
MANAGEMENT SCIENCE
Vol. 52, No. 7, July 2006, pp. 1000–1014
issn 0025-1909 �eissn 1526-5501 �06 �5207 �1000

informs ®

doi 10.1287/mnsc.1060.0553
©2006 INFORMS

Motivation, Governance, and the Viability of Hybrid
Forms in Open Source Software Development

Sonali K. Shah
University of Illinois at Urbana–Champaign, 465 Wohlers Hall, Champaign, Illinois 61820, sonali@uiuc.edu

Open source software projects rely on the voluntary efforts of thousands of software developers, yet we
know little about why developers choose to participate in this collective development process. This paper

inductively derives a framework for understanding participation from the perspective of the individual software
developer based on data from two software communities with different governance structures.
In both communities, a need for software-related improvements drives initial participation. The majority of

participants leave the community once their needs are met, however, a small subset remains involved. For this
set of developers, motives evolve over time and participation becomes a hobby. These hobbyists are critical to
the long-term viability of the software code: They take on tasks that might otherwise go undone and work
to maintain the simplicity and modularity of the code. Governance structures affect this evolution of motives.
Implications for firms interested in implementing hybrid strategies designed to combine the advantages of open
source software development with proprietary ownership and control are discussed.

Key words : open source software development; innovation; motivation; volunteers; governance
History : Accepted by Eric von Hippel and Georg von Krogh, guest editors; received September 1, 2004. This
paper was with the author 5 months and 3 weeks for 3 revisions.

1. Introduction
I pick and choose the work that’s most interesting to
me � � � � It’s great when you find a challenging problem
to work on—either on your own or because someone
needs it—you can spend hours on it � � � � (Long term
open source community participant, United States)

In an open source community, not one answer is
forced on anyone. Everything is up for discussion
and change—all the time. Sometimes it gives me a
headache [chuckle] � � � it’s empowering and it leaves
room for new people to come in and make improve-
ments and changes � � � � That dynamic just doesn’t
exist in communities around tightly licensed corporate
code—or in the companies that most of us work for.
(Expert, United States)

Open source software projects such as Linux, Apache,
and Gnome have achieved remarkable success. These
projects provide participants with the social context
and resources to create useful and publicly available
software that has, on occasion, displaced commer-
cially produced software. The projects are distinctive
in that they rely on the efforts of a community of vol-
unteer software users and developers instead of paid
managers and employees. These open source software
projects are thus exemplars of a fundamentally dif-
ferent organizational model for innovation and prod-
uct development—referred to as collective invention

(Allen 1983), private-collective innovation (von Hip-
pel and von Krogh 2003), and community-based inno-
vation (Franke and Shah 2003, Shah 2005). This model
extends well beyond the domain of software: inno-
vative communities have been influential in fields
as diverse as astronomy (Ferris 2002), automobiles
(Franz 2005, Kline and Pinch 1996), sports equipment
(Franke and Shah 2003, Shah 2000), personal comput-
ers (Freiberger and Swaine 2000), and video games
(Jeppesen and Molin 2003).
This paper investigates two specific research ques-

tions from an empirical perspective. First, why do
individuals participate in innovation communities?
And, second, how do differences in governance affect
individuals’ reasons for participation, as well as the
type and quality of their contributions? To address
these questions, this paper examines the motives of
participants in two large and well-known community-
based software development projects. One commu-
nity is open source and the other is gated source, mean-
ing that the communities rely on different governance
structures, although both seek to attract the efforts of
volunteer software developers. The study of two com-
munities with different governance structures allows
me to investigate how such differences affect individ-
ual participation. Data collected through interviews
and publicly available project information are ana-
lyzed using an inductive and qualitative methodolog-
ical approach based on the principles of grounded

1000



Shah: Motivation, Governance, and the Viability of Hybrid Forms
Management Science 52(7), pp. 1000–1014, © 2006 INFORMS 1001

theory building. This approach avoids layering pre-
conceived theoretical concepts onto a novel social
structure and “makes room for the discovery of the
unanticipated (Van Maanan 1998).”
Three key findings were uncovered. First, reasons

for participation vary, but a critical subset of open
source developers—hobbyists—participate because
they derive enjoyment from the act of creating code.
Second, reciprocity is a crucial factor in motivating
contributions to the community. Third, governance
structure has a first-order effect on patterns of par-
ticipation. Two additional distinctions not present in
the existing literature also emerged. First, the creation
and contribution of code and knowledge to the com-
munity are two different activities and are motivated
by different sets of factors.1 Second, the outcomes that
motivate behavior are not always the same as the out-
comes generated by the behavior. For example, some
developers do attain status within communities and
a select few have leveraged their open source efforts
into high-paying jobs. Yet, it does not appear that
these developers originally participated in the hopes
of obtaining these rewards.
In the next section, I summarize previous research

on the motives of open source software developers.
I provide a detailed description of the study set-
ting and method in §3. Findings are presented in §4.
Implications of these findings for the governance of
community-based projects are discussed in §5. Section
6 concludes.

2. Why Do Individuals Participate in
Innovation Communities?

We are accustomed to thinking of firms, independent
inventors, and research institutions as the primary
engines of innovative activity and industrial progress.
In theory, the research and development efforts of
most firms and independent inventors are based on
a proprietary benefit model. In this model, exclu-
sive property rights are the basis for capturing value
from innovative investments. Firms and independent
inventors strive to innovate in the hopes of realiz-
ing profits from products protected by patents, copy-
rights, and/or trade secrets.
The research and development activities of univer-

sities and research institutions are based on an aca-
demic model. Publication, status, and prestige are the
rewards for innovative activity and full-time, profes-
sionally trained and compensated researchers direct
their own efforts toward these goals, under the aegis
of funding agencies, such as the National Science
Foundation and National Institutes of Health.

1 Participants contribute a great many things to the community,
including both knowledge and code. However, for ease of expo-
sition, I will simply use the phrase “create and contribute code”
throughout the remainder of the paper.

The proprietary and academic models do not,
however, stand alone. Another model—“community-
based” innovation—has generated innovations that
we use on a daily basis. In contrast to the propri-
etary and academic models, the community-based
model relies neither on exclusive rights nor hierar-
chical control. The model is instead based on the
open, voluntary, and collaborative efforts of users—
a term that describes enthusiasts, tinkerers, amateurs,
everyday people, and even firms that derive benefit
from a product or service by using it. Open source
software development is a prominent example of the
community-based model.2

Researchers studying open source software devel-
opment are interested in the question of participa-
tion or, as Lerner and Tirole (2002) so aptly ask: Why
are large numbers of talented developers voluntarily
contributing to the creation, maintenance, and sup-
port of a public good? A number of competing and
contentious theories have been suggested. Stallman
(2001) argues that the free software ideology fuels
open source software development. Others argue that
participation is driven by users’ desire to satisfy their
own needs (Franke and von Hippel 2003, Kuan 2001,
Lakhani and von Hippel 2003, Raymond 1999); career
concerns, learning, and reputation (Hann et al. 2002,
Lerner and Tirole 2002); reputation and status within
the community (Raymond 1999); affiliation and iden-
tity (Hertel et al. 2003); or enjoyment and creativity
(Gelernter 1998, Ghosh 1998, Weizenbaum 1976). By
and large, each of these motives has been studied
independently and some evidence has been found in
support of each. Cross-sectional survey-based studies
examine several motives and find evidence in sup-
port of each (Ghosh et al. 2002, Hertel et al. 2003).
However, research has yet to devise a coherent expla-
nation for these findings, connect these motives to the
social structure, and understand how differences in
the social structure affect participation and vice versa.
The grounded theory-based approach employed in
this study will help illuminate these patterns.

2 One might also view innovation communities as volunteer orga-
nizations. Formally defined, volunteering is any activity in which
time is given freely to benefit another person, group, or cause. This
definition does not however preclude volunteers from benefiting
from their work, although there is debate over whether work is
truly voluntary if it is remunerated (Wilson 2000). From this per-
spective, participation in an open source community might be seen
as an activity that benefits both the community and the partici-
pant (this is in line with descriptions of open source development
as a private-collective innovation model, see von Hippel and von
Krogh 2003). Evidence supporting a variety of theories that seek to
explain volunteering from the perspective of individual attributes
(emphasizing either cost-benefit analysis or identity) as well as
social resources has been found. Less attention has been paid to
contextual effects (i.e., the impact of the organization, community,
and region) on an individual’s decision to volunteer and this is
considered a fruitful area for research (Wilson 2000).



Shah: Motivation, Governance, and the Viability of Hybrid Forms
1002 Management Science 52(7), pp. 1000–1014, © 2006 INFORMS

In this study, I examine participation in consid-
erable depth and consider the full set of possible
motives, rather than seek to confirm or disprove
any single reason for participation. An individual
may possess multiple motives, motives may differ
across individuals, and motives may evolve over
time (Jencks et al. 1988, Jensen and Meckling 1994).
These possibilities are recognized in the design of
the study. The study also pays attention to individ-
uals’ perceptions of the community as a social sys-
tem because each developer’s choices are likely to
depend on the surrounding social system and to affect
that system as well (Coleman 1994, Giddens 1984).
Therefore the goals, norms and values, status mark-
ers, and social cleavages of both communities were
also recorded.

3. Research Method
I gathered data from multiple sources within two
distinct software communities. In all, 88 interviews,
over 2,000 mailing list postings, and online project
documentation informed this research. The individual
software developer is the focal unit of analysis. The
study setting, data sources, and data analysis proce-
dures are discussed in detail below.

Study Setting
As of October 2005, more than 105,000 open source
projects exist (SourceForge 2005).3 Not surprisingly, a
wide variety of social structures and licensing struc-
tures also exist. I distinguish between two general
approaches to community-based software develop-
ment: open and gated. Both seek to attract volunteer
developers, although different governance principles
apply. To be considered “open source,” a project’s
licensing terms must meet the 10 requirements of the
open source definition (Open Source Initiative 2004).
Gated approaches attempt to selectively combine the
benefits of collective development with the corporate
benefits of private ownership and control. They are
more restrictive than open source licenses from the
perspective of the developer. I chose to study par-
ticipation in both types of communities in order to
examine whether and how differences in governance
structures affect the type, quality, and reasons for
participation.
Two communities were identified based on inter-

views with six open source software experts and
Internet searches. Both have a large number of

3 Very few of these projects are able to construct functioning soft-
ware or robust, if small, communities: only 75% of projects hosted
on the SourceForge.net website contain code in their code reposi-
tories and 95% of projects have five or fewer contributors (Healey
and Schussman 2003).

participants and are well known within the software-
development community. Both focus on the devel-
opment of innovative software, that is, software that
possesses a unique software architecture and creates
novel functionality not found in existing software
programs. They are of roughly the same age and
use the same programming language. Both serve as
umbrella organizations for multiple projects. Repre-
sentative projects within each community were cho-
sen based on conversations with four experts within
the communities.
The key distinctions between the open and gated

communities are as follows. In the open source com-
munity, anyone can download, use, modify, and dis-
tribute the code. The code is owned by the collective
and a special subset of developers, called committers,
settle contested project decisions. In the gated source
community, only those who have agreed to a license
with the corporate sponsor can download, use, or
modify the code. The license stipulates that the code
may only be shared with other licensees. The corpo-
rate sponsor owns the code and retains the right to
make project decisions. Finally, licensees who use the
code for commercial purposes must pay a royalty to
the corporate sponsor.

Data Sources
Multiple sources of data are critical to grounded
theory development as they enable triangulation and
validation of theoretical constructs. Data from three
primary sources informed this research (Table 1). All
data were collected in 2001–2002.

Online Project Documentation. Online archives
contained project descriptions, charters, bylaws, meet-
ing minutes, and an informal survey of open source
committers. This documentation provided a basis for
understanding the formal rules and structure of the
communities.

Table 1 Data Sources

Data source Description

Online project documentation All publicly available project descriptions,
charters, bylaws, meeting minutes, etc.

Mailing lists Over 2,000 messages read over a
three-month period prior to interviews

Interviews 88 interviews conducted
Theoretically sampled 45 interviews, selected to maximize

interviews variance
Snowball-sampled interviews 19 interviews, selected based on

recommendations of previous
interviewees

Gated source conference 13 interviews, chosen opportunistically
interviews

Interviews with employees 11 interviews, selected based on
of gated source sponsor employment



Shah: Motivation, Governance, and the Viability of Hybrid Forms
Management Science 52(7), pp. 1000–1014, © 2006 INFORMS 1003

Mailing Lists. I read all postings to project-specific
and general mailing lists for both communities for
a three-month period preceding the interviews. Over
2,000 messages were posted during this period. Read-
ing these messages allowed me to gain familiarity
with the technology; the types, quantity, and con-
tent of discussions; and the contributions and roles of
different individuals.4

A list of project participants was assembled from
the mailing list and notes were made describing each
participant’s characteristics and activities. From these
notes, I constructed a set of observable dimensions
on which participants actions and behaviors differed.
These dimensions became the backbone of the theo-
retical sampling strategy used to select over half of all
interviewees.

Interviews. In total, 88 interviews were conducted.
Interviewees were selected through the use of
four complementary sampling strategies, which are
described below. This choice of complementary strate-
gies is an intentional part of the study design, used to
ensure that the diversity of the community was cap-
tured in the data collection process.

Theoretically Sampled Interviews. I conducted 45 the-
oretically sampled interviews with project volunteers.
Interviewees were chosen to maximize variance on
the following four dimensions:
(a) Length of participation. The length of time since

an individual’s first post to the project mailing list.
A short-term participant posted their first message less
than two months prior to the interview. A long-term
participant posted their first message to the mailing
list more than two months prior to the interview.
(b) Current frequency of participation. The number

of posts made to mailing lists in the preceding one-
month time period.
(c) Type(s) of contributions made to mailing lists.

Did the participant pose questions, provide answers
or suggestions, make bug fixes, contribute code,
participate in general discussions, or engage in a
combination of the above activities?
(d) Individual’s role within the community. Was

the participant a user, developer, or a committer?
A committer is a participant who has been granted
access to the source code repository (this is only appli-
cable to participants of the open source community).5

4 Many people download and use the software but never post a
message on the mailing list. Very little is known about such indi-
viduals and it is difficult, if not impossible, to contact them. Such
users of the open source software cannot be contacted directly since
the open source community does not keep a record of who down-
loads the software; such users of the gated software have signed a
confidential licensing agreement with the corporate sponsor.
5 Anyone can download the open source community’s source code
onto their own computer and make alterations to their private copy

Information on these dimensions was gathered from
observed behavior on project mailing lists (a, b, c)
or other project-related documentation (d). The sam-
ple of 45 referred to in the tables includes only
theoretically-sampled interviews.

Snowball-Sampled Interviews. I conducted 16 snow-
ball-sampled interviews with members of the open
source community and 3 with members of the gated
community. Snowball sampling identifies intervie-
wees based on the recommendations of past intervie-
wees (Denzin and Lincoln 2000). In the course of this
research, informants often recommended others who
they viewed as knowledgeable, critical to the project,
or having a unique perspective. I took the opportu-
nity to speak to many such individuals in order to
increase variance in the data collected.

Conference Interviews. Over 28 hours in a three-day
period were spent observing and meeting with atten-
dees at a technical conference focused on the gated
source project. Here 13 interviews were conducted
and a number of short (5–10 minute) conversations
were also initiated. Conversations were not recorded
because of the nature of interaction at such confer-
ences; detailed notes were taken at the end of the day
and, when appropriate, during conversations.

Interviews with Employees of the Corporate Spon-
sor. I conducted interviews with 11 employees of
the gated project’s corporate sponsor. They repre-
sented various functional roles within the firm and
were employed at levels throughout the firm’s hier-
archy. Interview questions focused on the nature of
work undertaken by employees of the sponsor, project
history, corporate priorities, complementarities and
tensions between corporate and community priorities,
and interactions with volunteer participants.
In the formal interviews, subjects were asked

a series of open-ended questions, augmented by
follow-up and clarifying questions (Spradley 1979).
Questions addressed the following issues: (1) the par-
ticipants’ initial and current usage of the software,
(2) project-related activity, (3) methods for processing
mailing list information, (4) background, (5) current
employment, and (6) perceptions of the governance
practices used within the project. Interviewees were
guaranteed anonymity to promote candid responses.
As part of the study design, I did not inquire about

motives directly. Doing so leads subjects to rationalize
their actions (Becker 1998; Spradley 1979, pp. 81–82).
Instead, I asked concrete questions about the subject’s

of the code, but making changes to the publicly available copy of
the code, called the source code, is restricted to select individuals,
called committers. Any participant can nominate an individual for
committer status. If at least three existing committers voice sup-
port for the candidate and no existing committers voice a lack of
support, the individual receives committer privileges.



Shah: Motivation, Governance, and the Viability of Hybrid Forms
1004 Management Science 52(7), pp. 1000–1014, © 2006 INFORMS

activities. In describing their activities, subjects tend
to volunteer information related to motives. At the
conclusion of the interviews, interviewees were asked
to comment on motives for participation that they had
not brought up.
Interviews were generally conducted by telephone

and recorded to facilitate data analysis. Interviews
ranged in length from 30 to more than 120 minutes
(90 minutes was the average). Interviewees were pri-
marily college-educated males in their midtwenties to
forties. The majority held full-time jobs as software
developers or engineers. A few were employed by
software-consulting firms and a handful were inde-
pendent contractors.

Data Analysis
From the interviews I constructed categories based
on the principles of grounded theory building (King
et al. 1994, Strauss 1987). The construction of cat-
egories is an iterative process intended to create a
common meaning that captures the essence of mul-
tiple observations (Locke 2001). After a category was
named, I examined the data again and looked for
other fragments of data (such as interview quotes)
that fell within the category in a positive or nega-
tive way. If no other instances (positive or negative)
appeared, the category was abandoned or revised.
Alternatively, frequently mentioned categories were
refined by adding specific descriptors. After identi-
fying and refining a number of categories, I tried to
understand how the different categories fit together
into a coherent picture. In addition, I made a series of
comparisons at two levels: between individuals in the
same community and across the two communities.

4. Findings
This study finds that there are two types of par-
ticipants, each with different sets of motives, in
the open source community: need-driven partici-
pants and hobbyist participants. In contrast, the gated

Table 2 Framework for Understanding Developer Participation

Level of individual Relative number of
Reason to create Reason to contribute participation participantsa Knowledge of code content and structure

Need Reciprocity; norms Low High Generally limited to area of initial problem
Future product improvements Varies, depends on need Moderate Primarily in area of initial problem, may expand
Desire to integrate own code Moderate to high Low Varies

into source code
Career concerns Low and often peripheral Very low Varies
None (do not contribute) Very low NAb Generally limited to area of initial problem

Fun, enjoymentc Feedback High Low Begins in area of initial problem, expands

aBased on mailing list and interview data.
bIt is difficult to estimate the size of this set, because those who do not contribute may not participate in mailing list discussions and are thus not represented

in the interview sample. Modifying the code without subsequently contributing those modifications to the community is acceptable under many open source
licenses (e.g., the Apache Software License, the Berkeley Software Distribution License).

cEvidence of this motive found primarily in the open source community.

source community is populated almost exclusively by
need-driven participants. Table 2 provides a summary
of key findings related to developer participation. The
table segments developers according to their reasons
for creating and contributing code. For each subset
of participants, the level of individual participation,
the relative number of participants of this type in the
community, and the general knowledge of code con-
tent and structure is reported. Detailed information
on each of these participant subsets and the interac-
tion between them is reported in the remainder of this
section.

Need-Driven Participation

Need Drives Choice of Software Program. When
describing their initial choice to use the software,
virtually all interviewees spoke of needing to use
the software for work-related purposes. Many open
source participants consciously made the decision to
use open source software, rather than commercially
available software, so they could view and change the
code to best fit their own needs. In contrast, several
gated source participants expressed reluctance to use
the gated software. The terms of the license made it
difficult for them to get permission from their man-
agers and/or corporate legal departments to use the
software. Most undertook comprehensive searches for
other options before choosing to use the gated soft-
ware. Many explained that the technical capabilities
of the gated software were unparalleled and required
to solve the problems that they were working on.

[Name of gated source project] offers great functional-
ity, but it was difficult to get my company’s lawyers
to approve the license. I had to beg and plead and
convince them that this was the best way to solve the
issues we were facing � � �even that did not work the
first time. We had to go back and work to convince
management and legal that this was the only way to
effectively do what we needed to do. (Long-term par-
ticipant, gated source community, United States)



Shah: Motivation, Governance, and the Viability of Hybrid Forms
Management Science 52(7), pp. 1000–1014, © 2006 INFORMS 1005

Table 3 Motives for Initial Participation

Reason for initial
involvement Open source Gated source

Need 25 17
Other 1 2

Note. n= 45.

Need Drives Code Creation. The need for soft-
ware-related changes, alterations, or assistance drives
initial and ongoing participation (Table 3). Both the
technical content of these needs and the extent to
which participants must manipulate the software to
meet their needs varies widely, ranging from small
adaptations to simple bug fixes to creating a new fea-
ture. Participants initially searched for existing solu-
tions to their problems and only when no solution
was found did they create their own. Because a need
exists, participants generally do not wait for others to
solve the problem.

I was using the software for work. It’s excellent,
but there was a feature that I wanted that was not
there � � � � I searched the documentation and mailing
lists for information and to see if I had overlooked
something, finally I asked a question. That spurred
some conversation and someone suggested a beauti-
ful way to implement the idea. (Short-term participant,
open source community, United States)

I first poked around to see if someone else had done
the work. I only code if I can’t find an existing
solution � � � � I search the email archives, sometimes the
uncommitted code and bug reports too � � � to find out
if someone else had the same problem and whether
they solved it or found a work-around � � � � If I don’t
find anything or if I need clarification, I ask and take
care of it myself. (Long-term participant, open source
community, United States)

Need-driven participants are a highly heterogeneous
group with respect to both needs and skills (Franke
and von Hippel 2003 also find evidence of this pat-
tern). As a group, they contribute many new ideas to
the community.
The practice of making potential participants find

and solve their own problems—rather than assign-
ing tasks—effectively creates a screening mechanism
favoring the entry of those with specific needs. For
individuals with a variety of other motives, such as
learning or establishing a reputation, finding a niche
of interest in which they have the skills to be useful
can be a time-consuming and frustrating exercise.

Motives for Contributing Code. As a motivating
factor, need helps us understand why individuals cre-
ate code but does not explain why many individuals

contribute what they have created to the community.6

The costs of contributing code are positive and often
relatively high in terms of the time and effort, e.g., the
code must be cleaned up and refined, thought must
be put into what is useful to others and what might
be particular to one’s own needs, and comments and
explanations must be composed. The primary reasons
cited by need-based participants for contributing code
include reciprocity, future improvements, source code
commits, and career concerns (Table 2, Column 2).

Reciprocity. Many need-driven participants report
that reciprocity, obligation, or a desire to conform to
the norms of the community drove their contribu-
tions. They report, “Others helped me, so I should
help them” and “This is what is done in [name of
project].” The amount of overall activity generated
through reciprocity is high because of the large num-
ber of participants motivated by this factor.
Contributions triggered by reciprocity generally

occurred over a short time span and consisted of
answering questions and contributing patches or
small bits of code. Participants motivated by reci-
procity rarely spent time refining their code before
contributing it to the community. These participants
generally did not know—and were not interested in
knowing—whether their code contribution had been
accepted and incorporated into the source code. They
deployed the version of the code that they had ini-
tially downloaded and altered. After contributing,
most removed themselves from the mailing lists and
did not keep up with software-related developments.

The community helped me a lot. I really appreciated
their suggestions and help, so I tried to help others
with questions they had for a while. After a few weeks,
I stopped scanning the mailing list—it’s a lot of time to
keep checking and see who you can help! A few days
later, I unsubscribed from the mailing list. (Short-term
participant, open source community, United States)

Future Improvements: Assistance When Building a Bet-
ter Mousetrap. A number of need-driven participants
reported a desire to find better solutions than the ones
they created. By contributing their own work and
ideas, they sought to (1) get feedback from others and,
ideally, elicit subsequent improvements, (2) start or
sustain discussions or development work that might
be helpful to themselves and others, and (3) commu-
nicate that their need might be worthy of the attention
of others. The knowledge of most participants in this

6 Several individuals interviewed reported that they did not con-
tribute all or part of their work product. It is difficult to estimate the
relative size of this group based on the data available. The reasons
given include: the work product was so specialized that it would
be of little use to others, the participant lacked time, and the code
was of competitive importance to their firm and hence would be
kept proprietary.



Shah: Motivation, Governance, and the Viability of Hybrid Forms
1006 Management Science 52(7), pp. 1000–1014, © 2006 INFORMS

group is limited to the area(s) of the code where they
experienced a problem.
In addition, these participants regularly monitor

mailing list postings for information related to their
own needs. As they scan, they observe the questions
of others and—due to their relatively deep under-
standing of one or more software modules—they find
that they can provide others with assistance with very
little effort. They report providing assistance due to
reciprocity and/or a desire to cultivate more develop-
ers who might be able to assist them in the future.
Some of these participants become committers,

particularly those who contribute high-quality code
and/or undertake extended work that other commit-
ters deem widely useful. As committers these par-
ticipants focus on work that directly furthers their
own interests or takes a relatively small amount of
time and effort to complete. Several report that, when
first made a committer, they felt an obligation to “do
more for the project.” They undertook a few addi-
tional tasks for a short time frame, and then went
back to focusing on their own needs.

Desire to Have Code Incorporated into the Source Code.
Observers of the open source software phenomenon
have suggested that participants seek to incorpo-
rate code into the source code so that their func-
tional needs will continue to be met as the software
evolves (Raymond 1999). Few participants engaged in
this strategy. Instead, participants explained that what
was important was having a particular feature or func-
tion. Many report that they avoid upgrading to new
releases, relying on their individualized version for as
long as possible.
The few participants engaged in this strategy

tended to be employees of companies with strategic
interests in the software or independent consultants.
This set of developers expected to use the source code
repeatedly for different projects, making it worth-
while for them to expend the time and effort required
to incorporate changes into the source code. Some of
these participants become committers. As committers,
they make an effort to maintain the code in areas of
strategic interest. They take the needs of other partic-
ipants into account to avoid conflict, but their focus
tends to be on their own requirements.

We generally work on things and make changes that
are in our best interest. We try and consider the inter-
ests of others, but really, most things we do in the
projects we’re involved with aren’t controversial � � � �
Otherwise we may have to deal with a lot of unhappy
people and one of them will change the source code
back anyway � � � if it’s the best thing to do, you con-
vince. If you can’t convince, it may only be best for
you � � �you can change your own version. (Long-term
participant, open source project, United States)

Career Concerns. Reputation, skill development,
and other career concerns are of relatively low impor-
tance in understanding the creation and contribution
of code. In fact, these motivations were rarely men-
tioned. This led me to inquire about these motives
at the end of each interview. Participant responses
convinced me that their narratives were authentic
and represented their reality. For example, when I
brought up skill development and learning, many
interviewees pointed out that their work consisted
primarily of solving a small problem or two—hardly
enough to build or hone a particular skill. Others cor-
rected me and explained that what they were gain-
ing was project-specific knowledge, not new skills.7

When discussing the possibility of career benefits,
most developers explained that they did not envi-
sion a link between participation and a better job
and that, even if a link existed, their contributions
were relatively small. The vast majority of intervie-
wees reported not listing their open source work on
their resume.
Career concerns can however generate positive out-

comes for individuals and the community. For exam-
ple, in two cases, developers who initially joined due
to a need for the software found themselves unem-
ployed and reluctant to reenter the corporate world.
They subsequently chose to write software manuals
and documentation for the project on behalf of for-
profit publishers. While this documentation work did
not directly contribute to the technical development
of the code, it benefited the community by attracting
and supporting new users and provided the devel-
oper with pecuniary benefits.

Hobbyist Participation in the Open Source
Community

Fun and Enjoyment as Drivers of Code Creation.
Over half of long-term open source participants
describe their open source work as a fun and chal-
lenging hobbylike activity (Table 4, Column 2).

I don’t watch TV or sleep enough � � � this is my
hobby � � � � I won’t work a job that requires more than
40 hours � � � � I want to have breakfast and dinner with
my kids � � � � I work on open source after they go to
bed. (Long-term participant, open source community,
Australia)

7 The distinction between the skills to write code and knowledge
of a particular piece of code is critical. This distinction corresponds
to the difference between the ability to read, and knowledge of,
a particular section of the Odyssey. Most participants report that
they joined the project with the required technical skills and that
they learned about the structure of the open source code as they
worked. Some reported sharpening or expanding their skills, pri-
marily through interactions with talented developers, practice, and
viewing high-quality code.



Shah: Motivation, Governance, and the Viability of Hybrid Forms
Management Science 52(7), pp. 1000–1014, © 2006 INFORMS 1007

Table 4 Motives for Long-Term Participation

Motive Open source Gated source

Need 7 14
Fun and enjoyment 11 1
Other 1 1

Note. n= 35.

The website of the open source community even
includes a list of haikus written by developers.
The following example evokes the implicit tension
between a seductive hobby and legitimate work.

Time, too much have you
Major geeks these people are
Boss know you do this? :)

The tasks undertaken by hobbyists vary widely, how-
ever all emphasize that they choose their own tasks
and set their own schedules.

I pick and choose the work that’s most interesting to
me � � � it’s great when you find a challenging problem
to work on—either on your own or because some-
one needs it—you can spend hours on it � � � � The rou-
tine stuff is okay, but I don’t do much unless I just
want to hack for a while and there are no really inter-
esting problems around � � � � When I get bored, I will
leave � � � � (Long-term participant, open source commu-
nity, France)

Many described the freedom and creativity they expe-
rienced in defining and managing their open source
work in great detail, contrasting this to the more
structured and regimented work environment found
in their day jobs.
“Interesting work” was self-identified or selected

based on the needs of others. Hobbyists described
many instances where they identified interesting chal-
lenges in the course of scanning mailing lists, bug
reports, and contributed code. As they scan, they
observe ongoing issues and view requests and sug-
gestions. Sometimes a topic catches their interest and
leads the participant to undertake a new task or
even delve into a new area of the code. Hobbyists
explain that, over time, their knowledge of the con-
tent and structure of the code accumulates, allowing
them to undertake more difficult challenges, includ-
ing those that require an understanding of multiple
areas (modules) of the code.
Attention to technical detail is important to these

participants. They are interested in striking a bal-
ance between meeting the needs of users and keep-
ing the code simple, elegant, modular, and backward
compatible.8 Adherence to these principles (ideally)

8 Baldwin and Clark (2000) discuss the importance of modularity
for product development more generally.

precludes the need for voluminous documentation,
limits the number of standard features, and allows
other participants to independently understand and
alter the code.9

Sometimes you work on an area and you notice
that the code is getting more and more compli-
cated � � �because many small changes have been made.
There comes a time when you must start from scratch
and rewrite the code with all the new functionality in
mind. (Long-term participant, open source community,
Germany)

Could we use more documentation? Well, yes � � �but
not in the way you are thinking � � � � In a perfect
world [chuckle] we end up with clean code with
annotations—short notes that developers understand.
No documentation book required! (Long-term partici-
pant, open source community, United States)

Conversations with hobbyists and need-driven par-
ticipants all indicate that hobbyists are the ones who
tend the code and undertake most of the “main-
tenance work”—such as committing code, rewriting
sections of the code, designing new releases, and fix-
ing bugs—required to keep the project functioning.
Because hobbyists choose their own tasks and set
their own schedules, tasks sometimes go undone. For
example, backlogs of code embodying new features or
improving existing features often build up. The back-
logs are generally not dealt with until one or more
individuals signal that it is time to trigger a new code
release, and takes primary responsibility for making
sure that the release happens. Deadlines are virtually
unheard of in the community unless self-generated by
the participant who has taken on the work.
One might wonder how software development

can qualify as a fun and engaging activity. Intervie-
wees explained that when writing code, they were
fully engrossed in solving a challenging puzzle, and
offered analogies to playing chess, rock climbing,
and putting together a difficult jigsaw puzzle. In
each case, they expressed that part of the satisfaction
in programming lay in the knowledge that a solu-
tion exists and that the solution could be found and
implemented with creativity and patience. Many hob-
byists consider structuring and writing code to be an
artistic pursuit.

9 In contrast, individuals motivated only by need might be tempted
to create a feature and tack it on to the code. Successive additions of
this kind are likely to result in code that is large, difficult to under-
stand and improve, and suffers from problems due to interactions
between areas of code. The process of writing an academic paper
is analogous. If one writes a paper and asks several friends to com-
ment on it and then merely “adds in” each individual’s comments,
the paper will likely be a mess. Instead, the comments must be
understood, selected, and carefully integrated into the paper—and
portions of the paper may have to be completely rewritten.



Shah: Motivation, Governance, and the Viability of Hybrid Forms
1008 Management Science 52(7), pp. 1000–1014, © 2006 INFORMS

Several hobbyists engage in other creative pursuits
such as music, creative writing, and art. These hob-
byists are not alone, a number of accounts describing
the careers and interests of engineers and technical
professionals report that a subset of these individuals
truly enjoy and find beauty in what they do and the
products they create, and actively seek out opportuni-
ties to engage in challenging and useful activities in a
variety of domains (Bailyn and Lynch 1983, Gelernter
1998, Levy 2001, Moody 2001).
Hobbyists tend to be highly skilled and experienced

software developers. Many hold managerial positions
in the companies where they work. Many reported
that their work activity is not sufficiently interesting
or engaging, and that open source software develop-
ment provides a venue in which they can satisfy their
desire to be creative and solve challenging puzzles.
Hobbyists are not participating to develop skills

or build their resumes. When I inquired about these
motives at the end of each interview, I received a vari-
ety of spontaneous and often entertaining responses.
For example, when I brought up skill development,
hobbyists quickly corrected me and explained that
they already possessed a stockpile of skills. Several
hobbyists explained that they actively tried to man-
age perceptions of their open source work with their
managers, because they did not want to be accused of
neglecting their day jobs. When asked whether they
listed their open source work on their resumes, many
hobbyists laughed and informed me that they did not,
while assuring me that in the context of their work
experience, their open source activities were trivial.
Only one hobbyist listed his open source work on
his resume—he was a student and explained that
this was his primary hobby (interestingly, he also
explained that in the country where he lived, the
programming language used in the community was
rarely used in corporate software development, and
thus unlikely to help him land a job).

Hobbyist Motives for Contributing Code: Feed-
back. Enjoyment derived through the act of program-
ming does not necessitate that one work within a
community—one could work alone. Working within
a community helps the hobbyists identify tasks that
they find challenging and interesting, and that are
useful for others. Contribution is necessary to obtain
feedback affirming that one’s activities are useful to
others.10

Why work on something that no one will use? There’s
no satisfaction there. (Long-term open source partici-
pant, United States)

10 This pattern is in line with psychological theory that finds
that informational feedback enhances intrinsic motivation (Amabile
1983; Boggiano and Pittman 1992; Deci 1971, 1975; Kruglanski 1975;
Lepper and Greene 1978).

One hobbyist even reported that he and two other
developers had recently taken a day off from their
jobs to present the open source project to a firm that
was considering using the project’s software. When
asked why, he explained:

It is rewarding when you see that what you helped cre-
ate is used by many people. I want to let many people
know about this software and I want them to use it.
(Long-term open source participant, Germany)

Hobbyists report monitoring the mailing lists, bug
reports, and contributed code for discussions related
to their contributions. They tend to be highly recep-
tive to bug reports and well-formulated questions and
suggestions. Such feedback can create interesting puz-
zles or challenges, improve the code, and affirm the
usefulness of what they have created.
Many hobbyist participants are also committers.

Attaining “committer” status may be an additional
form of feedback in the open source community,
letting the participant know that their contributions
are valued and signaling what existing committers
value to others, thereby reinforcing norms. Although
it is possible that such recognition affects contribution
decisions, most committers viewed the designation as
a welcome “pat on the back” that made it easier for
them to alter the code, rather than something they
diligently worked to attain (note that many commit-
ters leave the project after several months, see final
subsection of this section).

Contextual Factors Influencing Hobbyist Partici-
pation: Control and Fit. Hobbyist participants report
that the level of control exercised in the community
and the behaviors of other participants influence their
choice to participate. Heavy-handed control can deter
participation:

Sometimes [the participation decision] isn’t [all] about
technical considerations. There’s another OS project
whose technology I use and I want to develop
further, but the “benevolent dictator” is simply a
dictator � � � the few developers who stick around are
like that too � � �who needs that? This project is
flexible � � � � I’m watching for interesting stuff to do
here. (Short-term participant, open source community,
United States)

Not surprisingly, hobbyists will choose not to
work in project communities where they feel
uncomfortable.

[Name of open source project] is really nice—not
only professional, but nice � � � look at [name of another
project sponsored by the same community], they are
a lot rougher � � � � Those developers are extremely tal-
ented, more talented than the ones here � � �but, it’s just
not my thing, to listen to people carry on like that.
(Long-term open source participant, United States)



Shah: Motivation, Governance, and the Viability of Hybrid Forms
Management Science 52(7), pp. 1000–1014, © 2006 INFORMS 1009

A Symbiotic Relationship: Need-Driven
Participants and Hobbyists
Need-driven participants and hobbyists within the
open source community differ in their motivations
and actions, yet each group benefits from the other.
The questions, suggestions, and contributions of
need-driven participants feed hobbyists searching for
interesting and useful challenges. Hobbyists, in turn,
provide assistance and support to need-driven par-
ticipants by answering questions, creating desired
features, integrating need-driven contributions into
the source code, and providing other “maintenance”
services that, for example, preserve or improve the
architecture, modularity, and backwards compatibility
of the code. This interaction appears to be critical in
allowing the open source project to function without
a formal task identification and assignment system.
This does not, however, mean that every request is

satisfied. In fact, several cases were observed where
requests for information or assistance on the commu-
nity mailing lists received no response and several
ideas deemed “worthy” by a number of participants
interacting on the mailing list were not implemented
due to either lack of interest or time.

Volunteers Behave Differently in Open Source and
Gated Source Communities
Although the open source community greatly bene-
fited from the presence of hobbyist developers, virtu-
ally all long-term gated source participants continued
to focus on need as their primary reason for project
involvement (Table 4, Column 2).11

In describing their activities within the gated source
community, participants voiced blatant disapproval of
two elements of the governance structure: The level
of code control held by the sponsor (the sponsor is the
only actor able to make changes to the source code)
and ownership by the corporate sponsor.12 Each of
these is described in greater detail below.

11 Conversations with several gated source participants who
attended or presented at the conference underscored the fact that
participation was motivated more by individual benefit and less
by fun and enjoyment. For example, when asked why they took
the time to present their work at a conference, one participant
explained that in order to get an office with a window, she had
to get a promotion. The remaining step toward earning a promo-
tion was to make a technical presentation at a conference. Another
explained that he was running a consulting business based on the
technology and hoped to make contacts with potential clients dur-
ing the conference.
12 Alternative explanations might be that the gated source soft-
ware is inherently less challenging or that volunteers are relying
on employees of the corporate sponsor to do work, however, (1)
the gated source project is generally regarded by software devel-
opers to be more exciting and revolutionary than the open source
project. It does not appear that there is any lack of fun or challenge
to be had. (2) While it is true that gated source community partici-
pants might desire that the corporate sponsor do as much work as

Day-to-day control over the code made participants
question whether their efforts would go to waste, as
their needs and activities might not be reflective of
the sponsor’s financial interests:

I answer questions and stuff, but I don’t feel the need
to contribute my changes to the community. It’s time
consuming and I don’t know if [the corporate sponsor]
will do anything with it � � � � At the end of the day, they
make the decisions with their commercial licensees in
mind. (Long-term participant, gated source commu-
nity, United States)

Ownership by the corporate sponsor raised four
issues. The first issue involves unrestricted use of the
code by the participant:

Why should I contribute to something that is not mine?
� � � It’s okay if it’s mine and someone else’s and some-
one else’s, but I have to be able to use it the way I
want, whenever I want. (Short-term participant, gated
source community, United States)

The second issue involves the fairness of restrictions
on wider code use and distribution, as illustrated
below.

I make the changes that I really need and so does
everyone else and we benefit from one another � � � �
There are a lot of things the project still needs that I
keep asking [the corporate sponsor] to develop � � � they
are not absolutely critical, but they’d take the soft-
ware to the next level and expand its capabilities � � � if I
develop it and then [the corporate sponsor] says I can’t
let others see it or work on it or use it in whatever
way that makes sense—now come on! That’s not how
it works! (Long-term participant, gated source commu-
nity, United States)

The third issue involves various scenarios under
which the sponsor might inadvertently or deliber-
ately, in the words of a participant, “appropriate
code away” from the community. For example, con-
flicts over ownership and use might arise if the
sponsor goes out of business, chooses to discontinue
the project, or wants to sell the code. The fourth
issue involves problems created by the commercial-
use clause of the license. Although the code may be
used freely for developmental work by other firms,
commercial use requires the negotiation and payment
of a royalty fee to the sponsor. Many participants were
wary that the sponsor might stipulate outrageous
license terms for commercial use after the participant
(on behalf of an employer or himself) invested in the
creation of a product based on the code.
Due to these issues, those who participated tended

to be developers with no other option but to use

possible, especially the more mundane work, this does not explain
why volunteers are not seeking out the work that they view as fun
and enjoyable.



Shah: Motivation, Governance, and the Viability of Hybrid Forms
1010 Management Science 52(7), pp. 1000–1014, © 2006 INFORMS

the gated source software, those who believed that
they could trust the sponsor (e.g., the sponsor’s exist-
ing customers), and those willing to work under
the licensing constraints (e.g., start-ups and consul-
tants who believed they would gain financially from
the technology). Many of these participants chose
not to contribute the code that they created, leaving
other developers with less to work with and build
on. In the long run, this limits cumulative develop-
ment activity and overall value creation. When these
participants did contribute, their contributions often
stemmed from strategic concerns.

Leaving the Community
Most open and gated source developers—even hob-
byists and those who attain committer status—appear
to leave the project within one year. Participants are
not expected to remain on the project indefinitely and
exit is understood to be a normal part of the process,
even for committers and hobbyists.13

Most [committers] stick around for maybe 3–4 months
at most, it’s okay to leave � � � � The ones that stay for
over 6 months tend to really stay � � � for a year or
two. (Long-term participant, open source community,
Australia)

5. Discussion
Summary of Key Findings
This paper contributes three key findings to the lit-
erature. First, open source software participants join
the community to satisfy a need, but many of those
who continue to create code do so because they enjoy
programming. These hobbyist developers are critical
to the functioning of the open source community. Sec-
ond, reciprocity is an important factor driving the
contribution of code to the community. Third, the
governance structure of the community dramatically
affects the participation choices of volunteer software
developers. Below, I discuss limitations of the study.
This is followed by a discussion of each of the key
findings.

Limitations
There are limitations to be considered when inter-
preting and using the results of this study. The use
of in-depth, qualitative data offers the opportunity
to gain understanding and build theory in areas that
we understand little about, however such theory runs

13 A few individuals within the open source umbrella project were
observed to actively participate in the community for more than
two years. Some of these participants take an active role in the
management of the umbrella community; further investigation of
their motives and role in enabling the functioning of the commu-
nity would further illuminate the structure of the community.

the risk of being idiosyncratic and not generaliz-
able to the entire population (Eisenhardt 1989). In
this case, the software developed in both projects
is generally used by software developers and engi-
neers working within corporations. Software develop-
ers and users in other projects might have different
individual characteristics and motivations for creat-
ing and contributing, both stemming from and result-
ing in different structural arrangements. For example,
one might observe that groups of ideologically driven
developers—in their effort to displace existing pro-
prietary software products—will channel their efforts
toward creating software that mimics the functional-
ity of the existing software, rather than create soft-
ware that serves an altogether novel purpose. As a
second example, one might expect slight differences
in the development processes for software projects
that are used by both technologically savvy users
and the general public. In such projects, hobbyists
may need to be more selective about the challenges
they choose and feedback might be constrained as
many users lack the technical vocabulary required
to communicate effectively with developers. In fact,
in projects such as the Firefox Web browser, we see
technological solutions, such as the automatic report-
ing of crashes or bugs back to the community, being
deployed to help alleviate this problem. Finally, care
should be taken when using findings from this paper
to better understand participation in innovation com-
munities operating in other product domains.

Hobbyists
Theories of innovation generally assume that either
financial incentives or need-based incentives drive
innovative activity. Here we see strong evidence for
a third source of motivation: fun and enjoyment
derived from the very act of creating and tinkering.
The individual’s relationship to the task and the

social structure in which the individual is embedded
is likely to influence the motives that drive innovative
activity. For example, professionals may respond to
financial incentives, scientists may strive to increase
their status, and hobbyists may be largely driven by
enjoyment. Moreover, the same individual might act
differently and be driven by different motives in dif-
ferent contexts, e.g., consider the activities and behav-
iors of the hobbyist developer at work versus in his
spare time. Differences in motives might also cre-
ate differences in the types of innovations created.
For example, those seeking financial rewards might
devote their efforts to designs likely to be of interest
to a large market segment, thereby innovating along
dimensions known to be important to consumers.
In contrast, those driven by enjoyment and challenge



Shah: Motivation, Governance, and the Viability of Hybrid Forms
Management Science 52(7), pp. 1000–1014, © 2006 INFORMS 1011

might seek to explore uncharted territory or very spe-
cific areas of inquiry, thereby creating innovations that
are functionally novel.14

An individual’s motivation toward a task may shift,
as was observed among the open source hobbyist par-
ticipants. This is one of the few empirical settings
where intrinsic motivation is built and reinforced—
“crowded in,” by the social structure (Osterloh and
Frey 2000).15 Future research is needed to examine the
process by which the shift in individual-level motives
occurs, investigating in particular whether a selection
mechanism that favors those with hobbyist tenden-
cies exists or whether interaction with the commu-
nity leads to a shift in the individual’s identity and
self-perception.16

Property Rights, Fairness, and Reciprocity
This study highlights the importance of fairness in
supporting exchange relationships. In this setting,
property and decision-making rights affected individ-
uals’ perceptions of fairness, which in turn affected
their behaviors. Participants in each community were
aware of who controlled property and decision-
making rights and appear to view that actor as their
primary exchange partner. That is to say, when assess-
ing reciprocity within the community and choosing
the extent to which they wish to create and con-
tribute code, open source participants focus on the
actions of volunteer community members, whereas
gated source participants focus on the actions of the
corporate sponsor.

14 Those driven by their own needs might pursue either well-known
or novel dimensions, potentially creating innovations that are use-
ful to many or only to themselves, and that extend existing func-
tionality or create altogether new functionality.
15 Cognitive evaluation theorists argue that intrinsic motivation is
based on feelings of competence and self-determination—feelings
supported by feedback in the form of information and rewards
from external sources (Boggiano and Pittman 1992; Deci 1971, 1975;
Deci et al. 1999; Lepper and Greene 1978). Informational content
heightens feelings of competence and strengthens the feeling of
internal control, raising (“crowding in”) intrinsic motivation. In
contrast, controlling content heightens feelings of being stressed from
the outside and strengthens perceived external control, decreas-
ing (“crowding out”) intrinsic motivation. Additional research is
required to understand the mechanisms by which the community
encourages its members to provide informational content and quell
controlling content.
16 Collecting such data on the career progression of volunteer soft-
ware developers will improve our understanding of the individual
and institutional-level factors supporting community-based inno-
vation (for examples and a discussion of research on careers, see
Barley 1989, Becker 1963, Goffman 1959, Hogg and McGarty 1990).
This information will aid in the design and management of innova-
tion communities, and potentially in the design and management
of other types of nonprofit organizations relying on volunteer labor.
It may also improve our ability to design more satisfying work
environments for engineers and other technical professionals.

The possibility of opportunistic ("unfair") actions by
those holding control rights can both decrease and
alter the character of volunteer participation. Gated
source developers feared that the corporate sponsor
might exercise control rights in a strategic manner
benefiting the corporation over the community. As a
result, gated source participants invested effort only
if they very much needed the software and were less
likely to contribute their findings to the community.
Moreover, they were unwilling to engage in fun and
challenging development activities, depriving them-
selves of an enjoyable activity and depriving the com-
munity of their efforts and talents. From the perspec-
tive of behavioral game theory and evolutionary psy-
chology, it is not surprising that perceptions of fair-
ness weigh heavily into an individual’s decision to
work with others and even leads individuals to pun-
ish others at a cost to themselves (Barkow et al. 1992;
Kahneman et al. 1986a, b). From this perspective, the
creation of a neutral and accessible commons is cru-
cial for fostering community-based innovation. Keep-
ing a resource in the commons both allows others to
draw on the resource and mitigates the number of
strategic games played by others (Lessig 2001, p. 72).

Implications for Hybrid Strategies
Firms are anxious to leverage the open source devel-
opment model. For firms, community development
offers the possibility to gain developmental assistance
in noncritical areas and increase adoption (West 2003).
Value appropriation requires the firm to define and
control property rights. Unfortunately, activities that
permit value appropriation by the firm are some-
times detrimental to value creation within the com-
munity. Here I discuss the impact of two broad sets of
governance mechanisms—decision rights and prop-
erty rights—on participation (Table 5 summarizes this
discussion and distinguishes between observed and
hypothesized patterns).

Decision-Making Rights.
Code Control. In the gated source community, only

the corporate sponsor is allowed to alter the source
code. This strict control over the code affects both
need-driven and hobbyist participants. Need-driven
participants worry that their voices will be drowned
out by the needs of the firm and its customers when
software-related decisions are made. Such control lim-
its the ability of hobbyists to work and contribute in
self-defined ways. In addition, the volume of feed-
back and overall activity is likely to decline due to
both decreased participation and tighter control over
what is committed to the source code and, therefore,
used by others.



Shah: Motivation, Governance, and the Viability of Hybrid Forms
1012 Management Science 52(7), pp. 1000–1014, © 2006 INFORMS

Table 5 Governance and Development

Governance mechanism Potential impact on collective development process

Decision-making rights
Code control • Decreases perception that needs of various actors will be met, thereby decreasing contributiona

• Limits ability of hobbyists to work and contribute in self-defined waysd

• Interferes with feedback processesd

Domination or control over mailing • Inhibits voicing of heterogeneous requirements or viewpointsb

list interaction • Severely inhibits feedback processes that hobbyists participants enjoyb

Property rights
Private ownership of source code • Creates the possibility that the developer will not be able to use the code at a later datea� c

• Decreases perception that needs of various actors will be met, thereby decreasing
overall activity and contributiona

• Participation may be restricted to those with desperate need for code or who are willing to trust the firma

• Inhibits reciprocitya

Restrictions on use, modification, and distribution
Broad restrictions on use and • Because developers feel entitled to use and share code they helped develop, this restriction deters developers and

distribution thereby decreases the size of the community and the likelihood of future product improvements and feedbacka

Restrictions on commercial use and • Potential for hold-up created as work will be done first and terms negotiated after a commercial product
distribution; negotiated terms developed. Only those who trust the firm or are able to negotiate in advance are likely to participatea

Restrictions on commercial use and • If terms are reasonable and fair, those with the ability to pay are likely to participated

distribution; standard terms

Proprietary modifications
Allowed • System appears to function fullya� c

Not allowed (“Free” software) • System appears to function fullyc

aDirectly observed in this study.
bIndirectly observed in this study.
cData based on other studies or observations; see text.
dHypothesized relationship.

Domination of Mailing List Interaction. Firms may
inadvertently dominate mailing lists through a desire
to influence the direction of the project or because
firm employees represent a substantial portion of the
participant pool, as might be the case when a firm-
sponsored community is newly created. This may
act to inhibit developers from voicing heterogeneous
views, resulting in decreased volunteer participation.
This relationship was not directly observed in this
study, however developers’ distaste of tightly con-
trolled open source projects was observed.

Property Rights.
Private Ownership of Source Code. Private ownership

of the code acts to dismantle the collective develop-
ment process in a variety of ways. Most noticeably,
ownership by the firm creates the possibility that the
developer will not have access to the code at a later
date. Participants value the results of their efforts and
expect to continue using the software well into the
future. The open source project gave them this right,
but the gated source project did not make this guar-
antee. Private ownership also appears to inhibit reci-
procity: if the firm is not donating the code to the
community, why should the developer take additional
time and effort to donate code to the firm?

Restrictions on Use, Modification, and Distribution.
The restrictions placed on the gated code with respect
to commercial use, modification, and distribution all

act to reduce the degrees of freedom that an individ-
ual can exercise when using and creating the code,
particularly when compared to open source licensing
arrangements. These restrictions can be thought of as
limiting the value available to the individual devel-
oper, i.e., the developer can only use the code for
certain purposes, modifications made and deployed
must meet community standards (rather than his own
preferences), and the code may only be shared with
others willing to abide by the community’s gover-
nance arrangements, thereby decreasing the volume
of subsequent improvements and feedback that many
developers relish. On the other hand, these restric-
tions might create value for the company.
Restrictions on commercial use in the gated source

community created additional problems because
licensing terms were negotiated with the firm on an
individual basis. This decreased trust dramatically
by creating the possibility of ex post hold-up prob-
lems. Restrictions on commercial use with terms set
in advance and applicable to everyone may be less
problematic.

Proprietary Modifications. A large part of the long-
standing debate between free and open source
software advocates concerns proprietary modifica-
tions. Software derived from free software cannot
be made proprietary. The “copyleft” provisions of
the GNU General Public License (GPL) and similar



Shah: Motivation, Governance, and the Viability of Hybrid Forms
Management Science 52(7), pp. 1000–1014, © 2006 INFORMS 1013

licenses mandate that all derivative works be dis-
tributed under the same licensing terms as the origi-
nal software, thereby ensuring that code remains free
(Stallman 2001).17 In contrast, the open source defini-
tion, while inclusive of free software licenses, allows
proprietary modifications to be made (Open Source
Initiative 2004). There exist examples of successful
projects governed by both types of licenses, although
GPL-style licenses appear to dominate the landscape
(Lerner and Tirole 2005).
Developers using the GPL often focus on the impor-

tance of copyleft in the early years of community for-
mation, when the developer was the only one—or
one of a small group—working on the code (Stallman
1999):

Someone could make an improved proprietary version
and it could displace the free version. And as a result,
people might be using my code but they would not
have the freedom that I hoped they would have and
I would not have it either, unless I kept using the infe-
rior free version. But if nobody joined me, it would
not do much good. And so � � � I worked out the idea
of copyleft. (Richard Stallman as quoted in O’Mahony
2003, p. 1183)

It appears that the GPL was initially designed to
institutionalize reciprocity in an attempt to seed
a community. Licenses, however, are not required
for reciprocity to operate as indicated by the fact
that proprietary modifications were allowed within
the open source community, yet many participants
contributed based on a norm of reciprocity and
because development is concentrated within the com-
munity. It is likely that this norm is established
early in projects that do not use GPL-style licenses.
Future research might investigate how such norms are
initially established and under what circumstances
copyleft licenses, in addition to norms, are necessary
to ensure contribution.
Governance practices can create shortcomings in

hybrid forms, although some shortcomings can be
ameliorated. For example, the firm sponsoring the
gated source community has significant resources at
its disposal and employed a team of developers and
marketers to work on the gated source project. These
employees took care of many of the tasks—such as
assisting participants, incorporating suggestions and
code, and maintaining the overall architecture of the
code—that would have been fulfilled by volunteer
hobbyists in the open source community.

6. Conclusion
Innovation communities represent a novel model for
innovation development that has been documented in

17 GNU is based on the recursive acronym “GNU is not Unix” (Stall-
man 1999).

a number of diverse product areas. Our knowledge of
this novel structure and the societal benefits it creates
is growing, but many questions and issues remain to
be explored. In this paper, I investigate issues per-
taining to participation and governance in two soft-
ware communities. I find that fun and challenge are
key drivers of participation for hobbyists, a group
that is critical to the functioning of the open source
community. In addition, reciprocity and fairness are
important issues, strongly affecting the willingness of
volunteer developers to contribute to the community.
Firms seeking to construct hybrid arrangements that
balance community-based value creation with pri-
vate value appropriation may encounter difficulties:
the very mechanisms that allow them to appropriate
private benefits may deter participation.

Acknowledgments
I wish to thank my father, Kalpesh R. Shah, for his sup-
port, advice, and love. Special thanks to Rajshree Agar-
wal, Carliss Baldwin, Roberto Fernandez, Geoff Love, Eric
von Hippel, Sidney Winter, the two anonymous referees
who provided thoughtful comments on earlier versions of
this paper, and the many software developers who gra-
ciously shared their time and experiences.

References
Allen, R. C. 1983. Collective invention. J. Econom. Behav. Organ. 4

1–24.
Amabile, T. M. 1983. The Social Psychology of Creativity. Springer-

Verlag, New York.
Bailyn, L., J. Lynch. 1983. Engineering as a life-long career: Its

meaning, its satisfactions, its difficulties. J. Occupational Behav.
4 263–283.

Baldwin, C., K. Clark. 2000. Design Rules. Harvard Business School
Press, Cambridge, MA.

Barkow, J. H., L. Cosmides, J. Tooby. 1992. The Adapted Mind:
Evolutionary Psychology and the Generation of Culture. Oxford
University Press, New York.

Barley, S. R. 1989. Careers, identities, and institutions: The legacy
of the Chicago School of Sociology. M. B. Arthur, D. T. Hall,
B. S. Lawrence, eds. Handbook of Career Theory. Cambridge
University Press, New York, 41–65.

Becker, H. S. 1963. Outsiders: Studies in the Sociology of Deviance. Free
Press, New York.

Becker, H. S. 1998. Tricks of the Trade: How to Think About Your
Research While You’re Doing It. University of Chicago Press,
Chicago, IL.

Boggiano, A. K., T. S. Pittman. 1992. Achievement and Motivation:
A Social-Developmental Perspective. Cambridge University Press,
New York.

Coleman, J. S. 1994. A vision for sociology. Soc. Sci. Modern Soc.
32(1) 29–34.

Deci, E. L. 1971. Effects of externally mediated rewards on intrinsic
motivation. J. Personality Soc. Psych. 18 105–115.

Deci, E. L. 1975. Intrinsic Motivation. Plenum, New York.
Deci, E. L., R. Koestner, R. M. Ryan. 1999. A meta-analytic review

of experiments examining the effects of extrinsic rewards on
intrinsic motivation. Psych. Bull. 125 627–668.

Denzin, N., Y. Lincoln. 2000. Handbook of Qualitative Research. Sage,
Thousand Oaks, CA.



Shah: Motivation, Governance, and the Viability of Hybrid Forms
1014 Management Science 52(7), pp. 1000–1014, © 2006 INFORMS

Eisenhardt, K. M. 1989. Building theories from case study research.
Acad. Management Rev. 14(4) 532–550.

Ferris, T. 2002. Seeing in the Dark: How Backyard Stargazers Are
Probing Deep Space and Guarding Earth from Interplanetary Peril.
Simon & Schuster, New York.

Franke, N., S. Shah. 2003. How communities support innovative
activities: An exploration of assistance and sharing among end-
users. Res. Policy 32 157–178.

Franke, N., E. von Hippel. 2003. Satisfying heterogeneous user
needs via innovation toolkits: The case of apache security soft-
ware. Res. Policy 32 1199–1215.

Franz, K. 2005. Tinkering: Consumers Reinvent the Early Automobile.
University of Pennsylvania Press, Phildelphia, PA.

Freiberger, P., M. Swaine. 2000. Fire in the Valley. McGraw-Hill,
New York.

Gelernter, D. 1998. Machine Beauty. Basic Books, New York.
Ghosh, R. A. 1998. First Monday interview with Linus Torvalds:

What motivates free-software developers. First Monday 3(3),
http://www.firstmonday.org/issues/issue3_3/torvalds/.

Ghosh, R. A., R. Glott, B. Krieger, G. Robles. 2002. Free/libre and
open source software: Survey and study. Report, International
Institute of Infonomics, University of Maastricht, Maastricht,
The Netherlands.

Giddens, A. 1984. The Constitution of Society: Outline of the Theory of
Structuration. University of California Press, Berkeley.

Goffman, E. 1959. The moral career of the mental patient. Psychiatry
22(2) 123–142.

Hann, I. H., J. Roberts, S. Slaughter, R. Fielding. 2002. Delayed
returns to open source participation: An empirical analysis
of the Apache HTTP Server Project. Working paper, Carnegie
Mellon University, Pittsburgh, PA.

Healey, K., A. Schussman. 2003. The ecology of open source soft-
ware development. Working paper, University of Arizona,
Tucson, AZ.

Hertel, G., S. Niedner, S. Hermann. 2003. Motivation of software
developers in open source projects: An Internet-based survey
of contributors to the linux kernel. Res. Policy 32 1159–1177.

Hogg, M. A., C. McGarty. 1990. Self-categorization and social
identity. D. Abrams, M. A. Hogg, eds. Social Identity The-
ory: Constructive and Critical Advances. Harvester/Wheatsheaf,
New York, 10–27.

Jencks, C., L. Perman, L. Rainwater. 1988. What is a good job?
A new measure of labor-market success. Amer. J. Sociol. 93(6)
1322–1357.

Jensen, M., W. Meckling. 1994. The nature of man. J. Appl. Corporate
Finance 7(2) 4–19.

Jeppesen, L., B., M. J. Molin. 2003. Consumers as co-developers:
Learning and innovation outside the firm. Tech. Anal. Strategic
Management 15(3) 363–384.

Kahneman, D., J. Knetsch, R. Thaler. 1986a. Fairness and the
assumptions of economics. J. Bus. 59(4) S285–S300.

Kahneman, D., J. Knetsch, R. Thaler. 1986b. Fairness as a constraint
on profit seeking: Entitlements in the market. Amer. Econom.
Rev. 76(4) 728–741.

King, G., R. Keohane, S. Verba. 1994. Designing Social Inquiry.
Princeton University Press, Princeton, NJ.

Kline, R., T. Pinch. 1996. Users as agents of technological change:
The social construction of the automobile in the rural United
States. Tech. Culture 37 763–795.

Kruglanski, A. W. 1975. The endogenous-exogenous partition in
attribution theory. Psych. Rev. 83 387–406.

Kuan, J. 2001. Open source software as consumer integration into
production. Working paper, SSRN, http://ssrn.com/.

Lakhani, K., E. von Hippel. 2003. How open source software works:
Free user to user assistance. Res. Policy 32(6) 923–943.

Lepper, M. R., D. Greene. 1978. The Hidden Costs of Reward. Erlbaum,
Hillsdale, NJ.

Lerner, J., J. Tirole. 2002. The simple economics of open source.
J. Indust. Econom. 52(June) 197–234.

Lerner, J., J. Tirole. 2005. The scope of open source licensing. J. Law
Econom. Organ. 21 20–56.

Lessig, L. 2001. The Future of Ideas. Random House, New York.
Levy, S. 2001. Hackers: Heroes of the Computer Revolution. Penguin

Books, New York.
Locke, K. 2001. Grounded Theory in Management Research. Sage,

Thousand Oaks, CA.
Moody, G. 2001. Rebel Code: Inside Linux and the Open Source Revo-

lution. Perseus Publishing, Cambridge, MA.
O’Mahony, S. 2003. Guarding the commons: How community man-

aged software projects protect their work. Res. Policy 32(7)
1179–1198.

Open Source Initiative. The open source definition. http://www.
opensource.org (accessed August 2004).

Osterloh, M., B. Frey. 2000. Motivation, knowledge transfer and
organizational forms. Organ. Sci. 11(5) 538–550.

Raymond, E. 1999. The Cathedral and the Bazaar: Musings on Linux
and Open Source by an Accidental Revolutionary. O’Reilly & Asso-
ciates, Sebastopol, CA.

Shah, S. 2000. Sources and patterns of innovation in a consumer
products field: Innovations in sporting equipment. Working
Paper 4105, Massachussetts Institute of Technology, Sloan
School, Cambridge, MA.

Shah, S. 2005. Open beyond software. C. Dibona, D. Cooper,
M. Stone, eds. Open Sources 2: The Continuing Evolution.
O’Reilly Media, Sebastopol, CA.

SourceForge. http://sourceforge.net (accessed October 2005).
Spradley, J. 1979. The Ethnographic Interview. Holt, Rinehart &

Winston, New York.
Stallman, R. 1999. The GNU operating system & the free software

movement. C. DiBona, S. Ockman, M. Stone, eds. Open Sources.
O’Reilly, Sebastopol, CA, 53–70.

Stallman, R. 2001. Philosophy of the GNU project. http://www.
gnu.org/philosophy/ (accessed August 2001).

Strauss, A. 1987. Qualitative Analysis for Social Scientists. Cambridge
University Press, New York.

Van Maanan, J. 1998. Different strokes: Qualitative research in
the administrative science quarterly from 1956 to 1996. J.
Van Maanan, ed. Qualitative Studies of Organizations. Sage Pub-
lications, Thousand Oaks, CA, ix–xxxii.

von Hippel, E., G. von Krogh. 2003. Open source software and the
“private-collective” innovation model: Issues for organization
science. Organ. Sci. 32(2) 209–233.

Weizenbaum, J. 1976. Computer Power and Human Reason: From Judg-
ment to Calculation. W. H. Freeman, San Francisco, CA.

West, J. 2003. How open is open enough? Melding proprietary and
open source platform strategies. Res. Policy 32(7) 1259–1285.

Wilson, J. 2000. Volunteering. Annual Rev. Sociol. 26 215–240.


