

How To Give a Talk

Tammy Kolda Sandia National Labs June 22, 2010

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Before it's time to interview, look for opportunities to get experience

- Internships
 - End of summer presentation
- Student seminars **
 - Graduate student seminar series
 - Journal clubs (present others' work)
- Local & national meetings
 - Contributed poster or talk
- Toastmasters Organization
 - General public speaking help
 - http://www.toastmasters.org

** This is an opportunity you may need to create vourself!

Planning for a Talk

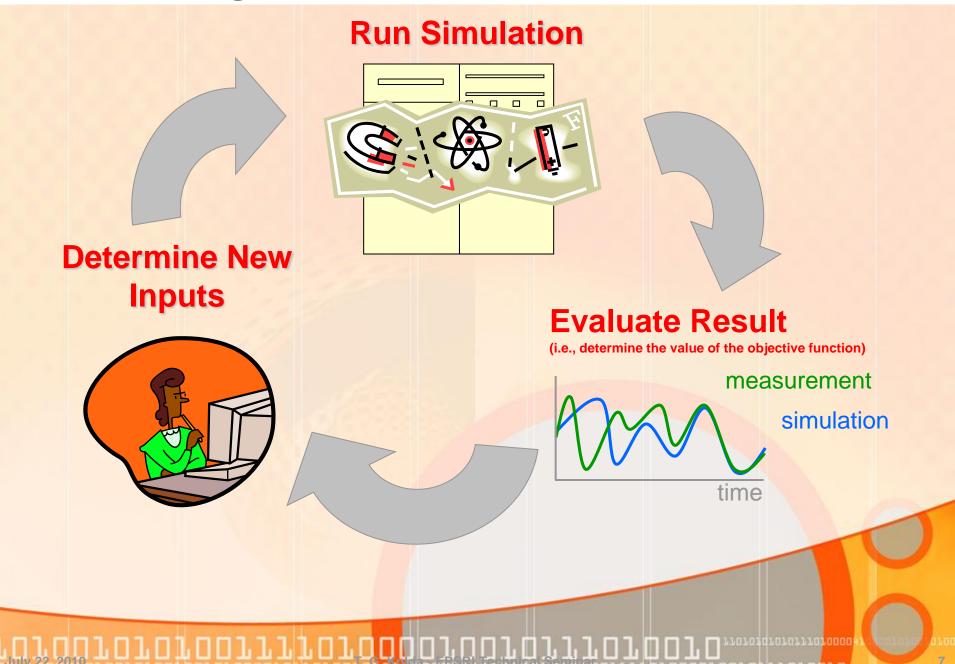
Your technical talk should have a central message

- Not the same as a classroom lecture
 - E.g., leaving out details can improve it!
- It's an advertisement (of sorts)
 - For your work (read the paper!)
 - And you (hire me!)
- Even in an hour-long seminar, it's impossible to cover all details
 - Focus on big ideas and major impact
 - Use simplifying assumptions
- Avoid a chronological description of your work!

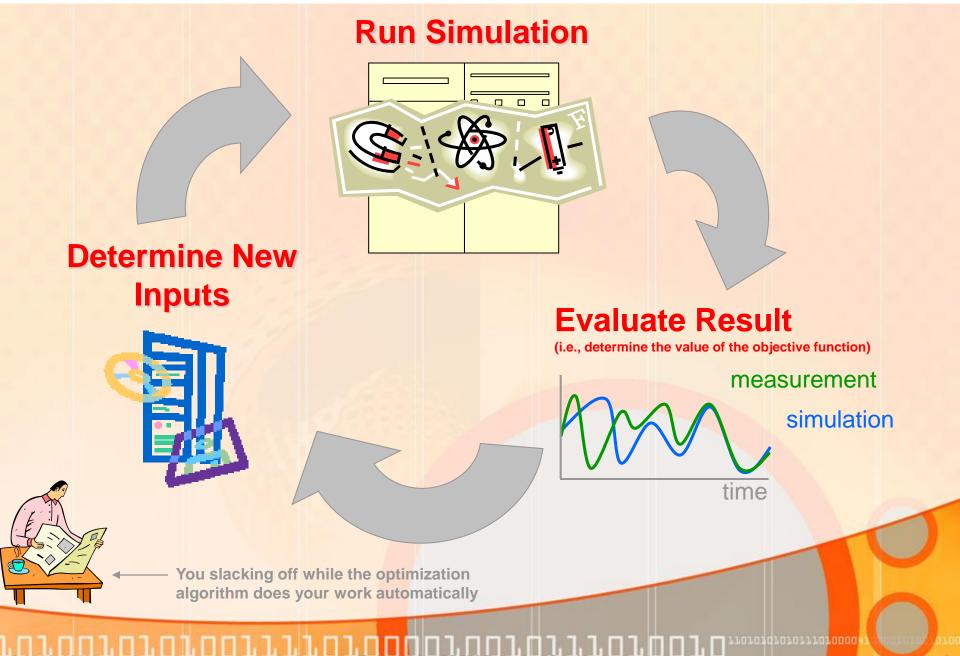
What's your elevator speech?
2-3 sentences at most!

Plan how you can convey your message in the allotted time

- Avoid too much background
- Estimate 2-3 minutes per slide
 - 15-minute talk = 5-7 slides
 - 50-minute talk = 15-25 slides
- Prioritize the details
 - If main message is a <u>faster</u> algorithm, focus on method and numerical results rather than theory
- Audience has <u>only</u> allocated a certain amount of time for your presentation
 - Don't go over!


Tune your message and your timing to your audience

- Who will the audience will be? (Ask!)
 - Students or not?
 - Technical or not?
- Don't assume their knowledge overlaps with yours
 - Know less about your specialty
 - May know more about related areas
- Set the context (in plain English)
 - How does this help save the world?
 - Exactly how is the science, engineering, or mathematics advanced?



User Tuning of Simulations can be Inefficient

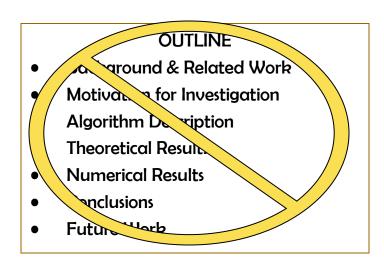
Optimization tunes parameters automatically!

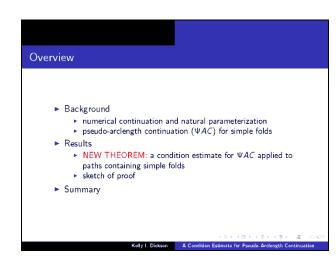
Components of a Talk

"Tell 'em what you're gonna say, tell 'em, and tell 'em what you said."

There are Typical Components to Technical Talks (e.g., CS&E)

- Outline
- Background & Motivation
- Experiment / Algorithm Description
- Theoretical Results
- Experimental / Numerical Results
- Conclusions
- Future Work





Avoid Outline Slides (Generally)

- 99% of outline slides are identical, so they don't add anything to the presentation
- Alternative: Substitute "transition slides"
- The exception is outlines that don't fit the typical mode and support the thesis of the talk; see Kelly Dickson

Outline Slides that support the thesis are Good!

Overview

A good example of a useful outline slide.

- Background
 - numerical continuation and natural parameterization
 - pseudo-arclength continuation (ΨAC) for simple folds
- Results
 - ▶ NEW THEOREM: a condition estimate for ΨAC applied to paths containing simple folds
 - sketch of proof
- Summary

From: Kelly Dickson, SIAM Annual Meeting, 2006

◆ロト ◆母ト ◆注ト ◆注ト ・注 ・ めぬぐ

Kelly I. Dickson

A Condition Estimate for Pseudo-Arclength Continuation

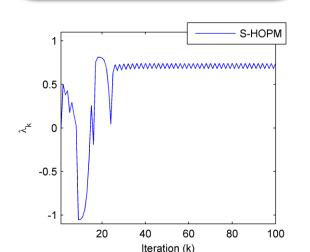
Background & Motivation < 33%

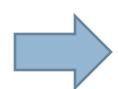
- Minimize background to leave time for <u>your</u> contributions
- Do cite related work by the authors' names
 - Sets the context (and shows you understand it)
 - Big-time brownie points if you mention folks in the audience
- Too much background?
 Work it into the middle of the talk

Oooh. He's spent more than half his talk on background! When will I hear about his work??

Experiment/Algorithm Description: Highlight Newness

- Use simplifying assumptions
 - E.g., no constraints for an optimization problem
- Keep notation simple and standard
- Focus on what's new in your version
- Challenge: Try to describe the experiment or algorithm in words in addition to (or rather than) technical jargon
- Challenge: Ditto for pictures


Shifted S-HOPM Converges


S-HOPM

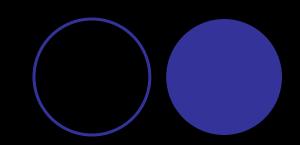
For
$$k = 1, 2, ...$$

$$\mathbf{x}_{k+1} = \frac{\mathcal{A}\mathbf{x}_k^{m-1}}{\|\mathcal{A}\mathbf{x}_k^{m-1}\|}$$

$$\lambda_{k+1} = \mathcal{A} \mathbf{x}_{k+1}^m$$

SS-HOPM

For
$$k = 1, 2, ...$$


$$\mathbf{x}_{k+1} = \frac{\mathcal{A}\mathbf{x}_k^{m-1} + \alpha \mathbf{x}_k}{\|\mathcal{A}\mathbf{x}_k^{m-1} + \alpha \mathbf{x}_k\|}$$

$$\lambda_{k+1} = \mathcal{A} \mathbf{x}_{k+1}^m$$

For suitably large α ...

- Nondecreasing λ_k
- $\lambda_k \rightarrow \lambda_*$
- \mathbf{x}_k has a limit point \mathbf{x}_*
- $(\lambda_*, \mathbf{x}_*)$ is an eigenpair

Making Pattern Search Asynchronous

• Trial Point Generation: $Y = \{ x + \Delta d_i : d_i \in \text{Search Pattern } \}$

- Decision: If there is a trial point $y \in Y$ such that y is "better than" x, then the iteration is successful; otherwise, it is unsuccessful.
- Successful: $x \leftarrow y$
- Unsuccessful: $\Delta \leftarrow \frac{1}{2} \Delta$
- Stop: When Δ < Tolerance

Making Pattern Search Asynchronous

- Trial Point Generation:
 - $X = \{ x + \Delta_i d_i : d_i \in \text{Search Pattern and inactive} \}$ Submit X to evaluation queue
- ullet Trial Point Evaluation: Collect a set of evaluated points, Y
- Decision: If there is a trial point $y \in Y$ such that y is "better than" x, then the iteration is successful; otherwise, it is unsuccessful.
- Successful: $x \leftarrow y$, reset Δ_i 's, and prune evaluation queue
- Unsuccessful: $\Delta_i \leftarrow \frac{1}{2} \Delta_i$ for evaluated directions
- Stop: When Δ_i < Tolerance for all i

Theoretical Results: Help Audience Untangle the Science

- Theoretical results tough to follow
 - Especially for non-specialists
- Explain <u>impact</u> as well as the results themselves
- Only present proofs if key to central message
- Idea: Highlight key variables/ideas/etc. in color

Tensor-matrix-products

Matrization and vectorization obcure the structure.

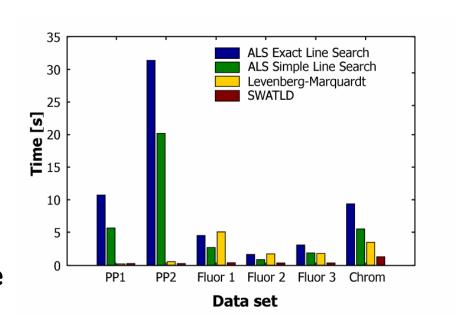
Basic rule: Matricize and vectorize as late as possible!

Lemma 1. Let \mathcal{B} and \mathcal{C} be 3—tensors of conforming dimensions.

$$\langle \mathcal{B}(X_1)_{\{1\}}, \mathcal{C}(X_2)_{\{1\}} \rangle = \langle X_1, \langle \mathcal{B} \otimes \mathcal{C}(X_2)_{\{1\}} \rangle_{\{2:3\}} \rangle$$

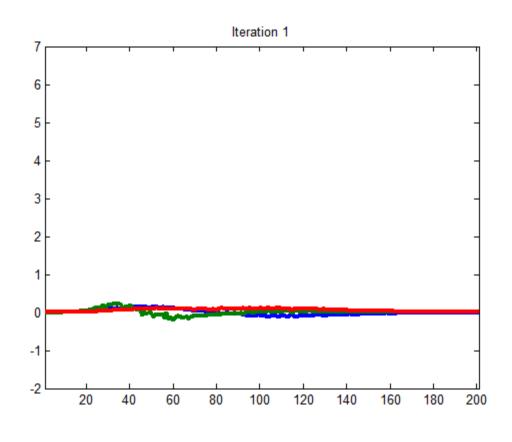
$$= \langle X_1, \langle \mathcal{B} \otimes \mathcal{C} \rangle_{\{2:3\}} (X_2)_{\{1\}} \rangle$$

Matrix factors can be "pulled out" of the inner product.

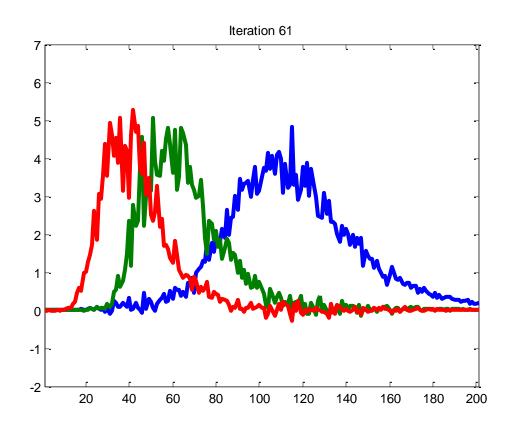

From: Computing the best rank-(r1, r2, r3) approximation of a tensor, Lars Elden, Workshop on Algorithms for Modern Massive Data Sets, June 2006.

Experimental/Numerical Results: Make it Clear What's What

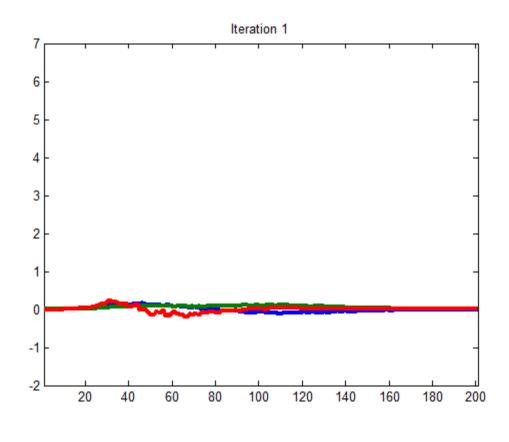
- Avoid showing tables of numbers
- Idea: Use bar charts and graphs
- Clearly label the axes & provide a legend
- Make sure it's clear which method is yours!



From: Computational Tools for PARAFAC models, G. Tomasi, Workshop on Algorithms for Modern Massive Data Sets, June 2006.


Replacing 50% Missing Values with Mean

[Movie]



Replacing 50% Missing Values with Mean

50% Missing Data using Sensible Approach

[Movie]

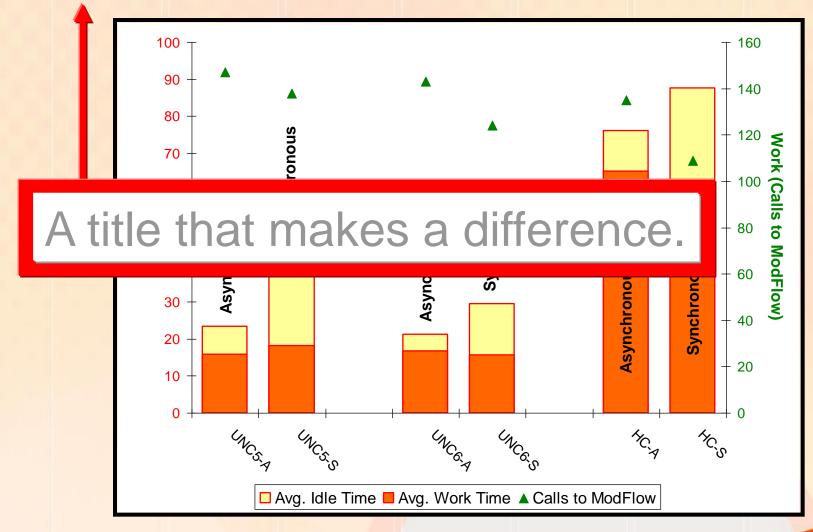
50% Missing Data using Sensible Approach

Conclusions & Future Work: Tell 'Em What You Said

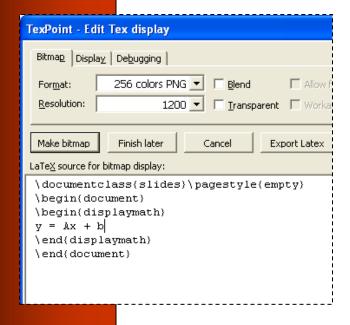
- Succinctly restate your main points
- Remind the audience of the...
 - Motivation for the research
 - Supporting evidence
- Future work (maybe its own slide)

 Be sure to also include a slide <u>at the end</u> with your name, email, and URL

Creating Your Slides


Make Your Slides Readable

- Do: Make fonts large (use at least 14pt font)
- Do: Use lots of pictures, including general pictures
- Do: Use titles that say something (e.g., "Experimental results show new technique is more accurate")
- Don't: Use yellow on a white background (or green text on blue, or blue on black, etc.)
- Don't: Forget to check grammar and spelling
- Don't: Overcrowd the slide


Load Balancing Makes a Difference

In 3 different groundwater problems, the asynchronicity improved the overall run time.

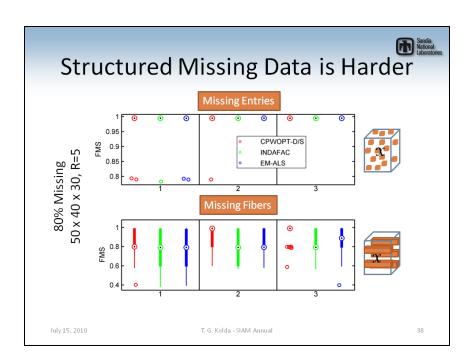
My recommendation: PowerPoint + TexPoint

$$y = Ax + b$$

- Pros (versus LaTeX)
 - No compilation (except TexPoint)
 - Easy to add pictures
 - Easy to add animation
 - Easy to add equations
- Cons (versus LaTeX)
 - No Linux support
 - TexPoint costs \$30
- Other
 - PowerPoint is ubiquitous
 - Management requirement(!)

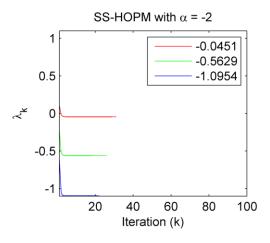
Colors and Animations: Be Wary

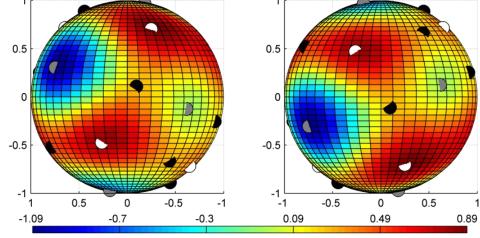
- Use color for emphasis and connections
- Avoid more than 4 colors
- Use animations for emphasis and clarity
- Avoid all gratuitous animation
 - Including page transitions, which PPT likes to sneak in
- Avoid the "strip tease"
 - Generally best to put all information up at the front



Generating Pictures for Slides

Tools for generating pictures: MATLAB, Excel, bargraph.pl (*), LaTeX picture env.


- Be sure that the axes are labeled and the legend is clear
- Use thick lines and colors that show up well

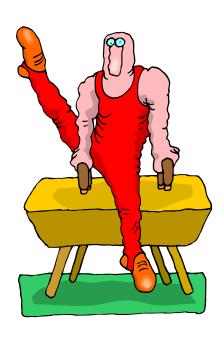


More Examples of Pictures from MATLAB

In a line plot, make sure the text is large and the lines are thick.

In a colored plot, include a legend.

Presentation Tips


"Every talk is an interview talk" – JC Meza,
Department Head and
Senior Scientist, LBNL

Before the talk: prepare, practice, and get organized

- Prepare your talk <u>at least</u> one week in advance
- Practice! Practice! Practice! (that means 3 times)
- Choose a professional outfit
 - Can it accommodate a microphone?
- Make backups (USB stick)
- Bring a pointer & water

During the talk: Speak clearly, stay calm, look at the audience

- Speak slowly, clearly, and loudly
 - Avoid um, ah, so, and, ...
- Nerves are natural
 - Take a deep breath or a drink of water

- Face the audience, not the projection
 - Trick: Look at the laptop screen
- Avoid reading the slide
 - Think of why you added that slide!
- Don't block the audience view
 - Try to stand next to the screen

Tips and Tricks for Q&A

- Repeat the question
- Take the question seriously, even if it seems stupid
 - May not fully understand the true question
- It's okay to say you don't know the answer
 - But this is a last option!
- Write down the questions during or immediately after the talk
- Don't be surprised if you get a comment that your work has already been done
 - But ask for a reference!

Wrapping Up

Closing Words of Wisdom

- Objective: Maximize conveying a key idea
 - Subject to time and audience constraints
- Preparation is key and practice makes perfect
- For an interview talk, do more than educate me about a subject – tell me what you did!
- Consider the larger context of your work - how will help solve global warming or cure cancer?

July 22, 2010

Please Contact Me With Questions

- Tammy Kolda, <u>tgkolda@sandia.gov</u>, http://csmr.ca.sandia.gov/~tgkolda/
- Speakers who teach me (very different styles):
 Dianne O'Leary, Juan Meza, Margaret Wright,
 Nick Higham (see his <u>Handbook of Writing</u>),
 Rosemary Chang, Ilse Ipsen, Pete Stewart, Philip
 Kegelmeyer, Tim Kelley, etc.

