

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 12, December 2016)

222

NoSQL Injection Attacks and their Mitigation
Ankita Urade

1
, Rutuja Hirve

2
, Rachana Badekar

3
, Ashwini Gaikwad

4

1,2,3,4
AISSMS Institute of Information Technology.

Abstract— NoSQL data storage systems have a wide

acceptance due to their scalability and ease of use.

Unfortunately, they lack the security measures and awareness

that are required for data protection. The attackers get new

opportunities for injecting their malicious code into the

statements passed to the database because the new data

models and query formats of NoSQL data stores make old

attacks such as SQL injections tangential. A large amount of

data is accumulated by organizations who wish to protect this

data from all types of abuse. Thus, security is a prime concern

with respect to multinationals hosting their websites. This

paper addresses this issue while proposing ways to attenuate

the problems.

Keywords—NoSQL, SQL Injection,

I. INTRODUCTION

Along with information security, database security has

also become a crucial aspect when it comes to the term

security. Lack of suitable security systems make it

convenient for the attackers to get control over critical data

by accessing the database. Since the systems are vulnerable

they easily become the victims of these attack. One such

attack is and SQL injection attack. It is an attack which

inserts malicious code into the statement that is passed to

the database by the application. This gives the attacker

freedom to perform any unwanted operations like accessing

unauthorized data, deleting, altering or inserting data.

Although SQL injection exploitation has declined steadily

over the years owing to secure frameworks and improved

awareness, it remains a high-impact means to exploit

system vulnerabilities. Web applications are prone to many

attacks. Every month the web application receives more

than four web attack campaigns and it is analyzed that SQL

injections are the most popular attacks. It has also been

observed that SQL injection vulnerabilities have an impact

on 32 percent of all the web applications.

One of the trending and well known term in modern data

stores is NoSQL (not only SQL) which basically refers to

non-relational databases. Various storage mechanisms

such as document store, key-value store, and graph are used

by NoSQL databases. The requirements of modern large-

scale applications have been encapsulated in these

databases, some of them are Facebook, Amazon and

Twitter.

They need to distribute data across ample of servers.

This is one of the key benefits of modern relational

databases. Traditional relational database lacks this factor

as they do not meet these requirements. This task is time

consuming in them because a single database node

performs all the tasks of the same transaction.

Thus, this emerging NoSQL key-value stores is highly

beneficial for the modern large-scale applications as it

fulfils all its requirements. These data stores consist of

different NoSQL databases like MongoDB and Cassandra

along with different in-memory stores and caches like

Redis and Memcached. There has been tremendous

increase in the popularity of NoSQL databases due to it's

key factors. Among the 10 most popular databases

MongoDB is fourth ranking database. In this article, we

provide analysis of various NoSQL threats and different

mitigation mechanisms.

II. NOSQL SUSCEPTIBILITIES

Their primary advantage is that, unlike relational

databases, they handle unstructured data such as

documents, e-mail, multimedia and social media efficiently.

The common features of NoSQL databases can be

summarized as: high scalability and reliability, very simple

data model, very simple (primitive) query language, lack of

mechanism for handling and managing data consistency

and integrity constraints maintenance (e.g., foreign keys),

and almost no support for security at the database level.

Like other emerging technologies NoSQL databases are not

fully secured in all aspects. NoSQL databases afflicted by

deficiency of encryption, appropriate authentication, role

management. Supporters of NoSQL databases are web 2.0

companies which are Amazon and Google Only.

III. LITERATURE SURVEY

1 L.Okman et al. “Security Issues in NoSQL

Databases ,” Proc.IEEE 10th Int’l Conf. Trust,

Security and Privacy in Computing and

Communications (TrustCom), 2011, pp. 541–547.

This paper describes two of the most popular NoSQL

databases (Cassandra and MongoDB) and outlines their

main security features and problems.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 12, December 2016)

223

Some of the security features of Cassandra and

MongoDB are as follows:

1. MongoDB Data Files Mongo data-files are unencrypted,

and Mongo doesn‘t provide a method to automatically

encrypt these files. This means that any attacker with

access to the file system can directly extract the

information from the files. In order to mitigate this, the

application must explicitly encrypt any sensitive

information before writing it to the database. In addition,

operating -system level mechanisms (file system

permissions, file system level encryption, etc.) should be

used to prevent access to the files by unauthorized users.

2. Cassandra Data Files: The data in Cassandra is kept un -

encrypted and Cassandra does not provide a mechanism

to automatically encrypt the data in storage. This means

that any attacker with access to the file-system can

directly extract the information from the files. In order to

mitigate this, the application must explicitly encrypt any

confidential information before writing it to the

database. Also, operating-system level mechanisms

(filesystem permissions, file system level encryption,

etc.) should be used to prevent access to the files by

unauthorized users.

2.A.Lane,“NoSQL and NoSecurity,” blog, 9

Aug.2011;www.securosis.com/blog/nosql -and-no-

security.

In this proposed system one of the references was a blog

named 'No SQL and No Security' in which Brian Sullivan

gave a presentation on "Server-side JavaScript Injection:

Attacking NoSQL and Node.js". Nowadays we are aware

of the poor security of most NoSQL database installations

especially their lack of support for authorization and

authentication but we are not aware of their susceptibility

to injection. Brian demonstrated NoSQL injection scripts

that can both discover database contents and run arbitrary

commands. Node and NoSQL are basically JavaScript

based platforms with both server and client functionality

which makes them susceptible to client and server side

attacks. He further demonstrated the ability to inject

changes to the node server, write an executable to the file

system using Node.js calls and then running it.

3.M. Factor et al. “Secure Logical Isolation for Multi-

tenancy in Cloud Storage,” Proc. IEEE 29th Symp. Mass

Storage Systems and Technologies (MSST), 2013, pp. 1–5.

A compromised web front end cannot access any

customer‘s data directly since it is not privileged to use the

data stores.

However, given that TLS termination occurs within this

component, an attacker could mount a man in-the-

middle attack against any tenant, accessing that tenant‘s

data. Yet, the attack is limited in time. Additionally, the

system may authenticate the requests (e.g., using

signatures) and test for authenticity at the request

processor; in this way, the attacker can be prevented from

tampering with the requests. Request processor: In case a

request processor is compromised, the attacker‘s process

can only access the corresponding tenant-data, and is

restricted to performing tenant-specific queries through the

security gateway and proxy. This does not prevent the

attacker from accessing data from another user of the same

tenant, but cramped the attack within tenant.

IV. NOSQL INJECTION ATTACKS

 Tautologies:

These attacks allow bypassing authentication or access

mechanisms by injecting code in conditional statements,

generating expressions that are always true (tautologies).

For example, in this article, we show how attackers can

exploit the syntax of the $ne (not equal) operator, which

lets them illegally log in to the system without appropriate

credentials.

 JavaScript injections:

This type of new vulnerabilities introduced by NoSQL

databases allows execution of JavaScript in the database

context. JavaScript allows complicated transactions and

queries on the database engine. Passing unsanitized user

input to these queries might allow for injection of arbitrary

JavaScript code, which results in illegitimate data

extraction or alteration

V. METHODS USED

 JavaScript Object Notation Queries(JSON) and

Data Formats:

Queries and Data are represented in JSON format, which

is better than SQL in terms of security because it is more

―well defined‖, very simple to encode/decode and also has

good native implementations in every programming

language. Breaking the query structure as has been done in

SQL injection is harder to do with a JSON structured

query. A typical insert statement in MongoDB looks like:

db.books.insert({

title: ‗As you like it‘.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 12, December 2016)

224

 Author: ‗William Shakespeare‘

 })

This inserts a new document into the books collection

with a title and author field. A typical query looks

likeQueries can also include regular expression.

db.books.find ({title: As you like it})

 PHP Tautology (array) injection:

web application is implemented with a PHP backend,

which encodes the requests to the JSON format used to

query the data store. Let‘s use an example of MongoDB to

show an array injection vulnerability – an attack similar to

SQL injection in its technique and results.

array(‗title‘ => ‗As you like it‘, ‗author‘ => ‗William

Shakespeare‘);

would be encoded by PHP to the following json:

 {―title‖: ‖ As you like it‖, ―author‖: ―William

Shakespeare‖ }

But PHP has a built in mechanism for associative arrays

which allows an attacker to send the following malicious

payload:

username[$ne]=1&password[$ne]=1

PHP translates this input into:

array(―username‖ => array(―$ne‖ => 1), ―password‖ =>

array(―$ne‖ => 1))

Which is encoded into the mongo query:

db.logins.find({ username: { $ne: 1 }, password: { $ne: 1 }

})

SQL terminology this is equivalent to:

SELECT * FROM logins WHERE username <> 1 AND

password <> 1

 NoSQL Union Query Injection:

One of the common reasons for a SQL injection

vulnerability is building the query from string literals

which include user input without using proper encoding.

The JSON query structure makes it harder to achieve in

modern data stores like MongoDB. Nevertheless it is still

possible. Let us examine a login form which sends its

username and password parameters via an HTTP POST to

the backend which constructs the query by concatenating

strings. For example the developer would do something

like:

string query = ―{ username: ‗― + post_username + ―‘,

password: ‗‖ + post_password + ―‘ }‖

This query will succeed as long as the username is

correct. In SQL terminology this query is similar to:

SELECT * FROM logins WHERE username =

‗shakespeare‘ AND (TRUE OR (‗a‘=‘a‘ AND password =

‗‘)) #successful MongoDB injection

That is, the password becomes a redundant part of the

query since an empty query {} is always true and the

comment in the end does not affect the query. How did this

happen? Let‘s examine the constructed query again and

color the user input in bold red and the rest in black:

{ username: ‗shakespeare‘, $or: [{}, { ‗a‘: ‗a‘, password: ‗‘

}], $comment: ‗successful MongoDB injection‘ }

VI. SYSTEM ARCHITECTURE

Fig. System architecture.

VII. MITIGATION

Web sites that interface with databases are particularly

vulnerable to SQL injection because they often rely on

dynamic SQL, so Databases are the integral part of web

application.One must has to secure it in order to protect

user‘s personal, credential data. You must secure your

database connections and limit access privileges where you

can.One should also be vigilant about escaping and

validating all user input.Mitigating security risks in

NoSQL deployments is major part of different attacks we

present in this paper. Unfortunately,code analysis of the

application layer alone is not adequate to ensure that all

risks are mitigated. These are commonly developed by

open source communities and, in most cases, don‘t undergo

comprehensive security testing.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 12, December 2016)

225

Speed of modern code development with DevOps

methodologies is one of the challenge, which aim to

shorten the time between development and production.

Finally, most application security testing tools can‘t keep

up with the fast pace with which new programming

languages are adopted. There are numerous ways a

malicious user might penetrate your system using SQL

injection and various defenses, but the simplest approach is

to avoid dynamic SQL. Instead, use stored procedures

everywhere.

There are various techniques proposed by us in this

paper in order to mitigate NoSQL injection attack such as,

prepared statement, validation techniques, Textbox

condition check and intrusion detection. Some testing

approaches will also be helpful such as Dynamic

application security testing (DAST).

The mitigation proposed by us will include two phases:

1. Development and Testing:

In this, we consider the threats involved in the software

development lifecycle of our online shopping website. The

various attacked modules will be mitigated by using the

following techniques

i. Using best practices of code like strong JSON

structure, proper validation, prepared statement etc.

ii. Looking closely through the design aspects such as

what need to be protected and how will this occur.

iii. Spreading awareness among the developers so that

they are less likely to portray weaknesses in their code

iv. Running dynamic and static security testing so as to

detect the vulnerabilities in code for injection attacks.

We will run various test cases to check the

performance of the tester.

2. Monitoring and Attack Detection

A look at the importance of adopting intrusion detection

systems will be shown.

VIII. CONCLUSION

We will review different attacks which are vulnerable to

the database. Main methodology behind the attacks are

discussed. In order to protect the database from these

attacks some mitigation techniques are proposed which

were discussed earlier which we will carry out. Along with

that, some test cases will be written for Dynamic

application security testing (DAST) to grade the security

level of the code. This paper will act as a guide to all the

developers developing a web application to attain the level

of security they wish for.

REFERENCES

[1] A. Lane, ―No SQL and No Security,‖ blog, 9 Aug. 2011;

www.securosis.com/blog/nosql-and-no-security. 4.

[2] L. Okman et al. ―Security Issues in NoSQL Databases,‖ Proc. IEEE

10th Int‘l Conf. Trust, Security and Privacy in Computing and

Communications (TrustCom), 2011, pp. 541–547. 5.

[3] E. Sahafizadeh and M.A. Nematbakhsh. ―A Survey on Security

Issues in Big Data and NoSQL,‖ Int‘l J. Advances in Computer

Science, vol. 4, no. 4, 2015, pp. 2322–5157.

[4] M. Factor et al. ―Secure Logical Isolation for Multi- tenancy in

Cloud Storage,‖ Proc. IEEE 29th Symp. Mass Storage Systems and
Technologies (MSST), 2013, pp. 1–5.

[5] ―Security,‖ MongoDB 3.2 Manual, 2016; http://docs

.mongodb.org/manual/core/security-introduction.

[6] I. Novikov, ―The New Page of Injections Book: Memcached

Injections,‖ Proc. Black Hat USA, 2014; www.blackhat.com
/docs/us-14/materials/us-14-Novikov-The-New-Page -Of-Injections-

Book-Memcached-Injections-WP.pdf.

[7] J. Williams, ―7 Advantages of Interactive Application Security

Testing (IAST) over Static (SAST) and Dynamic (DAST) Testing,‖

blog, 30 June 2015; https://www .contrastsecurity.com/security-
influencers/9-reasons -why-interactive-tools-are-better-than-static-

or-dynamic -tools-regarding-application-security.

[8] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.

Vogels, ―Dynamo: Amazon‘s Highly Available Key-Value Store,‖

in Proceedings of the 21st ACM Symposium on Operating Systems
Principles, Stevenson, WA, Oct. 2007.

[9] S.M. Kerner, ―Glass Box: The Next Phase of Web Application
Security Testing?,‖ blog, 3 Feb. 2012; www

.esecurityplanet.com/network-security/glass-box-the -next-phase-of-

web-application-security-testing.html.

