# Some Direct Estimates for Linear Combination of Linear Positive Convolution Operators 

B. Kunwar ${ }^{1}$, V. K. Singh ${ }^{1}$, Anshul Srivastava ${ }^{2}$, *<br>${ }^{1}$ Applied Science Department, Institute of Engineering and Technology, Sitapur Road, Uttar Pradesh Technical University, Lucknow, India<br>${ }^{2}$ Applied Science Department, Northern India Engineering College, Guru Govind Singh Indraprastha University, New Delhi, India

## Email address:

anshul_sriv@rediffmail.com (A. Srivastava)
*Corresponding author

## To cite this article:

B. Kunwar, V. K. Singh, Anshul Srivastava. Some Direct Estimates for Linear Combination of Linear Positive Convolution Operators. Applied and Computational Mathematics. Vol. 5, No. 5, 2016, pp. 207-212. doi: 10.11648/j.acm.20160505.14

Received: July 30, 2016; Accepted: August 12, 2016; Published: October 18, 2016


#### Abstract

In this paper we have estimated some direct results for the even positive convolution integrals on $C_{2 \pi}$, Banach space of $2 \pi$-periodic functions. Here, positive kernels are of finite oscillations of degree $2 k$. Technique of linear combination is used for improving order of approximation. Property of Central factorial numbers, inverse formulas, mixed algebraic -trigonometric formula is used throughout the paper.


Keywords: Convolution Operator, Linear Combination, Positive Kernels

## 1. Introduction

Consider the singular positive convolution integral,

$$
\begin{align*}
\left(E_{(n, \eta)} f\right)(x) & =\left(f * g_{(n)}\right)(x) \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) g_{(n)}(x-t) d t, n \in N \text { and } x \in R \tag{1}
\end{align*}
$$

where, a kernel $\eta=\left(g_{(n)}\right)_{n=1}^{\infty}$, is a sequence of positive even normalized trigonometric polynomial [1].

For non-negative trigonometric polynomials $g_{(n)}(t)$ of degree atmost $n$ and $E_{(n, \eta)} f=f * g_{(n)}$

Here, $f \in C_{2 \pi}, C_{2 \pi}$ being the Banach space of $2 \pi-$ periodic functions $f$ continuous on real axis $R$ with usual sup norm,

$$
\|f\|_{c}=\sup \{|f(u)|: u \in R\}
$$

Clearly, $E$ is a bounded linear operator from $C_{2 \pi}$ into itself, i.e.,
$E \in\left[C_{2 \pi}\right]$, we use the notation,

$$
\|E\|_{[c]}=\sup \left\{\|E f\|_{c}:\|f\|_{c}<1\right\}
$$

Philip C. Curtis Jr., [2] showed that,

$$
\left\|E_{(n, \eta)} f-f\right\|=O\left(n^{-2}\right)
$$

which implies that $f$ is identically constant provided,

$$
\widehat{g_{(n)}}(0)-1=O\left(n^{-2}\right)
$$

Where, $\widehat{g_{(n)}}(k)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{(n)}(t) e^{-k i t} d t$
P. P Korovkin [3] states that there exists an arbitrary often differentiable function, $f \in C_{2 \pi}$, such that,

$$
\lim _{n \rightarrow \infty} \sup n^{2}\left\|E_{(n, \eta)}(f \cdot \cdot)-f(\cdot)\right\|>0
$$

Above result led to the fact that convolution integrals associated with these type of kernels has a better rate of convergence than $O\left(n^{-2}\right)$.

Using extension of Korovkin Theorem [4], if we multiply our positive kernel $\eta$ by a trigonometric polynomial, then approximation rate would be $O\left(n^{-2 k-2}\right)$, where, $\eta$ is a kernel of finite oscillation of degree $2 k, k \in N_{0}$. Here, $g_{n}(t)$ has $2 k$ sign changes on $(0,2 \pi)$ for each $n \in N$.

In this paper, we will consider linear combination of positive kernels thus of convolution integrals for improving rate of approximation. Earlier, several authors [5-9] has worked on the special cases. Here, we will introduce rather general method for obtaining better rate of approximation.

If $\eta=\left(g_{(n)}\right)_{n=1}^{\infty}$ is a positive kernel, we shall consider linear combinations, $\chi=\left\{\chi_{(n)}\right\}_{n \in N}$, given by,

$$
\begin{equation*}
\chi_{(n)}(x)=\sum_{v=1}^{\infty} \gamma_{v} g_{\left(n, a_{v}\right)}(x), x \in R \tag{2}
\end{equation*}
$$

with coefficients $\gamma_{v}$, the $a_{v}$ being certain given naturals.
Here, kernel $\eta=\left\{g_{(n)}\right\}_{n=1}^{\infty}$ be a sequence of even trigonometric polynomials of degree atmost $m(n)=O(n)$, which are normalized by,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{(n)}(t) d t=1 \tag{3}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
g_{(n)}(x)=\sum_{k=-n}^{n} \rho_{(k, n)} e^{i k x}=1+2 \sum_{k=1}^{n} \rho_{(k, n)} \cos k x \tag{4}
\end{equation*}
$$

Thus, $g_{(n)}(x) \geq 0$ and $g_{(n)}(x) \in \eta$, with $\rho_{(-k, n)}=\rho_{(k, n)}$ and $\rho_{(0, n)}=1$.

Here, Fourier cosine coefficients $\rho_{(k, n)}$ are defined as usual by,

$$
\rho_{(k, n)}=\left\{\begin{array}{c}
(1 / 2 \pi) \int_{0}^{2 \pi} g_{(n)}(t) \cos k x d t, 0 \leq k \leq m(n)  \tag{5}\\
0, k>m(n)
\end{array}\right.
$$

Here, Fourier cosine coefficients are referred to as convergence factors.

The Lebesgue constants are given by,

$$
L_{(n, \eta)}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g_{(n)}(t)\right| d t
$$

In order (1.1) defines an approximation process on $C_{2 \pi}$, i.e.,

$$
\lim _{n \rightarrow \infty}\left\|E_{(n, \eta)}(f, \cdot)-f(\cdot)\right\|=0, f \in C_{2 \pi}
$$

it is necessary and sufficient for the kernel $\eta$ to satisfy,

$$
\begin{align*}
& L_{(n, \eta)}=O(1) \\
& \quad \lim _{n \rightarrow \infty} \rho_{(k, n)}(\eta)=1 \tag{6}
\end{align*}
$$

This is due to the well-known theorem of Banach and Steinhaus.

In view of Bohman-korovkin theorem, for positive kernel, i.e., $g_{(n)}(x) \geq 0, n \in N, x \in R$, (1.6) reduces to,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \rho_{(1, n)}(\eta)=1 \tag{7}
\end{equation*}
$$

## 2. Some Definitions

Definition 2.1. [9] Let for $x \in R$,

$$
x^{[n]}=\left\{\begin{array}{c}
x \prod_{i=1}^{n-1}\left(\frac{2(x-1)+n}{2}\right), n \in N \\
1, n=0
\end{array}\right.
$$

Here, $x^{[n]}$ denote the central factorial polynomial of degree $n$.

The central factorial numbers of first kind $t_{k}^{n}$ is uniquely determined coefficients of the polynomials,

$$
x^{[n]}=\sum_{k=0}^{n} t_{k}^{n} x^{k}
$$

Similarly, central factorial numbers of second kind $T_{k}^{n}$ is uniquely determined coefficients of the polynomials,

$$
x^{n}=\sum_{k=0}^{n} T_{k}^{n} x^{[k]}
$$

where $n \in N_{0}, x \in R$.
Some properties of these numbers are,
i) $t_{0}^{n}=T_{0}^{n}=\delta_{n, 0}, n \in N_{0}$
ii) $t_{k}^{n}=T_{k}^{n}=0, n<k$
iii) $t_{2 k}^{2 n+1}=t_{2 k+1}^{2 n}=T_{2 k}^{2 n+1}=T_{2 k+1}^{2 n}=0, n \in N_{0}, k \in N_{0}$
iv) $\sum_{k=0}^{\max \{n, m\}} t_{k}^{n} T_{m}^{k}=\sum_{k=0}^{\max \{n, m\}} T_{k}^{n} t_{m}^{k}=\delta_{n, m}, n \in$ $N_{0}, m \in N_{0}$
v) $\quad T_{k}^{n}=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\left(\frac{k-2 j}{2}\right)^{n}, 0 \leq k \leq n \in N_{0}$

Definition 2.2. [10] Let $\eta$ be a kernel for, $\sigma \in N_{0}$,

$$
T_{(n, \eta, 2 \sigma)}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(2 \sin \frac{t}{2}\right)^{2 \sigma} g_{(n)}(t) d t
$$

is called trigonometric moment of order $2 \sigma$.
We can also write,

$$
T_{(n, \eta, 2 \sigma)}=\left\{\begin{array}{c}
O\left(n^{-\tau \sigma}\right), 1 \leq \sigma \leq \mu \\
O\left(n^{-\tau(2 \mu+1 / 2)}\right), \mu<\sigma
\end{array}\right.
$$

either for $\tau=1$ or $\tau=2$.
The algebraic moment of order $2 \sigma, \sigma \in N_{0}$, is defined by,

$$
\begin{equation*}
M_{(n, \eta, 2 \sigma)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} t^{2 \sigma} g_{(n)}(t) d t \tag{8}
\end{equation*}
$$

Here, trigonometric as well as algebraic moments of odd order vanish, since kernel is positive.

For, $(t / \pi) \leq \sin (t / 2) \leq(t / 2), 0 \leq t \leq \pi$, one deduces for positive kernels immediately the estimate,

$$
\begin{equation*}
(2 / \pi)^{2 \sigma} M_{(n, \eta, 2 \sigma)} \leq T_{(n, \eta, 2 \sigma)} \leq M_{(n, \eta, 2 \sigma)}, \sigma \in N_{0}, \tag{9}
\end{equation*}
$$

By the well-known inverse formulas,
$\left(2 \sin \frac{t}{2}\right)^{2 \sigma}=\binom{2 \sigma}{\sigma}+2 \sum_{k=1}^{\sigma}(-1)^{k}\binom{2 \sigma}{\sigma-k} \cos k t, t \in R$
$\cos k t=1+\sum_{\sigma=1}^{k}(-1)^{\sigma}\left(2 \sin \frac{t}{2}\right)^{2 \sigma} \frac{1}{2 \sigma!} \prod_{i=0}^{\sigma-1}\left(k^{2}-i^{2}\right), t \in R$
and the property (v) of the central factorial numbers, the trigonometric moments can be expressed in terms of the convergence factors and vice-versa.

In fact,

$$
\begin{aligned}
& T_{(n, \eta, 2 \sigma)}=2 \sum_{k=1}^{\sigma}(-1)^{k+1}\binom{2 \sigma}{\sigma-k}\left(1-\rho_{(k, n)}(\eta)\right), \sigma \in N \\
& \left(1-\rho_{(k, n)}(\eta)\right)=\sum_{\sigma=1}^{k}(-1)^{\sigma+1} \frac{T_{(n, \eta, 2 \sigma)}}{(2 \sigma)!} \sum_{i=1}^{\sigma} t_{2 l}^{2 \sigma} k^{2 l}, 0<k \leq m(n)
\end{aligned}
$$

We can reduce our study of the asymptotic behaviour of the trigonometric moments to the asymptotic expansion of the
difference $\left(1-\rho_{(k, n)}(\eta)\right)$ in the negative power of $n$.
In order to derive approximation theorems, we have to replace (6)(ii) by an asymptotic expansion of (1$\left.\rho_{(k, n)}(\eta)\right)$.

Definition 2.3. [11] A kernel $\eta$ is said to have the expansion index $\mu \in N$ i.e, $\eta \in S^{(\tau, \mu)}$, if for all $k \in N$, there holds an expansion,
$\left.\left(1-\rho_{(k, n)}(\eta)\right)=\sum_{j=1}^{\mu}(-1)^{j+1}{ }_{j}(k) n^{-\tau j}+O\left(n^{-\tau(2 \mu+1 / 2}\right)\right)$

$$
\begin{equation*}
{ }_{j}(k)=\sum_{i=1}^{j} C_{i j} k^{2 i} \tag{10}
\end{equation*}
$$

for $C_{i j} \equiv C_{i j}(\eta) \in R$
Mostly known kernels belong to a class $S^{(\tau, \mu)}$.

## 3. Auxiliary Results

Lemma 3.1. [12] [13] Let $\tau=1$ or $\tau=2$ and $\mu \in N$. The following assertions are equivalent for a kernel:
i) $\eta \in S^{(\tau, \mu)}$,
ii) $T_{(n, \eta, 2 \sigma)}=\left\{\begin{array}{c}(2 \sigma)!\sum_{j=\sigma}^{\mu}(-1)^{j+1} n^{-\tau j} \sum_{i=\sigma}^{j} C_{i j} T_{2 \sigma}^{2 i}+O\left(n^{-\tau\left({ }^{2 \mu+1} / 2\right)}\right), 1 \leq \sigma \leq k \\ O\left(n^{-\tau\left({ }^{2 \mu+1} / 2\right)}\right), \mu<\sigma\end{array}\right.$ the $C_{i j}$ being given as in definition 2.3.

Lemma 3.2. [14] [15] Let $s \in N$ and $a_{1}<a_{2}<\ldots \ldots \ldots \ldots a_{s}$ be $s$ different naturals. The unique solution of Vandermonde system of equations,

$$
\sum_{v=1}^{s} \gamma_{v} a_{v}^{-\tau j}=\delta_{j, 0}, \text { where, } j=0,1, \ldots \ldots \ldots \ldots, s-1
$$

is given by,

$$
\gamma_{i}=\frac{(-1)^{j+1}}{Q} \prod_{\substack{v=1 \\ v \neq i}}^{s} a_{v}^{-\tau} \prod_{\substack{1 \leq j<v \leq s \\ j, v \neq i}}\left(a_{v}^{-\tau}-a_{j}^{-\tau}\right)
$$

where $i=1,2$, $\qquad$ ,s
Here, system-determinant $Q$ is given by,

$$
Q=\left|\begin{array}{ccccc}
1 & a_{1}^{-\tau} & \ldots \ldots \ldots & a_{1}^{-\tau(s+1)} \\
\vdots & \vdots & \ldots & \ldots & \vdots \\
\vdots & \vdots & \ldots & \ldots & \vdots \\
1 & a_{s}^{-\tau} & \ldots & \ldots & a_{s}^{-\tau(s+1)}
\end{array}\right| \neq 0
$$

Also,

$$
\begin{equation*}
A_{s}=(-1)^{s+1} \sum_{v=1}^{s} \gamma_{v} a_{v}^{\tau s}=\prod_{v=1}^{s} a_{v}^{-\tau} \tag{11}
\end{equation*}
$$

Let us suppose, $\eta \in S^{(\tau, \mu)}$, with $\tau=1$ or $\tau=2, \mu \in N$, to be a positive kernel, we set,

$$
\alpha_{(n, s)}=\left\{\begin{array}{c}
1 / n^{(\tau s+\tau)}, 1 \leq s \leq \mu  \tag{12}\\
1 / n^{(\tau \mu+(\tau / 2))}, s=\mu
\end{array}\right.
$$

We consider linear combination, $\chi=\left\{\chi_{(n)}\right\}_{n \in N}$ of even trigonometric polynomials of degree $\left(n a_{v}\right)$, as,

$$
\begin{equation*}
\chi_{n}(x)=\sum_{v=1}^{s} \gamma_{v} g_{\left(n a_{v}\right)}(x), x \in R \tag{13}
\end{equation*}
$$

Lemma 3.3. For linear combination $\chi$ convergence factors associated with positive kernel $\eta$ admits the expansion,

$$
1-\rho_{(k, n)}(\chi)=\left\{{ }_{s}(k) / n^{\tau s}\right\}+O\left(\alpha_{(n, s)}\right)
$$

Proof. Using (13) and lemma 2.1, we have,

$$
\begin{equation*}
\rho_{(k, n)}(\chi)=\sum_{v=1}^{s} \gamma_{v} \rho_{\left(k, n a_{v}\right)}(\eta)=\sum_{v=1}^{s} \gamma_{v}+\sum_{j=1}^{\mu}(-1)^{j}{ }_{j}(k) n^{-\tau j} \sum_{v=1}^{s} \gamma_{v} a_{v}^{-\tau s}+O\left(\alpha_{(n, s)}\right)=P+Q+O\left(\alpha_{(n, s)}\right) \tag{say}
\end{equation*}
$$

Here, $P=1$,
$Q=0$, for, $1 \leq j \leq(s-1)$,
Collecting all but the first non-vanishing term $(j=s)$ into the $O$ term, we have the lemma.
Lemma 3.4. The trigonometric moments for the, $\chi=\left\{\chi_{(n)}\right\}_{n \in N}$, admits the expansion,

$$
T_{(n, \chi, 2 \sigma)}=\left\{\begin{array}{c}
-n^{-\tau s}(-1)^{\sigma}(2 \sigma)!A_{s} \sum_{i=\sigma}^{s} C_{i s} T_{2 \sigma}^{2 i}+O\left(\alpha_{(n, s)}\right), 1 \leq \sigma \leq s \\
O\left(\alpha_{(n, s)}\right), s<\sigma
\end{array}\right.
$$

Proof. Using definition 2.2,

$$
T_{(n, \chi, 2 \sigma)}=2 \sum_{k=1}^{\sigma}(-1)^{k+1}\binom{2 \sigma}{\sigma-k}\left(1-\rho_{(k, n)}(\chi)\right)
$$

Now, by lemma 3.3,

$$
T_{(n, x, 2 \sigma)}=2 \sum_{k=1}^{\sigma}(-1)^{k+1}\binom{2 \sigma}{\sigma-k}\left\{{ }_{s}(k) / n^{\tau s}\right\}+O\left(\alpha_{(n, s)}\right)
$$

Again using definition 2.3, we have,
$T_{(n, \chi, 2 \sigma)}=2 n^{-\tau s} A_{s} \sum_{k=1}^{\sigma}(-1)^{k+1}\binom{2 \sigma}{\sigma-k}{ }_{s}(k)+O\left(\alpha_{(n, s)}\right)=2 n^{-\tau s} A_{s} \sum_{i=1}^{s} C_{i s} \sum_{k=1}^{\sigma}(-1)^{k+1}\binom{2 \sigma}{\sigma-k} k^{2 i}+O\left(\alpha_{(n, s)}\right)$
Using property (v) of central factorial numbers, we have the lemma.

## 4. Direct Results

Kernels defined by linear combination satisfy (6), so, the corresponding convolution integral defines an approximation process on $C_{2 \pi}$.

Here, we will try to improve order for,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|n^{\tau}\left\{E_{(n, \eta)}(f \cdot \cdot)-f(\cdot)\right\}-k f^{(2)}(\cdot)\right\|=0 \tag{14}
\end{equation*}
$$

where $f \in C_{2 \pi}^{(2)}$ with $k=k(\eta) \in R$
using linear combination $\chi_{n}(x)=\sum_{v=1}^{s} \gamma_{v} g_{\left(n a_{v}\right)}(x), x \in R$.
Theorem 4.1. Let $\chi$ be a linear combination for the positive kernel $\eta \in S^{(\tau, \mu)}$ with $s \leq \mu$. Then there holds for $f \in C_{2 \pi}^{(2 s)}$ the following expansion:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|n^{\tau s}\left\{E_{(n, \chi)}(f, \cdot)-f(\cdot)\right\}+A_{s} \sum_{k=1}^{s}(-1)^{k} C_{k s} f^{(2 k)}(\cdot)\right\|=0 \tag{15}
\end{equation*}
$$

Proof. A mixed algebraic-trigonometric Taylor's formula for $C_{2 \pi}^{(2 s)}$ is,

$$
\begin{equation*}
f(x+t)-f(x)=\sum_{k=0}^{s-1} \frac{f^{(2 k+1)}(x)}{(2 k+1)!} t^{(2 k+1)}+\sum_{k=1}^{s} f^{(2 k)}(x) \sum_{j=k}^{s}(-1)^{k}(-1)^{j} \frac{t_{2 k}^{2 j}}{(2 j)!}\left(2 \sin \frac{t}{2}\right)^{2 j}+r_{(s)}(f, x, t) \tag{16}
\end{equation*}
$$

where the remainder term is given by,

$$
\begin{equation*}
r_{(s)}(f, x, t)=\sum_{k=1}^{s} \frac{f^{(2 k)}(x)}{(2 k)!} \Theta_{(k, s)}(t)\left(\frac{1}{t^{-2 s-2}}\right)+\frac{\left.f^{(2 s)}(\not)\right)}{(2 s)!} t^{2 s}-\frac{f^{(2 s)}(x)}{(2 s)!} t^{2 s} \tag{17}
\end{equation*}
$$

Here, $\Theta_{(k, s)}$ denotes a continuous function independent of $f$ and $\varnothing$ lies between $x$ and $(x+t)$.

$$
\begin{equation*}
\left(E_{(n, \chi)} f\right)(x)-f(x)=\sum_{k=1}^{s} f^{(2 k)}(x) \sum_{j=k}^{s}(-1)^{j}(-1)^{s} \frac{t_{2 k}^{2 j}}{(2 j)!} T_{(n, \chi, 2 j)}+\frac{1}{2 \pi} \int_{-\infty}^{\infty} \chi_{(n)}(t) r_{(s)}(f, x, t)=H_{1}+H_{2} \tag{18}
\end{equation*}
$$

Here,

$$
H_{1}=\frac{(-1)}{n^{\tau s}} A_{s} \sum_{k=1}^{s} f^{(2 k)}(x) \sum_{j=k}^{s}(-1)^{k} t_{2 k}^{2 j} \sum_{i=j}^{s} C_{i s} T_{2 j}^{2 i}+O\left(\alpha_{(n, s)}\right) \sum_{k=1}^{s} f^{(2 k)}(x)
$$

According to Landau,

$$
\beta_{(n, s)}=\frac{\alpha_{(n, s)}}{n^{-\tau s}}
$$

So,

$$
\begin{equation*}
H_{1}=\frac{(-1)}{n^{\tau s}}\left\{A_{s} \sum_{k=1}^{s}(-1)^{k} C_{k s} f^{(2 k)}(x)-O\left(\beta_{(n, s)}\right) \sum_{k=1}^{s} f^{(2 k)}(x)\right\} \tag{19}
\end{equation*}
$$

Now, with the help of (18) and (19), we can see,

$$
\begin{equation*}
\frac{1}{n^{\tau s}}\left\{\left(E_{(n, \chi)} f\right)(x)-f(x)\right\}+A_{s} \sum_{k=1}^{S}(-1)^{k} C_{k s} f^{(2 k)}(x)=O\left(\beta_{(n, s)}\right) \sum_{k=1}^{S} f^{(2 k)}(x)+\frac{H_{2}}{n^{-\tau s}} \tag{20}
\end{equation*}
$$

Now, we will estimate $\mathrm{H}_{2}$,
$\left|H_{2}\right| \leq \sum_{k=1}^{s} \frac{\left|f^{(2 k)}(x)\right|}{(2 k)!}\left(\frac{1}{2 \pi}\right) \int_{0}^{2 \pi} t^{(2 s+2)}\left|\Theta_{(k, s)}(t) \chi_{(n)}(t)\right| d t+\frac{1}{(2 s)!}\left(\frac{1}{2 \pi}\right) \int_{0}^{2 \pi}\left|f^{(2 s)}(\not)-f^{(2 s)}(x)\right|\left|\chi_{(n)}(t)\right| t^{2 s} d t=J+K$ (say)
Using (8), (9) and (13), we get,

$$
J \leq M_{(n, \chi, 2 s+2)} \sum_{k=1}^{s} \frac{\left\|f^{(2 k)}\right\|}{(2 k)!}\left\|\Theta_{(k, s)}\right\|=O(1) T_{(n, \chi, 2 s+2)} \sum_{k=1}^{s}\left\|f^{(2 k)}\right\|
$$

So, using lemma 2.1, we see that,

$$
\begin{equation*}
J=\frac{o\left(\beta_{(n, s)}\right)}{n^{\tau s}} \sum_{k=1}^{s}\left\|f^{(2 k)}\right\| \tag{21}
\end{equation*}
$$

Now,

$$
K \leq \frac{1}{(2 s)!}\left(\frac{1}{2 \pi}\right) \int_{0}^{2 \pi} \omega\left(C_{2 \pi}, f^{(2 s)}, t\right) t^{2 s}\left|\chi_{(n)}(t)\right| d t \leq \frac{1}{(2 s)!} \sum_{v=1}^{s}\left|\gamma_{v}\right|\left(\frac{1}{2 \pi}\right) \int_{0}^{2 \pi} \omega\left(C_{2 \pi}, f^{(2 s)}, t\right) t^{2 s} g_{\left(n a_{v}\right)}(t) d t
$$

For inequality $\delta>0$,

$$
\omega\left(C_{2 \pi}, f^{(2 s)}, t\right) \leq\left(1+\frac{t}{\delta}\right) \omega\left(C_{2 \pi}, f^{(2 s)}, \delta\right) \leq\left(1+\frac{t^{2}}{\delta^{2}}\right) \omega\left(C_{2 \pi}, f^{(2 s)}, \delta\right)
$$

Taking, $\delta=\sqrt{\beta_{(n, s)}}$, and using (9),

$$
K=O(1)\left\{\omega\left(C_{2 \pi}, f^{(2 s)}, \sqrt{\left.\beta_{(n, s)}\right)}\right)\right\} \sum_{v=1}^{s} T_{\left(n a_{v}, \eta, 2 s\right)}+\frac{T_{\left(n a_{v}, \eta, 2 s\right)}}{\beta_{(n, s)}}
$$

This implies,

$$
\begin{equation*}
K=O\left(\frac{1}{n^{\tau s}}\right) \omega\left(C_{2 \pi}, f^{(2 s)}, \sqrt{\beta_{(n, s)}}\right) \tag{22}
\end{equation*}
$$

Now using (19), (21), (22), we have,

$$
\left\|n^{\tau s}\left(E_{(n, \chi)} f\right)(\cdot)-f(\cdot)+A_{s} \sum_{k=1}^{s}(-1)^{k} C_{k s} f^{(2 k)}(\cdot)\right\|=O\left(\beta_{(n, s)}\right) \sum_{k=1}^{s}\left\|f^{(2 k)}\right\|+O(1) \omega\left(C_{2 \pi}, f^{(2 s)}, \sqrt{\beta_{(n, s)}}\right)
$$

As, $n \rightarrow \infty, \beta_{(n, s)} \rightarrow 0$, we have the theorem.
Theorem 4.2. [16-18] Let $\chi$ be the linear combination of a positive kernel $\eta \in S^{(\tau, \mu)}$ with $S \leq \mu$ as in, $\chi_{n}(x)=\sum_{v=1}^{s} \gamma_{v} g_{\left(n a_{v}\right)}(x)$. Then there holds on estimate:

$$
\left\|\left(E_{(n, \chi)} f\right)(\cdot)-f(\cdot)\right\|=O(1) \omega_{2 s}\left(C_{2 \pi}, f, n^{(-\tau / 2)}\right)
$$

Proof. For $j, k \in N$ and $\in C_{2 \pi}^{(k)}, 1 \leq j<k$, we have,

$$
\int_{-\pi}^{\pi} f^{(j+1)}(u) d u=f^{(j)}(\pi)-f^{(j)}(-\pi)=0
$$

There exists $\xi \in(-\pi, \pi)$ with $f^{(j+1)}(\xi)=0$ and so,

$$
\left|f^{(j)}(x)\right|=\left|\int_{\xi}^{x} f^{(j+1)}(u) d u\right| \leq|(x-\xi)|\left\|f^{(j+1)}(u)\right\| \leq 2 \pi\left\|f^{(j+1)}(u)\right\|
$$

Iteratively, we get,

$$
\begin{equation*}
\left\|f^{(j)}(u)\right\| \leq \frac{(2 \pi)^{j}}{(2 \pi)^{k}}\left\|f^{(k)}(u)\right\| \tag{23}
\end{equation*}
$$

for $j=k$, we can easily show (23),
Using (23) and (20), we can easily prove,

$$
\begin{equation*}
\left\|\left(E_{(n, \chi)} f\right)(\cdot)-f(\cdot)\right\|=O(1) n^{-\tau s}\left\|f^{(2 s)}\right\|, \text { where, } f \in C_{2 \pi}^{(2 s)} \tag{24}
\end{equation*}
$$

Using, $L_{(n, \chi)}=O$ (1) and (24), we have the theorem.

## 5. Conclusion

By taking linear combination of suitable positive kernels,

$$
\chi_{n}(x)=\sum_{v=1}^{s} \gamma_{v} g_{\left(n a_{v}\right)}(x), x \in R
$$

We have raised the approximation order of $\left(E_{(n, \chi)} f\right)$ on $C_{2 \pi}$.

The trigonometric moments of $\eta$ upto order $2 \mu$ grow in a linear manner, whereas, the moments of linear combination $\chi$ upto order $2 s$ behave asymptotically all like $O\left(n^{-\tau s}\right)$.

## References

[1] R. K. S. Rathore, "On a sequence of linear trigonometric polynomial operators", SIAM J. Math. Anal. 5(1974), 908-917.
[2] P. C. Curtis, "The degree of approximation by positive convolution operators", Michigan Math. J., 12(1965), 155-160.
[3] P. P. Korovkin, "Linear Operator and Approximation Theory", Hindustan Publishing Corp., Delhi, 1960
[4] E. L Stark, "An extension of a theorem of P. P. Korovkin to singular integrals with not necessarily positive kernels", Indag. Math. 34(1972), 227-235.
[5] G. Bleimann and E. L. Stark, "Kernels of finite oscillations and
convolution integrals", Acta. Math. Acad. Sci. Hungar. 35(1980), 419-429
[6] P. L. Butzer, "Linear combination of Bernstein polynomials", Canad. J. Math. 5(1953), 559-567.
[7] W. Engels, E. L. Stark and L. Vogt, "Optimal Kernels for a general Sampling Theorem", J. Approx. Theory 50(1987), 69-83.
[8] O. Shisha and B. Mond, "The degree of approximation to periodic functions by linear positive operators", J. Approx. Theory, 1(1968), 335-339.
[9] G. G. Lorentz, "Approximation of functions", Holt, Rinehart and Winston, New York, 1968.
[10] A. Zygmund, "Trigonometric Series", Vol. II, Cambridge university Press, Cambridge, 1959.
[11] J. Szabados, "On Convolution operators with kernels of finite oscillations", Acta. Math. Acad. Sci. Hungar. 27(1976), 176-192.
[12] C. J. Hoff, "Approximations with Kernels of finite oscillations", Part I, Convergence, J. Approx. Theory 3(1970), 213-218.
[13] C. J. Hoff, "Approximation with kernels of finite oscillations", Part II, Degree of Approximation, J. Approx. Theory 12(1974), 127-145.
[14] R. Bojanic, "A note on the degree of approximation to continuous functions", Enseign. Math., 15(1969), 43-51.
[15] R. A. DeVore, "The Approximation of Continuous Functions by Positive Linear Operators", Springer-Verlag, New York, 1972.
[16] Gupta Vijay and Ravi P. Agarwal, "convergence estimate in approximation theory", New York, Springer, 2014.
[17] P. Maheshwari, S. Garg, "Higher Order Iterates Of Szasz-Mirakyan-Baskakov Operators", Stud. Univ. Babe_s-Bolyai Math. 59(1) (2014), 69-76.
[18] Tuncer Acar, Vijay Gupta, Ali Aral, Rate of convergence for generalized Szász operators, Bull. Math. Sci. (2011), 99-113.

