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CAYLEY-BACHARACH THEOREMS AND CONJECTURES

DAVID EISENBUD, MARK GREEN, AND JOE HARRIS

Abstract. A theorem of Pappus of Alexandria, proved in the fourth century
A.D., began a long development in algebraic geometry. In its changing expres-
sions one can see reflected the changing concerns of the field, from synthetic
geometry to projective plane curves to Riemann surfaces to the modern de-
velopment of schemes and duality. We survey this development historically
and use it to motivate a brief treatment of a part of duality theory. We then
explain one of the modern developments arising from it, a series of conjectures
about the linear conditions imposed by a set of points in projective space on
the forms that vanish on them. We give a proof of the conjectures in a new
special case.
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Introduction

Suppose that Γ is a set of γ distinct points in Rn (or Cn). In fields ranging from
applied mathematics (splines and interpolation) to transcendental numbers, and
of course also in algebraic geometry, it is interesting to ask about the polynomial
functions that vanish on Γ. If we substitute the coordinates of a point p of Γ
for the variables, then the condition that a polynomial f vanishes at p becomes a
nontrivial linear condition on the coefficients of f . Thus the vanishing of f on Γ
is ensured by γ linear conditions on the coefficients of f . These γ conditions are
linearly independent when applied to the space of R[x1, . . . , xn] of all polynomials
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because, as is easily seen, there is a polynomial vanishing at all but any given point
of Γ.

However, we are usually interested in some finite-dimensional subspace of
R[x1, . . . , xn], typically the space of polynomials of degree at most a given number
d. In this case the γ conditions are generally not independent. As a trivial exam-
ple, consider the three conditions imposed by three collinear points in R2, and take
m = 1. A linear polynomial vanishing on any two of the points vanishes on the line
joining them and thus automatically vanishes on the third point. Thus the three
points impose only two independent conditions on the polynomials of degree ≤ 1.
In general, if λ of the γ conditions imposed by Γ suffice to imply all of them, and
λ is the least such number, then we say that Γ imposes λ independent conditions
on polynomials of degree ≤ m. Since λ ≤ γ, and the natural first estimate for λ
is that it should be “near” γ, we concentrate on the difference γ − λ, the “failure
of Γ to impose independent conditions on polynomials of degree ≤ m”. There are
of course many variants of the question. Perhaps the most basic (and useful) is to
take the points in projective space and to ask about homogeneous forms of degree
m instead of polynomials of degree at most m.

The Cayley-Bacharach Theorem, in its classical form, may be seen as a result
about the number of independent conditions imposed on polynomials of given degree
by certain sets of points in the plane. The idea is that if the points lie on some
algebraic plane curve X of low degree, then the number of conditions imposed
by the points can be related to the geometry of X . The result has a long and
interesting history, starting with a famous result by Pappus of Alexandria, proved
in the fourth century A.D. As the methods and substance of algebraic geometry
have changed over the years, the result has been successively generalized, improved,
and reinterpreted, and this development continues today.

The first part of this paper is purely expository: in it, we shall trace the evolution
of the Cayley-Bacharach Theorem. We give altogether nine versions of the result
beginning with Pappus’s Theorem and continuing with results of Pascal, Chasles,
Cayley, and Bacharach. The modern versions of the Cayley-Bacharach Theorem
are many; the ideas used have to do with Gorenstein rings and are due to Macaulay,
Gorenstein, Serre, and Bass. We shall give a proof of Chasles’s version of the the-
orem using the methods of projective geometry from the middle of the nineteenth
century similar to those used by Chasles, a proof of Bacharach’s version using the
classical algebraic geometry of linear series on curves in the style of the late nine-
teenth century, and the current proof by commutative algebra. This last connects
the geometric statement of the theorem to the Gorenstein property of the poly-
nomial ring; the Cayley-Bacharach Theorem is finally part of duality theory, and
Gorenstein rings seem to intervene in all modern treatments of duality in algebraic
geometry. (A little warning about our style of history is in order: We have NOT
preserved the terminology and “look” of the old works; rather, we try to interpret
what the mathematicians of the last century were doing in modern terms. We re-
alize that such “interpretations” are often more accurately described as “fictions”.
Our excuse is that our purpose is didactic rather than truly historical.)

Our goal in this part of the paper is to show, in this example, how the ideas used
in the modern treatment of the Cayley-Bacharach Theorem flow from classical
techniques. In particular we introduce some of the basic developments of modern
commutative algebra—the Cohen-Macaulay and Gorenstein properties, the Ext
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functor and the like—in the context of a concrete geometric problem, which may
serve to motivate and explain them.

One difficulty we have had in writing this report is that while the beginning of
our story is accessible with only the most elementary considerations of curves in
the plane, the latter part requires much more advanced ideas; in short, the level is
uneven. There are really three distinct stages in the proofs that we describe. The
first, as we have said, requires almost nothing but the definitions of projective space
and polynomials. The second uses the machinery of linear systems on curves, and
ultimately the Riemann-Roch theorem. We have given a fairly complete but very
quick description of what we need, so that the exposition is almost self-contained.
The third part uses the language of commutative algebra and schemes. We have
tried to provide elementary definitions and have included proofs of results that are
certainly well known to experts and accessible in advanced textbooks rather than
referring the reader elsewhere. In particular we have tried to define and motivate the
ideas of commutative algebra that are necessary to understand the first properties
of Gorenstein rings. The second and third levels are treated independently—the
reader can skip either of them without losing logical continuity.

When reviewing the past, it is always tempting to try to predict the future. In
the second part of this paper, we propose a possible next step in Cayley-Bacharach
theory, in the form of a conjecture. This conjecture is itself a special case of a
more general conjecture on the Hilbert functions of points (or, more generally,
zero-dimensional schemes) in projective space, which is described in [EGH1] and
[EGH2].

To understand what this conjecture says, observe that the earliest forms of the
Cayley-Bacharach Theorem may be interpreted as saying that certain sets of points
Γ impose independent conditions on forms of certain degrees d. Later forms com-
pute the number of independent conditions in terms of the number of conditions
imposed by some related set of points Λ. One problem in using these statements is
that one may know no more about Λ than about Γ! Thus it is interesting to return
and ask what sets of points actually impose independent conditions on forms of
degree d. Our conjectures are related to this question. To understand the form
they take, note first that if a set of points Γ fails to impose independent conditions
on forms of degree d, then any larger set of points fails too. Thus it is interesting to
ask about the minimal sets of points that fail to impose independent conditions on
forms of degree m. In the classical Cayley-Bacharach setting the points in question
are always given as a subset of the intersection of two curves of given degrees with-
out common components. Our conjectures correspondingly concern subsets of sets
of points that are intersections of n hypersurfaces of given degrees d1, . . . , dn in Pn,
whose intersection contains no curves. Conjecturally they give the smallest number
of points in such an intersection that can fail to impose independent conditions on
forms of given degree m.

We have succeeded in verifying this conjecture in a number of cases; we conclude
the paper by giving the proof in one of these cases.

There is another direction in which current activity is extending the Cayley-
Bacharach Theorem: Davis, Geramita, Robbiano, Kreuzer, and others have defined
“Cayley-Bacharach schemes” and studied their properties. For an idea of what
is going on, the reader may consult Geramita, Kreuzer, and Robbiano [GKR].
We have excluded this material only because nine versions of the theorem seemed
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Figure 1

enough, and our purpose of introducing some of the commutative algebra associated
with Gorenstein rings was already served by what is here.

In what follows we have used the term plane curve always for algebraic plane
curve. The field of definition is actually unimportant. Of course it was taken as R
originally, and later as C, and the naive reader would do well to think of these cases,
but the expert will have no difficulty in adapting our arguments to the general case.

Part I: The past

1.1. Pappas, Pascal, and Chasles. The first case of the Cayley-Bacharach
Theorem to have been discovered is literally ancient: it appears as Proposition 139
of Book VII of the Mathematical Collection of Pappus of Alexandria in the fourth
century A.D. (see Coxeter [Co]).

Theorem CB1 (Pappus’s Theorem). Let L and M be two lines in the plane. Let
p1, p2, and p3 be distinct points of L, and let q1, q2, and q3 be distinct points of
M , all distinct from the point L ∩M . If for each j 6= k ∈ {1, 2, 3} we let rjk be
the point of intersection of the lines pjqk and pkqj, then the three points rjk are
collinear (see Figure 1).

Pappus’s original proof used, in Coxeter’s words, “a laborious development of
Euclid’s methods.” It is interesting to note that some notion of the projective
plane (not formally introduced until very much later) is necessary if the statement
we have given of Pappus’s Theorem is to be true in all cases: It is perfectly possible
to choose the points so that the lines p1q2 and p2q1 are parallel, in which case we
would say that the “point” r12 is on the line at infinity; the appropriate statement
can be made in nonprojective terms by saying that in this case the line through the
points r13 and r23 is parallel to the lines p1q2 and p2q1. A still more degenerate
case occurs when both the pairs of lines p1q2, p2q1 and p1q3, p3q1 are parallel; then
the statement is that all three of the points rjk lie on the line at infinity or, in
elementary terms, that the last pair of lines—p2q3, p3q2—is parallel too. It may be
seen from this simple example what a simplification the projective plane introduced!
We shall not give a separate proof of Pappus’s Theorem, since it is an immediate
special case of the following theorem.
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Figure 2

In the early part of the seventeenth century there was a new interest in geometry.
It included the geometry of perspective, which in the hands of Desargues became
the geometry of projective space: Desargues’s fundamental work of 1639 formally
introduced the points at infinity and the line made from them. There was also
a new reason to be interested in the geometry of conics, coming from Kepler’s
amazing discoveries about the orbits of planets in 1609. The second avatar of the
Cayley-Bacharach Theorem that appeared is a famous result of Pascal (again, see
Coxeter [Co]) that built on both these developments. The statement was for Pascal
a fundamental tool, by means of which he proved many properties of conics. It was
published under the title “Essay Pour Les Coniques” in a petit placard en forme
d’affiche—that is, a one page handbill—in 1640 and is reproduced in Struik [S].
The proof was not included. Leibniz reports in a letter in 1676 that he studied it
when he visited Paris, so we know that Pascal had a proof, but the manuscript has
disappeared.

Theorem CB2 (Pascal’s Theorem). If a hexagon is inscribed in a conic in the
projective plane, then the opposite sides of the hexagon meet in three collinear points.

The line at infinity of the projective plane is again required, as the reader may
see by considering the case of a regular hexagon inscribed in a circle. Pascal was
immediately inspired by Desargues’s work and seems to have been quite aware of
this situation.1

A little notation will make the relation of Pascal’s Theorem to Pappus’s Theorem
more transparent: Let C be the plane conic, and let p1, p2, p3 and q1, q2, and q3 be
six distinct points on C. These points determine an inscribed hexagon if we join
adjacent points in the order p1, q2, p3, q1, p2, q3, p1. This order is chosen so that the
“opposite sides” are the pairs of lines pjqk and pkqj where i 6= j ∈ {1, 2, 3}. If we
denote by rjk the point of intersection of these opposite sides, then the assertion is
that the three points rjk are collinear, as in Figure 2.

1Pascal wrote in his Essai : “. . . M. Desargues of Lyons [is] one of the great minds of this time,
and one of the best versed in mathematics, particularly in conics, whose writings on this subject,

although few in number, give abundant proof of his knowledge to those who seek for information.
I should like to say that I owe the little that I have found on this subject to his writings, and that
I have tried to imitate his method, as far as possible, in which he has treated the subject. . . . ”
(translation from Struik [S]).
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Figure 3. Pascal’s construction of the tangent line (at p1 = q1)
to a conic.

Pappus’s Theorem becomes a special case of Pascal’s Theorem if we allow the
word “conic” to refer not only to an irreducible conic such as an ellipse or hyperbola
but also to the union of two straight lines L and M , which is a kind of limiting
position of a hyperbola; the six points pi and qi must be taken with all the pi on
one line and all the qi on the other, and all distinct from the intersection of the
two lines, or the statement of Pascal’s Theorem becomes indeterminate (two of the
lines pjqk and pkqj coincide) or trivial (all the points lie on one of L and M). From
the algebraic point of view, this is natural because then a “conic” is simply the zero
locus of any nonzero quadratic polynomial, including products of linear forms. The
proof we shall give below applies to all such cases, though we could also deduce
Pappus’s Theorem from Pascal’s by “continuity”, an important if slightly imprecise
method of the early projective geometers, arguing that the six lines pjqk and pkqj
appearing in Pappus’s Theorem are the limiting positions of the sides of a hexagon
inscribed in a conic as in Pascal’s Theorem.

One of Pascal’s many applications of his theorem concerns the “degenerate” case
p1 = q2: In this case he interprets the line p1q2 of the “hexagon” to be tangent to
the conic at p1 = q2; see Figure 3. Since the theorem constructs two further lines
that meet at a point of the line p1q2, namely, p2q1, and the line through r13 and
r23, it can be used to construct the tangent to the conic at p1. This application
reflects a modern concern for what happens in the degenerate cases of geometric
theorems; the justification for treating the degenerate chord as a tangent line would
have been phrased by Pascal in terms of continuity, but would now be justified in
the language of schemes. In all the subsequent Cayley-Bacharach theorems that we
shall discuss, such degenerate cases are allowed, and the proofs that we shall give
in the most general cases explicitly include them.

A third development in the first half of the seventeenth century put the work
on the geometry of projective conics into the shade: this was the introduction by
Descartes of coordinate geometry. Perhaps because of the excitement generated by
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this development, along with the infinitesimal calculus, geometry moved in other
directions, and it was about two hundred years before Pascal’s Theorem was fun-
damentally reexamined and extended.

To understand the nature of the extension, note that in the transition from
Pappus’s Theorem to Pascal’s Theorem the two lines L and M are confounded into
a single conic and the two separate groups of points {p1, p2, p3} and {q1, q2, q3} are
seen to be an arbitrary subdivision of a single group of six points on the conic, the
vertices of the hexagon. In both theorems we construct three further points rij and
a line on which they lie. It was the beautiful insight of Michel Chasles, published
in his Traité des Sections Coniques [Ch], that this last line could be combined with
the conic in Pascal’s Theorem and confounded into a cubic plane curve and that the
group of six points and the remaining three could be taken to be any nine points on
the cubic, with none distinguished from another. It seems plausible that coordinates
for the projective plane, which had recently been defined by Möbius and (in a way
closer to the modern one) by Plücker, were necessary before arbitrary plane curves
of higher degree, such as cubics, became attractive. In any case, Chasles’s result
is both simpler and more powerful than Pascal’s. It is the result that commonly
(though incorrectly) goes under the name Cayley-Bacharach.

Theorem CB3 (Chasles). Let X1, X2 ⊂ P2 be cubic plane curves meeting in nine
points p1, . . . , p9. If X ⊂ P2 is any cubic containing p1, . . . , p8, then X contains p9

as well.

Pascal’s Theorem follows if we take the cubics X1 and X2 to be the triangles
formed by alternate edges of the hexagon, X1 = p1q2 ∪ p2q3 ∪ p3q1 and X2 =
p1q3∪p2q1∪p3q2 in Figure 3, and take X to be the union of C with the line r12r13.
The point r23 also lies on X1 ∩ X2, so Chasles’s Theorem says it must lie on the
union of C and r12r13. Since it does not lie on C, it must lie on r12r13; that is, r23

is collinear with r12 and r13; as required. The theorem of Pappus is the degenerate
case in which X is the union of L,M , and r1r2.

Chasles’s Theorem is the last in the sequence of theorems stated here that can
be proved by purely elementary means, i.e., without invoking the residue theorem
or some other form of duality theory. We shall prove it without making any as-
sumptions about the smoothness or irreducibility of X1 and X2—that is, they can
be the zero loci of any homogeneous cubic polynomials F1, F2 on P2. All we shall
need is the classical theorem of Bézout: Plane curves of degrees d and e cannot
meet in more than d · e points unless they have a component in common (that
is, unless the equations defining them have a common factor). A refined form of
Bézout’s Theorem says that if the curves have no common component and meet
in d · e distinct points, then the curves must each be nonsingular at these points
and must meet transversely. In particular the hypotheses of Theorem CB3 rule out
the possibility of X1 or X2 having multiple components, that is, F1 or F2 having
repeated factors. (In fact, the later versions of Cayley-Bacharach will apply to give
very interesting and nontrivial statements even in these cases.)

Proof of Chasles’s Theorem. We introduce a piece of classical terminology: If Γ =
{p1, . . . , pm} ⊂ P2 is any collection of m distinct points, we shall say that Γ imposes
l conditions on polynomials of degree d if in the vector space of polynomials of
degree d on P2 the subspace of those vanishing at p1, . . . , pm has codimension l, or
equivalently if in the projective space of curves of degree d the subspace of those
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containing Γ has codimension l. We denote the number of conditions imposed by
Γ on forms of degree d by hΓ(d), and call hΓ the Hilbert function of Γ.

With this language, Chasles’s Theorem is equivalent to the following statement:
If Γ = {p1, . . . , p9} is the intersection of two plane cubics and Γ′ = {p1, . . . , p8} is
any subset omitting one point, then Γ and Γ′ impose the same number of conditions
on cubics. We shall actually prove the stronger statement that Γ and Γ′ each
impose exactly eight conditions on cubics; that is, that the eight points of Γ′ impose
independent conditions on cubics and the ninth point in Γ imposes a condition
dependent on these eight.

Part of this is obvious: the nine points of Γ visibly fail to impose independent
conditions on cubics, since the 10-dimensional vector space of cubic polynomials
contains at least a two-dimensional subspace of polynomials vanishing on Γ, namely,
that spanned by the defining equations F1, F2 of X1 and X2. The remaining ingre-
dient of the proof is the “only if” part of the d = 3 case of the following proposition,
which for clarity we shall state and prove for arbitrary d.

Proposition 1. Let Ω = {p1, . . . , pn} ⊂ P2 be any collection of n ≤ 2d+ 2 distinct
points. The points of Ω fail to impose independent conditions on curves of degree
d if and only if either d+ 2 of the points of Ω are collinear or n = 2d+ 2 and Ω is
contained in a conic.

This line of thought leads to the numerical character of Gruson-Peskine and to
a theorem of Ellia-Peskine [EP] giving a general criterion forcing a subset of a set
of points in the projective plane to lie on a curve of low degree.

To complete the proof of Chasles’s Theorem using Proposition 1, it suffices by
what we have already said to show that if Γ′ consists of eight of the nine points in
which two plane cubics intersect, then Γ′ imposes independent conditions on cubics.
We take Ω = Γ′, so n = 8, and d = 3 in Proposition 1. By Bézout’s Theorem, if
Γ′ lay on a conic C, then both X1 and X2 would have to contain (a component of)
C; and similarly if four or more points of Γ lay on a line L, then X1 and X2 would
necessarily contain L. Since we have supposed that X1 and X2 have no component
in common, this is impossible.

Proof of Proposition 1. The “if” direction of the proposition is easy: If d + 2 of
the points of Ω lie on a line L, then by Bézout’s Theorem any curve of degree d
containing Ω must contain L. The subset of curves of degree d containing L has
the same dimension as the set of curves of degree d− 1, so the codimension of the
set of curves containing L is only

(
d+2

2

)
−
(
d+1

2

)
= d+ 1. The remaining n− (d+ 2)

points of Ω impose at most n− (d+ 2) conditions on curves of degree d, so we see
that Ω imposes at most n−1 conditions. A similar argument, using the fact that it
is only 2d+ 1 conditions to contain an irreducible conic, works in the second case.

For the more serious “only if” direction, we do induction first on the degree d
and second on the number n of points. By the induction hypothesis on the number
n of points we may assume that any proper subset of Ω does impose independent
conditions on curves of degree d. Thus the statement that Ω itself fails to im-
pose independent conditions amounts to saying that any plane curve of degree d
containing all but one of the points of Ω contains Ω.

To start the inductions, we note first that Proposition 1 is trivial for d = 1: any
set Ω of n ≤ 4 points in the plane fails to impose independent conditions on lines
if and only if either n = 3 = d + 2 and the points of Ω are all collinear, or n = 4.
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Second, for arbitrary d, the result is easy for n ≤ d + 1: it suffices by the remark
above to exhibit a curve of degree d containing all but one given point pn of Ω, and
we may do this by taking the union of general lines Li through pi for i = 1, . . . , n−1
and an arbitrary plane curve of degree d− n+ 1 not passing through pn.

We now take d arbitrary and suppose that n > d + 1. Suppose first that Ω
contains d + 1 points lying on a line L. Assume that no further point of Ω lies on
L, and let Ω′ ⊂ Ω be the complementary set of n− d− 1 ≤ d+ 1 points of Ω. We
claim that Ω′ must fail to impose independent conditions on curves of degree d− 1;
otherwise, we could find a curve of X degree d− 1 containing all but any one point
of Ω′, and then the union L∪X would be a curve of degree d containing all but one
point of Ω. By induction Ω′ must consist of exactly d+ 1 points on a line M . Thus
either L contains d+ 2 points of Ω or n = 2d+ 2 and Ω lies on the conic L ∪M .

Next suppose only that some line L contains l ≥ 3 points of Ω. By the same
argument as in the last paragraph, the remaining n − l points of Ω must fail to
impose independent conditions on curves of degree d − 1 and so must include at
least d+1 collinear points. We are thus back in the case considered in the preceding
paragraph.

We are now done except in the case where Ω contains no three collinear points.
Choose any three points p1, p2, p3 ∈ Ω, and let Ω′ be the complement of these three.
If for any i the points of Ω′∪{pi} impose independent conditions on curves of degree
d − 1, we are done: for then we can find a curve C of degree d − 1 containing Ω′

but not pi, and the union of this curve and the line joining pj and pk is a curve
of degree d containing all but exactly one point of Ω. Thus we may assume that
Ω′ ∪ {pi} fails to impose independent conditions on curves of degree d − 1. Since
it cannot contain d+ 1 collinear points, we have by induction n = 2d+ 2, and for
each i the set Ω′ ∪ {pi} lies on a conic Ci. Note that in case d = 2 we are done,
since six points fail to impose independent conditions on conics if and only if they
lie on a conic. On the other hand, if d ≥ 3, then Ω′ contains at least five points, no
three collinear, and so there can be at most one conic containing Ω. Thus all the
conics Ci must be equal to a single conic curve C, which then contains all of Ω.

There is a much quicker proof of Theorem CB3, which exploits the relation of
the theorem to residue theory; since this relation belongs to the next part of our
story, we shall give it there.

1.2. Cayley and Bacharach. Arthur Cayley, probably the most distinguished
mathematician in this story, does not play a glorious role in it. Chasles’s book
appeared when he was sixteen. In 1843, when he was twenty-two, he published a
note stating an extension of Chasles’s result to the case of intersections of curves
of degree higher than 3. The basis of this extension was again the idea of counting
conditions imposed by sets of points. His first observation was that if curves X1

and X2 of degrees d and e meet in a collection Γ of d · e points, then for any k the
number hΓ(k) of conditions imposed by Γ on forms of degree k is independent of
the choice of curves X1 and X2; it can be written down explicitly as

hΓ(k) =

(
k + 2

2

)
−
(
k − d+ 2

2

)
−
(
k − e+ 2

2

)
+

(
k − d− e+ 2

2

)
where the binomial coefficient

(
a
2

)
is to be interpreted as 0 if a < 2. He went on

to conclude that if Γ′ is any subset of hΓ(k) points of Γ, then a form of degree k
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vanishing on the points of Γ′ must vanish on Γ. (The case d = e = k = 3 is Chasles’
Theorem.)

Both parts of Cayley’s statement are rather remarkable. The first part is equiv-
alent to a special case of the whole: any curve X passing through all the points of
the intersection of X1 and X2 is defined by a polynomial that is a linear combina-
tion (with polynomial coefficients) of the polynomials defining X1 and X2. That
is, if F = 0, G = 0, and H = 0 are the equations of X1, X2, and X respectively,
then there exist polynomials A and B such that H = AF + BG. This assertion
was used by Cayley in the case where the two curves meet transversely. He appar-
ently regarded it as evident; he applies it without comment or reference. But the
statement is rather subtle: in modern language, it says that the polynomial ring in
three variables is Cohen-Macaulay. It was finally given a proof by Max Noether,
first in the special case Cayley used [Ca, p. 314] and then in general [No] in a paper
devoted to filling this gap2, under the name of the “Fundamental Theorem of Alge-
braic Functions” (now often—and perhaps unfortunately—called “Max Noether’s
AF +BG Theorem”).

Given Noether’s Theorem and the fact that the dimension of the space of all
forms of degree k in three variables is

(
k+2

2

)
, the formula for hΓ given above is

easy: it just says that the vector space of forms of degree k that can be written
as AF + BG is the sum of the dimension of the space of possible A’s (of degree
k − d) and the space of possible B’s (of degree k − e), minus the dimension of the
space of pairs (A,B) such that AF + BG = 0. Since F and G have no factors
in common, AF + BG = 0 can hold only if A is a multiple of G, and B is minus
the corresponding multiple of F , and the multiplier has degree k − d − e. Thus
the dimension of the space of these pairs is the dimension of the space of forms of
degree k − d− e.

By the argument given in the proof of Chasles’s Theorem above, the second
part of Cayley’s statement amounts to a broad generalization of Proposition 1—
but without any hypotheses! What is necessary is precisely the assertion that the
points of the subset Γ′ impose independent conditions on forms of degree k. This
would of course be true if the points were general points. Cayley does comment
on this point. He says, “. . . and though the [. . . ] points are not perfectly arbitrary,
there appears to be no reason why the relation between the positions of these points
should be such as to prevent” the conditions from being independent.

Despite this “appearance”, points may have their own reasons and can indeed fail
to impose independent conditions. The conclusion of Cayley’s Theorem is simply
false! Perhaps the first example is the following: Let L be a line in the plane, and
let Γ′ = {p1, p2, p3} be three points on L. Let X1 and X2 be two nonsingular cubic
curves containing Γ′. It is easy to arrange that X1 and X2 meet in a collection of
nine distinct points Γ. We have hΓ(1) = 3 (that is, Γ does not lie on any lines),
and thus if the points of Γ′ imposed independent conditions on lines, every line
containing them would contain all of Γ (that is, there would be no lines containing
them). This is of course nonsense: The points of Γ′ do lie on the line L, and none
of the other points of Xi lie on L, or L would be a component of Xi.

2Noether writes, “In einer Reihe von geometrischen und functionentheoretischen Arbeiten

findet sich eine Lücke, die das Folgende auszufüllen bestimmt ist.” (“In a series of geometric
and function-theoretic papers there is a gap, which the following is intended to fill.”) It would
be interesting to know just when and how, in between 1843 and 1873, it came to be considered a
gap.
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What is needed is a way of measuring the dependence of the conditions imposed
by the points of Γ′. More powerful tools were soon to be available. Riemann’s
remaking of complex function theory led Brill and Noether to an extensive theory
of linear series on algebraic curves; Noether’s Fundamental Theorem of Algebraic
Functions was in fact one of the tools they developed for the purpose. This theory
was powerful enough to supply the missing term in Cayley’s equation; the funda-
mental paper of Brill and Noether appeared in 1874, and its tools were used by
Bacharach to correct Cayley’s error. Bacharach’s work seems to have earned him
a professorship in Erlangen. He presented his findings in 1881 in his inaugural
dissertation. Perhaps the problem with Cayley’s “Theorem” had been recognized
for some time. Bacharach published a somewhat extended version of his results in
[Ba]: this paper contains the subtle missing term, and we shall give his statement
below. In the case just given it amounts to the observation that the fact that the
points of Γ′ impose dependent conditions on lines is equivalent to the statement
that the “residual” set Γ′′ := Γ− Γ′ imposes dependent conditions on conics; that
is, the other six points of Γ actually lie on a conic.

It may be illuminating to see the ideas of linear series applied first in the simple
case studied by Chasles; in fact, without any analysis or struggle, the method shows
that if two curves of any degree d intersect a curve of degree e ≥ 3 in sets Γ and
Γ′ differing by at most one point, then in fact Γ = Γ′. We shall give the easy proof
after developing the ideas from the theory of curves on which it is based.

For simplicity, the reader may assume at this point that the ground field is the
complex numbers, although the expert will have no trouble adapting the argument
to the general case. If X ⊂ P2 is a nonsingular algebraic plane curve of degree
d, then by a divisor D on X we mean a formal linear combination, with integer
coefficients, of the points of X ; by the degree of D we will mean the sum of the
coefficients. The divisor is called effective if all the coefficients are nonnegative. Any
rational function f on X determines a divisor (f), the divisor of its zeros minus the
divisor of its poles. Divisors D and D′ are said to be linearly equivalent, written
D ∼ D′, if they differ by the divisor of a rational function.

The same notions can be defined for an arbitrary plane curve X (and even for
more general curves), but some care is necessary. First, if X is irreducible and sin-
gular and the divisors in question involve only smooth points, the most interesting
situation for us, we need only change the definition of linear equivalence to require
the rational function f to be regular and nonzero at the singular points of the curve,
so that the linear equivalence takes place entirely inside the smooth locus. If X is
reducible, then in addition we must require that the rational functions have only
isolated zeros and poles on the curve, not along a whole component. If we wish to
include the singular points as divisors in some way, there is an additional compli-
cation, one that was not faced squarely in the nineteenth century: divisors must be
interpreted as what are now called Cartier divisors. For this final refinement see
any modern book on algebraic geometry, for example Hartshorne [H].

For example, if C is any plane curve intersecting X only in isolated smooth
points of X , we define the divisor cut on X by C to be the divisor C ·X := Σaipi,
where the pi are the points of intersection of C with X and ai is the multiplicity of
intersection of C with X at pi. If C and C′ are plane curves of the same degree not
containing X , defined by homogeneous polynomials F and F ′, the divisors C · X
and C′ · X are linearly equivalent: their difference is the divisor of the rational
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function F/F ′ restricted to X . In this context we may give a refined version of the
Bézout Theorem:

Theorem 2 (Bézout). If C is a plane curve of degree e not containing X, the
degree of the divisor cut on X by C is d · e.

One of the central results proved by Brill and Noether was the following. The
original version takes the curve X to be irreducible, but the difference is mostly a
matter of how the definitions are formulated.

Theorem 3 (Restsatz: Brill-Noether [BN]). If X is a plane curve, then the linear
series cut on X by plane curves of any degree d is complete: that is, given a
plane curve C of degree d not containing any component of X and a divisor D
linearly equivalent to C · X, there is a plane curve C′ of degree d not containing
any component of X such that C′ ·X = D.

Proof. We need the following form of Max Noether’s AF + BG Theorem (which
itself is a consequence of Lasker’s Unmixedness Theorem; see Theorem 8 below): If
a curve Y contains C ·X , then the equation H of Y may be written as AF +BG,
where F is the equation of C and G is the equation of X . It follows that the curve
Y ′ with equation H−BG meets X in the same way Y does; that is, Y ′ ·X = Y ·X ,
and Y ′ contains C as a component.

The hypothesis of Corollary 5 asserts that there is a rational function ϕ on X
whose divisor (ϕ) satisfies C ·X −Γ = D+ (ϕ). Adding Γ to both sides, we reduce
at once to the case where Γ = 0. The rational function ϕ may be expressed as P/Q
where P and Q are homogeneous polynomials in three variables of the same degree.
Let Y and Z be the curves defined in the plane by P and Q respectively. We have
C ·X +Z ·X = D+ Y ·X . Multiplying together the equations of C and Z, we get
the equation of a curve Z ′ such that Z ′ ·X = D+Y ·X . In particular, Z ′ contains
Y ·X . By Max Noether’s Theorem, we may replace Z ′ by a curve Z ′′ containing
Y and such that Z ′′ · X = Z ′ · X = D + Y · X . If S is the equation of Z ′′, then
since Z ′′ contains Y we see that P divides S. If we write C′ for the curve defined
by S/P , which we may represent as C′ = Z ′′ − Y , then C′ ·X = D.

Noether’s Fundamental Theorem of Algebraic Functions mentioned above was
a fundamental tool in the proof of Theorem 3 given by Brill and Noether. From
a modern point of view, this is not surprising. Theorem 3 is the statement that
the homogeneous coordinate ring of the curve X has the Cohen-Macaulay property,
which is equivalent to saying that the polynomial ring itself has this property, and
Noether’s Fundamental Theorem is essentially equivalent to this assertion too! See
the discussion after Theorem 8 for more information.

Given this, the proof of Chasles’s Theorem CB3, and even its generalization
given above, becomes trivial: If X is a plane curve of degree e ≥ 3 and C and C′

are plane curves of some degree d meeting X in divisors D and D′ that differ by at
most one smooth point, say, D −D′ = p− q, then p and q are linearly equivalent.
Choose a general line L through p; we will show that L passes through q, and thus
p = q. By the Restsatz there is some line L′ that cuts out the divisor L ·X − p+ q.
Because e ≥ 3, the divisor L ·X − p already contains at least two points, and thus
spans L, so L = L′ as required. (Chasles’s Theorem is the special case d = e = 3.)

In fact a much stronger statement, still short of the full version of Bacharach,
can be derived by related methods and will play a role in the sequel, so we pause
to examine it.
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Theorem CB4. Let X1, X2 ⊂ P2 be plane curves of degrees d and e respectively,
meeting in a collection of d · e distinct points Γ = {p1, . . . , pde}. If C ⊂ P2 is any
plane curve of degree d + e− 3 containing all but one point of Γ, then C contains
all of Γ.

In the terms of Bacharach’s Theorem CB5, this result is true because any set Γ′

consisting of all but one point of Γ really does impose independent conditions on
forms of degree d+ e− 3.

To apply the Brill-Noether theory in a naive form to this result, we shall have to
assume that one of the curves Xi, say, X1, is nonsingular. (The expert could avoid
this hypothesis, either by using a more subtle version of Riemann-Roch or by using
Bertini’s Theorem: Since we are assuming that Γ consists of d · e distinct points,
the refined form of Bézout’s Theorem shows that X1 and X2 meet transversely,
and then a classic theorem of Bertini says that (if d > e) we can find a nonsingular
curve X ′1 that meets X2 in the same set of points Γ by adding to the equation of
X1 an appropriate multiple of the polynomial defining X2. But since later versions
of the theorem will be more general anyway, we shall not go further into this here.)
This is in fact not the approach we shall adopt ultimately to prove the final and
most general version of the Cayley-Bacharach theorem, and the reader who wishes
to can certainly skip the proofs of statements CB4–CB7 or just glance at them to
get a sense of the ingredients without suffering any logical gaps.

Using the language of the theory of curves and denoting by H the divisor cut on
a plane curve X by a line L ⊂ P2, we can state a surprising property of the divisor
(d− 3)H, from which Theorem CB4 will follow immediately.

Proposition 4. Let X ⊂ P2 be a nonsingular plane curve of degree d, and let p
be a point of X. Every effective divisor linearly equivalent to (d− 3)H + p actually
contains p.

This baffling statement loses (some of) its mystery when viewed as a very special
case of the Riemann-Roch Theorem (in fact, of Riemann’s Theorem itself, though
we shall not worry about this distinction). To explain this, we first note that any
two rational differential forms on X have a ratio that is a rational function on X ,
and thus the divisor of zeros minus the divisor of poles of any rational differential
form is a well-defined divisor class on X , called the canonical divisor class, and
denoted KX . Abusing notation in a traditional way, we shall also denote by KX

any divisor in this class. Next, we recall that if the ground field is C, then X
may be viewed as a Riemann surface, and as such it has a genus g (the “number
of handles”); this invariant and the fact that it is a compact orientable surface
specifies its topology completely. There is a miraculous connection between the
topology of X and the geometry on X : the degree of KX is 2g − 2. (In the case
of a general ground field, this can be taken as the definition of the genus.) Now
for a plane curve it is not hard to compute KX by writing down a specific rational
differential form. The result is a special case of what algebraic geometers call the
adjunction formula, and it tells us that

KX ∼ (d− 3) ·H.
The divisor (d − 3)H that appears in Proposition 4 is “really” KX . It is worth
noting another consequence of the adjunction formula in passing. By Bézout’s
Theorem the degree of the divisor (d− 3)H is d(d− 3), so we get 2g− 2 = (d− 3)d,
or g = (d− 1)(d− 2)/2.
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To exploit the identification of (d − 3)H with KX , we must use the Riemann-
Roch Theorem, which we now introduce. For any divisor D on X , we shall denote
by L(D) the vector space of rational functions f such that D plus the divisor of f
is effective. We denote the vector space dimension of L(D) by l(D). For example,
Liouville’s Theorem asserts that the only rational functions with no zeros or poles
are the constant functions, so l(0) = 1.

With these definitions, the Riemann-Roch Theorem asserts that for any divisor
D of degree n on X ,

l(D) = n− g + 1 + l(KX −D)

where g = (d− 1)(d− 2)/2 is the genus of X . For example, l(KX) = (2g− 2)− g+
1 + l(0) = g − 1 + 1 = g.

Proof of Proposition 4. Let p be a point of X . The degree of the divisor KX + p is
2g − 1, so by Riemann-Roch we have

l(KX + p) = (2g − 1)− g + 1 + l(−p) = g + l(−p).
But the degree of −p is −1, so no effective divisor can be equivalent to −p; thus
l(−p) = 0. It follows that l(KX + p) = g = l(KX). But given any effective divisor
D linearly equivalent to KX , we may make a divisor D + p linearly equivalent to
KX + p, the map D 7→ D + p, as a map L(D) → L(D + p), is actually a vector
space homomorphism. It is obviously injective, and since the two spaces have the
same dimension, they must be equal.

Proof of Theorem CB4 (under the assumption that X1 is nonsingular). Suppose
C ⊂ P2 is a plane curve of degree d+ e− 3 containing all of X1 ∩X2 except for the
point p = pde. We can write the divisor cut on X1 by C as

C ·X1 = p1 + · · ·+ pde−1 + q1 + · · ·+ qd(d−3)+1.

We have KX1 ∼ (d−3) ·H, while p1 + · · ·+pde ∼ e ·H and C ·X1 ∼ (d+ e−3) ·H.
Thus we can rewrite the equation as

(d+ e− 3) ·H ∼ e ·H − p+ q1 + · · ·+ qd(d−3)+1

or, equivalently,

q1 + · · ·+ qd(d−3)+1 ∼ (d− 3) ·H + p

∼ KX1 + p.

By Proposition 4, we get p ∈ {q1, . . . , qd(d−3)+1}. In particular, p ∈ C.

Another way to express this last argument, more explicitly invoking the Residue
Theorem, is to choose (x, y) affine coordinates on the plane; let f(x, y), g(x, y), and
h(x, y) be the equations of the curves X1, X2, and C in these coordinates; and
consider the differentials

ω =
dx

∂f/∂y

and

ϕ =
h(x, y)

g(x, y)
ω

on X1. The form ω itself is regular and nonzero on the affine part of X1, having
zeros of order d−3 along the divisor cut on X1 by the line at∞. It follows that ϕ is
regular at the points at∞, with simple poles exactly at the points of X1 contained
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in X2 but not in C. There is at most one such point, namely, p. By the Residue
Theorem, the sum of the residues of any differential form must be 0, so a differential
on a curve cannot have exactly one simple pole. We conclude that p ∈ C.

A more careful application of Riemann-Roch yields the version of Cayley-
Bacharach that was actually proved in Bacharach [Ba]. It relates the number of
conditions imposed on curves of various degrees by two complementary subsets of
the intersection of two plane curves. We need one more fact from the general theory
of plane curves: Let X be a nonsingular plane curve of degree d, and let C be a
plane curve of degree k. The refined form of Bézout’s Theorem says that by count-
ing each point with an appropriate multiplicity, we may regard the intersection of
C and X as a divisor on X of degree d · k, which we will denote by C ·X . The fact
we want is a corollary of Theorem 3. We may express it in classical language as

Corollary 5. Let X be a nonsingular plane curve, and let C be any plane curve
not containing any component of X. Let Γ be any effective divisor on X. The
family of plane curves containing Γ cuts out on X the complete linear series of
divisors linearly equivalent to C ·X − Γ.

We shall exploit Corollary 5 to express the number of conditions imposed on
forms of degree m by a set of points of X in terms that are accessible to the
Riemann-Roch Theorem. The precise result is:

Corollary 6. Let X be a smooth plane curve of degree d, and let Λ ⊂ X be a set of
λ points, regarded as a divisor on X. The number of linear conditions imposed by Λ
on forms of degree m is equal to l(mH)−l(mH−Λ). In particular, the “failure of Λ
to impose independent conditions on forms of degree m” is λ−(l(mH)−l(mH−Λ)).

Proof. The “number of linear conditions imposed by Λ on forms of degree m” is
the dimension t of the vector space of forms of degree m modulo those vanishing
on Λ. The number l(mH) is the dimension of the vector space L(mH), which by
Corollary 5 (applied in the case when Γ is the empty set) is the dimension of the
space of forms of degree m modulo those vanishing on X . Similarly, the number
l(mH − Λ) is by Corollary 5 the dimension of the space of forms of degree m
vanishing on Λ modulo those vanishing on all of X . Thus t = l(mH)− l(mH −Λ).
The “failure of Λ to impose independent conditions is simply the number of points
λ of Λ (the maximal number of conditions that Λ could impose) minus the number
of conditions actually imposed, or λ− (l(mH)− l(mH − Λ)).

Theorem CB5 (Bacharach). Let X1, X2 ⊂ P2 be plane curves of degrees d and e
respectively, intersecting in d · e points Γ = X1 ∩X2 = {p1, . . . , pde}, and suppose
that Γ is the disjoint union of subsets Γ′ and Γ′′. Set s = d + e − 3. If k ≤ s is
a nonnegative integer, then the dimension of the vector space of forms of degree k
vanishing on Γ′ (modulo those containing all of Γ) is equal to the failure of Γ′′ to
impose independent conditions on forms of degree s− k.

This theorem is one possible departure point for a beautiful series of mathemati-
cal developments known as liaison theory. Liaison is the equivalence relation gotten
by allowing a variety X ′ to be replaced by the variety X ′′ residual to it for some
complete intersection X containing X ′.

Note that Theorem CB4 is just the case where k = s and Γ′′ is a single point
p = pde: Since any point p ∈ Γ imposes one independent condition on polynomials
of degree 0, the conclusion is that there are no hypersurfaces of degree k containing
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Γ − {p} except those containing Γ. Theorem CB5 says further that any curve of
degree s − 1 = d + e − 4 containing all but two points of Γ contains Γ and there
exists a curve of degree s − 1 containing all but three points p, q, r ∈ Γ but not
containing Γ if and only if p, q, and r are collinear, and so on.

Once again we give the proof under the assumption that X1 is nonsingular; the
more general case may be treated using Bertini’s Theorem, as indicated before.

Proof (under the assumption that X1 is nonsingular). As before, denote by H the
hyperplane divisor on X1; we shall consider Γ, Γ′, and Γ′′ as divisors on X1 as
well. The dimension of the family of curves of degree k containing Γ′, modulo
those containing all of Γ, is the same as the number of conditions imposed by
Γ on curves of degree k minus the number of conditions imposed by Γ′, that is,
hΓ(k)− hΓ′(k). By Corollary 5, the families of plane curves of degree k containing
Γ and containing Γ′ cut on X1 the linear series of divisors equivalent to k ·H − Γ′

and k ·H − Γ = (k − e) ·H respectively. By Riemann-Roch we have

l(k ·H − Γ′)− l((k − e) ·H)

= kd− γ′ − g + l((d− 3− k) ·H + Γ′)

− [(k − e)d− g + l((d− 3− k + e) ·H)]

= d · e− γ′ − [l((d− 3− k) ·H + Γ′)− l((d− 3− k + e) ·H)].

Now, since the divisors Γ′ and Γ′′ add up to e ·D and their degrees correspondingly
add up to e · d, we can rewrite this as

= γ − [l((s− k) ·H)− l((s− k)H − Γ′′)]

which is the failure of Γ′′ to impose independent conditions on curves of degree
s− k.

There is an immediate generalization of Theorem CB5 to a statement about the
transverse intersection of n hypersurfaces Xi of degrees di in Pn. Here the role of
the number d+ e− 3 in the preceding statement is played by s = Σdi − n− 1.

Theorem CB6. Let X1, . . . , Xn be hypersurfaces in Pn of degrees d1, . . . , dn re-
spectively, meeting transversely, and suppose that the intersection Γ = X1∩· · ·∩Xn

is the disjoint union of subsets Γ′ and Γ′′. Set s = Σdi−n−1. If k ≤ s is a nonneg-
ative integer, then the dimension of the family of curves of degree k containing Γ′

(modulo those containing all of Γ) is equal to the failure of Γ′′ to impose independent
conditions of curves of “complementary” degree s− k.

Proof (in case X = X1 ∩ · · · ∩Xn−1 is nonsingular). The proof follows exactly the
lines of the proof of the last version, modulo the following changes: in the setting
of the current theorem we have Γ ∼ dn ·H, so we replace e in the previous proof
with dn. In the new setting the adjunction formula tells us that

KX ∼
(
n−1∑

1

di − n− 1

)
·H

= (s− dn) ·H,

so we replace d− 3 in the previous proof by s− dn.
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1.3. The twentieth century. The next stage in the evolution of the Cayley-
Bacharach Theorem may seem in some sense a purely technical advance: we shall
eliminate the hypothesis that the hypersurfaces Xi intersect transversely and re-
place it with the weaker one that they intersect in isolated points; that is, in modern
language, we no longer assume that the scheme Γ = X1 ∩ · · · ∩Xn of intersection
of the Xi is reduced, only that it is zero-dimensional. In fact, though, this is the
generalization that in our view transforms the problem and ultimately unifies the
approaches above.

Unfortunately, the geometric content of the new version is slightly less intuitive;
the intersections must be treated as schemes. Some would even claim that what we
are about to do amounts to nothing other than forgetting geometry and working
directly in algebra. But we feel that the geometric language still carries the clearest
picture. So to read further the reader will have to accept the notion that every
ring (or at least every finitely generated algebra over our still unnamed ground
field) corresponds to some geometric object, a scheme, in a way extending the
correspondence of reduced finitely generated algebras over an algebraically closed
field with algebraic sets. For a relatively simple introduction to this notion, the
reader may consult Eisenbud-Harris [EH2]. In any case, we shall not use any deep
property of this notion, and the algebra that we need we shall introduce from
scratch.

Before we can state this version of the Cayley-Bacharach Theorem, we have to
generalize the notion of expressing the intersection X1 ∩ · · · ∩Xn = Γ as a disjoint
union Γ′ ∪ Γ′′ to the case where Γ is an arbitrary zero-dimensional scheme. In
general, we would like to define a notion of “residual subscheme” Γ′′ to a subscheme
Γ′ of a zero-dimensional scheme Γ. This should play the role of a “complementary
subset”, except that the support of Γ′′ may overlap with that of Γ′. We want this
definition to have two basic properties: the degrees of the two subschemes Γ′ and Γ′′

should add up to that of Γ, and the process should be symmetric; i.e., Γ′ should be
in turn the subscheme of Γ residual to Γ′′. An obvious desideratum for the residual
subscheme is that the product of a function vanishing on Γ′ and one vanishing on
Γ′′ should vanish on Γ. We shall define the residual subscheme as the maximal
subscheme with this property. In other terms:

Definition. Let Γ be a zero-dimensional scheme with coordinate ring A(Γ). Let
Γ′ ⊂ Γ be a closed subscheme and IΓ′ ⊂ A(Γ) its ideal. By the subscheme of Γ
residual to Γ′ we shall mean the subscheme defined by the ideal

IΓ′′ = Ann(IΓ′/IΓ).

The problem is simply that in general this definition has neither of the properties
we desire, as can be seen already in the case of Γ ⊂ A2 a “fat point”, that is,

IΓ = (x2, xy, y2) ⊂ k[x, y].

If we take Γ′ the reduced point—that is, IΓ′ = (x, y)—then by our definition the
residual scheme Γ′′ will again be the reduced point, which violates the degree con-
dition. (There are also more complicated examples in which deg(Γ′) + deg(Γ′′) >
deg(Γ).) At the same time, if we take Γ′ a subscheme of degree 2—say, for ex-
ample, IΓ′ = (x, y2)—then the residual scheme Γ′′ to Γ′ will be again the reduced
point, violating the requirement that the residual to the residual be the original
subscheme. These examples suggest the impossibility of any definition satisfying
the conditions we have set.



312 D. EISENBUD, M. GREEN, AND J. HARRIS

We are saved in the present circumstance because Γ is not an arbitrary zero-
dimensional scheme; it is a complete intersection. In particular, the local rings
OΓ,p (which are the localizations of A(Γ) at its maximal ideals) are Gorenstein
rings, which is exactly the property we need for the definition of residuation to
work.

Although Gorenstein rings are quite commonplace in commutative algebra, their
usual rather abstract definition has given them the reputation in some geometric
circles of being arcane and only for experts. In the present circumstance, however,
we do not need the general definition: since Γ is zero-dimensional and the rings
OΓ,p are correspondingly finite-dimensional vector spaces over the ground field, we
can say in concrete terms what it means for the local ring A = OΓ,p at a point
p ∈ supp(Γ) to be Gorenstein. To start with the simplest definition:

Definition. Let A be a local Artinian ring, m ⊂ A its maximal ideal. We say that
A is Gorenstein if the annihilator of m has dimension one as a vector space over
K = A/m.

In general, for any local Artinian ring A with maximal ideal m, the annihilator
of m as an A-module is called the socle of A. To see what the condition that the
socle of A have length 1 means, observe first of all that we know mk = 0 for k large,
and let m be the largest integer k such that mk 6= 0. Certainly everything in mm

annihilates m, so that the Gorenstein condition above at least implies that mm has
length one, i.e.,

m
m ∼= K.(∗)

In fact, it says more: given any nonzero f ∈ A, we claim there exists a g ∈ A such
that the product is nonzero, but fg ∈ mm. This is easy: if l is the largest integer
such that f · ml 6= 0, then any element of f · ml annihilates m and so must lie in
mm.

Now suppose that A contains a field. It follows from the Cohen Structure The-
orem ([E, Theorem 7.7]) that A contains a copy of its residue field K. (The reader
might simply assume that K is the ground field, the usual geometric situation.)
The condition that the annihilator of m is one-dimensional thus also implies that

Given any K-linear map ρA→ m
m that restricts to

the identity on mm, the pairing

A×A→ Aρmm ∼= K given by multiplication

is a nondegenerate pairing on A as a vector space over K.

(∗∗)

In fact, it is the case conversely that the two assertions (∗) and (∗∗) together
are equivalent to the Gorenstein condition. To see this, observe that (∗) and (∗∗)
together in turn imply that there exists a K-linear map A → K such that the
composition

Q : A×A→ A→ K

is a nondegenerate pairing on the K-vector space A. On the other hand, we see
that this implies the Gorenstein condition: Since the maximal ideal m ⊂ A has
codimension one as a K-vector space, the orthogonal complement m⊥ of m with
respect to the pairing Q on A will have dimension one, and this certainly contains
the annihilator of m. We thus have an alternative characterization of Gorenstein
Artinian rings:
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Proposition 7. Let A be an Artinian ring with residue field K. The ring A is
Gorenstein iff there exists a K-linear map A→ K such that the composition

Q : A×A→ A→ K,

where the first map is multiplication in A, is a nondegenerate pairing on the K-
vector space A.

It may possibly be easier to visualize the Gorenstein condition in case A is a
graded ring. The Gorenstein condition then says that

The top graded component Am of A has length 1,
and

for every pair k, l of nonnegative integers with k + l = m, the pairing

Ak ×Al → Am = K

given by multiplication is a nondegenerate pairing of K-vector spaces.
Having described the Gorenstein condition for Artinian rings, it is possible to

state the condition for general local rings. One bit of terminology: if S is any
local ring with maximal ideal m, we say that a sequence (F0, . . . , Fk) of elements
of m is regular if for each i = 0, . . . , k, Fi is a nonzerodivisor in S/(F0, . . . , Fi−1);
we say that (F0, . . . , Fk) is a maximal regular sequence if it cannot be extended
to a regular sequence (F0, . . . , Fk+1), i.e., if every element of the maximal ideal of
S/(F0, . . . , Fk) is a zerodivisor. We then make the

Definition. A local ring S is Gorenstein if for every maximal regular sequence
(F0, . . . , Fk) of elements of S the quotient A = S/(F0, . . . , Fk) is a Gorenstein
Artinian ring, in the sense above.

For the reader’s interest we mention that the ring S is called Cohen-Macaulay
if, in the situation above, the quotient A is simply assumed Artinian; thus the
Gorenstein property includes Cohen-Macaulay.

It follows from Proposition 9 below that the Gorenstein condition on the quotient
S/(F0, . . . , Fk) is independent of the maximal regular sequence (F0, . . . , Fk), so that
we could just as well replace the “every” in the preceding definition with “some”.
We shall put off until section 1.4 a proof that the local rings of a zero-dimensional
complete intersection scheme Γ are Gorenstein. (For a general discussion of the def-
initions and properties of Gorenstein rings, see Eisenbud [E, Ch. 21]; for a different
discussion of the connection with Cayley-Bacharach, see Davis-Geramita-Orecchia
[DGO].)

The point is that if the local rings of Γ are Gorenstein, then our definition of
the residual subscheme to a subscheme of Γ does satisfy the two conditions we laid
down: we simply observe that the ideal of the residual subscheme Γ′′ to a given
subscheme Γ′ ⊂ Γ is the orthogonal complement, with respect to the pairing Q, of
the ideal IΓ′ of Γ′. This tells us immediately that IΓ′ and IΓ′′ have complementary
dimensions as vector subspaces of A, so that deg(Γ′) + deg(Γ′′) = deg(Γ); and of
course since the orthogonal complement of the orthogonal complement of IΓ′ will
again be IΓ′ , the residual subscheme of the residual subscheme of Γ′ will again be
Γ′. With this said, we may state the next version of Cayley-Bacharach.

Theorem CB7. Let X1, . . . , Xn be hypersurfaces in Pn of degrees d1, . . . , dn, and
suppose that the intersection Γ = X1 ∩ · · · ∩ Xn is zero-dimensional. Let Γ′ and
Γ′′ be subschemes of Γ residual to one another in Γ, and set s = Σdi − n − 1. If
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k ≤ s is a nonnegative integer, then the dimension of the family of curves of degree
k containing Γ′ (modulo those containing all of Γ) is equal to the failure of Γ′′ to
impose independent conditions of curves of complementary degree s− k.

A proof of this statement could be given along the lines of the preceding proof by
introducing the dualizing sheaf ωX of the curve (that is, one-dimensional scheme)
X = X1∩· · ·∩Xn−1 and proving a Riemann-Roch/duality type theorem relating the
global sections of a sheaf F on X to the first cohomology of the sheaf Hom(F , ωX).
But we don’t have to do this: Theorem CB7 suggests yet a further (and, for now,
final) generalization, from which the last statement will follow readily and which
admits a relatively elementary proof! We shall now state this final version of Cayley-
Bacharach and then indicate how it implies the last version.

Our final generalization of the Cayley-Bacharach Theorem will be expressed in
terms of the homogeneous coordinate ring of Γ. We first introduce some nota-
tion. As before, we let X1, . . . , Xn ⊂ Pn be hypersurfaces intersecting in a zero-
dimensional scheme Γ. We let S = K[Z0, . . . , Zn] be the homogeneous coordinate
ring of Pn and let Fi(Z) be the homogeneous polynomial of degree di defining the
hypersurface Xi. We write I(Γ) ⊂ S for the ideal of homogeneous polynomials
vanishing on Γ and set R = S/I(Γ), the homogeneous coordinate ring of Γ. In
keeping with our algebraic point of view, we will now write hR(k) for what we used
to call hΓ(k), the number of conditions imposed by Γ on forms of degree k; it is
just the vector space dimension of Rk, the kth graded component of R.

We have had occasion to use Max Noether’s AF + BG theorem several times
already, and we shall need a more powerful version of it in the sequel. This is the
Lasker’s Unmixedness Theorem, which extends Noether’s Theorem to an assertion
about homogeneous sequences of parameters. We say that a sequence of homoge-
neous forms F1, . . . , Fs is a sequence of parameters if the algebraic set defined by
the vanishing of F1, . . . , Fs (either in An+1 or in Pn, it comes to the same thing)
has codimension s, the number of forms.

Theorem 8 (Lasker). If F1, . . . , Fs ∈ S is a sequence of parameters and Γ 6= ∅ is
the scheme in Pn that is the intersection of the hypersurfaces defined by the Fi, then
every polynomial vanishing on Γ is a linear combination of the Fi; equivalently (in
case the ground field is infinite) there exists a linear form L that is a nonzerodivisor
modulo (F1, . . . , Fs).

Noether’s Theorem is just the case n = 2. (The development of Noether’s
Theorem does not end here: it was extended by Macaulay [M, sections 48–53] to
systems of parameters in other rings and became the basis of the theory of Cohen-
Macaulay rings, which may be defined as local rings for which the Unmixedness
Theorem is true; see Nagata [Na].)

Next, we do something that may strike the geometrically oriented reader as a
bit odd: we let H ⊂ Pn be a general hyperplane (specifically, one not meeting the
support of Γ), L the linear form defining H, and introduce the quotient ring

A = R/(L) = S/(L,F1, . . . , Fn).

Now, if we think of R simply as the homogeneous coordinate ring of the projective
scheme Γ, this makes no apparent sense: the ideal (L,F1, . . . , Fn) defines the empty
set. It makes much more sense if we think of R as the affine coordinate ring of the

cone Γ̃ over Γ in affine space An+1 (Figure 4): then A is the coordinate ring of the

hyperplane section of Γ̃ corresponding to a hyperplane meeting Γ̃ at the origin, and
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Figure 4

it is not unreasonable to hope that the scheme structure of this intersection reflects
the global geometry of Γ.

To see how this works, observe that R and A are graded rings and that L is a
nonzerodivisor in R. It follows that the Hilbert function of A (which is again a
graded ring) will be the first difference function of the Hilbert function of R:

hA(m) = hR(m)− hR(m− 1).

Moreover, the same is true for any quotient R′ = R/I ′ and corresponding A′ =
R/(I ′, L), as long as L is a nonzerodivisor modulo I ′. Thus for any subscheme
Γ′ ⊂ Γ we let I ′ be the image in A = R/(L) of the ideal I ′ of Γ and write

h0(Pn, IΓ′(k))− h0(Pn, IΓ(k))

= hR(k)− hR′(k)

=
k∑
j=0

(hA(j)− hA′(j))

=
k∑
j=0

dimK(I ′j).

Now let i(l) denote the failure of the subscheme Γ′ to impose independent con-
ditions on hypersurfaces of a given degree l. It is likewise the case that we can
measure i(l) in terms of the ring R′: we have

i(l) = deg(Γ′)− hR′(l)
so that the successive differences

i(l)− i(l + 1) = hR′(l + 1)− hR′(l).
Thus

i(l) =
∞∑

j=l+1

hR′/(L)(l).

Of course, the sum need only extend over the finite range of j ≥ l + 1 for which
I ′j $ Rj , that is, hR′/(L)(l) 6= 0.
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The crucial result, which we prove in the next section, is that the ring A is
itself Gorenstein, with socle in degree m. This means that we get a nondegenerate
pairing

Q : A×A→ A→ Am ∼= K.

Let Γ′′ ⊂ Γ be the subscheme residual to Γ, and let I ′′ ⊂ R be its idea; let I ′′ in A.
We observe that the ideal I ′′ ⊂ R is just the annihilator of I ′ with respect to the
pairing Q: clearly they annihilate each other, and the sum of their codimensions
(as K-vector spaces) in A is equal to the dimension d of R. In particular, the
dimension of the jth graded piece of I ′ is the codimension of the (m− j)th graded
piece of I ′′.

Summing this equality over j = 0, 1, . . . , l yields the statement: the number of
hypersurfaces of degree l containing Γ′ (modulo those containing Γ) is equal to the
failure of Γ′′ to impose independent conditions on hypersurfaces of degree m−1− l.
This, of course, is exactly the statement of our last version of Cayley-Bacharach!
Cayley-Bacharach thus turns out to be simply the statement that the ring A is
Gorenstein, in other words, the special case d0 = 1 of the

Theorem CB8. If F0, . . . , Fn ∈ K[Z0, . . . , Zn] are homogeneous polynomials of
degrees d0, . . . , dn forming a sequence of parameters (i.e., having no common zeros
in Pn), then the ring

A = K[Z0, . . . , Zn]/(F0, . . . , Fn)

is Gorenstein, with socle in degree Σdi − n− 1.

Note that in terms of the definition of the Gorenstein condition this statement is
equivalent (modulo specifying the degree of the socle, which is elementary) to the
shorter

Theorem CB9. The polynomial ring K[Z0, . . . , Zn] is Gorenstein.

This is our final version of the Cayley-Bacharach Theorem. Whether it does
in fact convey a deeper understanding of the phenomena expressed in the original
theorems of Pappus, Pascal, and Chasles, or represents merely the addition of a
layer of technical machinery, we leave to the reader. Perhaps the best criterion is
the simplicity of the proof, which appears in the following section.

1.4. Proof of the final Cayley-Bacharach Theorem. In this section we shall,
as advertised, give a proof “from scratch” of the final version of the Cayley-
Bacharach Theorem. We also owe the reader the verifications of two statements
made along the way: that the local rings of a zero-dimensional complete intersec-
tion subscheme Γ ⊂ Pn are Gorenstein (the reader will recognize this as a weaker
version of the final Cayley-Bacharach Theorem) and that the ideal (F1, . . . , Fk) ⊂
K[Z1, . . . , Zn] generated by a sequence of parameters is saturated.

As for the proofs, these involve properties of the Ext functor. They are nonethe-
less elementary in spirit: in fact, all we shall use is the basic definition of the Ext
functors as right-derived functors of the functor Hom. In particular, we do not
actually calculate any Ext groups (other than Hom) or use any of their geometric
or algebraic properties. Rather, as is often the case with homological functors, we
simply use the exact sequences associated to them to transport information from
one setting to another, in this case, from one quotient of the polynomial ring to
another.



CAYLEY-BACHARACH THEOREMS AND CONJECTURES 317

To begin with, one piece of terminology. Let S be any local ring with maximum
ideal m and residue field K, and M any finitely generated graded S-module. We
say that a sequence (F0, . . . , Fk) of elements of m is an M -regular sequence (or
just M -sequence) if for each i = 0, . . . , k, Fi is a non-zero-divisor for the module
M/(F0, . . . , Fi−1)M . Of course, we say that (F0, . . . , Fk) is a maximal M -sequence
if it cannot be extended to an M -sequence (F0, . . . , Fk+1) that is, if every element
of m is a zerodivisor for M/(F0, . . . , Fk)M .

All the needed results will follow directly from

Proposition 9. With the above notation, if (F0, . . . , Fk) is a maximal M -sequence,
then

Exti(K,M) = 0 for all i ≤ k, and

Extk+1(K,M) = Hom(K,M/(F0, . . . , Fk)M) 6= 0.

Before we prove this, let’s see how it implies all the assertions made so far about
the algebra of the rings R and A associated to a complete intersection in Pn.

To begin with, the most immediate implication is simply that all maximal M -
sequences contain the same number k of elements, k being characterized as the
smallest integer such that Extk(K,M) 6= 0. In particular, in caseM = S we see that
all maximal regular sequences in the ring S have the same number of elements; this
number is called the depth of S. Now, in case S = K[Z0, . . . , Zn] is the polynomial
ring, (Z0, . . . , Zn) is visibly a maximal regular S-sequence, and it follows then that
all maximal regular sequences in K[Z0, . . . , Zn] have n+ 1 elements. This, finally,
means that any regular sequence (F1, . . . , Fn) is not maximal, i.e., that the ring
K[Z0, . . . , Zn]/(F1, . . . , Fn) contains nonzerodivisors of positive degree, i.e., that
the ideal (F1, . . . , Fn) ⊂ S is saturated.

Next, observe that the socle of a local Artinian ring A with residue field K
is the module Hom(K,A); thus in particular A will be Gorenstein if and only if
Hom(K,A) ∼= K. Now, applying the Proposition with M = S, we see that if S is
any local ring with residue field K and (F0, . . . , Fk) is a maximal regular sequence
in S, then

HomA(K,A) = HomS(K,A) = Extk+1(K,S)

is independent of the particular maximal regular sequence! Thus one quotient
S/(F0, . . . , Fk) will be Gorenstein only if any such quotient is. We have thus veri-
fied the remark made immediately following the definition of Gorenstein rings. In
particular, since the quotient K[Z0, . . . , Zn]/(Z0, . . . , Zn) ∼= K is trivially Goren-
stein, it follows that K[Z0, . . . , Zn]/(F0, . . . , Fn) is Gorenstein for any maximal
regular sequence (F0, . . . , Fn), thus completing the proof of Theorem CB9.

Proof of Proposition 9. The argument here will be by induction on k, the inductive
step being easy and the hard part being the first case k = 0. For the inductive
step, we just observe that since F0 is a nonzerodivisor for the module M , we have
an exact sequence of S-modules

0→M →M →M/F0M → 0

where the first map is multiplication by F0. Moreover, since F0 ∈ m annihilates the
module K = S/m, the induced map on Ext∗(K,M) is zero. Thus we have for each
l a three-term exact sequence

0→ Extl(K,M)→ Extl(K,M/F0M)→ Extl+1(K,M)→ 0
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which establishes the inductive step: assuming the result for the module M/F0M ,
with its maximal regular sequence F1, . . . , Fk, we deduce first that Exti(K,M) = 0
for i ≤ k and then that

Extk+1(K,M) ∼= Extk(K,M/F0M)

∼= Hom(K,M/(F0, . . . , Fk)M) 6= 0.

The hard part, as we indicated, is the initial step. We know that if k ≥ 0—
i.e., m does contain a nonzerodivisor for M—then Hom(K,M) = 0; we have to
establish that conversely if k = −1—that is, if every element of m is a zerodivisor
for M—then Hom(K,M) 6= 0. This amounts to the statement of

Proposition 10. If every element F ∈ m kills some element of M , then there
exists an element α ∈M killed by all of m.

Proof. For each element α ∈ M , let Iα ⊂ S be the ideal Ann(α) of elements of S
that kill α; our hypothesis is that m is the union of the ideals Iα. Of course, we need
only look at the maximal elements of the set of ideals {Iα}, and these are prime
ideals: if Iα is maximal, and FG ∈ Iα and G /∈ Iα (i.e., Gα 6= 0), then IGα ⊃ Iα,
and hence IGα = Iα and F ∈ IGα = Iα. In general, maximal elements of the set of
annihilators of elements of a module M are called associated primes of M .

We claim next that since S is Noetherian and M is finitely generated, there can
be only finitely many such primes: if Iα is any such prime, we have a sequence

0→ A · α ∼= A/Iα →M →M ′ → 0.

Note that since A/Iα is an integral domain, if β ∈ A · α is any nonzero element,
then Iβ = Iα. Thus, if Iγ is any other such prime, A · α ∩ A · γ = (0), so that γ is
an associated prime of M ′. If M ′ has only finitely many associated primes, then it
follows that M does, and the result follows by Noetherian induction.

We have thus expressed the maximal ideal m of S as a finite union of prime
ideals Iα. It follows that m = Iα for some α, i.e., there exists an element of M
killed by all of m. If S contains an infinite field, as in the original geometric case,
this is trivial, as a vector space over an infinite field cannot be the union of finitely
many proper subspaces; otherwise, it is what is called in commutative algebra the
“prime avoidance lemma”. See, for example, Eisenbud [E, section 3.2].

Part II: The future?

2.1. Cayley-Bacharach Conjectures. The statement of Theorem CB9 repre-
sents our best understanding (to date) of the phenomena observed in the various
formulations of Cayley-Bacharach preceding it; having expressed the result as a
relationship between the Hilbert functions of residual subsets of an arithmetically
Gorenstein subscheme of Pn, we do not see at present how to extend it to any
larger class of objects. What we would like to propose instead is an extension
of the theorem in a different direction, toward a collection of inequalities on the
Hilbert function of a subscheme of a complete intersection.

To see this most clearly, we restrict our attention to the case of a complete
intersection Γ ⊂ Pn of n quadrics; we shall give the general version at the end.
Cayley-Bacharach says that any homogeneous polynomial of degree 2n− (n+ 1) =
n−1 on Pn containing a subscheme Γ0 of colength 1 of Γ (that is, of degree 2n−1)
must contain all of Γ; we consider now what can be said about hypersurfaces of other
degrees. Of course, Cayley-Bacharach also says that Γ does impose independent
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conditions on polynomials of degree n, so there will exist polynomials of degree n
vanishing on a subscheme of Γ of colength 1 but not on Γ. On the other hand, by
Bézout, a hyperplane in Pn can contain a subscheme of Γ of degree at most 2n−1.

To summarize what we know, define for any given n a function d by saying that
d(k) is the largest degree of a subscheme Γ0 of a complete intersection Γ such that
there is a polynomial F (Z) of degree k vanishing on Γ0 but not on Γ. Throwing in
the trivial case of degree 0, we have then the four values of d:

If k = n, then d(k) = 2n − 1

If k = n− 1, then d(k) = 2n − 2

·
·
·
If k = 1, then d(k) = 2n − 2n−1

If k = 0, then d(k) = 2n − 2n

and the pattern is clear. We may make, accordingly, the

Conjecture CB10. Let Γ be a complete intersection of n quadrics in Pn. If X ⊂
Pn is any hypersurface of degree k containing a subscheme Γ0 of degree strictly
greater than 2n − 2n−k, then X contains Γ.

Note that this conjecture is sharp, if true: for any k < n, we can find a complete
intersection Γ ⊂ Pn containing a complete intersection Ω ⊂ Pn−k ⊂ Pn; by Cayley-
Bacharach the residual scheme Γ0 to Ω in Γ will then lie on a hypersurface of
degree k not containing Γ. In fact, these are the only known examples of equality;
we may make the further conjecture that if X is a hypersurface of degree k with
deg(X∩Ω) = 2n−2n−k, the scheme residual to X∩Ω in Ω is a complete intersection
of quadrics in a subspace Pn−k.

It should be said that taking Γ a complete intersection of quadrics specifically
is not essential; there is a form of the conjecture applicable to arbitrary zero-
dimensional complete intersection subschemes of Pn. As might be expected, though,
this form is substantially more complicated, and the pattern of known results less
apparent [EGH2].

It should also be said that we did not arrive at this conjecture by trying to
extrapolate (or interpolate) from the classical statement of Cayley-Bacharach, as
we do above; rather, as described in Eisenbud-Green-Harris [EGH1], we were led
to this by extending a series of results and conjectures in Castelnuovo theory from
Eisenbud-Harris [EH1] and made the connection to the Cayley-Bacharach Theorem
after the fact.

In the remainder of this paper we shall be concerned with proving cases of the
Cayley-Bacharach conjecture. In order to do this, we start by introducing a related
conjecture.

Conjecture CB11. Let Γ be any subscheme of a zero-dimensional complete in-
tersection of quadrics in any projective space Pr. If Γ fails to impose independent
conditions on hypersurfaces of degree m, then

deg(Γ) ≥ 2m+1.
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Here again this statement is sharp, if true: a complete intersection in Pm+1

provides examples of equality for each m. As in the case of Conjecture CB10,
moreover, these are the only examples, and we may conjecture further that equality
holds in Conjecture CB11 if and only if Γ is itself a complete intersection of quadrics
in Pm+1.

Theorem 11. The following are equivalent :
a. Conjecture CB10 for all k and n;
b. Conjecture CB11 for all m.

Proof. We first prove that Conjecture CB11 for a given value of m implies Conjec-
ture CB10 in case k = n−m−1. We do this simply by applying the seventh version
of the Cayley-Bacharach Theorem. To begin with, assume Conjecture CB11 for a
given value of m, and let Ω ⊂ Pn be a complete intersection of quadrics. Let X
be any hypersurface of degree k = n −m − 1 not containing Ω, and let Γ be the
subscheme of Ω residual to the intersection Ω ∩X . By Cayley-Bacharach Γ must
fail to impose independent conditions on hypersurfaces of degree m = n − 1 − k.
By assumption deg(Γ) ≥ 2n−k and correspondingly deg(X ∩ Ω) ≤ 2n − 2n−k.

Now assume Conjecture CB10 for all n and k. Let Γ be any subscheme of a
complete intersection of quadrics, and suppose that Γ fails to impose independent
conditions on hypersurfaces of degree m. Assuming that Γ spans a projective space
Pn, take Ω a complete intersection of quadrics in Pn containing Γ, and let Γ′ ⊂ Ω be
the subscheme of Ω residual to Γ. By Cayley-Bacharach, Γ′ lies on a hypersurface
of degree n−1−m not containing Ω; it follows that deg(Γ′) ≤ 2n−2m+1 and hence
that deg(Γ) ≥ 2m+1.

Note as well that, by the proof of Theorem 11, Conjecture CB11 for all m ≤ m0

implies Conjecture CB11 for all k and n such that

n− k ≤ m0 + 1;

and since Conjecture CB10 is immediate in case k = n or n − 1, it follows that
Conjecture CB11 for all m ≤ m0 implies Conjecture CB10 for all k and n with
n ≤ m0 + 3.

Finally, we formulate a general version of our Conjecture CB11 that does not
require quadrics.

Conjecture CB12. Let Γ be any subscheme of a zero-dimensional complete in-
tersection of hypersurfaces of degrees d1 ≤ · · · ≤ dn in a projective space Pn. If Γ
fails to impose independent conditions on hypersurfaces of degree m, then

deg(Γ) ≥ e · ds · ds+1 · · · · · dn
where e and s are defined by the relations

n∑
i=s

(di − 1) ≤ m+ 1 <
n∑

i=s−1

(di − 1)

and

e = m+ 1−
n∑
i=s

(di − 1).

Note that this is the analogue of our second Cayley-Bacharach conjecture. It may
in turn be translated, by an argument generalizing Theorem 11, into a statement
analogous to Conjecture CB10.
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2.2. A proof of Conjecture CB10 in case r ≤ 7. We shall here prove Conjecture
CB11 in case m ≤ 4 and correspondingly Conjecture CB10 when r ≤ 7.

We start with an arbitrary zero-dimensional subscheme Γ ⊂ Pr. As before, we
introduce the coordinate ring S = S(Γ) of Γ, and we let R = S/(L) be the quotient
of S by a general linear form L. R is then a graded local Artinian ring over the field
K, generated by its first graded piece R1, whose dimension as a vector space over
K we shall call n. By the ideal of R we shall mean the ideal of relations among the
generators of R, that is, the kernel I of the surjection from Sym∗R1 onto R. We
may then translate our geometric hypotheses on the scheme Γ ⊂ Pr into statements
about the ring R as follows:

The degree of Γ is the length of R (i.e., the dimension of R as a vector space
over K).

The dimension n of R1 as a vector space over K is the dimension of the span of
Γ in Pr.

The statement that Γ fails to impose independent conditions on hypersurfaces
of degree m is equivalent to the statement that the (m + 1)st graded piece Rm+1

of R is nonzero.
The statement that Γ is a subscheme of a complete intersection of quadratics

amounts to the assertion that the ideal of R contains a regular sequence of length
n in degree 2.

With these conventions, the result from which our conjecture will follow in case
r ≤ 7 is the

Proposition 12. Let R be a graded local Artinian ring over the field K, generated
by its first graded piece R1; suppose that the ideal of R contains a regular sequence
of length n = dimK(R1) in degree 2. For k ≤ 5, if the kth graded piece Rk of R is
nonzero, then the length of R is at least 2k.

Proof. Note first that we may as well assume R to be Gorenstein: if the socle of
R has vector space dimension strictly bigger than 1, we could simply replace R by
the quotient of R by any subspace of the socle not containing Rk to obtain a ring
of smaller length.

Now, we break up the argument into two cases: If we assume that the ideal I
of R contains a reducible quadric, then as we shall see we may reduce the problem
to one of rings R′ with socles in lower degree and proceed by induction. If, on the
other hand, I contains no such element, we obtain lower bounds on the Hilbert
function of R that suffice, at least in case k ≤ 5, to establish the desired inequality
on the length of R.

Assume first that the ideal I of R contains a reducible quadric, that is, that we
have xy = 0 for some pair of nonzero elements x, y ∈ R1 (we do not assume x and
y are linearly independent). From the exact sequence of R-modules

0→ (x)→ R→ R/(x)→ 0

we have the obvious equality

l(R) = l((x)) + l(R/(x))

where l denotes length. On the other hand, the ideals (x) and (y) in R have as well
the structure of quotient rings of R: for example, (y) is just the image of the map
my : R→ R of R-modules given by multiplication by y and so is isomorphic to the
quotient ring R/Ann(y). Moreover, since xy = 0 in R, x is in the kernel of my, so
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that in fact the ring (y) is a quotient of the ring R(x). In particular, the length of
(y) is less than or equal to that of R/(x), so that we have

l(R) ≥ l((x)) + l((y)).

Now, the rings (x) and (y), being quotients of the ring R, are likewise generated
by their first graded pieces; similarly, their ideals contain regular sequences of max-
imal length in degree 2. Moreover, they are again Gorenstein. To see this, observe
that every ideal of R contains the socle Rk of R, so that for example Rk ⊂ (x)
and is indeed contained in the socle of the ring (x). At the same time, since (x) is
a submodule of the R-module R, any element of the socle of (x) is killed by any
element of R1 and so is an element of the socle of R. Indeed, we see that (x) and
(y) have socles in degree exactly k−1, and by induction we may conclude that each
has length at least 2k+1. Thus

l(R) ≥ l((x)) + l((y)) ≥ 2k,

and we are done in this case.
Suppose now that the ideal of R contains no reducible element in degree 2.

If as before we let n denote the dimension of the vector space R1, then in the
projective space P(Sym2(R1)) the locus Σ of reducible elements has dimension
2n− 2. Inasmuch as the kernel I2 of the map

Sym2(R1)→ R2

does not meet Σ, we may immediately conclude that the codimension of I2 in
Sym2(R1) is at least 2n− 1. We have thus

dimK(R2) ≥ 2n− 1.

Now, under the hypothesis that the ideal of R contains a regular sequence
f1, . . . , fn of maximal length in degree 2, it is a quotient of the ring

Sym∗(R1)/(f1, . . . , fn),

which has length 2n and socle in degree n. Thus we must have n ≥ k, and the
result we are after is immediate if n = k, so we may as well assume that n ≥ k+ 1.
The Hilbert function hR thus satisfies

hR(0) = 1

hR(1) = n ≥ k + 1

hR(2) ≥ 2n− 1

from which we conclude immediately that k ≥ 4: if k = 1, we would have hR(2) = 0;
if k = 2, we would have hR(2) = 1; and if k = 3, we would have hR(2) = hR(1).
Moreover, in case k = 4 or 5 the entire Hilbert function is determined by the first
three values above, and we can just add up the inequalities we have to obtain the
result. For example, in case k = 4 we have hR(3) = hR(1) = n ≥ k + 1 and
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hR(4) = 1. Adding it all up, we see that the length of R must be

l(R) =
∑

hR(k)

≥ 1 + n+ 2n− 1 + n+ 1

= 4n+ 1

≥ 4k + 5

= 21

> 2k,

so we are done. Similarly, in case k = 5 we have hR(3) = hR(2) ≥ 2n− 1, hR(4) =
hR(1) = n, and hR(5) = 1, so that

l(R) =
∑

hR(k)

≥ 1 + n+ 2n− 1 + 2n− 1 + n+ 1

= 6n

≥ 6k + 6

= 36

> 2k.
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