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Abstract: In this article, Maximum likelihood estimates for the shape and scale parameters of two-parameter Rayleigh 

distribution are obtained based on progressive type-II censored samples using the Newton-Raphson (NR) method and the 

Expectation-Maximization (EM) algorithm. A simple algorithm discussed in [2-3] is used for generating progressive type-II 

censored samples. Based on this censoring scheme, approximate asymptotic variances are derived and used to construct 

approximate confidence intervals of the parameters. The performance of these two maximum likelihood estimation algorithms 

is compared in terms of simulation results of root mean squared error (RMSE) and the coverage rates. Simulation results 

showed that in nearly all the combination of simulation conditions the estimators based on the EM algorithm have less root 

mean squared error (RMSE) and narrower widths of confidence intervals compared to those obtained using the NR algorithm. 

Finally, an illustrative example with real-life data sets is provided to illustrate how maximum likelihood estimation using the 

two algorithms works in practice. 

Keywords: Two-Parameter Rayleigh Distribution, Maximum Likelihood Estimation, EM Algorithm, NR Method, 

Progressive Type-II Censoring 

 

1. Introduction 

The two-parameter Rayleigh distribution is a particular 

case of a Weibull distribution widely used in reliability 

theory and life testing. Rayleigh [25] introduced this 

distribution in connection with a problem in acoustics. 

Rayleigh distribution has a nice relation to other distributions 

including Chi-Square and most extreme value distributions. 

In addition, the hazard function of this distribution increases 

with an increase in time. As a result, the distribution has 

attracted several researchers as it occurs in different forms 

including one-parameter Rayleigh distribution, and two-

parameter Burr type X distribution also known as the 

Generalized Rayleigh distribution. According to Surles and 

Padgett, the two-parameter Rayleigh distribution is an 

extreme value distribution that is effective in modeling 

general life data [26]. 

In literature, several distinguished authors have 

extensively studied estimation, inferential, and predictions 

issues for one-parameter Rayleigh distribution although not 

much has been done on two-parameter Rayleigh distribution. 

Interested readers are referred to [9, 10, 15, and 16] for 

exposure to the Rayleigh distribution. 

Recently, Khan, Provost, and Singh [17] considered the 

predictive inference based on doubly censored samples for 

the two-parameter Rayleigh distribution. Very recently, Dey, 

Dey, and Kundu [12] derived interval and point estimates of 

the scale and location parameters of a two-parameter 



2 Murithi Daniel Fundi et al.:  Estimation of Parameters of the Two-Parameter Rayleigh Distribution Based on Progressive  

Type-II Censoring Using Maximum Likelihood Method via the NR and the EM Algorithms 

Rayleigh distribution using progressive Type-II censored 

samples. 

A continuous random variable X is said to have a two-

parameter Rayleigh distribution with a scale parameter λ  

and location parameter µ, if its density function is given by: 

  (1) 

The corresponding distribution function for x >  µ is given 

by: 

               (2) 

The presence of the location parameter makes the two-

parameter more effective in analyzing real life data sets 

compared to one-parameter Rayleigh distribution. 

In reliability testing, an experimenter may cease testing 

before all the experimental units fail due to time constraint or 

lack of funds. Samples that results from such situations are 

known as censored samples. There are numerous censoring 

methods available to an experimenter with type-II and type-I 

censoring schemes being the commonly used schemes in life 

testing. A mixture of these two schemes results to a hybrid 

censoring scheme. However, type-II, type I, and hybrid 

censoring schemes do not give room for removal of 

experimental units before the terminal point of the 

experiment. Progressive type-II censoring scheme allows 

such removal hence it gained popularity in life-testing and 

reliability experiments. In this paper, we consider progressive 

Type-II censoring scheme. 

In the recent statistical literature, progressive censoring 

scheme has attracted many reliability practitioners and 

theoreticians. Interested readers are referred to [2-4]. For 

more recent references, refer to [24, 27], as well as 

references, cited therein. 

Recently, Lio, Chen, & Tsai [19] investigated inference of 

the estimated parameters of the generalized Rayleigh 

distribution based on progressive type-I interval censoring 

scheme. The study reviewed that use of progressive type I 

interval censored samples to estimates the MLEs using 

Expectation Maximization algorithm yields more accurate 

and precise parametric estimates. Very recent, Dey et al. [12] 

derived interval and point estimates of the scale and location 

parameters of a two-parameter Rayleigh distribution using 

progressive Type-II censored samples. 

The purpose of this article is to develop an estimation 

procedure for the scale and shape parameters of the two-

parameter Rayleigh distribution based on progressive type-II 

censoring scheme. We first derive the maximum likelihood 

estimators of the unknown parameters. Since the MLEs of 

the shape and scale parameters of the two-parameter 

Rayleigh distribution cannot be obtained in the explicit form, 

we propose the use of the NR and the EM algorithms to 

compute the MLEs. Progressive type-II right censored 

samples are considered as incomplete data hence both the 

EM and the NR algorithms are suitable numerical iterative 

procedures for finding the MLEs. For more information 

regarding the EM algorithm including its application and 

advantages compared to those of NR method readers are 

referred to [1, 18, and 29]. For derivation and application of 

the Newton-type method refer to [20, 21, and 23]. 

The rest of the article is organized as follows. In section 

2, progressive type-II censoring scheme is briefly 

discussed, the MLEs of the scale and location parameters 

are derived based on progressive type-II censoring using the 

EM and NR algorithms. Based on this censoring scheme, 

approximate asymptotic variances are derived and used to 

construct approximate confidence intervals of the 

parameters. In Section 3, simulation results and discussions 

are provided. In section 4, an illustrative example is 

provided using real-life data sets. In the final section, a 

conclusion is provided. 

2. Parameter Estimation 

2.1. Progressive Type-II Censoring Scheme 

Let n identical items be put on a life-testing experiment at 

time 0 with the corresponding lifetimes X1, X2, X3,…, Xn 

being independent and identically distributed with the density 

function given in equation (1). Further, suppose that integer 

m <n is fixed at the beginning of the experiment (where m <n 

is the number of units to be observed completely until 

failure) with  and specified. 

This implies that progressive censoring will occur in m 

failure stages as follows. At the time of the first failure, a 

random sample of size R1, (X1: m: n) surviving items are 

randomly drawn from n-1 remaining surviving units in the 

experiment leaving n-1-R1 survival units. At the time of the 

second failure, a random sample of size R2, (X2: m: n) is 

randomly drawn from n-2 surviving units leaving n-2-R1 

surviving items in the experiment. The process is continued 

until the m
th

 failure time Xm:n:m is evident (the m
th

 stage) 

when all Rm = n - m - R1 - R2 - … -Rm-1 surviving items are 

removed from the life-testing experiment. The set of an 

observed lifetime  is a 

progressively type II censored sample. According to 

Balakrishnan and Aggarwala, a progressively type –II 

censoring scheme consist of m failure stages and R1, R2,…, 

Rm random samples, such that  with 

fixed before the study. Where  denotes the j
th 

censored 

random sample [2]. 

It is imperative to note that, if m=0 there is no censoring, if

, then n=m (complete sample 

situation), and if , then

, which is the conventional type-II right 

censoring scheme. In this article, we will use in place of

0jR ≥
1

m

j

j

R m n
=

+ =∑

1: : 2: : : :,  ,  ...,m n m n m m nX X X X=

1

m

j

j

n m R
=

− =∑ 'jR s

jR

1 2 ... 0mR R R= = = =

1 2 1... 0mR R R −= = = =

mm n R= −

jx
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for j=1, 2, 3, …, m to make the notation simple. 

2.2. Maximum Likelihood Estimation Based on Progressive 

Type-II Censoring 

MLE is one of the standard techniques for estimating 

unknown parameters of distribution or a model. The principle 

concept behind this method is to select the value of the 

parameter under which the underlying data is most likely to 

be observed. 

Suppose n identical units are placed at the same time on a 

life-testing experiment. Let x1: n, x2: n…xm:n be a progressive 

type-II censored random sample from density function in 

equation (1). According to Balakrishnan and Aggarwala, m 

ordered failures out of the sample of size n are observed 

under this scheme and random samples R1, R2 … Rm of 

survival units drawn and removed from the experiment at 

each of m
th

 failure stage [2]. The likelihood function based 

on progressive type-II censored random samples as in [2] is 

given by: 

                                           (3) 

Substituting the value of f (.) and F (.) in equation (3), the log likelihood function of µ  and λ  constructed on progressive 

type-II censored sample ignoring the constant term can be written as follows: 

                                  (4) 

The log-likelihood function of (4) is written as: 

                                           (5) 

2.3. Expectation-Maximization (EM) Algorithm 

Let 
1: : 2: : : :

, ,  ..., 
m n m n m m n

X X X X= with 

1: : 2: : : :
< ...<

m n m n m m n
X X X<  denotes the progressive type-II 

right-censored data from a population with density function 

and distribution given in equations (1) and (2), respectively. 

We propose the use of EM algorithm discussed in [7] as 

follows. 

Let some of the complete data vectors W be observed such 

that W = (Y; Z), where ( )1 2, ,..., mZ z z z=  and

( )1 2,  ,..., 
jj j j jRZ Z Z Z= , for 1,  2,..., j m= denotes the 

censored data (missing data) and ( )1 2, ,..., mY y y y= denotes 

the observed data. 

The log-likelihood function of the complete data set can be 

written as: 

1 1 1 1 1

2 2

1

( ; , ) ln ln( ) ( ) ln( ) ( )
j jR Rm m m m

c j j jk jk

j j j k j k

l W n y y z zµ λ λ µ λ µ µ λ µ
= = = = = =

∝ + − − − + − − −∑ ∑ ∑∑ ∑∑                (6) 

The MLEs of the parameters λ  and µ based on W are obtained as: 

( ) ( ) ( )2 2

1 1 1

; ,
0

jRm m
c

i jk

j j k

l W n
y z

µ λ
µ µ

λ λ = = =

∂
= − − − − =

∂ ∑ ∑∑                                         (7) 

( ) ( ) ( ) ( ) ( )
1 1 1 1

1

1 1

1; ,
2 2 0

j jR Rm m m m
c

j j jk jk

j j j k j k

l W
y y z z

µ λ
µ λ µ µ λ µ

µ = = = = = =

− −∂
= − − + − − − + − =

∂ ∑ ∑ ∑∑ ∑∑                 (8) 

The E-Step of the EM algorithm requires substituting any function of Zjk (say h (Zik)) by E (h (Zjk) /Zjk>yj). Hence, equations 

(7) and (8) becomes 

( ) ( ) ( ){ }2

1 1 1

2; ,
/ 0

jRm m
c

i jk jk j

j j k

l W n
y E z Z y

µ λ
µ µ

λ λ = = =

∂
= − − − − > =

∂ ∑ ∑∑                                           (9) 

( ) ( ) ( ) ( ){ }1

1 1

1

1 1

; ,
2 /

jRm m m
c

j j jk jk j

j j j k

l W
y y E z Z y

µ λ
µ λ µ µ

µ = = =

− −

=

∂
= − − + − − − >

∂ ∑ ∑ ∑∑  

: :j m nX
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( ){ }
1 1

2 / 0
jRm

jk jk j

j k

E z Z yλ µ
= =

+ − > =∑∑                                                                (10) 

We make use of theorem by Ng et al. [22] that states that 

given j jY y= ; the conditional distribution of Zik follows a 

truncated two-parameter Rayleigh distribution with left 

truncation at yj. Hence, 

( ) ( )
( )/ / ,

1

W j
Z Y j j j

w j

f z
f z z y

F y
= >

−
Y  

The conditional expectations in equations (9) and (10) are 

obtained as: 

( ){ } ( )2

2
2

/
2

3

jk jk j

j

E z Z y

yλ
µ

λ

µ 
 =

+
− >

−
          (11) 

( ){ } ( )1 1

/
jk jk j j

E z Z y yµ µ
− −

− > = −                 (12) 

( ){ }
( )

( )

2

1

/
j

jk jk j

j

y

E z Z y
y

λ µ
µ

λ µ

 − +  − > =
−

             (13) 

The M-step of the (h+1)
th

 iteration of the EM algorithm is 

completed by substituting the above conditional expectations 

on to equations (9) and (10) as follows: 

( ) ( )
( )

1

2

2

1

2; ,
0

2

3m m
c

j j

j j

jl W n
y R

yλ

λ

µµ λ
µ

λ λ= =

 
∂  

−
= − − − =

∂

+
∑ ∑  

Hence, 

( )

( )
( )2

1

1 1

2
2

2

3

h

h h
m m

h

j j h
j

j

j

n

y R
y

λ
λ

µ
µ

λ

+

= =

=
 
  −

−
+

+
∑ ∑

    (14) 

1hλ +
 is the estimate of λ  at the (h+1)

th
 iteration of the EM 

algorithm. 

Once 
( )1hλ +

 is obtained, µ
(h+1)

 is obtained as follows; 

( ) ( )( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( )

( )

( ) ( ) ( )
( ) ( )

( ) ( )
( )

11 1

1 1 1

21

1

1
1

1

21

1 1

1
1 1 1

1

1

1

1

; ,
2

1

2 0

1
2

2

m m m
c h h h h

j j j

j j j

h h
m j

h

j h h
j j

h h
m m m j

hh h
m

j j j j h h
j j j jj

jh

h

l W
y yi R y

y

R
y

y
y R y R

yy

m m

µ λ
µ λ µ µ

µ

λ µ
λ

λ µ

λ µ
µ µ λ

λ µ
µ

λ

−+ +

= = =

+

+
+

=

+
− +

+

−

−

= = =
=+

+

∂
= − − + − − − +

∂

 − +  + =
−

  − +   − + − − − 
 = −

∑ ∑ ∑

∑

∑ ∑ ∑
∑

                            (15) 

The value 
( ) ( )( )1 1

,
h hλ µ+ +

 is then used as a new value of 

( ),λ µ  in the succeeding iteration. The MLEs of ( ),λ µ  can 

be obtained by repeating the E-step and M-step until 

convergence. 

2.4. The Newton-Raphson Algorithm 

We will directly extend the argument for deriving the 

Newton-Raphson algorithm for optimization in one 

dimension to two-dimensional problems as discussed by 

Devore and Berk [8] giving the two-parameter Newton-

Raphson method as: 

( ) ( )( ) ( )( )1 1h h hh
J S

+ −= +θ θ θ θ                    (16) 

Where ( )J θ  is the Hessian matrix (a matrix with (i, j) 

entry equal to the second derivatives with respect to θ
j
 and θ

i)
 

and ( )S θ  is the score function (a vector of derivatives). 

From equation (5), ( )J θ  and ( )S θ  are obtained as: 

( )
( )( )

( ) ( )( )
1

1

1

1

2

1

2 1

m

j j

j

m m

i j j

j j

m
R x

x R x

µ
λ

µ λ µ

=

= =

−

 − + − 
 =
 

− − + + −  
 

∑

∑ ∑
S θ      (17) 

( )( )
( ) ( )

( )( ) ( )

2
1

1

2

1

2 1

2 1 2

m
h

j jh
jh

m m
h h h

j j j

j j

m
R x

J

R x x n

µ
λ

µ µ λ

=

=

−

=

 − + − 
 =
 

+ − − − − 
 

∑

∑ ∑
θ  (18) 

Hence, equation (16) becomes 
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( )( )
( ) ( ) ( )

( )( )
( ) ( )( )

1

2 1 11 2

2

2

1 1

2 1 2 2 1
1

1

1 1 1

j j j j

n
j j j j j j

m mm mh hR x R xh h h hj j

h m m m mh h h h h hR x x x R x
j j j j

µ µ
λ λ λ λ
µ µ µ µ λ µ λ µ

−

− −

−
+ −∑ − + −∑+ = =

= +
+ − −∑ ∑ − − + + −∑ ∑

=

−

= =

−

=

  
                    

   

   (19) 

The procedure is reiterated until there is no significant 

difference between 

1

and 

h h

h

λ λ
µ µ

+
 
  

   
   

 

2.5. Approximate Interval Estimation 

The approximate asymptotic variances of the shape and the 

scale parameters and the confidence intervals are obtained as 

follows: 

Let 
1: : 2: : : :

, ,  ..., 
m n m n m m n

X X X X= with 

1: : 2: : : :
< ...<

m n m n m m n
X X X<  denoting a progressive type-II 

right-censored sample from a population with density and 

distribution functions given in equations (1) and (2), 

respectively. 

The Fisher information matrix ( ),I λ µ  is then obtained by 

taking the expectation of minus the second derivatives of 

equation (3.6) with respect to θ
j
 and θ

i
. Cox and Hinkley [6], 

established that if ( ),µ λ  belongs to an open interval of a 

real line, then some of Cramer-Rao regularity conditions are 

satisfied, and as the sample size increases, the distribution of 

the MLE tends to be approximately bivariate normally 

distributed with mean ( ),λ µ  and covariance matrix

( )1 ,I λ µ−
. In practice, ( )1 ,I λ µ−

 is estimated by ( )1 ˆ ˆ,I λ µ−
. 

The distribution of the MLEs is denoted by: 

, where ( )0
ˆ ˆ,I λ µ  is the 

observed information matrix given by 

                      (20) 

Using equation (3.6), the elements of the observed 

information matrix can be obtained as follows: 

( )2

2 2

; ,l X m
E

µ λ
λ λ

 ∂ − = ∂  
                    (21) 

( ) 22

2
 ; ,

2 1
el X

E m
λµµ λ

λµ
λ µ λµ

− ∂ 
 − = +   ∂ ∂  

             (22) 

( ) ( )

( )

2

2

2

 

0

2
2; , jx

j

j

µ
l X

E n dx
x

e
λµ λ

λ λ
µ µ

−∞ − ∂ − = + = ∞ ∂ −  
∫  

Since, 

( )

( )

2
 

0

jx

j

j

µ

x
x

e
d

λ

µ

∞ − −

= ∞
−∫  

The exact asymptotic variance of µ̂  cannot be obtained in 

explicit form. We rely on the results of Dey, Dey, and Kundu 

[11] who applied Corollary of Theorem 3 of Smith [28], to 

approximate the asymptotic variance of µ̂  by ( )ˆV µ µ−  

using the inverse of the observed information as:

 

              (23) 

Hence, 

( )

( )

2

2

1

2

; , 1

1
 2 ˆ ˆ

m

j

jx

l X
E

n
µ

µ λ
µ µ

=

−

 ∂ − ≈ ∂  −  + ∑
         (24) 

Using equation (20), a ( )1 100%α−  approximate 

confidence intervals for λ  and µ  are obtained as 

           (25) 

Respectively, where, 
2

zα  is the 
2

zα -th percentile point of 

the standard normal distribution. 

3. Results and Discussions 

In this section, a simulation study is performed to compare 

the performance of MLEs of the two-parameter Rayleigh 

distribution obtained using the NR method and the EM 

algorithm based on progressive type-II censored samples. 
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Progressive type-II is right censored samples from two-

parameter Rayleigh distribution were generated using the 

algorithms discussed in [2-3]. 

In comparing the performance of the MLEs, four measures 

considered were the root mean squared error (RMSE) and the 

95% approximate confidence width of MLEs. Suppose ˆ
ikθ  is 

the MLE of θ  for the i
th

 replication of the 
th

k  algorithm 

method simulated, then the Bias and RMSE of ˆ
kθ  are 

computed as follows: 

i. , where ( ),θ λ µ= and 

k EM= or NR  

ii.  

In this paper, samples of sizes 20, 30, 40, 50, and 70 were 

used and the censoring schemes considered are given in 

Table 1 and 2 below. 

Table 1. Censoring Schemes 1 2( ,  ,  ....,  )mR r r r=  for 0.5,1λ = , and 0.3,0.6,1µ = . 

n m 
1

m

j

j

R
=
∑  Censoring Schemes (i, ii, iii, iv) 

20 
15 5 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1 

18 2 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 

30 
20 10 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1 

25 5 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 

Table 2. Censoring Schemes 1 2( ,  ,  ....,  )mR r r r=  for ( 1,  =0.3)θ λ µ= = with fixed number of failures. 

n m 
1

m

j

j

R
=
∑  Censoring Schemes 

20 

18 

2 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 

30 12 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 

40 22 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2 

50 32 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2 

70 52 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2 

It is imperative to note that, in all the above censoring schemes no restriction has been imposed on the maximum number of 

iterations and convergence is assumed to occur when the absolute differences between successive estimates are less than 

0.0001. 

Table 3. The RMSE and the width of 95% approximate confidence intervals of the MLEs for the parameters of two-parameter Rayleigh distribution under 

progressive type-II censoring for the EM and NR algorithms using scheme 1. 

  RMSE of ( )λ̂  RMSE of ( )µ̂  Width of ( ) Width of ( ) 

  EM NR EM NR EM NR EM NR 

0.5 

0.3 0.03373 0.14692 0.04120 0.10349 2.21181 2.86311 3.14514 4.25909 

0.6 0.03820 0.14833 0.09925 0.13286 2.19209 2.52055 3.11384 3.57085 

1 0.03912 0.16444 0.21569 0.13532 2.16135 2.22008 3.05599 2.94556 

1 

0.3 0.10479 0.33258 0.07826 0.10511 2.39961 2.52933 2.86799 2.94822 

0.6 0.12312 0.34156 0.11592 0.18279 2.39146 2.47646 2.84873 2.82692 

1 0.14261 0.36837 0.12607 0.19510 2.32661 2.46077 2.71757 2.71373 

Table 4. The RMSE and the width of 95% approximate confidence intervals of the MLEs for the parameters of two-parameter Rayleigh distribution under 

progressive type-II censoring by the EM and NR algorithms using scheme 2. 

  RMSE of ( )λ̂  RMSE of ( )µ̂  
Width of ( ) Width of ( ) 

  EM NR EM NR EM NR EM NR 

0.5 

0.3 0.01329 0.06867 0.03287 0.05661 2.23332 2.31569 3.18513 3.23865 

0.6 0.03779 0.08229 0.12121 0.11653 1.75011 1.84819 2.22171 2.29613 

1 0.02631 0.12001 0.17521 0.21878 2.05572 2.12799 2.82191 2.92994 

1 

0.3 0.06543 0.27941 0.05217 0.13848 2.29415 2.37595 2.74638 2.77699 

0.6 0.08114 0.30678 0.06869 0.26369 2.25967 2.33232 2.70264 2.73948 

1 0.09298 0.33543 0.07928 0.39274 2.21544 2.36355 2.61828 2.67069 

λ̂ û

λ µ

λ̂ û

λ µ
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Table 5. The RMSE and the width of 95% approximate confidence intervals of the MLEs for the parameters of two-parameter Rayleigh distribution under 

progressive type-II censoring by the EM and NR algorithms using scheme 3. 

  RMSE of ( )λ̂  RMSE of ( )µ̂  
Width of ( ) Width of ( ) 

  EM NR EM NR EM NR EM NR 

0.5 

0.3 0.12187 0.31759 0.15321 0.25552 2.25621 2.72891 3.33628 3.62619 

0.6 0.15032 0.32572 0.20077 0.26295 2.18092 2.40089 3.23173 3.37592 

1 0.21156 0.34757 0.25555 0.30160 2.05645 2.28516 3.06527 3.13232 

1 

0.3 0.23239 0.34905 0.16239 0.14971 2.32438 2.32551 3.00063 2.94679 

0.6 0.26722 0.39766 0.19507 0.19629 2.29471 2.29563 2.95629 2.90378 

1 0.29689 0.44535 0.23105 0.27945 2.22596 2.71548 2.84875 2.87882 

Table 6. The RMSE and the width of 95% approximate confidence intervals of the MLEs for the parameters of two-parameter Rayleigh distribution under 

progressive type-II censoring by the EM and NR algorithms using scheme 4. 

  RMSE of ( )λ̂  RMSE of ( )µ̂  
Width of ( ) Width of ( ) 

  EM NR EM NR EM NR EM NR 

0.5 

0.3 0.07763 0.18979 0.12649 0.18551 2.28813 2.58962 3.32442 3.44308 

0.6 0.09508 0.23211 0.16778 0.21962 2.13476 2.30886 3.20137 3.29517 

1 0.14153 0.27896 0.22908 0.23665 2.03380 2.20992 3.04246 3.05544 

1 

0.3 0.16660 0.32116 0.13359 0.12908 2.30450 2.31269 2.98479 2.93725 

0.6 0.23003 0.33009 0.16648 0.15105 2.26412 2.29418 2.92940 2.86821 

1 0.23649 0.37962 0.20816 0.21444 2.20525 2.28209 2.82867 2.83401 

Table 7. The RMSE and the width of 95% approximate confidence intervals of the MLEs for the parameters of two-parameter Rayleigh distribution under 

progressive type II censoring by the EM and NR algorithms with fixed number of failures when . 

Sample RMSE of ( )λ̂  RMSE of ( )µ̂  
Width of ( ) Width of ( ) 

n m EM NR EM NR EM NR EM NR 

20 

18 

0.27922 0.53333 0.25149 0.35995 2.42022 2.62368 3.04994 3.31897 

30 0.26571 0.49180 0.15816 0.27571 2.28307 2.46398 2.92599 3.20908 

40 0.22567 0.43848 0.14770 0.22269 2.23012 2.38406 2.91659 3.18989 

50 0.20262 0.35030 0.13070 0.17341 2.12142 2.21689 2.83493 2.92433 

70 0.16258 0.26483 0.11252 0.11146 2.05005 2.08809 2.78633 2.78706 

 

A Summary of Results from Tables 3-7 is Provided Below 

i. The MLEs realized using the EM algorithm have lower 

levels of RMSE compared to those obtained by the NR 

method in nearly all combinations of simulation 

conditions. 

ii. The widths of 95% approximated confidence intervals 

of parameters and  obtained using the EM 

algorithm tends to be lesser compared to those obtained 

by NR method in nearly all combinations of simulation 

conditions. According to Gulhar et al., a smaller width 

is better because it captures the true parameter value 

(CV) within a small span and the results are more 

accurate and precise [13]. 

iii. For a fixed sample size n (e.g. n=30), we noted that as 

the number of failures (m) increases (i.e. from 20 to 

25), the RMSE and widths of confidence intervals of 

MLEs obtained using both the EM and NR algorithms 

decreases. For RMSE and widths of the confidence 

intervals (compare Table 3 and 4, and Table 5 and 6). 

This implies that the performance of MLEs becomes 

better. 

iv. When the number of failures m is fixed, we observed 

that as the sample size n increases the RMSE, and the 

widths of 95% approximate confidence intervals of 

MLEs obtained using both the EM and NR algorithms 

decreases (see Table 7). This indicates that the MLEs 

are consistent in nature. 

v. When the value of  is fixed, we noted that as the 

value of  increases, the RMSE for all the estimates 

increases, which indicates the consistency of the 

estimators. 

vi. Additionally, if m=0 there is no censoring, under this 

condition zero samples are generated hence it is not 

possible to obtain the corresponding MLEs. On the 

other hand, if , then n=m (complete 

sample situation), under this condition estimates are 

extremely biased. 

4. Example Using Real-Life Data 

Now consider a real-life data set to illustrate how 

maximum likelihood estimation using the NR method and the 

EM algorithm for the two-parameter Rayleigh distribution 

works in practice. We have utilized progressive type-II 

censoring to analyze a real data representing the survival 

times (in years) of 46 patients given chemotherapy treatment 

λ̂ û

λ µ

λ̂ û

λ µ

( =1, =0.3)θ λ µ=

λ̂ û

λ µ

λ
µ

1 2 ... 0mR R R= = = =
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as discussed in [5]. The discussion indicated that the 

Rayleigh Distribution is acceptance for this data set (provides 

a good fit). The data set is given as follows: 

0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 

0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 

0.507, 0.529, 0.534, 0.540, 0.570, 0.641, 0.644, 0.696, 

0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 

1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 

3.658, 3.743, 3.978, 4.003, 4.033 

From the above data, progressive type-II censored samples 

were generated with m=20, 30, and 40 as follows: 

Table 8. Censoring scheme  and progressive type-II censored samples for different values of m using real-life data sets.
 

n m 

 

Censoring Schemes Progressive type-II Censored samples from the original data 

46 

20 26  0.047, 0.164, 0.260, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.570, 

0.641, 0.644, 0.696, 0.841, 1.447, 2.343 

30 16  
0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 
0.501, 0.507, 0.529, 0.534, 0.540, 0.570, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.485, 

2.178, 3.578 

40 6  
0.047, 0.164, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.570, 
0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 

2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033 

Table 9. The MLEs and the corresponding widths of 95% approximate confidence intervals for the unknown parameters of TR distribution for different values 

of m.
 

Sample   Width of ( ) Width of ( ) 

M EM NR EM NR EM NR EM NR 

20 0.04869 0.42304 0.46229 0.58781 0.02814 0.24451 0.07393 0.35723 

30 0.01932 0.09094 0.39005 0.68766 0.01117 0.05256 0.12923 0.21104 

40 0.00646 0.01108 0.19252 0.57345 0.00373 0.00641 0.64586 0.08998 

 

From the table above, it is observed that: 

i. The MLEs obtained using the EM algorithm have 

narrower widths of confidence intervals compared to 

those obtained using NR method except for  when 

m=40. A smaller width is better because it captures the 

true parameter value (CV) within a small span and the 

results are more accurate and precise. 

ii. For both methods, the MLEs and the width of 95% 

approximate confidence intervals decrease as the 

number of failures increases (i.e., from 20 to 40) for 

nearly all the values of m, which indicates the 

consistency of the estimators. 

5. Conclusions 

In this study, the problem of estimation of the MLEs for 

the parameters of the two-parameter Rayleigh distribution 

based on generated progressive type-II censored samples was 

addressed. In particular, the MLEs were derived using the 

NR and the EM algorithms. Approximate asymptotic 

variances of the MLEs were also derived and used to 

construct approximate confidence intervals of the parameters. 

The simulation results clearly show that the MLEs 

obtained using the EM algorithm have lower levels of RMSE 

and narrower widths of the corresponding confidence 

intervals compared to those obtained using the NR algorithm. 

However, the NR method may yield better estimates 

especially when  is greater than 70%. This shows that 

both the EM and NR algorithms can be used in estimation 

problem, but we can conclude that the EM algorithm is 

highly recommended as it provides better estimates. Al-

Zahrani and Gindwan [1] and Helu, Samawi, & Raqab [14] 

obtained similar simulation results. 
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