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1. Definitions and outline of results. This paper contains the first exam-

ples of normed spaces not isomorphic to strictly convex or smooth spaces.

The table below shows the properties now known to be possessed by a num-

ber of special Banach spaces; some conclusions and unsolved problems are

discussed after the table. §2 contains the positive results which enable us to

show that the special examples do have the properties asserted, while §3

contains the specific calculations which show that some spaces can not be

made smooth or strictly convex. §4 contains an example related to the im-

possibility of some generalizations of theorems of Kakutani and Michael on

simultaneous extension of continuous functions; the proof presented for this

example shows that this topic is, slightly, related to the one discussed in de-

tail here.
The following definitions and notation are used throughout the paper.

Definitions. Let B be a normed linear space. If every chord of the unit

sphere of B has its midpoint below the surface of the unit sphere, then B is

called strictly convex (written SC); if through every point of the surface of the

unit sphere of B there passes a unique hyperplane of support (that is, a

tangent hyperplane) of the unit sphere, then B is called smooth (written

SM); if both occur, then B is called SCM. If B is isomorphic to an SX space,

X = C, M, or CM, then B is called an sx space.

If 7 is an index set, let A = A(7) be the Tyhonov cube; that is, the topo-

logical product P,gr7<, where each Ji is the closed interval [ — 1, l]. For

p^l let Hp=Hp(I) be the set of those elements x of A(7) such that

El x(i)\p :g 1.
i&t

Also define

m(I) space of all bounded real functions on 7 with ||x|| = lub.gr \x(i)\.

mo(I) subspace of all those x in m(I) which vanish except on a countable

set.

co(I) subspace of those x in m(I) for which for each e>0 the set of i with

[x(i)| >e is finite; that is, Co(7) is the set of functions vanishing at infinity

on the discrete space 7.

lp(I) for p^l, the set of those real functions x on 7 for which \\x\\tjl

= [E.-erl*WH1/p<"-
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Given a set X, a Borel field F of sets in X, and a countably additive, non-

negative set function p defined on F, fx is called finite, or cr-finite, if there is a

set Xi, or a sequence of sets Xj, in F each of finite p-measure such that every

set in F is essentially contained on Xi, or in \JjXj.

Lp(fx) space of measurable functions on X such that||/||Z.j,= [/|/(x)j pdfx]1/p

<oo.

M(fx) space of essentially bounded measurable functions on X with es-

sential lub for norm.

C(X) (if X is a topological space) is the space of real-valued, bounded,

continuous functions on X.

In the table below Ic and I« represent countably infinite and uncountable

index sets. 0 is a finite or tr-finite measure sufficiently nontrivial that M(<j>) is

not finite-dimensional; v is a finite or cr-finite nonseparable measure; X is a

non-tr-finite measure. A+ (a — ) in the table means that the space in that row

has (has not) the property in that column; a blank means that the precise

position is not yet known.

scm       sc and sc, not sm, not not sc

sm sm sc not sm

B separable + + — — —

co(lu) + - - -

kdu) +

mo(Ic) _ _ _l. _ _

m0(Iu) — — — — +

Li(v)

Li(X) - -

M(<f>) +
M(X) +

lP(T) and Lp(jx),p>I + + - - -

C(K(IU)) +

From the above examples and from the results stated more fully in the

next section some questions are answered and some new questions made per-

tinent.

(i) There is a Banach space, Co(Ic), which is scm; its conjugate space (equiv-

alent to li(Ic)) is scm; its second conjugate (equivalent tom(Ic)) issc, notsm; its

third conjugate is not sm, and whether or not sc is mixed up with (v) below.

(ii) There is a Banach space co(Iu) which is sc and sm; its conjugate space is

sc but not sm; its second conjugate space is neither.

For reflexive spaces we have full duality between SC and SM, and also

between sc and sm. The Lp(fx), p>l, are examples of SCM reflexive spaces.
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(iii) There is no example known of a reflexive space which is not sc or of

such a space not sm. Klee has conjectured that perhaps every reflexive space is

sc (hence by duality sm); this property, if verified, could be used with weak

compactness of spheres as a substitute for uniform convexity in many argu-

ments. It was so used, for example, in a generalization of one of the ergodic

theorems of Alaoglu-Birkhoff. (Day, Bull. Amer. Math. Soc. (1941) pp. 313-

317.)
For a single nonreflexive B there are examples which are scm, or nonsep-

arable but sc and sm, or sc but not sm, or neither sc nor sm.

(iv)  There is no example known to be sm but not sc.

The most likely present candidate is an Li(j») space; by Theorem 6 we have

(v) If every Lx(<\>) is sc, then every Lx(p) is sc. Restating this in terms of

the abstract 7,-spaces of Kakutani, Ann. of Math. vol. 42 (1941) pp. 523-537.

(vi) Every (AL) space is sc if and only if every (AL) space with unit is sc.

(vii)  There is no example known of a nonreflexive nonseparable scm space.

For a pair of spaces B and B* in the nonreflexive case there are examples

with B and B* both scm, or B scm and B* sc but not sm, or B sc but not sm

and B* neither.

(viii)  There is no example known with B sm and B* not sc.

2. Some positive results. In the notation of Klee [4], if 5 stands for one

of the two properties SC or SM, let S* stand for the other. It is known

(Alaoglu-Birkhoff [l, Footnote 13], or Klee [4, Al.l]) that

(1) If B is not S, then B* is not S*; that is,

(1') If B* is S*, then B is 5.

For reflexive spaces this means that the properties SC and SM are truly dual

to each other; since an isomorphism of either B or B* determines an isomorph-

ism of the other (in this reflexive case) it follows that in reflexive spaces the

properties sc and sm are also dual. For nonreflexive spaces an isomorphism of

B* may not be determined by an isomorphism of B, but Klee has observed

(A1.2) that
(2) If B* is s* and if the new unit sphere is w*-closed, then B is 5.

In later applications it will be convenient to rephrase (2) as

(2') If B* is s* and if the new norm in B* is w*-lower semi-continuous

and S*, then it is the conjugate norm of a new norm in B which is S.

Clarkson [2] showed that every separable normed space is sc. His proof

uses only the existence of a bounded countable total set of linear functionals

{fj\ of norm 1; mapping £ into l2 by setting 7x= {fj(x)/2>}, 7 = 1, 2, • • • , we

see that T is one-to-one and linear from B into the scm space l2; the rest of

Clarkson's proof can be formalized as of proof of (Klee A1.4(v)).

(3) If and only if there is a one-to-one and linear map of B into an SC (or

even sc) space B', then B is sc.

The identity map of lx(I) into /2(7) combined with Theorem 7 shows that

no such result can hold for smoothness. The best of which I am now aware is
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Theorem I. If B is isomorphic with a subspace of a space with S (or s),

then B is s.

It suffices to prove that if B is a subspace of B' and if B' is 5, so is B.

For SC this is trivial since all calculations take place in one plane at a time.

If B is not SM, there is a point x£2J and two elements/i and/2 in B* of norm

one such that/i(x) =||x|| =/2(x). By the Hahn-Banach theorem each/< has

an extension <f>i of norm 1 in B'*; hence B' is not smooth if B is not.

A related result is

Theorem 2. If B is an SM (or even sm) space and if there is a one-to-one

linear T from B into an scm space B', then B is scm.

We may assume that B is SM and that B' is SCM; then let p(x) =\\Tx\\B'

and let | x| =||x|| +p(x). If B" is B renormed with | • • • |, we see that B" is

sc (by the proof of (3)). But by the Hahn-Banach theorem smoothness is

equivalent to differentiability of the norm in every plane section through 0.

T is an isomorphism in every such plane, so the functions || • • • || and p( • • ■)

are both differentiable in every such plane; the same is true of their sum.

We also need a well-known fact:

(4) The norm in a conjugate space is a lower semi-continuous functional

when the space is given its w*-topology; that is, if w*-Ymia /»=/, then

liminf.|l/.||2;l|/f|.

Theorem 3. Let {xt} be a sequence of elements of the unit sphere of a normed

space B, and for each fGB* let Tf= {f(xi)/2i}. Then T(B*)Ql2 and
(a) T is continuous if the w*-topology is used in B* and coordinatewise con-

vergence is used in l2.

(h) If p(f) = 1 7/|| ij, then p is w*-lower semi-continuous.

(c) If |/| =[/||+p(/), then | ■ • • | is w*-lower semi-continuous, so

U' = j/| |/|^l} is w*closed in B*.

(a) is trivial; (b) follows from (a) and the simple calculation that if

x"Gk and lim„ x? = Xi for each i, then Y< \x'\ 2^hm inf„ Y* |x"|2- (c) fol-

lows from (b) and (3), as the sum of lower semi-continuous functions has the

same property.

Clarkson [2] showed that every separable space is sc; Klee [4, Al.ll]

showed from this and (2) that every separable reflexive space is sc and is sm.

The next result improves both of these.

Theorem 4. // B is separable, then B is scm.

If B is separable, take the sequence {x,} of Theorem 3 to be dense on the

unit sphere of B. Then (Clarkson's result or (3)) B* is SC under the new

norm | ■ • • |. But the new unit sphere is w*-closed; by (2') or (2) B is SM

under a new norm which we also denote by |  • • • |. Now let  [/,}  be a
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bounded sequence of elements of B* total over B, and let Vx= {fj(x)/2>\.

Then V is one-to-one and linear from B into the SCM space l2; by Theorem 2,

B is scm.

The next theorem gives our most powerful smoothability proof; Klee

(A1.7) has a related result with a stronger conclusion, but his hypotheses are

so much stronger that they apply only to reflexive spaces; we wish to apply

Theorem 5 to the spaces co(I) and Lx(p).

Theorem 5. Let Bo be a reflexive SM space and let T be a linear function

carrying Bo into a dense subset of B. Then B is sm andB* is sc; more specifically,

(a) T* is one-to-one linear between B* and a subspace of B*, and is w*-w*

continuous.

(b) If p(f) =\\T*f\\B0*, then p is a bounded, sub-additive, positive-homo-

geneous, w*-lower semi-continuous functional on B*.

(c) */ |/| = I |/|U*+£(/)> then | ■ ■ ■ \ is an SC norm which is isomorphic to

|| • • • || in B* and is a conjugate norm.

(d) 7/| • • • | is the norm in B whose conjutate in B* is \ ■ • ■ \, then

|  • • • | is SM and is isomorphic to || • ■ ■ ||.

Since T(Bi) is dense, T*f = 0 if and only if/ = 0, so T* is one-to-one into

B*. Every adjoint operation is w*-w* continuous, p is the composition of a

lower semi-continuous functional on a continuous function, so is lower semi-

continuous. The algebraic properties of p and | • • • | are easily verified.

| • • • I the sum of two lower semi-continuous functionals, is lower semi-

continuous: by (2'), | ■ • • | is a conjugate norm. (1') and reflexivity of Bo

assert B* is SC. By (3), |  • • • | is SC in B*. (2') asserts that B is sm.

In the next theorem possible choices for F are the lp(I), p>l. Let A be a

normed linear space of real-valued functions <p on 7 such that 0 ^<p(i) ^^(i)

for all i imply (i) 0 ^ \\<j>\\ ^ ||^||. For each i in 7 let Bi be a normed space and

let B be a linear space of functions defined on 7 with f(i) in Bi for each i and

(ii) defining /' by f'(i) = ||/(i)||, each f in B determines an /' in F. Define

II/IUHI/1U-
Theorem 6. B is strictly convex if F and all Bi are.

Suppose ||/|l=|g||=l and ||/+g||=2, then ||/||+||g|| = ||/+g|| =l|Cf+g)'ll
g||/'+g'|| ^||/'|] + |g'|| =||/|| +||g||. The equality which this forces at the sec-

ond g and F SC force f'=g'. Then (f+g)'(i) =f'(i)+g'(i) for all i by strict

convexity of F; strict convexity of Bi says f(i) =g(i).

Corollary. Suppose all Bt are sc. Then for p^l the lp(I) product of the

Bi is sc;for I countable the m(I) product of the Bi is sc. If B is sc, then the space

of continuous functions from K(I) into B is sc.

Various theorems of the next section assert that SC norms can be intro-

duced in these choices for F.
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Theorem 7. If F and B, F* and B* satisfy the conditions before Theorem 6,

if for xinB and fin B* f(x) = 2»er/t(x,), and similarly with x' in F andf in

F*, then B is smooth if F and all Bi are smooth.

B not smooth would mean that there exist x, /, and g j^f such that

^ = \\x\=f(x)=g(x)=\\f\\=\\gl

Then

i=/(*) = YMxd £ Y I/<(*.-) I ̂  EIWI-INIit t
= /'(x')^||/'||-||x'|| = l,

and similarly for g(x). Hence /<(«<) = ||/t||||*<|| and g.(x.) =||gi||||x,|| for all i-

Ii F is smooth /' and g' must be equal for they both define hyperplanes of

support to the unit sphere at b'. Also/, and gi are zero whenever Xj is zero, for

otherwise by suppressing the extra nonzero terms a new f or g could be found

with the same value of/'(x'), thus denying sm in F. Then if/i(x<) is not zero,

fi and gi both define planes of support at x<; if Bi is SM, then/i=g,-. This

makes/=g, contradicting the original assumption that/ 9^g. Hence B is SM.

Corollary. If all Bi are sm and if I is countable or if p>l, then the lp(I)

product of the Bi is sm.

Allowing for sets of measure zero and replacing sums by integrals, the

above theorems apply equally well to the spaces Lp(fx, B) of Bochner measura-

ble functions with pth power summable when p>l, or, in the second case,

when p = 1 and the measure is finite.

3. Properties of particular spaces. We give now the first examples of

spaces shown not to be sc or sm.

Theorem 8. Let I be uncountable; then mo(I) is not sc.

Corollary. If I is uncountable, m(T) is not sc.

Phillips [6] announced this result in a footnote added in proofreading; to

my knowledge no proof has been published heretofore.

To prove the theorem let U be the unit sphere in mo(I). For an x of norm 1

define Fx, the facet of U determined by x, to be the set of all y in U such that

y(i) =x(i) at every point where x(i) f^O.

If | • • • | is a new norm isomorphic to the usual norm in mo(I), then the

scale can be adjusted so that ||x|| g | x| ^=&||x|| for some k ^ 1 and all x. Then

define

Mx = sup { | y| | y GFX}    and   mx = inf{ | y \ \ y GFX}.

We prove first
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(*) Mx + mx^ 2\x\ .

Take e>0 and yEFx such that |y| <mx+e. Then ||x+(y — x)|| =1 so

x±(y — x)EFx and

2 | x |   =  | 2x |   =  | x + (y - x) + x - (y - x) \

^  I x + (y — x) |  + | x — (y — x) \   < mx + e + Mx.

Letting e tend to 0 gives (*) which we rewrite as

(**) mx^2\x\   - Mx.

Take xi so that |xi| ^(3k + l)/4. Then mxl^(3k + l)/2-k = (k + l)/2, so

MXi - mXl ^(k- l)/2.

Then take x2 in FX1 so that |x2| ^(3-Mn+lxil )/4; then mXt^(Mxl

+ |xi|)/2, so

MXi - mXt g (MXl -  | xi | )/2 g (MX1 - mXl)/2 ^ (k - l)/22.

An induction process giving x„+i from xn just as x2 came from Xi yields a

sequence of points of mo(I) such that xn+xEFXn for all ra and MXn — mXn

^(k — l)/2n. Hence the sequences MXh and mXn have the same limit p. If

yEC\nFXn, then MXn^ \y\ l%mXn for all ra, so |y| =p.

Now define xGw0(7) by the rule: If there is an n such thatxn(i) ?*0, let

x(i) =xn(i); if all xn(i) =0, let x(i) =0. Then yEFx if and only if yEC\nFx„, so

| x| = | y | =p for all y in Fx. But F* has on it many line segments of length 2, so

the sphere | z| =p is not strictly convex. Hence mo(I) is not sc if 7 is uncount-

able.
The corollary follows at once from this theorem and Theorem 1.

Theorem 9. If I is uncountable, then lx(T) is not sm. If I is infinite, then

mo(I) is not sm, so m(I) is not sm.

For a contradiction assume that ||x|| ^ |x| ^w||x||, and also suppose that

|   • • • | is a smooth norm.

If ||x||=l, define A* ={y|||y||= 1 and |y| g |x|-tra||x-y||/4};

then

(a) Ex is closed.

For the inequalities determining Ex contain only continuous functions.

(b) If yEEx, then EVQEX.
If ||x|| =||y|| =||z| =1, if |y| S= |x| — m\ x—y||/4and |z| g |y| — ra||y—z||/4

then |z| g|x|-w([x-y||+||y-z||)/4g x|-w||x-z||/4.

(c) If points z„ of norm one are defined so that for each n zn+xEEZn, then

limn z„ exists, call it z, and z is in all £*„.

For each ra, mg |z«+i| ^ |zn| solimn z„| =p exists. But when |z„| <p + e

and k>n, then pg |z*| ^ |z„| <p + t, so |z* —z„|| <4e/m. By completeness of
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h(I) or m0(I), zn converges to some limit z. (a) asserts that zG£,„ for all n.

Now consider k(I) in particular and take ||x|| =1.

(d) If fxx = 'mi {\y\ \yGEx], then fxx< \x\.

This depends on

(e) There is z such that ||te+«'x|| = 11\ + \ t'\.

[i\ x(i) y^O } is not all of /; take z of norm one so that z(i) =0 if x(i) 9*0.

If C is the curve {v\ \v\ = \x\ } in the plane of z and x, smoothness of

| • • • | (and the Hahn-Banach theorem) imply that C has a tangent line at

x, so for some small arc on one side or the other of x the curve C lies outside

the parallelogram with corners at +x and +2z. Changing from z to — z if

necessary, we have for some small positive t a point y = tz+(l—t)x ior which

|y <|x|(l-*/2)^|x| -mt/2 = \x\ -m||x-y||/4< |x|. Hence M*^|y|
< x|.

Now take ||xi||=l and let e=|xi| —fiXl. Take x2 in EXI within e/4 of

fxXl; • • • ; take x„+i in EXn within e/4n of fiXn; ■ • • . Then xn converges to a

point x, by (c), and pI=4im,, pIn = limn |x„| =|x|. This contradicts (d), so

li(T) is not sm if I is uncountable.

For mo(T) our proof can also be regarded as a proof that mo(I)/co(I) is not

sm if I is infinite. More specifically, let F=\y\yGmo(T) and for every

zGc;o(/)||z+y||^||y|| = l}.Then

(f) F is closed in m0(I).

For consider a sequence {y„} in F which converges to a point y; take z in

Co(I). Then ||y+z|| =lim„ ||y„+z|| ^lim„ ||y„|| =||y||.

If we set Fx = Exf]F, then the properties (a), (b), and (c) follow for Fx

from the corresponding properties of Ex. (d) must be replaced by:

(d') If p*' =inf {|y| \yGFx}, and ii xGF, then fxx' <\x\.

The proof will proceed like that for h(I) as soon as it is proved that for

x in F there is a z such that (e) holds and the plane of z and x cuts the sphere

{x|||x|| =l} in a curve containing only points of F. To prove this observe

that
(g) xGF ii and only if there is a sequence {ij} of distinct elements of /

such that limy |x(*,-)| =||x|| =1.

Once (g) is verified, take z(i2j) = — x(i2j) ior all j and take z(i) = x(i) ior

all other iGI- Then for y = tz+t'x, we have y(i2]) =(t+t')x(i2j) and y(i2j+i)

= (t'-t)x(iij+i), so ||y|| = 11\ +11'\. y also satisfies (g) when 11\ + \ t'\ = 1, so

yGF. Starting from a point of F the rest of the proof of (d') goes as it did for

(d), but working always in F. The contradiction derived from smoothness

therefore occurs in mo(I) if / is not finite.

Theorem 10. co(I) is sc and is sm.

To prove that co(I) is sc we define a sort of "decreasing rearrangement"

map of co(I) into l2(I); unfortunately it is not linear. Given XiGco(I), let

£i = ||xi||,and let Ei= [i\ |xi(i)| =ifi},and let x2 = 0 in E\, = Xi elsewhere in I;
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repeat the process on x2, setting ir2 = ||x2||, E2= {i\ |x2(i)| =£2, and x3 = 0 in

E2, x3 = x2 elsewhere. Continue by induction. Then each En is a finite set and

E = \JnE„ can be enumerated in a sequence {ij} in such a way that |x(i3+i)|

^ |x(*,-)| for all j; that is, so that ij in En and ik in En+x imply k>j. Also

x(i) =0 if iEE. We define Dx to be the element of /2(7) such that

Dx(ij) = x(ij)/2>, for? = 1, 2, ••• ,

Dx(i) = 0 for all other i E 7.

Then D is a homogeneous operation from c0(7) into /2(7).

Lemma 1. Let p(x) =||7>x||;2; then p(ax) = \a\p(x), p(x+y)^p(x)+p(y),

and p(x) ^||x||c0, so p is continuous.

Since D (ax) =aD(x), the first condition is clear. The last is a consequence

of the relation E; 2_2' = 1 ■

To prove subadditivity, take x, y£c<>(7) and suppose that {ij] is a se-

quence properly chosen for x+y, so that

P(x + y)= { E [(*(*/) + y(^))/2']2}1/2.

By Minkowski's inequality

Pix+ y) ̂  JE [*(W2'j2}1/2+ JE [y(t-,)/2']2|1/2,

and the proof will be complete if it is shown that, for example,

p(x) = {y, [*(W2']4 .

Suppose that [rk] is a proper sequence for x, so p(x) = { E* [x(r0/2*]2} "2;

setting aj = x(ij) and &* = x(r*) and squaring, we want to show that

E iai/2')2 ^ E (**/2*)2.

If m<n and also |am| < |a„|, then

2 2

am an ,-2nr„ 2n-2m   2 1-. _—2n r   2 2     ,        tn—tm—X   2 n
-V ■-=2     [2        am + an] = 2     [am + a„ + 2 am
22m        22n

—2n r   2 2 „2n—2m— 1   2-, _—2n r   2n—2m   2 2 n
> 2     [am + a„ + 2 o„] = 2     [2        o„ + am]

2 2
an       am

22m      22n

so a permutation of am and a„ increases the left-hand side. Hence we may per-
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mute the ay into a nonincreasing sequence {c„} and get

Y («i/20' = Y (cJ2»)2;
i »

equality holds at this step if and only if the sequence {ay} is nonincreasing.

But the ay which are not zero are some or all of the bk. Hence c„ ̂  bn ior every

«, so

Y icn/2")2 H Y (bn/2")2;
n n

equality holds here if and only if cn = bn for all n; that is, if and only if the a,-

are a permutation of the bn-

Proof of Theorem 10. By Theorem 5 li(T) is sc and c0(I) is sm if Tx = x

is defined from l2(I) into Co(I).

If p is the function of Lemma 4 and if | x| =||x|| +p(x), the new norm is

isomorphic to the old. To prove it strictly convex, suppose |x| = |y| =1 and

|x+y| =|x| +|y| ; then ||x+y|| =||x||+||y|| and p(x+y)=p(x)+p(y). From

the well-known conditions for equality in Minkowski's inequality, it follows

that if {ij} is a properly chosen sequence for x+y, then x(i}) =y(i,) for all/.

But p(x) > { Yi [*(*'/)/2']*}1/2 unless {|x(*y)| } is already a nonincreasing

sequence and x(i) =0 if i is not an ij. A similar structure holds for y, so x =y.

Unfortunately, the norm thus constructed in co(I) is not smooth. For

example, if x = (l, 0, 0, • • • ) and y = (0, 1, 0, • • • ), then in the plane of

x and y the set {v\ p(v) ^ 1} consists of the common part of the ellipse whose

axes end at ±2x and +4y and the ellipse whose axes end at +4x and +2y.

In the direction of x+y, this figure has a corner, so p is not differentiable

there.

Theorem 11. If p. is finite, or even a-finite, then Li(p) is sm and M(p) is sc.

If p. is not a-finite, then both these conditions fail.

If p is finite then L2(p) <^Li(p), so the identity mapping of L2(p) into Li(p)

satisfies the hypotheses of Theorem 5. If essentially X= Uy Xj, p(Xf) < oo, let

<f>j he the characteristic function of Xj and define Tx= Yi x<f>j/2>p(Xj).

Then T is additive and ||7"»;||ii^H^U z,2; also the range of T is dense in Li(p),

so Theorem 5 applies again. M(p) is equivalent to a subspace of Li(p)*.

If p is not tr-finite then Li(p) contains a subspace isometric with an h(Iu)

and M(p) contains a subspace equivalent to mo(Iu); by Theorems 8, 9, and 1,

Li(p) is not sc and M(p) is not sm.

Theorem 12. h(I) is sc. C(K(T)) is sm.

Klee proved the first part of this in (A1.8); we gave another proof by

Theorem 5 when proving co(I) smooth. Klee (A1.9) also has the result that

M(p) is sc when p is finite, except for an omission in the hypotheses of A1.9;

the second part of Theorem 12 follows at once from Theorem 11; when a
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product of Lebesgue measures is introduced in A(7), C(K(I)) is isometrically

embedded in M(p), where p(K(I)) =1. A third proof that k(I) issccan also be

given by observing that the mapping which sends {ti} in Zi(7) to E< '•*«■

where x< is the ith coordinate function on K(I), is an isometry of /i(7) into

C(K(I)).
By the device of embedding ma(I), Theorem 11 can be completed by

Corollary. If M(p) is not finite-dimensional; that is, if there exist infinitely

many disjoint sets of positive p-measure, then M(p) is not sm.

It is not now known whether every sm space must have an sc conjugate,

or whether every Lx(p) must be sc. The most accessible space to investigate

further seems to be an uncountable product measure of Lebesgue measures.

From Theorem 5 and the negative results of this section we derive also

Corollary. There can be no linear mapping of any lp(I) or Lp(p) with p> 1

into a dense subspace of lx(I), I uncountable, or a dense subspace of mo(I),

I infinite, or of M(p), if M(p) is not finite-dimensional.

4. Kakutani's and Michael's extension theorems. Kakutani [3] proved

that if TT is a locally separable, closed subset of a metric space E, and if C(H)

and C(E) are the Banach spaces of bounded continuous real functions of 77

and on E, respectively, then there is for each x in C(77) an element Tx in

C(E), with Tx(h)=x(h) for all h in H, such that T is non-negative, linear

isometry of C(H) into C(E). Michael [5, Theorem 7.1], improved this: If H

is a closed subset of a metric space E and if C(77, Y) and C(E, Y) are the

spaces of bounded continuous functions into the locally convex linear topo-

logical space Y, then for each x in C(H, Y) there is a Tx in C(E, Y), with

Tx(h)=x(h) for all h in H, such that (a) T is linear and one-to-one from

C(i7, Y) into C(E, Y), (h) the set of values of Tx is in the closed convex hull

of the set of values of x, and (c) T is continuous in any of three natural

topologies in the function space, for example in the topology of uniform con-

vergence.

Obviously whenever there is a retraction r of a topological space E onto a

closed subset H, the definition Tx(a) =x(r(a)) for all a in A gives a T with the

desired properties. Michael [5] and Klee [4] give an example of a compact

Hausdorff space E and a closed subset H which is not a neighborhood retract

of A; their example is E=K(I), 77 = HP(I), where 7 has the cardinal number of

the continuum. Their proof involves separability, and says nothing final about

the possibility of an extension theorem.

Whenever 7 is countable, A(7) is a separable metrizable space, and Kaku-

tani's theorem applies to give an embedding-by-extension of C(HP) into

C(E) for every neighborhood E of HP in A(7). When 7 is not countable no

such embedding by extension can occur.

Theorem 13. If I is uncountable and if E is a neighborhood of HP(I) in

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1955]      STRICT CONVEXITY AND SMOOTHNESS OF NORMED SPACES       527

K(I), then there is no linear mapping of C(HP) into C(E) which is a simultaneous

extension of all elements of Hp.

Corollary. If I is uncountable, HP is not a retract of K.

The proof to be given is direct and proves somewhat more. If p>l, let

l/p + l/q = l; then HP=HP(I) can be regarded as the unit sphere of lp(I) in

its weak topology, and there is a natural isometry Qp oi lq(I) into C(HP(I)).

Similarly, HX(I) is the unit sphere of li(I) in its weak*-topology when re-

garded as the conjugate space of co(I), and there is a natural isometry Qi of

Co(I) into C(Hi(I)). Then Theorem 11 follows directly from

Theorem 14. If I is uncountable and pj^l, let H=HP(I); let L = Qp(lq(I))

if p > 1, L = Qi(co(I)) if p = 1; and let E be a neighborhood of H in K = K(I).
Then there is no linear function T from L into C(E) such that, for each x in L,

Tx is an extension of x.

The case p = l of Theorem 12 appeared when I was trying to prove co(I)

sc by embedding it in C(K(I)); Theorem 12 shows that this method must fail,

though Theorem 8, whose proof was discovered much later, says Co(I) is sc.

Proof of Theorem 14. The functions <pi defined by c/>,(i) = l, <p,(j)=0 if

jVi, all belong toco(I) and to all lq(I). Using the appropriate Qp, let$i = Qp<j>i,

iGI; then f,£I and <J>,(x) =x(i) for each x in H = HP and each i in /.

Suppose T is additive from L into C(E), where E is open and contains H.

Let Xi=<pi, but think of x, as an element of H. Then Td>i(xi) =<£;(xi) =1, so

there is a neighborhood Ui of x,- in E such that | T<pi(x) — 11 < 1/3 if xG Ut.

Ui is determined by a finite set cr.C-f and a positive number 5< which we may

also assume to be <l/3: Ut= {x\ \x(j)— x,(j')| <5,-, for all j in cr,}.

Now suppose that *i, ■ ■ • , in are distinct points of /. If there is a point

x in Hysn Utj, then

\t( Y *<,Y| (*) - n\ = 11" Y  r*J (x) - «   =    Y (T*tj(x) - 1)

= Y  I T*tj(x) - 1 I   < n/3,

so

[r(Z^)]w>2«/3

while

Z*v =1 Up=h
<P{j —

j£n C(Hr) ^-,
Y 4>ij = n1'" if p > 1.
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Hence, if T is linear, that is additive and bounded, and if xEOj^n Uijt then

2ra/3g||7||    if    p = 1    and    2ra/3 ̂  w^lMI        if    p > 1,

so, setting P = (3||r||/2)", we have

ra ̂  P   if    x E fl Ui{.

But fl jgn t/<y is empty if and only if some ij is in some aik and iji£iK. There-

fore

If n>P and ix, ■ ■ ■ , in are distinct points of I, there is at least one ij in

\ik^j<Tik.

With this knowledge we define a sequence {ij} of points of 7 and an in-

creasing sequence (m,'| of integers as follows: Choose ix, ■ • ■ , imi so that

ijQ.o-ik if j, k^mx and J9^k, and choose mx maximal under this condi-

dition; then mx^P and for every i not in Afi = U;sm, o-^. at least one ij is in

at. Then choose m2 maximal under the condition that for mx<k^m2 the point

i*(£o-,\ if JT^k and j^m2. Then m2 — mx^P, and when iEM2 = \ik^mt o\t, at

least one ik, mx<k^m2, lies in o\.

Continue this process by induction and let ilf=U„ Mn. Then if iEM,

there is for each n a kn with mn-x<kn^mn such that **n£<r,-. If there were

such an i this would make the finite set <r, infinite; but M is countable and

7 is not, so we have reached a contradiction. This shows that no such T as

we had assumed can exist.

Bibliography

1. L. Alaoglu and G. Birkhoff, General ergodic theorems, Ann. of Math. (2) vol. 41 (1940)

pp. 293-309.
2. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. vol. 40 (1936) pp.

396-414.
3. S. Kakutani, Simultaneous extension of continuous functions considered as a positive linear

operation, Jap. J. Math. vol. 17 (1940) pp. 1-4.
4. V. L. Klee, Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer.

Math. Soc. vol. 74 (1953) pp. 1(H3.
5. E. Michael, Some extension theorems for continuous functions, Pacific Journal of Mathe-

matics vol. 3 (1953) pp. 789-806.
6. R. S. Phillips, On weakly compact subsets of a Banach space, Amer. J. Math. vol. 65

(1943) pp. 108-136.

University of Illinois,

Urbana, III.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


