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1. INTRODUCTION:

Carlson [1-5] has defined Dirichlet average of functions which represents certain type of integral average with respect
to Dirichlet measure. He showed that various important special functions can be derived as Dirichlet averages for the ordinary
simple functions likext,e* etc. He has also pointed out [3] that the hidden symmetry of all special functions which provided their
various transformations can be obtained by averaging x™,e* etc. Thus he established a unique process towards the unification
of special functions by averaging a limited number of ordinary functions. Almost all known special functions and their well
known properties have been derived by this process. In this paper the Dirichlet average of Hyper-geometric function has been
obtained.

2. DEFINITIONS:
We give blew some of the definitions which are necessary in the preparation of this paper.

21 STANDARD SIMPLEX INR™" n > 1:
We denote the standard simplex in R, n > 1 by [1, p.62].
E=En={S(ulyu2,........un) Uy 20, Uy, 20, Uy Fuy e +unS1} (211)

22 DIRICHLET MEASURE:
Let b € Ck k = 2and let E = E,_, be the standard simplex in R¥~1, The complex measure y, is defined by E[1].
1
du,(u) = @uffl .uif‘ll A=y = —Up_bitduy . duy
(221)

Will be called a Dirichlet measure.
Here

T(by) oo . T(by)
B(®) = B(bL, ........bk) =~

C.-={z€z2z+0,|phz| < 7T/Z},

Open right half plane and C. k is the k" Cartesian power of C.,
23 DIRICHLET AVERAGE[1, P.75]:
Let O be the convex setin C,, let z = (z4, ... ... ... ,Z;,) € QK k > 2 and let u. z be a convex combination of z,, ... ... ... ,Zy. Let f
be a measureable function on Q and let w, be a Dirichlet measure on the standard simplex E in R*~*.Define

Fb,z) = f £ 2)d () 231)

We shall call F the Dirichlet measure of f with variables
Z=(Z1, e oen e ,Z;) and parameters b = (by, ... ... .... by).

k
u.z=Zuizi andu, =1 —ug— o —Up_q (232)

i=1
If k = 1, define F(b, z) = f(2).
24 FRACTIONAL DERIVATIVE [8,P.181]:
The concept of fractional derivative with respect to an arbitrary function has been used by Erdelyi[8]. The most common

definition for the fractional derivative of order « found in the literature on the “Riemann-Liouville integral” is
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1 z
DIFQ) = s f F@©)(z — t)-Ldt (2.4.1)
0

Where Re(a) < 0 and F(x) is the form of x? f (x), where f(x) is analytic at x = 0.
25 HYPERGEOMETRIC FUNCTION:
We defined the Hypergeometric function

- (al)n ----- (a )n zn
qu (al o 'ap;vbl' v -bq;Z )=;(b1)n ..... (bz;)nm (251)

Here, a.€ C, R(a) > 0, (a;), (b)) are pochammer symbols.
3. EQUIVALENCE:

In this section we shall show the equivalence of single Dirichlet average of Hypergeometric function (k = 2) with the
fractional derivative i.e.

$.85%3) = T ey D R ) = ) 31)
Proof:
- @, .. ... ( ) 1
S(ﬁvﬁ,;xvy)z (b) ..... (bp) nIR (ﬁ ﬁ X, y)

= o (@ (ap)n 1T(B+p") g n ., B-1 _q
- Z, (79 (by), n TRTR Of[ux + (1 —wyl" uf (1 —u)f'~ldu

Putting u(x — y) = t, we have,
_ - (al)n ..... (ap)n 1 F(ﬁ + ﬁ’) x=y
= - (bl)n ----- (bq)n m ]"ﬁ Fﬁ’ f [t + ]

p-1 t V1 ode
(=) =)
-y x=y x=y
On changing the order of integration and summation, we have

YV
= (x—y)FF' F([“ﬁ)f Z(al)n """ (ap), Lty ©F 10—y — F 1t

TBTH A (by) !
Or
TB+B) [ ,
== % PPy +1) OF 1x—y —t)f dt

Hence by the definition of fractional derivative, we get
' g TE+B)
SB.Bxy) = (x =y FF ———= 15 DL Fy () (x — )P

This completes the Analysis.
4, PARTICULAR CASES:
(41).If " =y — B, y = 0and no upper and lower parameter in (3.1) then

SB.y - ﬁxm—uryﬁﬂyxwwl

= F (B vix) (4.1)
This confluent hyper geometric function. [11]
T —
swyﬁxm———j (0 ?e)m (42)
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Then

o= O] -1
SBy = Fx.0) = 553 [HLZ ( *on.a -y, 1))]

(ii) If ' = & — B and From (4.1), then

S(B,§—p;x,0) = %xl_fo_ge"xﬁ‘l
S(B.€ = Bix,0) = 1F, (B, & x) = T()EL (x)
Where Efg(x) be the generalization of Mittag-Leffler function [12].

@iii) If B = —n, ' =1+ a+n,y = 0and no upper and lower parameter in (3.1) then
rl+a)
I'(=n)
= Fi(-n,1+a;x)

_L3(x)
 12(0)

S(—n,1+a+n; x,0) = (x)"¢ Dyn-a-lex(x)—n-1

Where L% (x) is the Laguerre polynomial of degree n.
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