

Couchbase Server:
Architecture Overview

Introduction

The business world is undergoing massive change as industry after industry shifts to the Digital Econ-
omy. It’s an economy powered by the Internet and other 21st century technologies – the cloud, mobile,
social media, and big data. At the heart of every Digital Economy business are its web, mobile, and
Internet of Things (IoT) applications: they’re the primary way companies interact with customers today,
and how companies run more and more of their business. The experiences that companies deliver via
those apps largely determine how satisfied – and how loyal – customers will be.

How are these applications different from legacy enterprise applications like ERP, HR, and financial
accounting? Today’s web, mobile, and IoT applications share one or more (if not all) of the follow-
ing characteristics. They need to:

nn Support large numbers of concurrent users (tens of thousands, perhaps millions)
nn Deliver highly responsive experiences to a globally distributed base of users
nn Be always available – no downtime
nn Handle semi- and unstructured data
nn Rapidly adapt to changing requirements with frequent updates and new features

Building and running these web, mobile, and IoT applications has created a new set of technology
requirements. The new enterprise technology architecture needs to be far more agile than ever
before, and requires an approach to real-time data management that can accommodate unprec-
edented levels of scale, speed, and data variability. Relational databases are unable to meet these
new requirements, and enterprises are therefore turning to NoSQL database technology.

Introduction

Overview

Cluster Architecture

Cache

Storage

Data Service

Disaster Recovery
& High Availability

Data Access

Data Organization

Writing Data

Reading Data

Connectivity
Architecture

Client to Cluster

Node to Node

Cluster to Cluster

External Connectors

Cluster Management

Rebalance

Failover

Security

Authentication

Authorization

Encryption

Auditing/Compliance

Conclusion

TABLE OF CONTENTS

2

3

3

4

4

5

6

7

7

8

8

9

9

9

9

9

10

11

11

11

11

11

12

12

12

3

Overview
Couchbase Server is a scale-out NoSQL database. The core architecture is designed to simplify
building modern applications with a flexible data model, powerful SQL-based query language, and
a secure core database platform that provides high availability, scalability, and performance.

Couchbase Server consists of a single package that is installed on all nodes within a cluster.
Through the SDKs (also known as client libraries), developers can write applications in the lan-
guage of their choice (Java, Node.js, .NET or others) and connect to a Couchbase Server cluster to
perform read and write operations and queries across key-value records and/or JSON documents
with low latencies (sub-millisecond) at high throughput rates (millions of operations per second).

To understand Couchbase’s runtime behavior it is important to understand the high level Server
Architecture, Data Model, Client Connectivity, Management infrastructure and tooling, and Security.
The core Server runtime behaviors are explained under the following topics:

nn Caching (memory-first architecture)
nn Storage (high performance asynchronous I/O)
nn Data, Indexing & Query Services (responsive to evolving application requirements)
nn Scalability (Multi-Dimensional Scaling)
nn High Availability (DCP & XDCR)

The Data Model section includes the following topics:

nn Data Organization (Key-Value and JSON documents)
nn Writing Data (durability)
nn Reading Data (consistency)
nn Security

The Connectivity Architecture, Management infrastructure, and Security sections describe how
these additional core runtime behaviors are provided within Couchbase.

Database Cluster Architecture

The basic database architecture consists of one or more Couchbase Servers (also called nodes) or-
ganized as a cluster. Each node contains a set of configurable services including a Managed Cache,
Storage, Cluster Management as well as Data, Index, and Query Services. This scale-out architec-
ture is one of the core aspects of Couchbase. It enables customers to grow the data management
capacity and throughput of the system by simply adding more nodes, unlike more traditional
RDBMS systems which require purchasing larger and larger servers in order to grow the capacity
of the system.

Figure 1: Couchbase Server Cluster

http://developer.couchbase.com/documentation/server/current/architecture/data-service-core-data-access.html
http://developer.couchbase.com/documentation/server/current/architecture/global-secondary-indexes.html
http://developer.couchbase.com/documentation/server/current/architecture/querying-data-and-query-data-service.html

4

A node is a single Couchbase Server instance running on a physical server, virtual machine, or a
container. All nodes are identical in the sense that they consist of the same components and services
and provide the same interfaces. However, each node can be individually configured to maximize the
available hardware and scalability of the system. This configurability allows customers to define cluster
topologies that match their requirements, rather than having the database vendor decide, a priori, the
kind of cluster topology that is best for all of their users.

A cluster is a collection of nodes that are accessed and managed as a single group. Each node is an
equal partner in orchestrating the cluster to provide operational information and management of
the cluster, including membership and the health of nodes. Clusters can be expanded by adding new
nodes or shrunk by removing nodes, during which time the system remains online, and read and write
operations continue uninterrupted. The “Cluster Manager” is the main component that orchestrates the
cluster level operations.

All nodes within a cluster include a set of common services, a local in-memory Cache, and persistent Storage.

Cache

Unlike other database platforms, Couchbase Server does not require a caching tier in front of it.
Couchbase uses a memory-first architecture, ensuring that all data operations are performed through a
configurable high-speed in-memory cache. Internally, Couchbase moves data to and from disk as need-
ed, thereby automatically acting as both a read-through and a write-through cache, which facilitates
an extremely high read/write rate. With Couchbase Server, application configuration and deployment
is simplified as applications don’t have to deal with complex cache coherency issues or varying perfor-
mance capabilities across technologies.

Storage

Couchbase uses a highly efficient append-only storage system to persist data to files that are placed
in the local file system. Append-only storage systems are a technique used by many modern database
architectures to provide optimized I/O throughput, especially for write-intensive applications. A back-
ground compaction process (automated or manually controlled) cleans up orphaned and fragmented
space within the files caused by ongoing data mutations to the append-only file system. The compac-
tion process is designed to minimize the impact to front end I/O operations. Although high perfor-
mance storage systems (such as SSDs) can be used on Couchbase Server nodes, they are not required.

Couchbase Server uses two optimized storage engines, Couchstore and ForestDB. Couchstore is used
to store the data items and local indexes, while ForestDB is used to store the Secondary Indexes.
Each node also includes the Data, Indexing and Query configurable services which enable Couchbase’s
revolutionary Multi-Dimensional Scaling architecture (MDS). Via MDS, system architects can implement a
cluster that reflects and supports the technical business requirements using the hardware that is currently
available. MDS supports both symmetrical and asymmetrical scaling topologies as shown below.

Figure 2: Symmetrical Scaling Topology – All services run on every node, commonly used when all of the nodes have a
similar hardware configuration and capacity. Nodes are “interchangeable”.

Learn more about the
Cluster Manager.

See more information on
the different characteristics
of Couchstore and
ForestDB.

http://developer.couchbase.com/documentation/server/current/architecture/cluster-manager.html
http://developer.couchbase.com/documentation/server/current/architecture/storage-architecture.html
http://developer.couchbase.com/documentation/server/current/architecture/storage-architecture.html
http://developer.couchbase.com/documentation/server/current/architecture/storage-architecture.html

5

Figure 3: Asymmetrical Scaling Topology – Services run on specialized nodes, commonly used when leveraging specific
hardware configuration and capacity (amount of memory, storage, or processors) for specific services. Nodes are more
capacity- or service-specific.

By separating the core data management functions into these three services, Couchbase enables users
to define the scalability characteristics of their system based on their actual technical business require-
ments. As those requirements change, Couchbase users can expand or shrink their cluster, adding data
management resources to the precise function where they are needed most in order to address the
changing Data, Indexing and Query Service requirements.

Data Service

The Data Service manages the data records (stored in binary or as JSON documents) via the Key-Value
API (KV API) which provides high speed, direct read/write CRUD operations based on the primary key.
The Data Service also manages the MapReduce View Indexes and MapReduce Spatial Indexes. These
indexes enable application-specific JavaScript functions to define the index key and value that are
derived from the data records. These local indexes are distributed and co-located with the data on each
node, thereby providing low latency node-local access to the source data records. MapReduce indexes
provide a powerful mechanism for building application-specific indexes, which can be especially useful
for reporting and interactive analytical workloads. MapReduce View Indexes are accessed from both the
View API and the N1QL query language. The MapReduce Spatial Indexes are accessed via the Spatial
View API that can query data based on a bounding box (rectangle with coordinates).

The Data Service forms the base data management layer of Couchbase and is leveraged by the Indexing
and Query Services.

Indexing Service

In addition to the aforementioned MapReduce Indexes, the Couchbase Server provides an indexing
service to manage Global Secondary Indexes (GSIs). Global Secondary Indexes are aggregated and
stored on a given Index Service node and can be independently partitioned by using a WHERE clause in
the index definition. GSIs provide fast lookups and range scans which are especially useful for interac-
tive applications that use secondary keys. Global Secondary Indexes are defined via the N1QL query
language and are extremely flexible, enabling index creation on a specific subset of fields, on a subset of
records, and on JSON arrays using built-in SQL functions. Additionally, Global Secondary Indexes can be
declared to use in-memory storage optimization, enabling enhanced index performance.

Couchbase indexes are automatically maintained asynchronously from the core Data Service write op-
erations, using high speed in-memory queues to forward mutations (writes) to the appropriate indexer
using Couchbase’s advanced Database Change Protocol (DCP). This asynchronous indexing architec-
ture provides two fundamental benefits: a) write operations within the Data Service can be completed
extremely quickly, and b) developers can create as many indexes as are needed by the application, no
longer having to pay the typical performance and latency penalty that is common in traditional RDBMS
systems. If needed, read operations can optionally request to wait for any pending index updates to be
completed prior to performing the index scan if this is an application requirement for a given query.

Read more about
Data Service & Core
Data Access.

http://developer.couchbase.com/documentation/server/current/architecture/data-service-core-data-access.html
http://developer.couchbase.com/documentation/server/current/architecture/data-service-core-data-access.html

6

Query Service

The Query Service takes a N1QL query and performs the necessary functions to retrieve, filter, and/or
project the data in order to resolve the application request. Actual data and index lookups and scans
may occur in the Data Service or in the Index Service, depending on the data and the indexes that
are required to resolve the query. Applications and developers can use the N1QL REST API, the cbq
shell, the cbc command line tool, or the Query Workbench to query records (JSON documents) using
SQL-like syntax. With N1QL, developers can run ad hoc or prepared queries using standard SQL syntax
(including WHERE clauses and aggregate functions) with JSON-specific extensions to filter, process,
and format query output. N1QL queries will automatically leverage existing MapReduce View and GSI
indexes to resolve GROUP BY, ORDER BY, and WHERE clauses.

The Query Service is where the N1QL query parser, planner, optimizer, and executor reside and it is the
recipient of incoming N1QL queries. It provides the basis for how N1QL queries are executed across the
Couchbase Server, leveraging the facilities that are available in the Data and Indexing Services.

Full Text Service

The Full Text Service (FTS) is available as part of the Couchbase 4.5 Developer Preview. FTS provides
built-in management of full text indexes and queries, based on the Bleve open source project. FTS auto-
matically maintains full text indexes based on the JSON documents stored in the Couchbase cluster. It
also provides a REST-based API to perform rich Full Text Search queries over one or more attributes.

Disaster Recovery & High Availability

Replication is the primary internal mechanism used within the Couchbase Server in order to provide
data that is highly available, even in the event of multiple failures within a Couchbase cluster. Replica-
tion achieves this goal by creating up to three additional copies of the data on alternate nodes. When
replication is enabled, Couchbase Server will create multiple copies of each record, placing them on
different nodes. One copy will be designated as active, while the remaining copies will be designated as
replicas. By default, read and write operations will be directed to the active copy of the data, although
the application can optionally request that reads be directed to one of the replicas. For more information
on how replication and the organization of the data on each Data Service node, please see the Data
Organization section a little farther down.

Couchbase replication is Node and Rack-aware, ensuring that the additional copies of the data are placed
on different Nodes/Racks than the active data. Couchbase replication uses the in-memory DCP protocol
to asynchronously forward data mutations to the replicas. This ensures that mutations are streamed to
the replicas in real time, while also avoiding additional latency on the node with the active data.

Figure 4: Replication

Read a more detailed
discussion on N1QL queries.

Learn more about
Full Text Service.

http://developer.couchbase.com/documentation/server/current/developer-guide/querying.html
http://developer.couchbase.com/documentation/server/current/full-text-intro.html

7

Learn more about
High Availability and
Replication Architecture.

Multiple Data Center and Streaming Data Support

Two of the big challenges in managing today’s complex applications for the Digital Economy are a) the
global distribution of data, often across multiple data centers, and b) the ability to stream data in real
time to other services and application systems. In addition to the replication that occurs within a Couch-
base cluster, Couchbase DCP streams also enable bi-directional, high throughput replication between
Couchbase clusters (which can be located in remote data centers) as well as connectors to external
downstream systems (using Couchbase-provided or application-specific connectors).

DCP streams enable:

nn Cross Datacenter Replication (XDCR) providing geographical bi-directional distribution of data
across Couchbase clusters

nn Automatic backups with full or incremental data snapshots
nn Integration with downstream systems and services like Hadoop, Flume, Kafka, Spark, Storm and

other third-party tools as well as external text search engines like Elasticsearch

Data Access

There are some basic concepts to explore when discussing how Couchbase provides data access: a)
how data is organized, b) how data is written, and c) how data is read.

Data Organization

The basic unit of data in a Couchbase Server is an item (also called a document). An item is a key-value
pair where each stored value is identified by a unique key. Values for an item can be anything, including
a single bit, a binary value, a decimal measurement or a JSON document. Storing data as a JSON
document allows the Couchbase Server to provide extended features such as indexing and querying.

Items are grouped into buckets. The key for any given item must be unique within the bucket to which
it belongs. Buckets can contain a mix of key-value pairs, binary records, and JSON documents. There
is no implied pre-defined structure or schema within a bucket. Buckets are automatically partitioned
(using a built-in hash function on the item’s unique key) into 1024 Virtual Buckets (vBuckets) and evenly
distributed across the Couchbase cluster (within the Data Service). This allows Couchbase to provide a
very flexible, as well as highly scalable data management system. If you need to store something with
a different structure, just add it to the bucket. If you need to manage more data or provide more read/
write throughput, just add more nodes to the cluster. Additionally, buckets provide the resource man-
agement facility for the group of data that they contain, including configuration parameters to control a)
cache and I/O management, b) authentication, c) indexing and views, and d) replication and Cross-Da-
tacenter Replication.

When replication has been enabled, the Couchbase Server will automatically create both active and
replica vBuckets, where the replica vBuckets will contain the additional copies of the data. The replica
vBuckets will be placed on different Data Service nodes than the active vBuckets, thus ensuring optimal
data load balancing and high availability of the data as additional copies of the data are still accessible in
the event of a node failure.

This is different from relational databases which store records (rows) in tables grouped into database
instances. Tables have a strict pre-defined schema (set of columns) and the data being stored must
conform to that schema. Furthermore, relational databases are centrally managed on a given physical
server or virtual machine. If you need to store something with a different structure, you need to modify
the schema first (usually requiring coordination with a Database Administrator). If you need to manage
more data or provide more read/write throughput, you need to buy a bigger server (usually requiring a
lengthy procurement and installation process).

Learn more about XDCR.

http://developer.couchbase.com/documentation/server/current/architecture/high-availability-replication-architecture.html
http://developer.couchbase.com/documentation/server/current/architecture/high-availability-replication-architecture.html
http://developer.couchbase.com/documentation/server/current/architecture/cross-datacenter-replication.html

8

Writing Data to the Couchbase Server

Couchbase Server uses the runtime behaviors that we have been discussing to provide high throughput,
low latency, reliable write operations. Specifically, it brings all of this together thusly:

Writes are sent to the high speed memory-first cache (directly on the node that contains the appropri-
ate vBucket for the item being written).

The new or changed record is placed on several asynchronous high-speed in-memory queues, includ-
ing the Indexer Queue, the Persistent I/O Queue, and the Replication Queue, as well as any additional
external Queues such as XDCR, Kafka, Spark, etc., leveraging DCP.

The application can optionally specify stronger durability assurances for a given write operation, re-
questing that the write be replicated to the memory-first cache on another node(s) or persisted to disk
if required by the application logic.

Write operations are both highly predictable and extremely low latency because they occur within the
in-memory cache and they don’t have to wait for downstream asynchronous actions to occur. Write
operations are also highly scalable because they are distributed to the different nodes hosting the ap-
propriate vBuckets. Therefore, adding throughput is as simple as adding more nodes to the cluster.

Reading Data from the Couchbase Server

Couchbase Server fundamentally supports two kinds of reads: key-based and index-based. When
retrieving records based on the unique key for the item, the Couchbase Server provides full read
consistency (sometimes referred to as read-your-own-write semantics) by ensuring direct access to
the active vBucket for that key. The application can optionally request access to a replica vBucket (also
known as replica reads) if the application logic allows it. When retrieving data based on an indexed key,
the Couchbase Server searches the appropriate index for any matching values and will then fetch the
original primary record unless the query can be resolved within the index. Because indexes are asyn-
chronously maintained, they may be slightly out of date. The application can optionally request that the
index be brought up to date before performing the index scan if the application logic requires it.

A simplified example of the read and write behavior can be found below.

Figure 5: Write Operations

9

Connectivity Architecture

Couchbase Server is a fully distributed database, thus connection management and efficient and secure
communication are key components of the architecture. There are fundamentally four aspects of con-
nectivity and communications that occur in the Couchbase Server:

Client to Cluster Communication

Client applications communicate with Couchbase Server on a set of ports and protocols appropriate to
the API that they are using (Admin, View, N1QL or KV API). Each access point supports both clear text
and encrypted communications. When the client first connects to the cluster, it authenticates and gets
back a copy of the cluster map indicating which nodes are hosting which vBuckets. Once the client SDK
has the cluster map, it has the information it needs in order to authenticate and establish communica-
tions with the appropriate node and vBucket(s) based on the API being used by the client.

Node to Node Communication

Nodes of the cluster communicate with each other to replicate data, maintain indexes, check the health
of other nodes, communicate changes to the configuration of the cluster and more. Node to node com-
munication is optimized for high efficiency operations and may not go through all the client-to-cluster
connectivity phases (Authentication, Discovery, and Service connection).

Cluster to Cluster Communication

Couchbase Server clusters can communicate with each other uni- or bi-directionally using the Cross
Datacenter Replication (XDCR) capability.

External Connector Communication

Couchbase Server also communicates with external products through connectors. There are a number
of connectors that are built and supported by Couchbase (including Spark, Kafka, Elasticsearch, Solr,
etc.) and many that are built by the community or other companies (ODBC driver, JDBC driver, Flume,
Storm, Nagios, etc.). External connectors are typically built using existing client SDKs or admin APIs, or
feed directly from the internal APIs such as XDCR or the DCP API.

Figure 6: Cross Datacenter Replicaiton (XDCR)

Learn more about XDCR.

http://developer.couchbase.com/documentation/server/current/architecture/cross-datacenter-replication.html

10

Administration Communication

Couchbase Server provides an Administrative Web Console, REST API, and a set of Command Line
Interface (CLI) tools for secure configuration, management, and monitoring of your Couchbase Server
installation. The REST API and CLI tools can be used in conjunction with other third-party tools and
used with your custom management and administration scripts to support different operations.

Couchbase Mobile Communication

Couchbase Mobile includes a Sync Gateway which enables secure, scalable, efficient data exchange
between a Couchbase Server cluster and mobile devices running Couchbase Lite.

Figure 7: Connectivity Architecture

Cluster Management

Couchbase Server provides a comprehensive Management UI to visualize, monitor, and manage the
individual nodes and the cluster as well as overall cluster status and statistics. Additionally, the REST-
based Admin API allows developers to directly query and integrate Couchbase administration and man-
agement functionality into their existing tools.

The Couchbase Cluster Manager runs on all of the nodes of the cluster and orchestrates cluster-wide
operations, including a) cluster topology and node membership, b) data placement (distributing vBuck-
ets to nodes), c) topology map change communication, d) centralized management, statistics, and
logging, and e) connection authentication.

Cluster management operations often leverage common underlying runtime behaviors available in the
Couchbase Server, including rebalancing and failover.

Read additional
details regarding the
Administration Interface.

Learn more about
Couchbase Mobile.

http://developer.couchbase.com/documentation/server/current/admin/admin-intro.html
http://www.couchbase.com/nosql-databases/couchbase-mobile

11

Rebalance

The topology of a cluster changes over time, as nodes are added or removed. As the number of nodes
changes, cluster resources may need to be redistributed to ensure optimal reliability, performance, and
load balancing. The rebalance operation is used to redistribute the load and adapt to changes in the
cluster topology. A rebalance also updates the cluster map as needed and forwards the updated map to
all clients. The Cluster Manager coordinates the movement and handoff of data and services during a re-
balance operation. A rebalance occurs completely online, with minimal impact to the ongoing workload.

For example, adding or removing Data Service nodes can trigger a rebalance operation which may re-
quire the incremental movement of vBuckets from one node to another. By moving vBuckets onto or off
of nodes, these nodes become responsible for more or less data and begin handling more or less query
traffic from the applications.

Failover

Given that Couchbase Server distributes data, queries, and services across the nodes within the cluster,
failover is the natural component of the overall architecture. Failover is the process that automatically
re-directs traffic away from one or more failing nodes to the remaining healthy nodes. Failover can
be done automatically by the Couchbase cluster, can be done manually by the administrator or by an
external script. Failover is designed to ensure high availability of data and services even in the event of
multiple failures within a cluster.

Security

Security is a fundamental consideration in database management systems and NoSQL databases are
no exception. However, security is not black and white – it is a continuum of features and functionality
that are available within a database system, as new features are introduced as the product evolves. This
is especially true for NoSQL databases, since security was not the first technical concern that was being
addressed – performance, throughput, volume, and scalability were the first priority for NoSQL data-
bases. As NoSQL databases have become more and more crucial to applications that power the Digital
Economy, security has acquired a growing importance and focus.

At a high level, security includes the following capabilities: Authentication, Authorization, Encryption
and Auditing. In order to comply with important security requirements like PCI-DSS and HIPAA, Couch-
base Server provides a growing set of functionality in all four security areas.

Authentication

Couchbase Server supports multiple authentication mechanisms (SASL, non-SASL, and CRAM) for
Administrators and applications accessing a Couchbase cluster. Administrator authentication via the
web console can also be integrated with existing LDAP authentication services.

Authorization

Application read/write access is defined at the bucket level, enabling the ability to have data sets with
varying degrees of authorized access. Couchbase Server supports role-based authorization for Admin-
istrators, allowing the system to restrict what aspects of the cluster a given administrator can view and/
or modify.

About Couchbase

2440 West El Camino Real | Ste 600
Mountain View, California 94040

1-650-417-7500

www.couchbase.com

Couchbase delivers the world’s highest performing NoSQL distributed database platform. Developers around the world use the
Couchbase platform to build enterprise web, mobile, and IoT applications that support massive data volumes in real time. The
Couchbase platform includes Couchbase Server, Couchbase Lite - the first mobile NoSQL database, and Couchbase Sync Gateway.
Couchbase is designed for global deployments, with configurable cross datacenter replication to increase data locality and avail-
ability. All Couchbase products are open source projects. Couchbase customers include industry leaders like AOL, AT&T, Bally’s,
Beats Music, BSkyB, Cisco, Comcast, Concur, Disney, eBay, KDDI, Nordstorm, Neiman Marcus, Orbitz, PayPal, Rakuten / Viber,
Tencent, Verizon, Wells Fargo, Willis Group, as well as hundreds of other household names. Couchbase investors include Accel
Partners, Adams Street Partners, Ignition Partners, Mayfield Fund, North Bridge Venture Partners, and West Summit.

Encryption

Data in motion – Couchbase Server supports end-to-end Secure Socket Layer (SSL) traffic both from applica-
tions to clusters, between nodes in a cluster and between clusters (XDCR). This encryption covers both data
packets and administration traffic.

Data at rest – Couchbase works with LUKS-based disk encryption on Linux, Bitlocker Drive Encryption
on Windows Server 2008 and 2012, and with Vormetric Data Security platform, which provides disk,
file-level, and application-level encryption.

Auditing/Compliance

Couchbase Server tracks a wide variety of configurable auditable events, primarily focused on admin-
istrative activities. The generated audit logs contain self-describing JSON output and can be connected
directly to external tools such as Hadoop, Flume, Logstash, and syslogd for consumption by down-
stream security compliance applications and tools.

Conclusion

Applications and technologies that power the Digital Economy have a unique set of requirements. If
experience has taught us anything about the technical requirements for technologies in the Digital
Economy, it is that a) “One size never fits all” – flexibility across the technology spectrum is crucial
because each application is different and the requirements evolve rapidly; and b) “If it doesn’t perform
at scale, it’s not going to work” – a corollary to “Go big or go home,” that is driven by the sheer volume of
data and throughput that is growing exponentially.

Not surprisingly, the database management technology that these applications use also must exhibit
these characteristics. Couchbase Server employs an architecture that addresses both of these challeng-
es. Support for key-value as well as JSON document data storage, the variety of indexing and query op-
tions, support for multiple APIs, programming models and languages, the availability of Couchbase and
community supported connectors to external tools all demonstrate an innate understanding of the need
for developer flexibility that is part of the “One size never fits all” principle. Architecturally, Couchbase
Server is designed with scalability and performance at its core: With features like memory-first caching,
asynchronous downstream services (I/O, indexing, and replication), built-in load balancing, as well as
Multi-Dimensional Scaling, Couchbase Server is designed to address the data management demands
of the Digital Economy.

See the Connect15
Presentation for more
information on Vormetric.

Read more about
Couchbase Server’s
security features.

http://www.couchbase.com/nosql-resources/presentations/securing-your-couchbase-server-deployment-using-vormetric.html
http://www.couchbase.com/nosql-resources/presentations/securing-your-couchbase-server-deployment-using-vormetric.html
http://developer.couchbase.com/documentation/server/current/concepts/security.html

