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DEFINITION:  
1.1.  Q-ANALOGUE OF DIFFERENTIAL OPERATOR 
 Al-Salam [3], has given the q-analogue of differential operator as 

퐷 푓(푥) =
푓(푥푞)− 푓(푥)
푥(푞 − 1)

																																																																																														(1.1) 

This is an inverse of the q-integral operator defined as 

푓(푡)	푑(푡: 푞) = 푥(1 − 푞) 푞 푓(푥푞 )																																																			(1.2) 

Where ퟎ < |풒| < 1 
1.2. FRACTIONAL Q-DERIVATIVE OF ORDER 훼: 

The fractional q-derivative of order 휶 is defined as  

푫풙	,풒
휶 풇(풙) =

ퟏ
횪퐪(−휶) (풙 − 풚풒) 휶 ퟏ

풙

ퟎ

풇(풚)풅(풚;풒)																																																							(ퟏ.ퟐ.ퟏ) 

Where Re	(휶) < 0 
As a particular case of (1.2.1), we have  

푫풙	,풒
휶 풙흁 ퟏ =

횪퐪(흁)
횪퐪(흁 − 휶)풙

흁 휶 ퟏ																																																																	(ퟏ.ퟐ.ퟐ) 

2. MAIN RESULTS 
In this section we drive the results on term by term q-fractional differentiation of a power series. As particular case we will the 
fractional q-differentiation of the Generalized M-Series and exponential series. 
 
THEOREM 1: If the series 푀 , (푧) converges absolutely for |풒| < 휌 then 

푫풛	,풒
흁 풛흀 ퟏ

(푎1)푘			.		.		.		.		. 푎푝 푘	

(푏1)푘 		.		.			.		.		. 푏푞 푘

∞

푘=표

푧푘

Γ(훼푘+ 훽)			 =
(푎1)푘			.		.		.		.		. 푎푝 푘	

(푏1)푘		.		.			.		.		. 푏푞 푘
Γ(훼푘+ 훽)

∞

푘=표

푫풛	,풒
흁 푧푘+휆−1 																								(2.1) 

Where Re	(흀) > 0,			Re	(흁) < 0,	  0< |풒| < 1 
 
PROOF: Starting From the left side and using equation (1.2.1), we have 

푫풛	,풒
흁 풛흀 ퟏ

(푎1)푘			.		.		.		.		. 푎푝 푘	
(푏1)푘 		.		.			.		.		. 푏푞 푘

∞

푘=표

푧푘
Γ(훼푘+ 훽)			  

=
ퟏ

횪퐪(−흁) (풛 − 풚풒) 흁 ퟏ

풛

ퟎ

풚흀 ퟏ
(푎1)푘			.		.		.		.		. 푎푝 푘	
(푏1)푘		.		.			.		.		. 푏푞 푘

∞

푘=표

푦푘
Γ(훼푘+ 훽)풅

(풚;풒) 
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=
풛흀 흁 ퟏ

횪퐪(−흁) (ퟏ − 풕풒) 흁 ퟏ

ퟏ

ퟎ

풕흀 ퟏ
(푎1)푘			.		.		.		.		. 푎푝 푘	
(푏1)푘		.		.			.		.		. 푏푞 푘

∞

푘=표

풛풌푡푘

Γ(훼푘+ 훽)풅(풕;풒)																																					(ퟐ.ퟐ) 

 
Now the following observation are made 
 

(푖) 															
(푎 ) 			.		.		.		.		. 푎 	
(푏 ) 		.		.			.		.		. 푏

∞
풛풌푡

Γ(훼푘 + 훽) 	converges	absolutely	and	therefore	uniformly	on	domain	of 

	x	over	the	region	of	integration. 
  
 
(푖푖) 													∫ (ퟏ − 풕풒) 흁 ퟏ풕흀 ퟏퟏ

ퟎ 	풅(풕;풒)	 is convergent,  
Provided  Re	(흀) > 0,			Re	(흁) < 0,	  0< |풒| < 1 
 
Therefore the order of integration and summation can be interchanged in (2.2) to obtain. 

=
풛흀 흁 ퟏ

횪퐪(−흁)
(푎 ) 			.		.		.		.		. 푎 	
(푏 ) 		.		.			.		.		. 푏

∞
풛풌

Γ(훼푘+ 훽) (ퟏ − 퐭퐪) 훍 ퟏ

ퟏ

ퟎ

퐭훌 퐤 ퟏ퐝(퐭;퐪) 

=
(푎 ) 			.		.		.		.		. 푎 	
(푏 ) 		.		.			.		.		. 푏

∞
ퟏ

Γ(훼푘 + 훽)푫풛	,풒
흁 푧  

 
Hence the statement (2.1) is proved. 
 
3. SOME SPECIAL CASES: 

 
(i) If we take 훼 = 0,훽 = 0 in equation (2.1) it becomes the fractional q-derivative of power series. 

푫풛	,풒
흁 풛흀 ퟏ

(푎 ) 		 	.		.		.		.		. 푎 	
(푏 ) 		.		.			.		.		. 푏

∞

푧 			 =
(푎 ) 			.		.		.		.		. 푎 	
(푏 ) 		.		.			.		.		. 푏

∞

푫풛	,풒
흁 푧 																								(3.1) 

 
This equation (3.1) is known result given by Yadav and Purohit [8] and Ali, Jain and Sharma [9]. 
 
(ii) When 훼 = 1,훽 = 1 and no upper or lower parameter in(5), we have  

 

푫풛	,풒
흁 풛흀 ퟏ 푧

Γ(푘 + 1)

∞

			 =
1
푘!

∞

푫풛	,풒
흁 푧 																															(3.2) 

Equivalently, 

푫풛	,풒
흁 풛흀 ퟏ푒 			 =

1
푘!

∞

푫풛	,풒
흁 푧 																															(3.3) 

Thus the equation reduces to fractional q-derivative of exponential function. 
 
 
(iii) If no upper or lower parameter, we have 

푫풛	,풒
흁 풛흀 ퟏ 푧

Γ(훼푘+ 훽)			 =
1

Γ(훼푘+ 훽)

∞

푫풛	,풒
흁 푧 																				(3.4) 

or 

푫풛	,풒
흁 풛흀 ퟏ퐸 , (푧)			 =

1
Γ(훼푘 + 훽)

∞

푫풛	,풒
흁 푧 																				(3.5) 

Hence the series convert in fractional q-derivative of Mittag-Lefller function. Thus it is the complete analysis of the statement 
(2.1). 
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