the key factor of software quality because it quantifies

the failures – which can make a powerful system

inoperative. We notice three major components in the

definition of software reliability: failure, time, and

operational environment. Following are some terms used

for defining software reliability (Lyu, Michael, R., 1995):-

1.1 Michael R. Lyu (1995) defines “A Software System as

an interacting set of software subsystems that is embedded

in a computing environment that provides inputs to the

software system and accepts service (outputs) from the

software”. A software as a system is composed of number

of programs or modules which interact with each other

interdependently so as to perform its functionalities to

produce the desired output.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 12, December 2016)

195

1.2 Service: A service is the delivery of outputs as per

expectations of the user within the a given time period. A

software consisting of set of programs or modules (or

component), as a system, is also a time dependent sequence

of outputs to an environment or a person – the user.

1.3 The failure of a system occurs if the system stops

working or is unable to deliver its functionalities according

to the specification and fails to deliver the services for

which it was intended. In a software system the failure can

also be observed if it is unable to deliver its functionalities

or outputs according to the external environment or the

user. In such cases the user stops using the software.

1.4 Outages: An outage can be defined as a loss or degradation

of service to a user/customer for a period of time. This might

occur due to human errors, change in technology, hardware

malfunctioning or failure, software failures, or any other

environmental factor that might affect the services or behaviour

of the software system.

1.5 An error in the system occurs when a component of the

system assumes a state that is not desirable or if the

component deviates from the standards or set norm or the

stated requirement or functionality. The components in

question is undesirable and said to be erroneous and further

use of the components will lead to failure. M.R.Lyu (95)

defines “Error” as a discrepancy between a computed,

observed, or measured value or condition and the true,

specified, or theoretically correct value or condition. Errors

occur when some part of the computer software produces an

undesired state.

1.6 A fault is detected either when an error is propagated

from one component to another (Ripple effect) or the

failure of the computer is observed. An error, when occurs

in a system, propagates and enlarges in size and due to this,

components of the system violates and fails to deliver

standard and normal functionality. This observed state of

error is called fault. A fault is in effect the identified or an

assumed cause of error. It is also referred to as a bug.

1.7 Failure Functions: Lyu(95) describes failure function

in following ways on the basis of time:

(i) The cumulative failure function – also referred to as mean

value function and denotes the average cumulative failures

associated with each point of time.

(ii) The failure intensity function represents the rate of

change of the cumulative failure function.

(iii) The failure rate function – also called the rate of

occurrence of failures, is defined as the probability that a

failure per unit time occurs in the interval [t, t+, t], given

that a failure has not occurred before t.

(iv) The mean time to failure (MTTF) function, also called

mean time between failure (MTBF) is the average time

between two failures. It represents the expected time that

the next failure will be observed. (Adopted from

M.R.Lyu,1995).

Problems of reliability have been a greater of concern for

larger software systems. It has become bottleneck of system

reliability, and the maturity of software always lags behind

that of hardware. Accurately modeling software reliability

and predicting its trend have become critical. Reliability

engineering is routine practice in many engineering

disciplines. Software Reliability Engineering (SRE) can be

defined as the qualitative study of the operational behavior

of software-based systems with respect to user requirements

concerning reliability [IEEE95].

Thus, SRE must deal with the reliability of software based

systems systematically with respect to user requirements.

SRE, therefore, must take into account : User profile,

operational environment, Requirements specification and

requirement engineering, system architecture, software

product design, software development process, testing, use

and maintenance followed by reliability management that

would encompass error / fault detection, reliability

measurement including reliability estimation and prediction.

The early prediction would certainly help reduce/eliminate

problems of reliability.

Now-a-days, the development of software system has been

related more to human factors besides hardware

considerations. Statistical analysis and quality control would

certainly improve the situation. Software Quality Assurance

(SQA) and Statistical Process Control (SPC) have been

considered by so many workers to enhance the reliability of

the software. SPC concepts and methods are used to monitor

the performance of a software process over time in order to

verify that the process remains in the state of statistical control.

It helps in finding assignable causes, long-term improvements

in the software process. Software quality and reliability can be

achieved by eliminating the causes or improving the software

process or its operating procedures (Kimura, et. al.,2011).

Number of models has been proposed by so many workers to

enhance the reliability of the software. We have, in the

foregoing discussions, attempted to study various aspects to

increase software reliability.

II. REVIEW OF LITERATURE

Reliability of the software has been a major issue in the

mid era of software engineering approaches. A large number

of computer scientists have been working on the issue to

improve the software development process and techniques to

build software that is reliable and runs without failure.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 12, December 2016)

196

Number of reliability growth models was proposed in this

regard. In the early days, software reliability was considered

as immeasurable attribute of software. This mis-conception

was wiped out and various statistical methods were

proposed. M.L. Shooman (1987) published an article “Yes

Software Reliability Can be Measured and Predicted". J. D.

Musa (1975) postulated a theory of "Software Reliability

and its Applications". M. Ohba (1984) proposed various

"Software Reliability Analysis Models". S. Yamada,

M.Ohba, and S.Osaki(1983) proposed "S- Shaped Reliability

Growth Modeling for Error Detection" . J.D. Musa and K.

Okumoto (1984) submitted "A Logarithmic Poisson

Execution Time Model for Software Reliability

Measurement". Okamura and Dohi in 2006, introduced a

method by using “Expectation-Maximization (EM) principle

and applied the same in Hybrid, Discrete time and Markov

Modulated Software Reliability Models”. Minohara and

Tohma (in ISSRE 1995) introduced a Genetic Algorithm for

Hyper-Geometric Distribution Software Reliability Growth

Models and it was observed that length of coding string has

been reduced by proportion coefficient; hence the

parameter’s

 searching range was decreased. Zhang in 2008

applied Particle Swarm Optimization (PSO) algorithm but it

was observed that the searching range is too large and the

convergence speed is slow and accuracy is not high. Ritika

Wason (2012) proposed new paradigm for estimation by

novel Finite Automata based software reliability model that

implicitly scores over the traditional models on many factors,

most importantly due to the fact that is based on the realistic

assumption that a software system in execution is a Finite

State Machine.

In 1972, Jelinski and Moranda worked on reliability

growth modeling and developed a mathematical model,

popularly known as J-M model, which is a continuous time-

independently distributed inter failure times. The model which

also assumes independent and identical error behavior forms

the basis for many other SRGMs. A large number of

researchers have used and considered this model. The software

failure rate of hazard function at any time is proportional to the

current fault content of the program. The distribution of the

order statistics is the Exponential distribution. This earliest

SRGM supposes that failures occur according to the Poisson

process with hazard rate decreasing as more faults are detected

and successfully removed. In 1978 Schick and Wolverton in

his studies modified this model which was based on

suggesting increasing failure rate between successive failures

instead of the previously suggested constant failure rate by

Jelinski and Moranda.

Myron Hecht in 2006 described that for terrestrial and

space elements software becomes a more important cause

of operational failures. Claes Wholin in 2007 introduced

three ways to estimate parameters of the model. He

described that parameter can be evaluated by comparing

historical data to previous data. Parameters can be

estimated using information from the current project. In

2008, Leslie Cheung, Roshanak Roshandel, Nenad

Medvidovic proposed a framework for predicting

reliability of software components at architectural design.

III. SOFTWARE RELIABILITY MODEL

A software reliability model specifies the general form

of the dependence of the failure process on the principal

factors that affect it: fault introduction, fault removal, and

the operational environment. The figure (Adopted from

M.R.Lyu,95) given below shows the basic ideas of software

reliability modeling.

(Figure adopted from M.R.Lyu,95)

In the figure, the failure rate of a software system which is

high in the early stage is generally decreasing due to

fault/failure detection and removal. At any particular time it is

possible to observe a history of the failure rate of the software.

Software reliability modeling forecasts the curve of the failure

rate by statistical evidence. The purpose of this measure is to

predict the extra time needed to test the software to achieve a

specified objective, and to predict the expected reliability after

the the testing is finished.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 12, December 2016)

197

Software reliability is similar to hardware reliability as

both are stochastic processes and can be described by

probability distributions. However, software reliability is

different from hardware reliability in the sense that

software does not wear out, i.e., its reliability does not

decrease with time. However, software reliability decreases

due to abrupt changes during operation or incorrect

modifications to the software. During testing and operation

faults are detected. Hence software reliability enjoys

growth during this period because at the stage faults could

be removed avoiding the failures.

In contrast to hardware faults which are physical faults,

software faults are design faults, which are very difficult to

visualize, detect, and correct. Therefore, software reliability

is a much more difficult measure to obtain and analyze. It

becomes essential to estimate, predict, and measure software

reliability

IV. TECHNICAL ASPECTS RELATED TO SOFTWARE

RELIABILITY

4.1 Fault Prevention: To enhance the reliability of the

software it is essential to prevent fault from occurrence.

The general approaches that could be followed could be the

interactive refinement of the user's/ system’s requirements,

the requirements engineering, good software design

methods, structured programming, writing clear code, good

documentation, right implementation, and perfect

maintenance. These guidelines are the fundamental

techniques that can prevent software faults.

Recently, formal methods and software reuse have been

attempted to resolve the software quality problem and thus as

tool to prevent faults. Formal methods are a particular kind

of mathematically based techniques for the specification,

development and verification of software systems. Software

reuse encourages to write effective modular code more

economically which can be redesigned, and tested as and

when needed. This also decreases the complexity of the

software system as a whole. Error/fault detection and

correction are simplified. Prototypes are easier to construct,

evaluate and synthesize into the product up to the customer

satisfaction level. This is why object- oriented paradigms and

techniques are receiving much attention nowadays. This

approach is proving one of the important technique in fault

prevention.

4.2 Fault removal: When formal methods are in full swing,

formal design proofs might be available to achieve

mathematical proof of correctness for programs. Also, fault-

monitoring assertion could be employed through executable

specification, and test cases could be automatically generated

to achieve efficient software verification.

However, before this happens, practitioners will have to

rely mostly on software testing techniques to remove

existing faults. Microsoft, for example, allocates as many

software testers as software developers, and employs a

buddy system which binds the developer of every software

component to its tester for their daily work (Lyu,1995). The

key question to reliability engineers, then, is how to derive

testing - quality measures (e.g., test-coverage factors) and

establish their relationships to reliability.

Another practical fault removal schemes might be formal

inspection, walkthroughs, and reviews. These have found to

be very tactical in finding faults, correcting, and verifying the

corrections. These are carried out by a group of peers with a

vested interest in the work product during pretest phases of the

life cycle.

4.3 Fault tolerance: Fault tolerance is the survival attribute of

a system. It gives the software the ability to deliver continuous

service to their uses even in the conditions of error/fault. This

feature, also might be called robustness of the software, gives

software a high level of reliability because the software would

not stop functioning even in the conditions of fault

encountered and would be able to deliver its services on

continuous basis. These software faults may or may not

manifest themselves during system operations, but when they

do, software fault tolerance techniques should provide the

necessary mechanisms to the software system to prevent

system failure from occurring.

4.4 Fault/failure forecasting: It would be an important

technique to minimize failure and thus increasing the

reliability of the software system. Fault/failure forecasting

involves formulation of the fault-failure relationship, the

collection of failure data, an understanding of the operational

environment, the establishment of reliability models, the

application and selection of reliability models by tools, the

analysis and interpretation of results. The early forecasting

would be an aid to plan, organize, and design the risk of

occurring faults and failure and according manage to

mitigate the impact of failure to make the system tolerant to

fault./failure, thereby increasing the level of reliability. This

would certainly reduce to cost to meet in failure in case it

becomes a reality.

V. SOFTWARE RELIABILITY MEASUREMENT

Absolute measurement of software reliability is hard to

achieve, yet number of scientists have proposed so many

number of models to measure reliability of software and

claim for the same. Measurement of software reliability

includes two fundamental activities: Estimation and

Prediction.

https://en.wikipedia.org/wiki/Mathematically
https://en.wikipedia.org/wiki/Formal_specification
https://en.wikipedia.org/wiki/Formal_verification
https://en.wikipedia.org/wiki/Software

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 12, December 2016)

198

Estimation: This activity determines current software

reliability status from data obtained from past software. These

data are mostly failure data obtained during system testing and

operation. These data are used for statistical inferences

regarding software reliability. Its main objective is to assess

current reliability level.

Prediction: To plan for and maintain the high level of

reliability for a future software Prediction of software

reliability is an important activity. Prediction could be done

from the data available from software metrics (project,

product, and process metrics) and measures. Prediction can

be based on two situations:

a. Availability of failure data: When the software remains

in the stage of system testing or operation stage, the

estimation techniques can be used to parameterize and

verify software reliability models, which can perform

future reliability prediction.

b. Non-Availability of failure data: Particularly in the

design or coding phase of software development process

the failure such cases metrics obtained from the software

development process and the characteristics of the resulting

product can be used to determine reliability of the software.

VI. SOFTWARE RELIABILITY PREDICTION

Various techniques have been used to predict software

reliability; here authors have studied three recent techniques : 1.

Using Fuzzy Logic, 2. Using Artificial Neural Network, and 3.

Using Genetic Algorithm.

6.1 Using Fuzzy Logic: Fuzzy logic deals with the kind of

uncertainty that is inherently human in nature. It is based on

“degrees of truth” rather than usual “true or false” binary

states. It is a method of reasoning that resembles human

reasoning. This technique, which uses the mathematical

theory of fuzzy sets, simulates the process of normal human

reasoning by allowing the computer to behave less precisely

and logically than conventional computer methods require. It

deals with reasoning which is approximate rather than

precisely deducted from classical predicate logic. The

thinking behind this approach is that decision making is not

always a matter of black and white or true or false; it often

involves gray areas, that is, may be. Many situations are not

100% true or false. There are many decision making

problems that do not fit strictly into the true/false situation

that require mathematical models for solution. It can be

thought of as the application side of fuzzy set theory dealing

with well thought out real world expert values for a complex

problem Fuzzy logic was initiated in 1963 by L.A. Zadeh,

Professor of Computer Science.

Fuzzy logic based software reliability model was first

presented by Karunanithi, et.al.(Padala & Mohan, 2016).

Fuzzy logic is proven to be capable of modeling highly

nonlinear and multidimensional models. Fuzziness refers to

non-statistical imprecision and vagueness in information and

data. The difference between fuzzy logic and probabilistic

logic consist in the fact that the fuzzy logic uses truth

degrees as a mathematical model for vague facts while the

probabilistic one is mathematical model for random facts.

The linguistic values are used for writing the If - Then rules.

Researchers in this area have felt that fuzzy logic is vital for

Software reliability prediction. Yuan et. al. in used fuzzy

subtractive clustering integrated with module order modeling

for software quality prediction. First Fuzzy Subtractive

clustering is used to predict the number of faults then module

order modeling is used to predict whether modules are fault

prone or not. Xu et. al.(2000) introduced the fuzzy

nonlinear regression (FNR) modeling technique as a method

for predicting fault ranges in software models, Kumar &

Jayram,2014, Padala & Mohan, 2016).

Fuzzy logic is difficult to apply when people supply the

membership information. The problems stem from the

linguistic vagueness to difficulties in supplying the

definitions needed. One area in which fuzzy logic is being

used extensively is in consumer products where the input is

provided by sensors rather than by people. Fuzzy logic

provides smooth motion in consumer products, in the area

of controls, in predicting accident risk, and many others.

6.2 Using Artificial Neural Networks: Many factors like

software development process, and software test or use

characteristics, software complexity, non-algorithmic

problems, and nature of software faults and the possibility of

occurrence of failure affect the software reliability behavior.

Neural network (NN) methods normally approximate any

non-linear continuous function. A neural network is

configured for a specific application, such as data

classification or pattern recognition, through a learning

process. Just as in biological systems, learning involves

adjustments to the synaptic connections that exist between

the neurons. NN can differ on – the way their neurons are

connected; the specific kinds of computations their neurons

do; the way they transmit patterns of activity throughout the

network; and the way they learn including their learning rate.

NN are being applied to increasingly large number of real

world problems. It can solve problems that are too complex

for conventional technologies – problems that do not have an

algorithmic solution or for which an algorithmic solution is

too complex to be defined. So more attention is given to

neural network based methods now -a-days.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 12, December 2016)

199

Neural network based software reliability model was first

presented by Karunanithi et. al.(1991) to predict cumulative

number of failures. They consider execution time as the

input of the neural network. In their approach, they used

different networks like Feed Forward neural networks.

Recurrent neural network like Jordan neural network and

Eleman neural network. Two different training regimes like

Prediction and Generalization are also used in their study.

They compared their results with some statistical models and

found better prediction than those models. Karunanithi et al.

also used connectionist models for software reliability

prediction. They applied the Falman's cascade Correlation

algorithm to find out the architecture of the neural network.

They applied the Falman's cascade Correlation algorithm to

find out the architecture of the neural network. They

considered the minimum number of training points as three

and calculated the average error (AE) for both end point and

next -step prediction. Their results concluded that the

connectionist approach is better for end point prediction.

(Kumar & Jayram,2014). Sitte(1999) presented a neural

network based method for software reliability prediction. He

compared the approach with recalibration for parametric

models using some meaningful predictive measures with

same datasets. They concluded that neural network approach

is better predictors, (Bisi & Goyal,2012).

Cai et. al. proposed a neural network based method for

software reliability prediction. They used back propagation

algorithm for training. They evaluated the performance of

the approach by varying the number of inputs nodes and

number of hidden nodes. They concluded that the

effectiveness of the approach generally depends upon the

nature of the handled data sets. Tian and Noore proposed

an on-line adaptive software reliability prediction model

using evolutionary connectionist approach based on

multiple-delayed -input single -output architecture.

6.3 Using Genetic Algorithm: Genetic Algorithms (GAs)

were developed by Prof. John Holland, et. al. at the

University of Michigan during the 1960s and 1970s. It is an

iterative procedure that represents its candidate solutions as

strings of genes called chromosomes and measures their

viability with a fitness function. The fitness function is a

measure of the objective to be obtained (maximum or

minimum). As in biological systems, candidate solutions

combine to produce offspring in each algorithmic iteration

called a generation. The offspring themselves can become

candidate solutions. From the generation of parents and

children, a set of the fittest survive to become parents that

produce offspring in the next generation.

Offspring are produced by specific genetic operators that

include reproduction, crossover, and mutation. The three

most important aspects of using genetic algorithm are: (1)

definition of the objective function, (2) definition and

implementation of the genetic representation, and (3)

definition and implementation of the genetic operators.

Once these three have been defined, the generic genetic

algorithm should work fairly well. Beyond that one can try

many different variations to improve performance. Find

multiple optima (species - if they exist), or parallelize the

algorithms Genetic algorithms are machine learning and

optimization schemes, much like neural networks.

However, genetic algorithms do not appear to suffer from

local machine as badly as neural networks do. Genetic

algorithm is based on the model of evolution, in which a

population evolves towards overall fitness, even though

individual perish. Evolution dictates that superior

individuals have a better chance of reproducing to inferior

individuals, and thus are more likely to pass their superior

traits on to the next generation. This "Survival of the

fittest" criterion was first converted to an optimization

algorithm by Holland in 1975, and is today a major

optimization technique for complex, nonlinear problems.

Oliveira et al. proposed the using of genetic programming

(GP) to obtain software reliability model for forecasting the

reliability and extended this work by boosting the GP

algorithm using re-weighting. The re-weighting algorithm

calls many times the learning algorithm with assigned

weights to each example. Each time, the weights are

computed according to the error (or loss) on each example

in the learning algorithm. In this way, the learning

algorithm is manipulated to look closer at examples with

bad prediction functions. Sheta uses genetic algorithms to

estimate the COCOMO model parameters for NASA

Software Projects. The same idea is implemented for

estimating the parameters of different SRGM models using

PSO (Kumar & Jayram,2014). Y. Zhang et al. (2006)

anticipated MTBF disappointment information

arrangement of software reliability by genetic

programming algorithm. The transformative model of GP

was then tacked and assessed by attribute criteria for some

routinely used programming testing cases,(Lohmor &

Sagar,2016). Genetic algorithms provide a set of efficient,

domain-independent search heuristics for a broad spectrum

of applications that include – Dynamic process control,

Induction of optimization of rules, discovering new

connectivity topologies, simulating biological models of

behavior and evolution, pattern recognition, scheduling,

parallel processing, and many more.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 12, December 2016)

200

VII. CONCLUSION

Today we expect for a zero-defect software but the

problem of reliability in software systems is a well- known

fact. There is hardly an approach that will solve this

problem, instead the solution will be the combination of

several approaches. Improvements are needed throughout

the whole life cycle of a software. These improvements

include, for example, specification and design, coding and

testing, verification and validation, certification,

management of change as well as maintenance. The

Cleanroom methodology takes into account the methods for

specification and design, verification and validation, as

well as certification. Various approaches – Formal

methods, agile technology and others are becoming popular

these days besides Cleanroom methodology which supports

the idea and philosophy that it is possible to develop zero -

defect software.

It can be concluded that the statistical quality control of

software products is an important issue. The certification

process is central in this effort. This process is highly

dependent on relevant software reliability models and a

sound basis for prediction and estimation. The basis

includes relevant failure data, i.e. data which is obtained

under the circumstances of fulfilling the assumptions of the

reliability models. This means that the failure data during

testing and other type of analysis must match to the failure

data encountered during operation.

REFERENCES

[1] Adnan, W, A., and Mashkuri, 2014. "An Integrated Neural Fuzzy

System of Software Reliability Prediction", IEEE Software. IJIRAE,

Vol.1 Issue 4.

[2] Ando, T., H. Okumara and Dohi,T.,2006. “Software Reliability

Prediction using Neural Network with Encoded Input”, International

Journal of Computer Applications (0975 – 8887) Volume 47–
No.22.

[3] Bisi,M. and Goyal,N.K.,2012. " Estimating Markov Modulated
Software Reliability Models via EM Algorithm[C]”. Proceedings of

the 2nd IEEE International Symposium on Dependable, Automatic

and Secure Computing.

[4] Cheung, L.,Roshandel, R., Medvidovic, N. and Golubchik,L. 2008.

"Early Prediction of Software Component Reliability", ACM, pp.

111-121.

[5] Constantinescu. N, Iancu,I., 2008. "Fuzzy Identity Authentication,

Latest Trends on Computers", 1(1), pp 168-173.

[6] Farr, W. "Software reliability modeling survey ", 1996. Naval

Surface Warfare Center, Technical Foundation, pp.73-109.

[7] Jelinski, Z. and Moranda, P.B.,1972. "Software reliability research,

In Statistical Computer Performance Evaluation", (Edited by W.

Freiberger), Academic Press, New York, pp. 465-484.

[8] K. Y. Cai, L. Cai, and W.D. Wang, Z. Y. Yu and Zhang,D., 2001. "On

the neural network approach in software reliability modeling", The
Journal of Systems and Software, vol. 58, no.1, pp. 47-62.

[9] K. Y. Cai, C.Y.Wen, and Zhang, M.L.,1991. "A critical review on
software reliability modeling.", Reliability Engineering and System

Safety 32(3), 357-371.

[10] Karunanithi. N., Malaiya,Y.K. and Whitley, D.,1991. "Prediction of

software reliability using neural networks", Proceedings of the

Second IEEE International Symposium on Software Reliability
Engineering, pp.124-130,

[11] Karunanithi, N., Malaiya,Y.K. and Whitley, D.,1992. "Prediction of
software reliability using connectionist models", IEEE Transactions on

Software Engineering, Vol. 18, no. 7, pp. 563-574.

[12] Karunanithi. N., Whitley, D.and Malaiya, Y.K.1992 "Using neural
networks in reliability prediction", IEEE Software, vol. 9, no.4, pp.

53-59.

[13] Ke-han, ZHANG., Li Ai-guo and SONG Bao-Wei,2008. "Estimating

Parameters of Software Reliability Models using PSO", Computer

Engineering and Applications, 44(11):47-49.

[14] Kimura, M, Yamada,S. and Osaki,S.2011. "Statistical Software

reliability prediction and its applicability based on mean time

between failures", IJRC, Vol. 8, Issue 3, No-2.

[15] Klir, George J., St Clair, H. Ute and Yuan, 2014. "Fuzzy set theory:

foundations and applications", IJIRAE, Vol., 1 Issue May-2014.

[16] Lohmor, S. and Sagar,B.B. 2016. “A Comprehensive Review on

Software Reliability Growth Models utilizing Soft Computing

Approaches”, Intelligent Systems Technologies and Applications
2016, Advances in Intelligent Systems and Computing 530, DOI

10.1007/978-3-319-47952-1_40,Springer Int. Pub.

[17] Lyu,M.R.,1992. "Applying Reliability Model More Effectively",

University of Lowa, Jet Prolusion Laboratory. Caltech, July 1992,

pp. 43-52.

[18] Lyu, M. R.,1995. "Handbook of Software Reliability Engineering",

McGraw-Hill Publishing, ISBN 0-07-039400-8.

[19] Minohara, T. and Tohma,Y. 1995 "Parameter Estimation of Hyper -

Geometric Distribution Software Reliability Growth Model by

Genetic Algorithms[C]”, Proceedings of the 6th IEEE Int. Symp. on
Software Reliability Engg. (ISSRE 1995),Toulouse, France, pp.324-

329.

[20] Musa, J. D., 1975. "A Theory of Software Reliability and its

Applications", IEEE Transactions on Software Engineering, Vol. SE

-1, No.3, pp.312-327.

[21] Musa, J.D. and Okumoto, K.,1984. "A Logarithmic Poisson

Execution Time Model for Software Reliability Measurement", 7th

Int’l Conf. on Soft. Engg. (ICSE), IEEE, pp.230-238.

[22] Musa, J.D., Iannino, A. and Komodo, K., 1987."Software

Reliability: Measurement, Prediction and, Application", McGraw-
Hill Pub.

[23] Ohba, M., 1984. "Software Reliability-Analysis Models", IBM

Journal of Research and Development, Vol. 28, No. 4, pp.428-443.

[24] Oliveira, E. O., Aurora Pozo, and Silvia Regina Vergilio, 2006.

"Using boosting techniques to im- prove software reliability models
based on genetic programming.", Tools with Artificial Intelligence,

IEEE International Conference, ICTAI, pp. (653-650).

[25] Padala,Lakshman Rao and Mohan,E., 2016. "Fuzzy Analysis for the
Cost Effective Software Evolution Exertion Appreciation",

International Journal & Magazine for Engineering, Technology,

Management, and Research, Vol. 3, No. 7, pp.462-466.

[26] Schick, G. J. and Wolverton, R.W.,1978. "An Analysis of computing

software reliability models", IEEE Trans. Software Eng., Vol. SE-4,
pp.104-120,

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 12, December 2016)

201

[27] Sitte,R.,1999. “Comparison of software – reliability - growth
predictions: neural networks vs parametric recalibration”,IEEE

Transactions on Reliability, vol. 48, no. 3, pp. 285- 291.

[28] Shooman, M .L, 1987 “Yes, Software Reliability Can be Measured

and Predicted", Division of Computer Science, Polytechnic

University, pp.121-122.

[29] Tian, J.,2002. "Better Reliability Assessment an Prediction through

Data Clustering", IEEE Transactions on Software Engineering,Vol.
28, No. 10.

[30] Tian,L. and Noore,A. 2005. "Evolutionary neural network modeling

for software cumulative failure time prediction", Reliability
Engineering and System Safety 87,45-51.

[31] Tian,L. and Noore,A.2005. "On-line prediction of software
reliability using an evolutionary connectionist model", The Journal

of Systems and Software, 77,173-180.

[32] Turban, Efraim and Aronson, Jay E.,2005. ”Decision Support
Systems and Intelligent Systems”,6th Ed., pp.673.

[33] Vijaya kumar, H.S. and Jayram,M.A.,2014. “On Applications of Soft
Computing Assisted Analysis for Software Reliability”, Int. J. of

Innovative Research in Advanced Engg., vol.1, Issue 4.

[34] Viswanath, S.P.K.,2014. "Software Reliability Prediction using
Neural Networks", PhD. Thesis, Indian Institute of Technology,

Kharagpur. IJIRAE, Vol. 1, Issue 4.

[35] Wason, Ritika, Ahmed, P. and Qasim Rafiq, M.,2012 "New Paradigm
for Software Reliability Estimation", International Journal of Computer

Applications (0975-887) Vol. 44, No.14.

[36] Xu, Z. and Allen, E.B.,2000. "Prediction of Software Faults Using

Fuzzy Nonlinear Regression Modelling", IEEE Software, 281-290.

[37] Yadav, A. and Khan,R.A.2009. ”Critical Review on Software

Reliability Models” International Journal of Recent Trends in

Engineering, Vol. 2, No.3.

[38] Yamada, S., Ohba,M. and Osaki,S.1983. "S- Shaped Reliability

Growth Modeling for Error Detection", IEEE Transaction

Reliability, pp. 475-478.

[39] Yuan, X., K. Ganesan “An application of Fuzzy clustering to

software quality prediction”, IEEE Software, 2000.

[40] Zadeh, L. A. " Fuzzy Sets, Information and Control", 1965.

[41] Zadeh, L. A. "Fuzzy algorithms, Info, & Ctl ", Vol. 12, 1968.

[42] Zhang,Y. and Huashan,C.,2006. "Predicting for MTBF failure data

series of software reliability by genetic programming algorithm."

Intelligent Systems Design and Applications, ISDA'06. Sixth
International Conference, Vol. 1, pp. (666-670).

