
                 International Journal of Innovative Research in Advanced Engineering (IJIRAE)         ISSN: 2349-2163    
                     Volume 1 Issue 7 (August 2014)                                                                                        http://ijirae.com 
 
 

____________________________________________________________________________________________________ 
 © 2014, IJIRAE- All Rights Reserved                                                                                                                            Page - 117  
 

Multi-Relational secured in Data Mining  
 

R.Sudha 
Department of Computer Science 

Adhiparasakthi College of arts and science 
Prof.J.Srinivasan 

Department of Computer Science 
Adhiparasakthi College of arts and science 

Dr.G.Arutchelvan 
Director and Head, Department of Computer Science and Applications 

 
 

Abstract— Multi-Relational Data Mining (MRDM).Building on relational database theory is an obvious choice, as most data-
intensive applications of industrial scale employ a relational database for storage and retrieval. But apart from this pragmatic 
motivation, there are more substantial reasons for having a relational database view on Structured Data Mining. Relational 
database theory has a long and rich history of ideas and developments concerning the efficient storage and processing of 
structured data, which should be exploited in successful Multi-Relational Data mining technology. Concepts such as data 
modeling and database normalization may help to properly approach an MRDM project, and guide the effective and 
efficient search for interesting knowledge in the data. Recent developments in dealing with extremely large 
databases and managing query-intensive analytical processing will aid the application of MRDM in larger and more 
complex domains. 
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I INTRODUCTION 

 
This thesis is concerned with Data Mining: extracting useful insights from large and detailed 
collections of data. With the increased possibilities in modern society for companies and institutions 
to gather data cheaply and efficiently, this subject has become of increasing importance. This 
interest has inspired a rapidly maturing research field with developments both on a theoretical, as 
well as on a practical level with the availability of a range of commercial tools. Unfortunately, the 
widespread application of this technology has been limited by an important assumption in 
mainstream Data Mining approaches. This assumption – all data resides, or can be made to reside, 
in a single table – prevents the use of these Data Mining tools in certain important domains, or 
requires considerable massaging and altering of the data as a pre-processing step. This limitation 
has spawned a relatively recent interest in richer Data Mining paradigms that do allow structured 
data as opposed to the traditional flat representation. 
 
1.1 Structured Data in Relational Form 
 
Structured data will always be represented in a relational database by multiple tables. The 
information concerning the different parts of an individual will be distributed over these tables. 
There is one particular table, which we will refer to as the target table, that has a special role. Each 
record in this table corresponds to exactly one individual. The target table will be connected to other 
tables through foreign key relations. By following these keys the remaining data concerning 
individuals may be looked up. The target table will always be the starting point for searching 
interesting patterns, as patterns represent sets of individuals. The target table will often contain 
attributes that describe individuals as a whole, but may also just contain a single key-attribute that 
points to the structural parts in the remaining tables. Each table contains parts belonging to one 
particular class. All parts of this class, regardless of the individual, appear in the same table. In 
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order to determine the individual that a part belongs to, or to collect all parts belonging to a given 
individual, one will have to join over the foreign key relations. Figure1 and Figure 2 give an 
example of how molecules may be stored in a relational database for multi-relational analysis. 
Figure 1 demonstrates how carbon dioxide consists of six parts in three classes: one molecule, 
three atoms and two bonds. In Figure 2 these parts are distributed over three tables that also 
contain data for other molecules, e.g. water. 
 
 

 
Figure 1 : Relational representation of CO2 and H2O. 
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Figure 2  CO2 and its graphical representation. 
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1.2 Propositionalisation  
In this section we describe the basic concepts involved in propositionalisation, and provide 
some definitions. We define propositionalisation as the process of transforming a multi-relational 
dataset into a propositional dataset with derived attribute-value features, describing specific 
structural properties of the individuals. The process can thus be thought of as summarising 
data stored in multiple tables in a single table (the target table) containing one record per 
individual. The aim of this process, of course, is to pre-process multi-relational data for 
subsequent analysis by attribute-value learners. 
 
2. The RollUp Algorithm  
The algorithm will traverse the data model graph and repeatedly use the aggregation operation to 
project data from one table onto another, until all information has been aggregated at the target 
table. Although this repeated summarisation can be done in several ways, we will describe a 
basic algorithm, called RollUp. The RollUp algorithm performs a depth-first search (DFS) 
through the data model, up to a specified depth. Whenever the recursive algorithm reaches its 
maximum depth or a leaf in the graph, it will “roll up” the relevant table by aggregating it onto 
the parent in the DFS tree. Internal nodes in the tree will again be aggregated after all its 
children have been aggregated. This means that attributes considered deep in the tree may be 
aggregated multiple times. The process continues until all tables are summarised onto the target 
table. Combined with a propositional learner we obtain an instance of Polka. The following 
pseudo code describes RollUp more formally: 
          
 

RollUp (table T, data model M, integer d) 
  

V = T 
if d 
��0 

for all associations A from T in M 
W = RollUp(T.getTable(A), M, d-
1) S = Aggregate(W, A) 
V.add(s  

) return V 
 
 

The effect of RollUp is that each attribute appearing in a table other than the target table will 
appear several times in aggregated form in the resulting view. This multiple occurrence 
happens for two reasons. The first reason is that tables may occur multiple times in the DFS tree 
because they can be reached through multiple paths in the data model. Each path will produce a 
different aggregation of the available attributes. The second reason is related to the choices of 
aggregate function class at each aggregation along a path in the data model. This choice, and the 
fact that aggregate functions may be combined in longer paths, produces multiple occurrences of 
an attribute per path. The association-depth of the deepest feature is equal to the parameter d. Each 
feature corresponds to at most one attribute aggregated along a path of depth da. The refinement-
depth is therefore a linear function of the association-depth. As each feature involves at most one 
attribute, and is aggregated along a path with no branches, the association-width will always be 
either 0 or 1. This produces the following characteristics for RollUp. Use Lemma to 
characterise Polka instantiated with RollUp. 
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Lemma 

1. da(RollUp) = d 
2. dr(RollUp) = da(RollUp) + 
1 3. wa(RollUp) = 1 

 
2.1 Related Work  
Two alternative MRDM approaches implement propositionalisation by means of 
aggregate functions. The RELAGGS system [68, 69] uses a slightly larger collection of 
aggregate function classes to summarise groups of records. The essential difference with 
RollUp however, is where aggregation is applied. Rather than recursively joining and 
aggregating pairs of tables towards the target table, RELAGGS propagates the key of the 
individual to each table, effectively turning the data model into a star schema (association-depth 
1). It then applies aggregate functions to all tables, as if directly connected to the target table. 
This process produces the same result (given the same collection of aggregate function 
classes) whenever a database of association-depth 1 or less is processed. On association-
deeper data models however, RollUp will nest aggregate functions (e.g. average of the count), 
whereas RELAGGS will aggregate over the transitive association. 
 
2.2 Aggregate Functions & Rule Discovery 
 
The experiments in the previous chapter demonstrate the power of aggregate functions. 
Particularly on databases that combine a high level of non-determinacy with large numbers 
of (numeric) attributes, these aggregate functions are a promising means of capturing 
local structure. Unfortunately, the propositionalisation method in which we embedded 
these functions has a disadvantage that reduces their potential. This has to do with the 
static nature of the features produced in the propositionalisation step. The small set of aggregate 
functions employed produces a moderate set of fixed features which cannot be modified when the 
actual mining takes place. The overall structure of the Rule Discovery method remains 
unchanged. The primary changes deal with the richer pattern language and the refinement 
operator that introduces aggregate functions into a given pattern. We will show that extra care 
needs to be taken in order to guarantee that the refinement operator is actually a specialisation 
operator. Catering to aggregation also requires more complex data mining primitives. 
 
2.3  Experiments  
In order to acquire empirical knowledge about the effectiveness of our approach, we have 
tested RollUp on three well-known multi-relational datasets. These datasets were chosen 
because they show a variety of data models that occur frequently in many multi-relational 
problems. They are Musk [27], Mutagenesis [95], and Financial [106]. 
Each dataset was loaded into the RDBMS Oracle. The data was modelled in MRML. Based on this 
declarative bias, the RollUp module produced one database view for each dataset, containing the 
propositionalised data. This was then taken as input for the common Machine Learning procedure 
C5.0. For quantitative comparison with other techniques, we have computed the average accuracy 
by leave-one-out cross-validation for Musk and Mutagenesis, and by 10-fold cross-validation for 
Financial. 
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3. Generalised Selection Graphs  
In this section, we will show how aggregate functions are a natural generalisation of the 
existential conditions represented by edges in a selection graph. To support aggregate functions 
with selection graphs, we have to extend the language with a selection mechanism based on 
local structure. In particular, we add the possibility of aggregate conditions, resulting in 
generalised selection graphs (GSG). 
  
 
 
Definition 3.1 An aggregate condition is a triple (f, �, v) where f is an aggregate function, 
�� a comparison operator, and v a value of the codomain of f. 
  
Definition 3.2 A generalised selection graph is a directed graph (N, E), where N is a set of 
triples (t, C, s), t is a table in the data model and C is a, possibly empty, set of conditions on 
attributes in t of type (t.a ��c); ��one of the following operators, =, ��, �. The flag s has the 
possible values open and closed. E is a set of tuples (p, q, a, F) where p, q �� N, a is an 
association between p.t and q.t in the data model, and F is an aggregate condition. The 
generalised selection graph contains at least one node n0 (the root-node) that corresponds to the 
target table t0.We will use the same recursive construct in a translation procedure for SQL, as 
follows. If we start at the leaves of the graph and work back to the root, respecting all the 
selection conditions, we can compute the selection of records in the target table. This is achieved 
as follows. First we produce a list of groups of records in a table Q at a leaf node by testing 
on the aggregate condition. Each group is identified by the value of the foreign key: 
  

SELECT foreign-
key FROM Q 
WHERE attribute-conditions 
GROUP BY foreign-key 
HAVING aggregate-
condition 

 
We then join the result Q' with the parent table P to obtain a list of records in P that satisfies 
the combined conditions in the edge and leaf node: 
  

SELECT P. primary-
key FROM P, Q' 
WHERE P. primary-key = Q'. foreign-key 

  
This process continues recursively up to the root-node, resulting in a large query of nested 
SELECT statements. The second query can be extended with the grouping construct of the first 
query for the next edge in the sequence. This results in exactly one SELECT statement per 
node in the graph. This process is formalised in Figure 3.3 
  

SelectSubGraph (node n) 
  

S = 'SELECT ' + n.Name( ) + 
'.' if (n.IsRootNode( )) 

S.add (n.PrimaryKey( 
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)) else 
S.add (n.ForeignKey( 

)) S.add (' FROM ' + n.Name( 
)) for each child i of n do 

Si = 
SelectSubGraph(i) 

S.add(', ' + Si + ' S' + i 
) 

S.add(' WHERE ' + n.AttributeConditions( 
)) if (!n.IsLeaf( )) 

for each child i of n do 
S.add (' AND ' + n.Name( ) + '.' + n.PrimaryKey( ) 

+ ' = S' + i + '.' + i.ForeignKey( )) 
if (! n.IsRootNode( )) 

S.add(' GROUP BY ' + n.Name( ) + '.' + n.ForeignKey( )) 
S.add(' HAVING ' + n.ParentEdge( ).AggregateCondition( 
)) 

return S 
 

Figure 9.1 The SelectSubGraph algorithm. 
 

 
 
 

CONCLUSION 
 

Multi-Relational Data Mining is inherently more powerful than Propositional Data Mining. There 
clearly is a large class of Data Mining problems that cannot be successfully approached using a 
single table as representational setting. These problems, which can be characterised by the presence 
of internal structure within the individuals they deal with, can successfully be approached by the 
multi-relational tools and techniques that are the subject of this thesis. MRDM techniques are not 
the only ones that deal with structured data. We have presented a genus of Structured Data 
Mining paradigms that each approach the representation of data, and consequently the 
manipulation and analysis of the database, from a unique ‘tradition’. Although our main emphasis 
has been on MRDM, we recognise the value of approaching problems in the more abstract setting of 
Structured Data Mining. By combining achievements that have been made relatively independently 
of one another, a richer set of techniques becomes available, and redundant development can be 
prevented. Furthermore a unified approach aids the comparison of existing techniques, which are 
mainly representation-specific. We therefore see the generalization of techniques from the 
individual paradigms, and integration of common ideas in SDM, as an important direction for 
future research. 
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