Prevalent Systems: A Pattern Language for Persistence
V October 16, 2014

Ralph E. Johnson, rjohnson.uiuc@gmail.com

Klaus Wuestefeld, mail@klaus.pro

Abstract:

Data often needs to be persistent to survive loss of power and to be accessible in the
future. There are many ways to make data persistent, such as storing it in a local file
system or storing it in a relational database management system. Each way has
advantages and disadvantages. Prevalence is a way of achieving persistence that is
fast and simple, easy to reason about and easy to implement. It can be extremely
reliable and can work in all kinds of environments. It requires that data must all fit
in memory and operations that change state must be deterministic. Prevalence is
well suited for object-oriented programming, since it lets the programmer think of
the entire system from an object-oriented point of view. This paper will describe a
prevalent system as if it were object-oriented, but a prevalent system can be built
using any paradigm. Its main advantage is speed. A prevalent system can provide
the features of a database with the speed of main memory.

Introduction:

A prevalent system is an in-memory database that is simple to implement and can
be very fast. Like other databases, it can provide atomic transactions to multiple
users, and provide reliability in the face of system crashes. Unlike a RDBMS, a
prevalent system does not usually come with a query language that can be used by
non-programmers.

A prevalent system achieves speed by keeping all data in memory and by
eliminating waiting. Once a transaction starts, it runs to completion. Only one
transaction can run at a time. Some database systems achieve speed by parallelism,
but a prevalent system usually minimizes parallelism. The clients can be parallel,
but the prevalent system is not, though a Replicated Server has a form of parallelism.

This paper includes a number of patterns that go with Prevalent System. Recovery is
often faster after a crash if a system uses Snapshot. By separating Transactions and
Queries, queries can become faster. There are several alternatives for defining the
interface for transactions, namely Transactions for User Interface, Transactions
Based on OIDs, and Transactions Based on Domain Names. To ensure determinism
and speed, keep I/0 Outside. To make recovery extremely fast, use a Replicated
Server. To improve response time, use Short Transactions.

Prevalent System: A system using prevalence consists of the prevalent system and
clients that use it. The prevalent system is the data that needs to be persistent; it is
defined by a set of classes that are sometimes completely independent of the clients,



but often at least partly shared. However, the instances in the prevalent system are
not shared with the clients. Clients must refer to proxies, or copies, but never to the
instances stored in the prevalent system. The prevalent system is a database, and
there should be a barrier between the prevalent system and its clients.

Clients communicate with the prevalent system by executing transactions, which are
implemented by a set of transaction classes. These are examples of the Command
design pattern[Gamma 1995]. Transactions are written to a journal when they are
executed. If the prevalent system crashes, its state can be recovered by reading the
journal and executing the transactions again.

The complete pattern consists of these four parts (prevalent system, clients,
transactions, journal) and a prevalence manager. The prevalence manager is in
charge of executing transactions and writing them to the journal. Typically, it writes
them to the journal before executing them. If the prevalent system is replicated
then the manager will be responsible for communicating with other replicas.

Replaying the journal must always give the same result, so transactions must be
deterministic. Although clients can have a high degree of concurrency, the prevalent
system is single-threaded, and transactions execute to completion. To ensure good
response time, transactions should be short. The prevalent system has few
constraints on its design, which means that it can be designed for performance and
expressibility.

Transaction barrier

Transaction1 ¥\
Client
Transaction2 7
Prevalent Transaction3
System i
y : Client
Transaction4 /

Prevalence Manager

Journal

Fig. 1. Overview of Prevalent System pattern

The transactions form a barrier between the prevalent system and the clients. This
“transaction barrier” divides the part that is nondeterministic, concurrent, and has



/0 (the clients) from the part that is deterministic, single-threaded and has no I/0
(the prevalent system). Transactions must ensure that object identity inside the
prevalent system is never used outside it. In other words, they must never allow
pointers to objects to pass the transaction barrier. They can pass copies of objects,
strings that give names to objects, or numbers that are IDs of objects, but they
cannot pass direct references to objects.

The prevalent system must be deterministic, since this allows it to rerun the journal
and produce the same results. This means that it should not include I/0 (see I/0
Outside), and it probably should not contain parallelism. Parallelism is a common
source of non-determinism. It is possible to make parallelism deterministic, but it is
easiest to just make the prevalent system single threaded. Another source of non-
determinism is an overly aggressive optimizing compiler and floating point
numbers, since floating point addition and multiplication are not associative. Finally,
unordered data-structures like sets and maps can result in non-deterministic
iteration.

One of the questions about the design of a prevalent system is what the transactions
are like. How can transactions be designed to be short? There are several different
ways to design transactions, such as “Transactions from human interface” and
“Transactions based on OIDs”

Examples: The name “prevalent system” did not become popular until the release of
the Java framework Prevayler[Wuestefeld 2001].

However, the pattern is much older than that. Smalltalk-80 (from 1980) uses a
prevalent system for storing code [Goldberg 1984]. A Smalltalk “image” is a
snapshot that contains both code (in the form of classes) and data. The “changes
file” is a journal that contains each code change. A programmer who crashes the
image can restart the most recent image and use a recovery tool to select which of
the “recent changes” should be re-executed.

An early paper on using large memory showed the tremendous advantages of
implementing a relational database as an in-memory database with a transaction
journal and a single lock[Garcia-Molina 1984]. This design is the same as a
prevalent system, except that it was not object-oriented.

Akka (since version 2.3.0) has support for “persistent actors. The state of an actor
changes only when it receives a message. An Akka actor is made persistent by
storing the messages in a journal. The system can also save the state of an actor
with a snapshot. Akka implements actor migration by using the journal and
snapshot to restart an actor on another server. [Akka 2014]

OrigoDB is a prevalence system for .NET. Itis advertised as a in-memory database
with blazing speed, high productivity, and the ability to define your data model in C#.



Snapshot: To make recovering state faster, the prevalent system can be periodically
saved to disk as a snapshot. Then, the state can be recovered by reading the
snapshot and only re-executing transactions that happened after the latest snapshot.

Most prevalent systems use snapshots, but they are not always necessary. They are
not necessary if it is not important to recover state quickly, and if the journal is
never long. Also, if there are replicated servers then a new server can be created by
copying the state of an existing server, and so the state of a server never needs to be
saved to disk.

One way to take a snapshot is to use a standard serialization mechanism, such as
Java serialization. However, this ties the format of the snapshots to details of the
implementation of the domain model, and refactoring the domain model can easily
break the snapshots. If this approach is taken, snapshots need to be labeled with
the version of the domain model and custom readers written when the version of
the format changes. It might be easier to define a standard format for snapshots
that does not depend on the details of the domain model and to modify the importer
if the domain model changes enough.

When there is a lot of data, it can take a long time to take a snapshot. If the system
does not run 24/7 then a snapshot can be saved when the system is not active.
Another alternative is to have replicated servers and to use a replica to take the
snapshot.

Transactions and Queries: Writing transactions into the journal has an overhead.
Transactions that do not change the state of the prevalent system do not need to be
replayed. So, an important optimization is to distinguish between transactions,
which change the state of the system, and queries, which do not. Both are
implemented by classes at the transaction barrier, i.e. queries are also examples of
the Command design pattern. Since queries do not change the state, they can
execute in parallel. However, transactions require exclusive access to the prevalent
system. It is theoretically possible to allow queries to execute in parallel until a
transaction needs to execute. But a more common way to allow queries to execute
in parallel is to provide replicated servers where each server executes all the
transactions but a query only has to run on a single server.

Only transactions need to be saved in the journal. If there are many more queries
than there are transactions then distinguishing between transactions and queries
can reduce the number of transactions written to the journal and so reduce the cost
of the journal.

The cost of writing a transaction in the journal varies. It can be more expensive to
write a transaction to the journal than to execute it. The cost of writing a
transaction to the journal depends partly on its arguments, because writing a
transaction to the journal requires writing all of its arguments. Sometimes a
transaction with a lot of arguments can be split into a query with a lot of arguments

4



and a transaction with a small number of arguments, and this will make the system
faster because the query doesn’t have be written to the journal.

Transaction Barrier:

Transactions form a barrier between the prevalent system and the clients. They
must ensure that object identity inside the prevalent system is never used outside it.
Transaction arguments and transaction results cannot contain objects from inside
the prevalent system. Suppose that a transaction were to create an object and
return its identity to a client and then the client were to use that identity as the
argument to a second transaction. These transactions could not be replayed,
because when the first transaction was replayed, it would create a new object but
the second transaction would still have the identity of the original object. How can
we design the transaction barrier so that the prevalent system hides object identity?

Transactions for User Interface: Sometimes applications have a well-defined user
interface that can be used to define transactions. Since the user interface
communicates in terms of text and numbers, the transaction can, too. For example,
consider a web application. Suppose that the transactions for this application are
the set of HTTP get and post commands that the web server accepts. The fields of
these commands are all text strings. The results of the commands are also text
strings. So, the get and post commands can be easily stored in the transaction
journal, since they do not refer to any objects, only strings. This is an example of
Transactions from User Interface. It doesn’t take much design work to decide on
transactions, other than deciding which are read-only queries and which are real
transactions.

The main disadvantage of this approach is that the user interface is likely to change.
Reading old journals is difficult if the format of the transactions changes. One way
to solve this is to never change existing transactions. Instead, make a new
transaction and deprecate the old ones.

Transactions based on OIDs. Suppose clients use many of the same classes as the
prevalent system. This is often what happens with web applications built from
standard web frameworks like Tomcat or Ruby on Rails. If the get and post
commands of a web server were the transactions of a prevalent system then the
web server itself would be inside the prevalent system. It would not be possible to
use a standard web framework because the web server includes the [/0. Instead,
these frameworks expect that they will call the prevalent system. In this case,
transactions have to be designed to fit the application. If you aren’t careful,
transactions arguments and results might be objects from the prevalent system.
The prevalent system would not be hiding object identity.

One solution is for the prevalent system to give every object a unique object ID
(OID). Transactions (and queries) only return copies of objects, but they keep the
same OID. When a transaction is executed, it can convert each argument with an

5



OID to the original object, and if an argument is a new object (if it has no OID) then it
can create a copy inside the prevalent system.

The main disadvantage of this approach is that refactoring the domain model can
cause a different number of objects to be created, which can cause a transaction to
produce an object with a different OID. This can make it hard to replay a journal
after changing the domain model (the classes inside the prevalent system).

Transactions with domain names: Often a class requires that each instance have
aunique name. For example, often a Customer object has a unique Customer ID,
and an invoice has a unique Invoice Number. These names usually come from the
problem domain. Then transactions can use these unique names to refer to objects
in the prevalent system. Some of the objects in the prevalent system have unique
names and some do not. For example, an invoice usually has a set of detail lines,
and they probably don’t have unique names.

The main disadvantage of this approach is that transactions can only refer to objects
with domain names. Ifitis necessary for transactions to refer to objects that don’t
have unique names, perhaps it is possible to give them names relative to the ones
with unique names. For example, a detail line of an invoice might refer to the
Invoice Number and then the line number.

I/0 Outside. The prevalent system should not have any [/0 in it. /0 should be
performed by clients, who then make calls on the prevalent system to record what
they have done. One reason to remove I/0 from the prevalent system is because
input is not deterministic. Reexecuting a transaction that reads from a keyboard or
a socket will probably give a different answer. A second reason is that[/0 is slow,
and prevalent transactions should be fast. By moving all I/O out of the prevalent
system, we can ensure that transactions are fast. So, any transaction that needs to
perform some I/0 must be redesigned in such a way that the client can perform the
1/0.

Moving I/0 out of the prevalent system often requires splitting the transaction. For
example, suppose the prevalent system kept the name of a file and a client needed to
read this file and store its contents. Instead of having a single transaction to read
the file and store it, the client would have to first run a query to get the file name,
then read the file itself, and then perform a transaction to store its contents. The
transaction would contain the contents of the file, so replaying the transaction
would allow the same value to be stored even if the file had been changed.

An easily overlooked kind of /0 is communicating with the clock. For transactions
to be deterministic, they must not read the clock. Instead, each transaction is
labeled with the time it was originally executed (probably by the prevalence
manager) and code inside the prevalent system must use the time of the current
transaction instead of reading the clock. That way, re-executing the transaction will



give the same results. Libraries that access the clock directly have to be changed to
use the transaction before they can be used in a prevalent system.

Replicated server. When a prevalent system crashes, it can be restored by loading
the snapshot and then by replaying the transactions in the journal. However, if the
snapshot is large or the journal is large then this can take a long time. One way to
make recovery fast is to replicate the prevalent system on another computer. When
the main replica crashes, the clients can switch to a different replica.

It is easy to replicate a prevalent system. Assume one of the replicas is the “primary”
and the others are “backup”. Clients communicate with the primary, but it sends all
transactions to the backups, which execute them immediately. If the primary fails,
one of the backups can immediately take over.

All replicas must execute all transactions in the same order. This means that a client
can’t just find the nearest replica and have it execute a transaction. Typically,
transactions are sent to the primary and it gives sequence numbers to the
transactions. The backup replicas will execute them in the order determined by the
primary. This replication does not speed up transactions. However, replication can
speed up queries. Since queries don’t change the state of prevalent system, they
can be run on any replica.

When a system becomes distributed, fault-tolerance becomes important. Ensuring
that a set of replicas maintain consistent copies of the journal is an example of the
“replicated state machine” problem. A popular solution to this problem is the Raft
concensus algorithm[Ongaro and Ousterhout 2014], which has open-source
implementations in a variety of languages.

When a snapshot becomes large, taking a snapshot can be slow. Without replication,
the prevalent system will pause during the snapshot. Ensuring a consistent
snapshot without pausing is difficult, and it is more common to just use a backup
replica to make the snapshot. The backup can accumulate transactions while it is
performing the snapshot and then execute them once the snapshot is finished. So,
the backup can make a snapshot without slowing down the primary.

Age of Empires and Starcraft both use prevalence for persistence and use replication
to support multiple players. They support replaying a game (they keep a journal)
and saving a game (taking a snapshot). When several players are simultaneously
playing the same game, the state of the game is replicated and each player has a
complete copy of the entire state. An action by one player must be broadcast to the
other players, and each player sees the same sequence of actions as every other
player. This works for internet games because the player actions are very small
compared with the work done by the game.

Croquet is an architecture for creating collaborative, shared 3D worlds over the
internet[Smith et al 2003]. Each person in a Croquet world has an avatar in it, and

7



runs a replica of the world. Actions that they perform, such as moving their avatar
or moving an object in the world, are transactions, and so must be communicated to
every replica. Each Croquet world has its own serializer. All transactions go to the
serializer for that world, which then broadcasts them to other replicas. However,
rendering the 3D world on the screen is a query, and can be done independently by
each replica. Rendering a 3D scene is computationally intensive, so it is important
that it be done locally. Each action only affects a few objects, so it takes little data to
communicate them. This is important because they have to travel to all the replicas.
This provides good performance even over internet distances. For Croquet,
replication provides performance by allowing the computationally intensive
rendering to be done locally.

Short transactions. A prevalent system executes one transaction (or query) at a
time. To give good response time, all transactions should be short. If there is only
one user then long transactions are not a problem, because the user will expect
them to slow the system. But if there are many users and one executes a long
transaction then the others will see the system pause until the transaction has
finished.

What does “short” mean? It depends on your requirements. The LMAX system runs
6 million transactions per second on a commodity PC[Fowler 2011]. This means
that a LMAX transaction takes less than 166 nanoseconds on average. But this is
extreme, and it takes very careful engineering to keep transactions this short. Most
systems do not have such extreme performance requirements. Suppose you wanted
a 10 ms response time when you had 100 active clients. Then you would wanta 0.1
ms average transaction time.

In practice, it is important to keep a record of transaction times so that developers
can find long transactions and fix them. The prevalent system can easily time
transactions. A prevalent system will write transactions to the journal before it
executes them, so it can’t store the execution times with the transactions, but it
could either store transaction times in a separate file or it could store the execution
time of a transaction with the next transaction.

If the prevalent system is replicated then long queries can be run on a replica. Some
systems will detect long queries and run them on a special “long query” replica
because users who run long queries don’t expect a short response time. Queries
only have to be run on a single replica but a transaction has to be run on all of them,
so replication can increase throughput if most of the load is queries, but it will not
help much if most of the load is transactions.

In general, if a transaction is too long, it has to be broken into a number of shorter
transactions. Consider the process in a payroll system that sends paychecks to all
employees. This might be done as one transaction, or one that first computes the
paychecks and one that actually sends them. Neither approach is scalable; the more
employees, the longer the transaction. The transactions would be shorter if the

8



client would handle one employee at a time. So, the client process that sends
paychecks to employees should generate them one at a time and each transaction
would handle only a single employee.

Sometimes transactions can be made faster by caching and lazy evaluation. For
example, suppose a transaction updates a value, and there are a hundred other
values that depend on it. Recalculating each of those other values might take too
long. However, the transaction could simply indicate that they need to be
recalculated. Those values would then be recalculated the next time they were read.
Recalculating those values would then count against the time budget of the
transactions that read them, not the transaction that changed them. This would
work if the transactions that read them were short and only used a few of the
values. If one of the transactions read all hundred values, the “optimization”
probably would not help.

External blob storage: One way to reduce the size of both transactions and the
prevalent system is to save large data items outside the system if they do not need
to be processed. For example, photographs are often treated as large binary
objects. The clients can save them on disk and the prevalent system will just keep
track of metadata about the photographs. This would not work if the prevalent
system needed to process the photographs in some way, such as if it were
performing face recognition. But it works well if the system is just storing a
reference to the large data items.

Acknowledgements: Karl Wettin, Justin Sampson, Caleb Johnson
References

[Akka 2014] Akka persistence.
http://doc.akka.io/docs/akka/snapshot/java/persistence.html 2014.

[Evans 2005] Domain-Driven Design by Eric Evans, Addison-Wesley, 2005.

[Fowler 2011] The LMAX Architecture by Martin Fowler,
http://martinfowler.com/articles/Ilmax.html, 2011.

[Gamma 1995] Design Patterns: Elements of Reusable Object-Oriented Software by

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Addison-Wesley,
1995.

[Garcia-Molina 1984] A Massive Memory Machine by H. Garcia-Molina, R.J. Lipton
and J. Valdes, IEEE Transactions on Computers, May 1984, pp. 391-399.

[Goldberg 1984] Smalltalk-80: The Interactive Programming Environment by Adele
Goldberg, Addison-Wesley, 1984. Chapter 23, System Backup, Crash Recovery, and
Cleanup.

9



[Ongaro and Ousterhout 2014] In Search of an Understandable Consensus Algorithm
by Diego Ongaro and John Ousterhout, 2014 USENIX Annual Technical Conference.

[Smith et al 2003] Croquet - a collaboration system architecture by D. A. Smith, A.
Kay, A. Raab, D.P. Reed. In Proceedings of First Conference on Creating, Connecting
and Collaborating through Computing, 2003, pp. 2-9.

[Wuestefeld 2001] Object Prevalence by Klaus Wuestefeld,
http://www.advogato.org/article/398.html, 2001

10



