
Compressed sensing

Robust recovery of sparse signals from

limited measurements

ANZIAM 2008

6 February, 2008

Terence Tao (UCLA)

1



Linear measurement

A classic problem in linear algebra is to solve the

equation

Ax = b

where

• x ∈ Rn or x ∈ Cn is an n-dimensional unknown

vector;

• b ∈ Rm or b ∈ Cm is a vector of m linear

measurements; and

• A is a known m× n matrix, which we will assume to

be full rank.
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In practice, we might also consider noisy models such as

b = Ax + z where z is a Gaussian noise vector, or

b = Ax + e where e is a sparse corruption vector.

For our intended applications, one should think of n and

m as being moderately large, e.g. between 103 and 106.

3



When the number of measurements m is greater than or

equal to the number of degrees of freedom n, the problem

Ax = b is overdetermined or determined and the problem

is easily solved.

When the number of measurements m is less than n, the

problem is underdetermined, and x lies on an

n−m-dimensional subspace. If one assumes that x is

likely to have as small an energy ‖x‖l2 as possible, one

can propose the least squares solution

x# := argminx:Ax=b ‖x‖l2 = A∗(AA∗)−1b

as the “best” guess for x.
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However, in many situations the least squares solution is

not satisfactory. For instance, consider the problem of

reconstructing a one-dimensional discrete signal

f : {1, . . . , n} → C from a partial collection

f̂(ξ1), . . . , f̂(ξm) of Fourier coefficients

f̂(ξ) :=
1

n

n∑
x=1

e−2πixξf(x).
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The least squares solution f# to this problem is easily

seen to be the partial Fourier series

f# :=
m∑

j=1

f̂(ξj)e
2πixξj

which, when m is small, is often very different from the

original signal f , especially if f is “spiky” (consider for

instance a delta function signal).
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It is thus of interest to obtain a good estimator for

underdetermined problems such as Ax = b in the case in

which x is expected to be “spiky” - that is, concentrated

in only a few of its coordinates. A model case occurs

when x is known to be S-sparse for some 1 ≤ S ≤ n,

which means that at most S of the coefficients of x can

be non-zero.
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A typical example of when this assumption is reasonable

is in imaging. An image may consist of ∼ 106 pixels and

thus require a vector of n ∼ 106 to fully represent. But, if

expressed in a suitable wavelet basis, and the image does

not contain much noise or texture, only a small fraction

(e.g. 104) of the wavelet coefficients should be significant.

(This is the basis behind several image compression

algorithms, e.g. JPEG2000.)

8



Intuitively, an S-sparse vector x has only S degrees of

freedom, and so one should now be able to reconstruct x

using only S or so measurements. This is the philosophy

of compressed sensing (or compressive sensing, or

compressive sampling): the number of measurements

needed to accurately capture an object should be

comparable to its compressed size, not its uncompressed

size.
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Compressed sensing is advantageous whenever

• signals are sparse in a known basis;

• measurements (or computation at the sensor end) are

expensive; but

• computations at the receiver end are cheap.

Such situations can arise in

• Imaging (e.g. the “single-pixel camera”)

• Sensor networks

• MRI

• Astronomy

• ...
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Is compressed sensing even possible?

It is easy to see that the answer is yes:

Lemma. Suppose that the m×n measurement

matrix A is such that every set of 2S columns

of A are linearly independent. Then an S-

sparse vector x ∈ Cn can be reconstructed

uniquely from Ax ∈ Cm.

In principle, this shows that one can sense S-sparse

vectors accurately with as few as m = 2S measurements.

11



Proof. Suppose unique reconstruction failed; then there

would exist two S-sparse vectors x, x′ ∈ Cn such that

Ax = Ax′. But then A(x− x′) = 0. Since x− x′ is

2S-sparse, this means that 2S of the columns are linearly

dependent, contradiction. �
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The above argument shows that x is in fact the sparsest

solution to Ax = b, i.e.

x = argminx:Ax=b ‖x‖0

where ‖x‖0 =
∑n

i=1 |xi|0 = #{1 ≤ i ≤ n : xi 6= 0} is the

sparsity of x. This should be compared with the least

squares solution

x# = argminx:Ax=b ‖x‖2.
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Unfortunately, the problem of finding the sparsest

solution

argminx:Ax=b ‖x‖0

to a linear system Ax = b is computationally expensive in

general (in fact this problem contains the subset-sum

problem as a special case, and is thus NP-complete!).

Brute-force methods, such as looping over all
(

n
S

)
possible

collections of S columns of A, and solving a separate

linear algebra problem for each such collection, are

clearly impractical.
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Basis pursuit

It turns out that for “generic” choices of matrix A, one

can resolve this difficulty by replacing the non-convex

norm ‖‖0 by its convex relaxation ‖‖1, thus solving the

basis pursuit problem

x∗ := argminx:Ax=b ‖x‖1.

By using standard linear programming tools, this

problem is computationally feasible for n, m ∼ 106.
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Basis pursuit was introduced empirically in the sciences

(e.g. in seismology by Claerbout-Muir and others) in the

1970s, and then studied mathematically in the 1990s by

by Chen, Donoho, Huo, Logan, Saunders, and others.

Near-optimal performance guarantees emerged in the

2000s by Candés-Romberg-Tao, Donoho, and others.
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Remarkably, x∗ recovers the sparsest solution exactly for

many choices of matrix A, if we make the number of

measurements of m slightly larger than the sparsity S!

For instance:

Theorem (Candés-Romberg-T. 2004). Let

ξ1, . . . , ξm ∈ {1, . . . , n} be chosen randomly.

Then with high probability, every S-sparse sig-

nal f : {1, . . . , n} → C can be recovered from

f̂(ξ1), . . . , f̂(ξm) via basis pursuit, so long as

m ≥ CS log n for some absolute constant C.

Numerical experiments suggest that most S-sparse

signals are in fact recovered exactly once m ≥ 4S or so.
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Theorem (Donoho 2004, Candés-T. 2004).

Suppose that the entries of A are iid Gaus-

sians (or Bernoulli signs ±1). Then any given

S-sparse signal x can be recovered from Ax by

basis pursuit with high probability as long as

m ≥ CS log n
S
.
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Theorem (Candés-T. 2005). Suppose that A

obeys the restricted isometry property (RIP):

every collection of 4S columns are almost or-

thogonal, in that the top 4S singular values

range between 0.9 and 1.1. Then any given S-

sparse signal x can be recovered from Ax by

basis pursuit.

This particular result is elementary, using nothing more

sophisticated than the triangle inequality and the

Cauchy-Schwarz inequality.
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The RIP has been shown to hold for many random

matrix ensembles, as long as m is logarithmically larger

than S. (Donoho, Candés-Tao, Rudelson-Vershynin,

Mendelson-Pajor-Tomczak-Jaegermann, ...)

More generally, it seems that compressed sensing works

whenever the measurement matrix is sufficiently

“incoherent”, in that the measurement basis is radically

different from the basis in which the signal is sparse. (If

the measurement basis aligned too closely with the

sparsity basis, it is possible that sparse signals might not

be detected at all by taking just a few measurements.)
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Noise

Now suppose we are given noisy measurements

b = Ax + z, where z is a noise vector of size ‖z‖l2 ≤ ε. To

recover x approximately from b, one can now solve the

modified basis pursuit problem

x∗ := argminx:‖Ax−b‖2≤ε ‖x‖1.

If z is adversarially chosen, one cannot expect the

accuracy ‖x− x∗‖l2 to be much better than ε.

Remarkably, though, this bound is attained up to

constants!
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Theorem (Candés-T. 2005). Suppose that A

obeys the RIP. Then for any S-sparse x and

any b := Ax + z with ‖z‖l2 < ε, the basis

pursuit solution x∗ obeys ‖x∗ − x‖l2 ≤ Cε.

One can also do slightly better when z is non-adversarial

(e.g. Gaussian white noise), leading to a near-optimal

statistical selector for x from Ax + z.
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Tails

In many applications, the hypothesis that x is S-sparse is

unrealistic. A more reasonable assumption is that the

coefficient magnitudes of x are distributed by some sort

of power law, or more generally that x is compressible. In

this case, basis pursuit gives a solution x∗ comparable in

accuracy to the hard-thresholded vector xS, defined as

the vector consisting of the S largest coefficients of x

(with all other coefficients zero).
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More precisely:

Theorem (Candés 2006). Suppose that A

obeys the RIP. Then for any x, the minimiser

x∗ := argminx′:Ax′=Ax ‖x′‖l1 obtained by basis

pursuit obeys ‖x∗ − x‖l1 ≤ 4‖xS − x‖l1 .

In the case of power law decay (e.g. the kth largest

coefficient of x decays like k−c for some c > 1) one can

also obtain further l2 error bounds (see Candés-Tao

2004).
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Linear coding

We have talked about compressed sensing, in which the

signal is sparse, the noise is non-sparse, and one has fewer

measurements m than degrees of freedom n. But there is

also an interesting dual situation in which the signal is

non-sparse, one takes more measurements m than degrees

of freedom n, but now the error is sparse. This situation

arises in linear coding, in which one converts data x ∈ Rn

to a longer string Ax ∈ Rm to transmit in m packets over

a network. Assuming that some small propertion of these

packets get corrupted, the receiver obtains a vector

Ax + e for some unknown sparse error e.
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It turns out that the problem of recovering x from

y := Ax + e is a compressed sensing problem in disguise.

Let B be an annihilator to A, thus BA = 0. Then from

y = Ax + e we have By = Be. One can then use

compressed sensing methods to recover the sparse error e

from By = Be, and then reconstruct x from y = Ax + e

and e by linear algebra.

(In digital applications, one would use a binary field F2

instead of R. In such cases, compressed sensing methods

do not work well; but other methods are available in this

case, such as turbo codes.)
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Other algorithms

There are several other algorithms for compressed sensing

nowadays, besides basis pursuit. For instance, there is

matching pursuit, in which individual basis elements are

located which “match” (or “correlate” with the

measurements, and then are projected out (e.g. via

orthogonal projection), and the process repeated. There

are also several hybrid strategies combining basis and

matching pursuit.

Generally speaking, matching pursuit is faster, but has

fewer proven guarantees regarding robustness with

respect to noise or tails.
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In situations in which the measurement matrix can be

prescribed to one’s specifications, extremely fast, robust,

and low-memory algorithms are available (Gilbert,

Strauss, Tropp, Muthukrishnan, Vershynin, ...).

There is much active research in optimising these

algorithms and extending to other contexts (e.g.

streaming data, matrix-valued or nonlinear

measurements, etc.).
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