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Chapter 1

Introduction

Recently, Catalan’s conjecture, one of the famous classical problems in number
theory, has been proven. This means that within ten years after Wiles’ proof of
Fermat’s last theorem, another classical diophantine equation has been proven to
have no “non-trivial” solutions. This time the proof is due to Preda Mihăilescu,
so we might say that now Catalan’s conjecture has become Mihăilescu’s theorem.
Catalan’s conjecture is not very difficult to understand: it says that the difference
between two perfect powers (where we ignore 0 and 1) is always more than 1, unless
these powers are equal to 8 = 23 and 9 = 32.

Suppose we have two perfect powers that are only 1 apart, then there are also two
perfect powers with prime exponents that are only 1 apart. (If, for instance, x8 and
y15 differ by 1, then (x4)2 and (y3)5 are powers with prime exponents that differ
by 1.) It follows that it suffices to prove the following theorem.

Theorem 1.1 (Mihăilescu). Let p and q be prime numbers. Then the equation

xp − yq = 1 (1.1)

has no solutions in positive integers x and y, other than 32 − 23 = 1.

The aim of this thesis is to give a proof of theorem 1.1. Before we start, we will
present some of the history of Catalan’s conjecture, in particular the history of the
results we will use. Mihăilescu’s proof uses the fact that we may reduce the theorem
to the case with odd prime exponents. The cases in which one of p and q is 2 had
been treated before. We will deal with these cases in chapter 3.

In the chapters 4 and 5 we give the setting in which the proofs in the subsequent
chapters will take place, and we prove or formulate some preliminary results. For
instance, we will show that for any solution of equation (1.1) with p and q odd
primes, we have that q2 divides x. Because the proof in chapter 6 only works for
primes p and q that are at least 5 and the proof in chapter 8 uses that p and q are
at least 7, we still need to take care of the cases in which one of p and q is smaller
than 7. In section 5.3 we show that for these exponents there exist no solutions to
the Catalan equation.

After that, we will make a separation in cases. Without loss of generality, we may
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assume that p > q. The first case then is the case in which q does not divide p− 1,
the second case is the case in which q divides p− 1.

The case in which q does divide p−1, had already been solved using results of Baker,
Tijdeman, Mignotte and Roy. The final part of this proof consisted of electronic
computations that exclude a certain number of possible exponents. Mihăilescu has
now found a new proof of this case, using algebraic number theory. Computations
on computers are no longer needed. We will give R. Schoof’s version of Mihăilescu’s
proof of this case in chapter 6.

We will also give the proof of the second case, in which q does not divide p − 1.
This part of the proof had been found by Mihăilescu before he found the new proof
of the first case. We will give H.W. Lenstra, Jr.’s simpler version of it. Further, in
chapter 7 we will prove one of the theorems we use, using Runge’s method. Finally,
in chapter 8 we give the main argument that brings all these ingredients together.
It starts by assuming that there exists a solution of equation (1.1) for odd prime
exponents p and q that are at least 7 and eventually derives a contradiction from
this.

Leiden, 29th September 2003
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Chapter 2

History

In this chapter we present some of the history of Catalan’s conjecture. The conjec-
ture has been open for more than 150 years and a fair number of people have made
efforts to solve it. This chapter is based on the survey of the history of Catalan’s
conjecture in Ribenboim’s book [14], but we give some more details on certain de-
velopments and we will concentrate on the people who contributed to the proof as
it stands now.

The story of Catalan’s conjecture starts in the year 1844, when Crelle’s Journal [4]
published an extract from a letter from the Belgian mathematician Eugène Charles
Catalan (1814–1894) to the editor. The extract was the following.

Note
extraite d’une lettre adressée à l’éditeur par Mr. E. Catalan,

Répétiteur à l’école polytechnique de Paris.

Je vous prie, Monsieur, de vouloir bien énoncer, dans votre recueil,
le théorème suivant, que je crois vrai, bien que je n’aie pas encore réussi
à le démontrer complètement: d’autres seront peut-être plus heureux:

Deux nombres entiers consécutifs, autres que 8 et 9, ne peuvent
être des puissances exactes; autrement dit: l’équation xm −
yn = 1, dans laquelle les inconnues sont entières et positives,
n’admèt qu’une seule solution.

According to Dickson [7] p.731, this was not the first time that people thought about
this subject, but this was the first time the conjecture was stated in this general
form. Philippe de Vitry (1291–1361), who is better known as a composer and music
theorist than as a mathematician, posed the question as follows: all powers of 2 and
3 differ by more than unity except the pairs 1 and 2, 2 and 3, 3 and 4, 8 and 9. Levi
ben Gerson (1288–1344), who was also known as Gersonides, solved the problem by
proving that 3m ± 1 always has an odd prime factor if m > 2, so 3m ± 1 can not
be a power of 2. Euler solved the equation x2 − y3 = 1; already in 1738 he showed
[8] that the only positive solution is x = 3, y = 2. In chapter 3 we give a modern
version of Euler’s proof, as well as his own version. We will show that these proofs
are essentially the same.
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Only six years after Catalan’s publication, the first result on the question he posed
appeared in print. The French mathematician Victor Amédée Lebesgue (1791–
1875) showed [10] that the equation xp−y2 = 1, where p is a prime number, has no
solutions in positive integers x and y. He used Gaussian integers to do this. We will
give a proof of his theorem in chapter 3. This proof is essentially the same proof as
Lebesgue’s, but we give it in a more modern way. Note that this Lebesgue is not

the same person as the much better-known mathematician Henri Léon Lebesgue
(1875–1941), after whom the Lebesgue measure on the real numbers is named.

At the end of his article, Lebesgue says that the other cases of the equation xm =
yn+1 seem to present more difficulties and that he does not know what Mr. Catalan
has found on the subject so far. But Catalan had not found much. The only results
he ever found [5] were not published until 1885. By this time he had become a
Professor at the University of Liege in Belgium. In this article he tells us about the
time when he was trying to prove his conjecture, and how hard it turned out to be:

Après avoir perdu près d’une année à la recherche d’une démonstration
qui fuyait toujours, j’abandonnai cette recherche fatigante.

He only made some empirical observations, which he stated without proof, hoping
that other people might find them useful. The observations he mentions all are
special cases of the general conjecture, for example the equations (x+1)x−xx = 1,
xy − yx = 1 and xp − qy = 1, where p and q are prime.

After Lebesgue’s result, for some time all progress consisted in dealing with the small
exponents. Nagell showed in 1921 that the difference between a third power and an
other perfect power never is equal to 1. In 1932, Selberg proved that x4 − yn = 1
has no solution in positive integers when n > 1. We do not need this result in this
thesis, however, because in 1965 Ko Chao [9] showed that the equation x2 − yq = 1
has no solutions in positive integers when q ≥ 5, which is of course stronger than
Selberg’s result. In 1976 Chein [6] gave a simpler proof of Chao’s theorem, using
that if x2 − yq = 1 with q prime and x ≥ 1, y ≥ 1, then 2 divides y and q divides
x. This also is a result of Nagell. The proof of H.W. Lenstra Jr. that we will give
in chapter 3 is even simpler, since it does not use this result of Nagell.

The next result that did not just deal with small exponents was achieved by Le
Veque in 1952 [11]. He looked at the number of solutions of the Catalan equation
and showed that the equation xa−yb = 1 has at most one solution for given integers
x and y, unless x = 3, y = 2, in which case there are exactly two.

In 1953 [2] and 1960 [3] Cassels published some findings on the equation xp−yq = 1,
where p and q are odd primes. He proved that if this equality holds for positive
integers x and y, then p divides y and q divides x. For the case p = 2 this had already
been shown by Nagell. In this thesis we will derive an even stronger result using
Cassels’ findings, namely that q2 divides x. This has been shown by Mihăilescu.
From Cassels’ theorem it almost immediately follows that three consecutive integers
cannot be perfect powers, as A. Ma̧kowski showed in a very short article in 1962
[12].

Hyyrő also worked on the Catalan conjecture. He sharpened Cassels’ results in 1964,
when he gave several congruence relations that hold for integers x and y greater
than 1 and primes p and q such that xp − yq = 1. What is useful for our purpose is
that he obtained a large lower bound of the absolute value of x. However, we follow
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Bilu’s approach [1] and we derive a weaker lower bound: |x| ≥ qp−1. In both the
case in which q does divide p− 1 and the case in which q does not divide p− 1 we
use this lower bound.

Baker’s theory on effective bounds for solutions of certain types of diophantine
equations applies to the Catalan equation. In 1976, Tijdeman [17] used Baker’s
theory and he showed that there is an effectively computable upper bound on the
sizes of p, q, x and y, where p and q are primes and x and y are integers such
that xp − yq = 1. Of course, this implies that Catalan’s equation only has a finite
number of solutions. More developments of this analytic approach followed, but we
will not go further into these.

Inkeri defined the concept of a Wieferich pair in the context of the Catalan equation
as follows: a Wieferich pair is a pair (p, q) of primes such that pq−1 ≡ 1 (mod q2)
and qp−1 ≡ 1 (mod p2). In 1990, he showed that if the Catalan equation (1.1)
holds, then either (p, q) is a Wieferich pair, or q divides hp, the class number of
the cyclotomic field Q(ζp), or p divides hq , the class number of Q(ζq). There were
more developments in this direction also. Bugeaud and Hanrot [19], for instance,
proved a class number criterion concerning Catalan’s equation, which implies that
the Catalan equation xp − yq = 1 has no solution in non-zero integers x and y if
p and q are primes such that one of them is smaller than 43. Our proof in section
5.3 looks like their proof. Finally, Mihăilescu [13] succeeded in eliminating the class
number criteria by showing that if equation (1.1) holds, then (p, q) is a Wieferich
pair. In our thesis we will see this in corollary 5.8 and we use it in the proof of the
case in which q divides p− 1. This result rules out many pairs of exponents p and
q.

Recently, Mihăilescu proved that the Catalan equation (1.1) has no solutions if p
and q are odd and q does not divide p − 1. By this result the Catalan conjecture
became a theorem. And this year Mihăilescu succeeded in finding a more elegant
proof of Catalan’s conjecture in the case where q does divide p−1. So now Catalan’s
conjecture is a theorem with an algebraic proof in which no computer calculations
are needed.
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Chapter 3

Even exponents

Mihăilescu’s proof of Catalan’s conjecture deals with the cases in which both expo-
nents are odd primes, as the cases in which one of the exponents is equal to 2 had
been dealt with earlier. There are two cases to consider, namely the case that q = 2
and the case that p = 2. In this chapter we will give proofs that in both cases no
“non-trivial” solutions to Catalan’s equation exist.

3.1 The case q = 2: Victor Lebesgue

In chapter 2 we saw that the case q = 2 has been dealt with by the French mathe-
matician V.A. Lebesgue in 1850. He proved that there are no solutions in positive
integers to the equation xp − y2 = 1, where p is prime.

Theorem 3.1 (Lebesgue). Let p be a prime number. Then the equation

xp − y2 = 1

has no solutions in non-zero integers x and y.

Proof. Let p be a prime. Suppose there exists a solution of xp − y2 = 1 such that
x and y are non-zero integers. If p = 2, then the relation xp− y2 = 1 implies that 1
is the difference of the two squares xp and y2, so the only solution we find here has
y = 0, which we excluded from the beginning. So we may assume p to be odd.

Suppose that x is even, then we obtain 4|xp. Then we find that y2 ≡ 3 (mod4),
which of course leads to a contradiction. So x is odd and it immediately follows
that y has to be even.

In the ring Z[i] we have xp = y2+1 = (y− i)(y+ i). It is known that Z[i] is a unique
factorisation domain. Now there is no prime π ∈ Z[i] such that π|y− i and π|y+ i.
For suppose there is such a prime, then it has to divide y + i − (y − i) = 2i, so π
divides 2, since i is a unit. It follows that 2 divides x, which we have proven to be
impossible. We may conclude that all primes of Z[i] that divide x, divide exactly
one of y+ i or y− i. It follows that, up to units, y+ i and y− i are both p-th powers
in Z[i]. Since p is odd, all units in Z[i] are p-th powers, so there are a, b ∈ Z such
that y − i = (a+ bi)p and y + i = y − i = (a− bi)p.
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Using Newton’s Binomial Theorem, we can write

y − i = (a+ bi)p =

p
∑

j=0

(

p

j

)

aj(bi)p−j .

Taking the imaginary part at both sides, we get

−1 =

p−1
2
∑

j=0

(

p

2j

)

a2jbp−2jip−2j−1 = b

p−1
2
∑

j=0

(

p

2j

)

a2jbp−2j−1ip−2j−1. (3.1)

So b divides −1, which yields b = ±1.

Now we know that xp = (a+bi)p(a−bi)p = (a+i)p(a−i)p = (a2+1)p, so x = a2+1
and a is even. It is obvious that a can not be equal to 0, because if this were the
case we would find the trivial solution x = 1, y = 0, which we already excluded.

Going back to (3.1), we have

−1 = b

p−1
2
∑

j=0

(

p

2j

)

a2j(−1)
p−1
2 −j = b(−1)

p−1
2

p−1
2
∑

j=0

(

p

2j

)

(−a2)j .

From this we obtain
p−1
2
∑

j=0

(

p

2j

)

(−a2)j = ±1.

Viewing this equality modulo 4, all terms with j > 0 vanish as a is even, so if we
take the sum modulo 4 we get 1. It follows that at the right-hand side we also

have 1. Therefore,
∑

p−1
2

j=1

(

p
2j

)

(−a2)j = 0. We find

a2

(

p

2

)

=

p−1
2
∑

j=2

(

p

2j

)

(−a2)j . (3.2)

Note that this equation also holds if p = 3, then it says that a2
(

p
2

)

= 0, which
implies that a = 0, so then y = 0, which we excluded.

From equation (3.2) we will derive a 2-adic contradiction. Define v2(α) = ord2(α)
for α ∈ Q∗. If two numbers are equal, they have the same number of factors 2. We
will show that

v2

(

a2

(

p

2

))

< v2





p−1
2
∑

j=2

(

p

2j

)

(−a2)j



 . (3.3)

If we have proved this, we are done.

We will compare the number of factors 2 in each term of the sum with the number
of factors 2 on the left-hand side. Let k be an integer greater than 1. We start by

writing
( p
2k)
(p
2)

in a different manner:

(

p
2k

)

(

p
2

) =
2!(p− 2)!

(2k)!(p− 2k)!
=

(

p− 2

2k − 2

)

2

2k(2k − 1)
=

(

p− 2

2k − 2

)

1

k(2k − 1)
.
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As
(

p−2
2k−2

)

is integral and 2k − 1 is odd,

v2

(

(

p
2k

)

(

p
2

)

)

≥ v2(
1

k
) = −v2(k). (3.4)

Since a is even,
v2(a) ≥ 1. (3.5)

Further, v2(k) < 2k − 2 since k < 22k−2 for all integers k > 1. It follows that

2k − 2 − v2(k) > 0. (3.6)

If we put (3.4), (3.5) and (3.6) together, we come to the following conclusion:

v2

(

a2k
(

p
2k

)

a2
(

p
2

)

)

≥ (2k − 2)v2(a) − v2(k) ≥ 2k − 2 − v2(k) > 0.

It follows that v2(a
2k
(

p
2k

)

) > v2(a
2
(

p
2

)

) for all integers k > 1, which implies (3.3).
This is what we wanted to prove. �

3.2 The case p = 2 and q ≥ 5: Ko Chao

In 1965 Ko Chao [9] proved that if q ≥ 5 is prime, then the equation x2 = yq+1 has
no solutions in positive integers x and y. In 1976 a simpler proof of Chao’s result
was given by E.Z. Chein [6]. Here we will give the proof by H.W. Lenstra, Jr.,
which is somewhat different from Chein’s proof. In his proof, Chein uses Nagell’s
result that if x2 = yq + 1 holds, with q prime and x, y ≥ 1, then 2 divides y and q
divides x. Lenstra does not need this.

Theorem 3.2 (Ko Chao). Let q ≥ 5 be a prime number. Then there are no

positive integers x and y such that x2 = yq + 1.

It is sufficient to look at the solutions with x, y > 0, because if there is a solution
with x negative, then −x > 0 also gives a solution, and if y would be negative, then
x2 − yq ≥ 2, which is impossible.

Now we are going to prove theorem 3.2. First we start by proving two lemmas.

Lemma 3.3. If a, b ∈ Z, gcd(a, b) = 1 and p is a prime number, then

gcd(
ap − bp

a− b
, a− b) = 1 orp.

Proof. Note that

ap − bp

a− b
=

p−1
∑

i=0

aibp−1−i ≡ pbp−1 (mod a− b) ≡ pap−1 (mod a− b).

It follows that gcd(a
p−bp

a−b , a − b) divides both pbp−1 and pap−1. Since a and b are

coprime, we find that gcd(a
p−bp

a−b , a− b)|p. So gcd(a
p−bp

a−b , a− b) = 1 or p, because p
is prime. �
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Lemma 3.4. If a, b, c ∈ Z and p and q are prime numbers not both equal to 2,
gcd(a, b) = 1, p 6 | c and ap − bp = cq, then a− b is a q-th power.

Proof. We already saw that ap−bp

a−b =
∑p−1
i=0 a

ibp−1−i ∈ Z, so a− b divides ap − bp.
Therefore, we can write

cq =
ap − bp

a− b
(a− b).

First, we will show that the factors ap−bp

a−b and a − b are coprime. Suppose there

exists a prime r such that r|a − b and r| ap−bp

a−b = cq

a−b . According to lemma 3.3

gcd(a
p−bp

a−b , a− b) = 1 or p. If it is 1, then there does not exist an r as above. If it

is p, then p|ap−bp

a−b = cq

a−b , so p|c, which is not true by assumption.

If q is odd, then −1 is a q-th power, so all units in Z (i.e. 1 and −1) are q-th powers.
Then we are done, since it follows that both ap−bp

a−b and a− b are q-th powers.

We are left with the case q = 2, so p is not equal to 2 by assumption. Suppose
that a − b is not a q-th power, i.e. a square. Then we have a − b = −d2 for an
integer d 6= 0. (We may assume d 6= 0, since a− b = 0 is a square.) It follows that
ap−bp

a−b = −( cd )
2, so ap−bp

a−b ≤ 0. If a
p−bp

a−b = 0, then the only solution is a = b = 1 and

a− b = 0 is a square. If ap−bp

a−b < 0, then either a− b or ap − bp is negative, but not
both. But since p is odd, a− b and ap − bp are both positive or both negative. So
this case does not occur.

It follows that a− b is a q-th power. �

Now we are ready to prove theorem 3.2.

Proof of theorem 3.2. Assume that x and y are positive integers and q ≥ 5 is a
prime such that x2 = yq + 1. Then yq = x2 − 1 = (x + 1)(x − 1). Suppose that x
is even, then y is odd, so 2 6 | y. Now we use lemma 3.4 and we find that x − 1 is
a q-th power. But then x + 1 is also a q-th power, since (x − 1)(x + 1) = cq . Let
x− 1 = sq and x+ 1 = tq . So now we have tq − sq = 2 for some s, t ∈ Z and q ≥ 5.
So the only solution we find is t = 1, s = −1. But this implies x = 0, which leads
to a contradiction. So x is odd and y is even.

Therefore, gcd(x + 1, x − 1) = gcd(x + 1, 2) = 2. Let ε ∈ {−1, 1} be such that
x ≡ ε (mod 4). Then 2||x+ ε = 2wq and 2q−1|x− ε = 2q−1zq for w, z ∈ Z such that
gcd(w, 2z) = 1, since the only prime that divides both x + 1 and x − 1 is 2. Now
y = 2wz. (Note that until now, we have not yet used that q ≥ 5; q is odd suffices.)

We know that x+ ε = 2wq and x− ε = 2q−1zq for some integers w and z. It follows
that (wz )q = 2q−2 x+ε

x−ε > 1 since q ≥ 5. (So here we use that q > 3. Further, we have
used that x 6= 1, but we are allowed to use that because x = 1 only yields a solution
with y = 0. If we would not want to use here that q 6= 3, then we would have to
exclude the case in which x is equal to 3 separately.) It follows that w > z, and
w2−2εz is not a square, because |2εz| = 2|z| < 2w and it is even, so |2εz| < 2w−1.

So w2q − (2εz)q = (x−ε2 + ε)2 − 4εx−ε2 = (x−ε2 − ε)2 = (x−3ε
2 )2.

Assume that q 6 | x−3ε
2 and apply lemma 2. Then it follows that w2−2εz is a square,

which leads to a contradiction with what we have seen before. So q| x−3ε
2 . Therefore,

q|x − 3ε, so x ≡ 3ε (mod q) and x 6≡ 0 (mod q), since 3ε = ±3 and q ≥ 5. Here we
use q ≥ 5 in an essential way. We find that q does not divide x.
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We may conclude now that x2 = yq − (−1)q with q 6 |x and gcd(y,−1) = 1. Lemma
3.4 now says that y+ 1 is a square, y+ 1 = s2, say. Now we have the two following
relations:

s2 − y · 12 = 1 (3.7)

x2 − y(y
q−1
2 )2 = 1. (3.8)

Note that these equations give two different solutions to the Pell equation

u2 − yv2 = 1. (3.9)

The solution (s, 1) is a fundamental solution, so there exists m ∈ Z such that

x+ y
q−1
2
√
y = (s+

√
y)m in Z[

√
y]. (3.10)

It follows that x ≡ sm +msm−1√y (mod yZ[
√
y]). So msm−1√y ∈ Z + yZ[

√
y], so

msm−1 ≡ 0 (mod y). Since y is even and therefore s is odd, it follows that m is
even, say m = 2n.

Taking (3.10) modulo s, we have x + y
q−1
2
√
q ≡ √

ym = yn (mod sZ[
√
y]), so

y
q−1
2
√
y ∈ Z+sZ[

√
y], so y

q−1
2 ≡ 0 (mod sZ[

√
y]). Since s2 = y+1, y ≡ −1 (mod s).

Therefore, 1 ≡ 0 (mod sZ[
√
y]), so s = 1 (s > 0 because x − ε > 0). This leads to

the solutions y = 0, x = ±1, but we assumed that y 6= 0. The conclusion is now
that there are no solutions to the equation x2 = yq + 1 with x, y ∈ Z>0 and q ≥ 5
a prime, which is what we wanted to prove. �

Now we still are left with the case in which q = 3. But Ko Chao had no need to
look at this case, because it had already been dealt with by Euler in 1738. We will
give a proof in the next section.

3.3 The case p = 2 and q = 3: Euler

Theorem 3.5 (Euler). If x and y are positive rationals such that x2 = y3 + 1,
then x = 3 and y = 2.

We will give a modern proof of this theorem, using the theory of elliptic curves.
After that, we will show that the proof Euler gave 265 years ago is essentially the
same as this modern proof.

In modern terminology, Euler finds the points with positive rational coordinates on
the elliptic curve D : y2 = x3 + 1. Let us view these points as affine points of the
projective curve y2z = x3 + z3. Together with the point O = (0 : 1 : 0) at infinity
the affine points form an additive group with unit element O. Even though it is an
open problem to exhibit an algorithm that is guaranteed to find generators for the
group of rational points on an elliptic curve, it can be done in most special cases.
In the present case, Euler’s theorem is implied by the following result.

Theorem 3.6. The group of rational points on the elliptic curve y2 = x3 + 1 is a

cyclic group of order 6 with elements

{(−1, 0), (0, 1), (0,−1), (2, 3), (2,−3),O},

where O denotes the point at infinity.
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Proof. We assume some familiarity with the theory of elliptic curves over Q, in
particular the treatment of Silverman and Tate in chapter III of [15].

By the Mordell-Weil theorem, the group of rational points on an elliptic curve E is
a finitely generated abelian group, i.e. it is of the form

E(Q) ∼= Zr ⊕ T, (3.11)

with T = E(Q)tors, the torsion subgroup of E(Q), which is a finite abelian group.
The number r is called the rank of the elliptic curve. The aim of the proof is to
show that the rank of our elliptic curve in theorem 3.6 is 0, using a 2-descent, as
finding T is easy.

The most important ingredient of the proof of the Mordell-Weil theorem is that
the index [E(Q) : mE(Q)] is finite, for m ∈ Z. In our case we choose m = 2. Let
us assume this and let Q1, Q2, . . ., Qn be representatives for the cosets of 2E(Q).
Then for any P in E(Q), we can write

P −Qi = 2P ′, (3.12)

for some i = 1, . . . , n and for a point P ′ ∈ E(Q). Now we can do the same with P ′,
and so on. The basic idea is that the ‘size’ of the points P, P ′, P ′′, . . . we get in this
way becomes smaller in every step.

There is a common notion of the size of a point in the case of elliptic curves, namely
the height of a point. First, we define the height of a rational number. Let x = v

w
be a rational number written in lowest terms. Then the height H(x) of x is defined
as follows:

H(x) = H(
v

w
) = max{|v|, |w|}.

We define the height of a point to be the height of the x-coordinate of the point.

Following the procedure indicated above, we always arrive at a point P (j), for some
integer j, such that the height of P (j) is smaller than a certain given integer κ. Since
there is only a finite number of points with height smaller than a given integer, it
follows that all points in E(Q) are generated by the finite set

{Q1, . . . , Qn} ∪ {R ∈ E(Q) : H(R) ≤ κ},

for some integer κ.

The standard algorithm that we use for our problem uses more details from the
proof of the Mordell-Weil theorem, as it can be found in [15]. The homomorphism
α we use below, for instance, plays an important part in the proof of the finiteness
of the index [E(Q) : 2E(Q)].

Computing E(Q)/2E(Q) is relatively easy if E(Q) has a rational 2-torsion point.
Assume, after a coordinate change (x, y) 7→ (x + e, y), that E is an elliptic curve
given by the equation

E : y2 = x3 + ax2 + bx

and construct the curve E ′ as follows: let it be given by the equation

E′ : y2 = x3 + āx2 + b̄x,

where ā = −2a and b̄ = a2 − 4b.

13



Then there is an isogeny ϕ : E → E ′ defined by

ϕ(P ) =

{

( y
2

x2 ,
y(x2−b)
x2 ) if P = (x, y) 6= O, (0, 0);

O if P = O or P = (0, 0).

The kernel of ϕ is {O, (0, 0)}.

Similarly, construct the curve E ′′ from E′ and define the map ϕ : E′ → E′′ similar
to ϕ. The curve E′′ is isomorphic to E via the map (x, y) → (x4 ,

y
8 ). There is thus

a dual isogeny ψ : E′ → E defined by

ψ(P ) =

{

( ȳ
2

4x̄2 ,
ȳ(x̄2−b̄)

8x̄2 ) if P = (x̄, ȳ) 6= O, (0̄, 0̄);

O if P = O or P = (0̄, 0̄).

The composition ψ ◦ϕ : E → E is multiplication by 2: ψ ◦ϕ(P ) = 2P for all points
P in E(Q).

The following diagram displays the situation we have.

E E

E′

×2

ϕ ψ

Consider the elliptic curve D given by the Weierstrass equation

y2 = x3 + 1.

First, we change coordinates in such a way that we move the rational 2-torsion
point (−1, 0) to the origin (0, 0). In these new coordinates the equation becomes

E : y2 = x(x2 − 3x+ 3).

Let O denote the point on E at infinity. It is obvious that the group of rational
points E(Q) of this new elliptic curve is isomorphic to the group of rational points
of D.

In our case the curve E ′ is defined by the equation

E′ : y2 = x(x2 + 6x− 3).

In addition to all this we need the following map. Define the map α : E(Q) →
Q∗/Q∗2

by

α(O) = 1 (mod Q∗2

)

α(0, 0) = b (mod Q∗2

)

α(x, y) = x (mod Q∗2

) if x 6= 0.

The map α is a group homomorphism. It can be shown easily that the kernel of α
equals the image of ψ(E ′(Q)). Therefore, α induces an injective homomorphism

E(Q)/ψ(E′(Q)) ↪→ Q∗/Q∗2

.
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We define the map ᾱ : E′(Q) → Q∗/Q∗2

in the same way.

It follows that the image of α is isomorphic to E(Q)/ψ(E ′(Q)). Therefore, the
index [E(Q) : ψ(E′(Q))] is equal to #α(E(Q)). Similarly, we find that the index
[E′(Q) : φ(E(Q))] equals #ᾱ(E ′(Q)).

Let us look at the quotient group E(Q)/2E(Q). According to (3.11) this group is
of the form

E(Q)/2E(Q) ∼= (Z/2Z)r ⊕ T/2T ∼= (Z/2Z)r ⊕ T [2],

where T [2] is the 2-torsion part of T . Therefore,

[E(Q) : 2E(Q)] = 2r · #T [2]. (3.13)

For a 2-torsion point (x, y) we have y = 0, so we have x(x2 − 3x + 3) = 0 and
the only rational solution is x = 0. Since O also is a 2-torsion point, we obtain
#T [2] = 2.

From group theory it follows that

[E(Q) : 2E(Q)] = [E(Q) : ψ(E ′(Q))] · [ψ(E′(Q)) : ψ ◦ ϕ(E(Q))]

=
[E(Q) : ψ(E′(Q))] · [E′(Q) : ϕ(E(Q))]

[ker(ψ) : ker(ψ) ∩ ϕ(E(Q))]
. (3.14)

We know that ker(ψ) = {O, (0̄, 0̄)}. We need to find out whether or not (0̄, 0̄) is an
element of ϕ(E(Q)). The point (0̄, 0̄) is an element of ϕ(E(Q)) if and only if there
is a rational point (x, y) on E with x 6= 0 and y = 0. But we saw that there is no
such point. Therefore,

[ker(ψ) : ker(ψ) ∩ ϕ(E(Q))] = 2.

Putting (3.13) and (3.14) together, we find the following equality:

2r =
[E(Q) : 2E(Q)]

4
=

#α(E(Q)) · #ᾱ(E′(Q))

4
. (3.15)

So computing the number of elements in the images of α and ᾱ suffices.

Let us see what these images look like. In order to determine the image of α, we have
to find out which rational numbers, modulo squares, can occur as the x-coordinate
of points in E(Q). We start by writing

x =
m

e2
and y =

n

e3

in lowest terms and with e > 0. If m = 0, then (x, y) = (0, 0) and α(0, 0) = 3. We
look at the points with m and n not equal to 0. These points satisfy

n2 = m(m2 − 3me2 + 3e4). (3.16)

Let b1 = ± gcd(m, b), where we choose the sign such that mb1 > 0. Then we have
m = b1m1 and b = b1b2, with gcd(m1, b2) = 1 and m1 > 0. If we substitute this in
(3.16), we find that b1 divides n, so n = b1n1, say. So we have

n2
1 = m1(b1m

2
1 − 3m1e

2 + b2e
4).
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Since gcd(b2,m1) = 1 and gcd(e,m1) = 1, both factors at the right-hand side
are squares. So we can factor n1 = MN and we find that M2 = m1 and N2 =
b1m

2
1 − 3m1e

2 + b2e
4. It follows that

N2 = b1M
4 − 3M2e2 + b2e

4. (3.17)

Therefore, the point (x, y) we started with can be written as ( b1M
2

e2 , b1MN
e3 ), so

modulo squares, the x-coordinate is a divisor of b, so it divides 3.

We start by showing that the number of elements in α(E(Q)) is equal to 2. In
our case b = 3, so we have to take care of the divisors ±1 and ±3. From now on,
by saying that the number s is an element of the image of α, we mean that the
class in Q∗/Q∗2

to which s belongs, is an element of the image of α. We already
know that 1 ∈ α(E(Q)), since α(O) = 1. Since α(0, 0) = b = 3, we also know

that 3 is contained in the image of α. The image of α is a subgroup of Q∗/Q∗2

,
so if −1 is contained in the image of α, then −3 is also contained in it, and vice
versa. Therefore, we only have to deal with one of them. Let us take b1 = −1. The
equation we now get is:

N2 = −M4 − 3M2e2 − 3e4. (3.18)

Taking this equation modulo 3, we immediately see that there is no solution, since
we are allowed to assume that gcd(M,N) = 1. Therefore, −1 is not contained in
the image of α. It follows that #α(E(Q)) = 2, which is what we wanted to prove.

Similarly, it can be shown that the number of elements in the image of ᾱ is also
equal to 2. From equation (3.15) it follows that the rank of E is 0.

Because the rank of E is 0, all rational points on E have finite order. For the
computation of the rational points we can use the Nagell-Lutz theorem, which
states that if P = (x, y) is a rational point of finite order on an elliptic curve E,
and ∆ is the discriminant of the cubic polynomial that defines E, then x and y are
integers, and either y = 0, or else y2 divides ∆.

In our case ∆ = −27, so all rational points on E have y = 0 or y2| − 27, where
y is an integer. Trying all possible values for y yields the following points on D:
(−1, 0), (0, 1), (0,−1), (2, 3) and (2,−3). Therefore, the group D(Q) has order 6
and consists of

{(−1, 0), (0, 1), (0,−1), (2, 3), (2,−3),O}.
This is what we wanted to prove. �

Of course, Euler did not use all these theorems about elliptic curves. He gave an
elementary proof, using Fermat’s method of descent. Since both proofs use some
kind of descent, we might expect them to be essentially the same. We give Euler’s
original proof [8] in Latin and we explain what happens in modern notation using
the terminology of elliptic curves. We will see that indeed both proofs are much
alike.

Euler’s formulation of the theorem is:

Theorema

Nullus cubus, ne quidem numeris fractis exceptis, unitate auctus quadratum efficere

potest praeter unicum casum, quo cubus est 8.
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In other words: if we add 1 to a rational cube, then it never becomes a square,
unless the cube is 8. Euler obviously assumes that the numbers he is talking about
do not equal 0.

Euler’s proof of theorem 3.5. Demonstratio

Propositio ergo huc redit, ut a3

b3 + 1 nunquam esse possit quadratum praeter casum,

quo a
b = 2. Quocirca demonstrandum erit hanc formulam a3b + b4 nunquam fieri

posse quadratum, nisi sit a = 2b.

Consider the equation y2 = x3 + 1. Suppose this equation has a positive rational
solution (ab , y), where a and b are coprime integers. This is equivalent to saying that
a3

b3 +1 is a square, which implies that a3b+b4 is a square. Note that this assumption
already rules out three of the rational points we found in our first proof, namely the
points (0, 1), (0,−1) and (−1, 0). We need to show that a = 2b provides the only
other solution.

Haec autem expressio resolvitur in istos tres factores b(a + b)(aa − ab + bb), qui

primo quadratum constituere possunt, si esse posset b(a+ b) = aa − ab+ bb, unde

prodit a = 2b, qui erit casus, quem excepimus. Pono autem, ut ulterius pergam,

a+ b = c seu a = c− b, qua facta substitutione habebitur

bc(cc− 3bc+ 3bb),

quam demonstrandum est quadratum esse non posse, nisi sit c = 3b; sunt autem

b et c numeri inter se primi. Hic autem duo occurrunt casus considerandi, prout

c vel multiplum est ternarii vel secus; illo enim casu factores c et cc − 3bc + 3bb
communem divisorem habebunt 3, hoc vero omnes tres inter se erunt primi.

The expression a3b+ b4 equals b(a+ b)(a2 − ab+ b2). Of course, this is a square if
b(a+b) = a2−ab+b2, which gives us the solution a = 2b. Euler now applies the same
change of coordinates we did: he introduces the new variable c, which is defined by
c = a+ b. This amounts to a transformation such that (0, 0) becomes a rational 2-
torsion point. Of course, gcd(b, c) is also 1. Now the equation c

b ((
c
b )

2 −3 cb +3) = y2

holds, so we have a rational point P = ( cb , y) on the elliptic curve y2 = x(x2−3x+3),
which we called E in the previous proof. This is the same as saying that

bc(c2 − 3bc+ 3b2) (3.19)

is a square of a rational number, like Euler does. Note that the solution a = 2b
corresponds to c = 3b.

From now on Euler assumes that a
b is not equal to 2, which is the same as assuming

that c is not equal to 3b. Since b and c are coprime, the only case in which two
factors in expression (3.19) have a factor greater than 1 in common, is when c and
c2−3bc+3b2 are not coprime. This implies that c is divisible by 3. Therefore, Euler
distinguishes two cases, the first case being the case in which c is not a multiple of
3, and the second the case in which c is a multiple of 3.

Case 1: 3 does not divide c

Sit primo c non divisibile per 3; necesse erit, ut singuli illi tres factores sint quadrata,

scilicet b et c et cc− 3bc+ 3bb seorsim. Fiat ergo cc− 3bc+ 3bb = (mn b− c)2; erit

b

c
=

3nn− 2mn

3nn−mm
vel

b

c
=

2mn− 3nn

mm− 3nn
,
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cuius fractionis termini erunt primi inter se, nisi m sit multiplum ternarii.

In this case 3 does not divide c, so all three of b, c and c2 − 3bc+ 3b2 are coprime
and they must all be squares. So c2 −3bc+3b2 = (mn b− c)2, say, where we can take

m and n to be coprime, positive integers. Since b
c 6= 0, this yields

b

c
=

3n2 − 2mn

3n2 −m2
.

The numbers 3n2 − 2mn and 3n2 −m2 are coprime, unless 3 divides m. So now we
have a separation in cases again.

Case 1.1: 3 does not divide m

Sit ergo m per 3 non divisibile; erit vel c = 3nn − mm vel c = mm − 3nn et

vel b = 3nn − 2mn vel b = 2mn − 3nn. At cum 3nn − mm quadratum esse

nequeat, ponatur c = mm − 3nn, quod quadratum fiat radicis m − p
qn, hincque

oritur m
n = 3qq+pp

2pq atque

b

nn
=

2m

n
− 3 =

3qq − 3pq + pp

pq
.

Quadratum ergo esset haec formula pq(3qq − 3pq + pp), quae omnino similis est

propositae bc(3bb− 3bc+ cc) et ex multo minoribus numeris constat.

Suppose 3 does not divide m. Then we either have b = 3n2−2mn and c = 3n2−m2,
or b = 2mn− 3n2 and c = m2 − 3n2. Taking 3n2 −m2 modulo 4, we find that it
cannot be a square. Therefore, c = n2−3n2 and b = 2mn−3n2. Now m2−3n2 is a
square, (m− p

qn)2 say, where we take p and q to be coprime, positive integers. Then

m
n = 3q2+p2

2pq and it follows that b
n2 = 3q2−3pq+p2

pq . We already saw that b is a square,

so 3q2−3pq+p2

pq is a square and pq(3q2 − 3pq+ p2) is a square too. Euler proceeds by

saying that he has found these integers p and q such that pq(p2 − 3pq + 3q2) is a
square, just as c2 − 3bc + 3b2 is a square. However, p and q are smaller, which is
not further specified by him, but we will get to that soon.

Now let us translate this argument to the language of elliptic curves. We can see
immediately that these new integers also give a new rational point ( pq , y

′) = P ′ on
our elliptic curve E. We want to find out what this reduction actually means. Since
we used a 2-descent in the previous proof, we might expect that it has something to
do with multiplication by 2. This turns out to be true. Computing the x-coordinate
of the point 2P ′ leads to the following expression:

x(2P ′) =
((pq )

2 − 3)2

4y′2
=

p4 − 6p2q2 + 9q4

4(p3q − 3p2q3 + 3pq3)
. (3.20)

And if we now compute c
b in terms of p and q we find:

c

b
=

m2 − 3n2

2mn− 3n2
=

(3q2 + p2)2 − 3(2pq)2

2(3q2 + p2)(2pq) − 3(2pq)2
=

9q4 − 6p2q2 + p4

4(p3q − 3p2q2 + 3pq3)
,

which is obviously equal to the expression in (3.20). Therefore, we have found a
new point P ′, such that 2P ′ is equal to the point P from which we started. (Note
the similarity of the equation P = 2P ′ to equation (3.12).) This does not yet show
that there are no other positive rational points, since it could be that after a while
we find a point that we already had.
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So now we are left with the problem of the integers becoming ‘smaller’. In our
modern proof we also used some sort of size of points on an elliptic curve, namely
the height of a point. Let us find out whether this notion of size is sufficient for
Euler’s purpose.

We take a look at the heights of the points in question. The height of P = ( cb , y)
is equal to max{|b|, |c|} and the height of P ′ = (pq , y

′) is equal to max{|p|, |q|}. We

will show that the height of P ′ is smaller than the height of P . We know that
b = 2mn − 3n2, so n divides b, which implies that |n| ≤ |b|. Further, n = 2pq or
n = pq, so |p| and |q| are both smaller than or equal to |n|. Now we have proven
that max{|p|, |q|} is smaller than or equal to |b|. Note that max{|p|, |q|} is only
equal to b when b = n = max{|p|, |q|}, which means that b = 2mn − 3n2 = n so
m = 2 and n = 1. This is only the case when b = 1 and c = 1, which means that
a = 0, which we excluded from the start. It follows that for all positive rational
points P the height of P ′ is smaller than the height of P .

We may now conclude the following. If there exists a point P = ( cb , y) on E as
above, then there exists a sequence P ′, P ′′, P ′′′, . . . of points on E such that
the height of each point is smaller than the height of its predecessor. But this is
impossible, because the point P we started with has finite height max{|b|, |c|} and
all the heights are integers larger than 0. Therefore, such a point does not exist.

Case 1.2: 3 divides m

At sit m multiplum ternarii, puta m = 3k; erit b
c = nn−2kn

nn−3kk , unde erit vel c =
nn − 3kk vel c = 3kk − nn; quia autem 3kk − nn quadratum esse nequit, ponatur

c = nn− 3kk eiusque radix n− p
q k, unde fiet n

k = 3qq+pp
2pq seu k

n = 2pq
3qq+pp atque

b

nn
= 1 − 2k

n
=
pp+ 3qq − 4pq

3qq + pp
.

Quadratum ergo esse deberet (pp + 3qq)(p − q)(p − 3q). Ponatur p − q = t et

p−3q = u; erit q = t−u
2 et p = 3t−u

2 illaque formula abit in hanc tu(3tt−3tu+uu),
quae iterum similis est priori bc(3bb− 3bc+ cc).

In this case, 3 divides m, so m = 3k, say. Then we find that

b

c
=
n2 − 2kn

n2 − 3k2
.

Again, it follows that c = n2 − 3k2 and b = n2 − 2kn. We know that c is a square,
so put c = (n − p

q )
2, where we can take p and q to be coprime, positive integers.

It follows that n
k = 3q2+p2

2pq and therefore b
n2 = p2+3q2−4pq

3q2+p2 . Since b is a square,
p2+3q2−4pq

3q2+p2 also is a square, and therefore (p2 +3q2)(p− q)(p− 3q) is a square. Now
the substitutions t = p− q and u = p− 3q yield the following familiar relation:

tu(3t2 − 3tu+ u2)

is a square.

Euler proceeds in the same way as he did in the previous case. He says that now
he has found new integers t and u, such that the expression tu(3t2 − 3tu+ u2) is a
square, in which the integers t and u are in some sense smaller than b and c.

We translate to the terminology of elliptic curves again. We have found a second
rational point P ′ = (ut , y

′) on E and we wonder whether 2P ′ is equal to P again,
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so we do the same computations. First, we compute the x-coordinate of the point
2P ′:

x(2P ′) =
((ut )

2 − 3)2

4y′2
=

u4 − 6u2t2 + 9t4

4(u3t− 3u2t3 + 3ut3)
. (3.21)

And second, we compute c
b in terms of t and u:

c

b
=

n2 − 3k2

n2 − 2kn

=
(3( t−u2 )2 + ( 3t−u

2 )2)2 − 12( 3t−u
2 · t−u2 )2

(3( t−u2 )2 + ( 3t−u
2 )2)2 − 2(3( t−u2 )2 + ( 3t−u

2 ))2 · 2 t−u2 · 3t−u
2

=
9t4 − 6t2u2 + u4

4tu(3t2 − 3tu+ u2)
, (3.22)

which is obviously equal to (3.21).

Now we still have to show that the height of P ′ is smaller than the height of P .
The substitution p − q = t and p − 3q = u amounts to saying that q = t−u

2 and
p = 3t−u

2 . Now we have two possibilities again, because t and u are either both
positive or negative.

First, suppose that t and u are both positive. Note that n divides b, so n ≤ b. Then
from q = t−u

2 > 0 it follows that t > u. For p we derive p = 3t−u
2 > 3t−t

2 = t, so we
have proven that u < t < p < n ≤ b. So in this case the height of P ′ = (ut , y

′′) is
smaller than the height of the original point P .

We are left with the case in which t and u are both negative. Then q− p = |u| and

3q − p = |t|. Therefore, q = |t|−|u|
2 , so |t| > |u|. We saw that n

k = 3q2+p2

2pq . Note

that the only possible common divisor of 3q2 + p2 and 2pq is 2. (Here we use that
m and n are coprime integers.) So the following inequality holds:

n ≥ 3q2 + p2

2
=

3(|t|2 − 2|t||u| + |u|2) + |t|26|t||u| + 9|u|2
8

=
|t|2 − 3|t||u|+ 3|u|2

2
>

|t|2
2

≥ |t|. (3.23)

This last inequality holds because t and u are integers such that |t| > |u| > 0, so
|t| ≥ 2. So now we have |u| < |t| < n ≤ b and in this case we also find that the
height of the new point P ′ = (ut , y

′) is smaller than the height of the original point
P = ( cb , y). Similar to case 1.1 we get a contradiction from this. It follows that the
point P = ( cb , y) does not exist.

Case 2: 3 does divide c

Restat ergo posterior casus, quo est c multiplum ternarii, puta c = 3d, atque quadra-

tum esse debet bd(bb−3bd+3dd); quae cum iterum similis sit priori, manifestum est

utroque casu evenire non posse, ut formula proposita sit quadratum. Quamobrem

praeter cubum 8 alius ne in fractis quidem datur, qui cum unitate faciat quadratum.

Q.E.D.

If 3 divides c, then we can write c = 3d, where d is a positive integer. Since we
assumed that c

b is not equal to 3, we use that d is not equal to b. We already know
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that bc(c2 − 3bc + 3b2) is a square, so it follows that bd(b2 − 3bd + 3d2) is also a
square. Now we find the new point P ′ = ( bd , y

′) on E. Since b and c are coprime,
3 does not divide b. Now we can repeat the argument in case 1 for this point and
derive a contradiction. It follows that the point we started with in this case also
does not exist.

In terms of elliptic curves, what Euler says here is that if the rational point P =
( cb , y) lies on E, then the point P ′ = P + (0, 0) = (3 bc , y

′) = ( 3b
3d , y

′) = ( bd , y
′) also

lies on E. But case 1 applies to the point P ′, so it does not exist, and the point
we started with does not exist, too. Again, compare the equation P + (0, 0) =
P − (0, 0) = 2P ′ to equation (3.12).

Note that in this part of the proof we really use the assumption that c
b 6= 3. If

we would apply the previous argument to the case c
b = 3, we would find the point

( bd , y
′) = (1, 0), which is the point to which the argument of case 1 did not apply.

This point corresponds to the solutions (2, 3) and (2,−3) on the original elliptic
curve D. �

If we compare Euler’s proof to the proof of the Mordell-Weil theorem, we see that
they are very much alike, but there is a small distinction. In Euler’s proof, we start
with a rational point on E with certain restrictions upon it (for instance, that it is
not (1, 0)), and using the method of descent it follows that such a point does not
exist. In the proof of the Mordell-Weil theorem we start with any rational point on
E, and using the method of descent we find that such a point always is generated
by a finite number of points.

The way the method of descent works turns out to be the same. If we compare the
procedure that writes a rational point P on E as P − Qi = 2P ′ to what happens
in Euler’s proof, we find that Euler does exactly the same: in case 1.1 and 1.2 he
writes the point P that he starts with in the form P = 2P ′, where P ′ is a rational
point on E with height smaller than the height of P . In case 2, however, he first
adds the point (0, 0) to it and than he applies case 1 again. In terms of equation
(3.12) this amounts to saying that (0, 0) is a representative of a coset of 2E(Q) and
that P − (0, 0) = 2P ′ for some rational point P ′ on E with height smaller than the
height of P − (0, 0).

Our conclusion is that Euler’s way of proving theorem 3.5 is essentially the same
as our modern proof that uses the theory and terminology of elliptic curves. In our
modern way of looking at things, the ingenious substitutions Euler invented have
obtained a geometrical meaning.
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Chapter 4

Cyclotomic fields

Before we start with the remaining part of the proof, we have to give some prelimi-
nary remarks. First we describe the setting in which we will work and after that we
give some important definitions and facts, concerning for example cyclotomic units.
For more details, see for instance [18].

4.1 Setting

Let p be an odd prime number. Let Φp be the p-th cyclotomic polynomial in Q[X ],
i.e. Φp = Xp−1

X−1 . Consider the field extension Q[X ]/(Φp) ∼= Q(ζ) of Q, where ζ
denotes a primitive p-th root of unity. This is a field extension of degree p−1, since
Φp is of degree p− 1 and it is irreducible in Q[X ]. We denote Q(ζ) by K.

This field extension is Galois with Galois group

G = Gal(Q(ζ)/Q) ∼= (Z/pZ)∗,

since the map

(Z/pZ)∗
∼−→ Gal(Q(ζ)/Q)

a (mod p) 7−→ (σa : ζ 7→ ζa) (4.1)

is an isomorphism.

The automorphism σp−1 acts in all embeddings as complex conjugation. Therefore,
we call σp−1 complex conjugation.

The fixed field of complex conjugation is Q(ζ + ζ−1), which is called the maximal

real subfield of Q(ζ). We denote Q(ζ+ ζ−1) by K+. The field extension Q(ζ+ ζ−1)
of Q has degree p−1

2 and it is Galois with Galois group

G+ = Gal(Q(ζ + ζ−1)/Q) ∼= (Z/pZ)∗/(±1).

Some parts of the proof in chapter 8 consist of working with ideals in the rings of
algebraic integers of K = Q(ζ) and K+ = Q(ζ + ζ−1). The ring of integers OK of
K is the ring Z[ζ]. The ring of integers OK+ of K+ is the ring Z[ζ + ζ−1].
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We formulate some lemma’s that will be very useful in the following chapters.

Lemma 4.1. The prime p is totally ramified in Q(ζ) and (p) = (1 − ζ)p−1, where

P = (1 − ζ) is a prime ideal in OK = Z[ζ].

Proof. We use the Kummer-Dedekind theorem. In Fp[X ] we have Xp−1
X−1 =

(X−1)p

X−1 = (X − 1)p−1. Since Xp−1
X−1 = Xp−1 +Xp−2 + . . . X + 1 ≡ p (modX − 1),

the remainder of X
p−1
X−1 upon division by X − 1 is not divisible by p2, so (p, 1− ζ) is

invertible and we have the equality (p, 1 − ζ)p−1 = (p). Therefore, the only prime
ideal that lies above p is the ideal (p, 1− ζ) = (1− ζ). This last equality holds since

p = (1 − ζ)
∏p−1
a=2(1 − ζa). �

Lemma 4.2. All primes p′ in Z distinct from p do not ramify in Q(ζ).

Proof. We use the Kummer-Dedekind theorem again. If we take Xp−1
X−1 modulo p′,

it is obvious that this polynomial is separable and therefore p′ does not ramify in
Q(ζ). �

Lemma 4.3. Suppose r and s are integers with gcd(p, rs) = 1. Then ζr−1
ζs−1 is a

unit in Z[ζ] and therefore the ideals (1 − ζr) and (1 − ζs) are equal.

Proof. Writing r ≡ st (mod p) for some integer t, we have

ζr − 1

ζs − 1
=
ζst − 1

ζs − 1
= 1 + ζs + . . .+ ζs(t−1) ∈ Z[ζ].

Similarly, we find that ζs−1
ζr−1 ∈ Z[ζ]. It follows that the number ζr−1

ζs−1 is a unit in

Z[ζ], so the ideals (1 − ζr) and (1 − ζs) are equal. �

Since p is totally ramified in Q(ζ), it follows that p is also totally ramified in

Q(ζ + ζ−1). Therefore, we have (p) = ((1 − ζ)(1 − ζ−1))
p−1
2 . From now on, we

denote the OK+-ideal ((1 − ζ)(1 − ζ−1)) by p. Further, let λ denote the element
(1 − ζ)(1 − ζ−1) that generates p. We find that the ideals ((1 − ζa)(1 − ζ−a)) are
the same for all a = 1, . . . , p−1

2 .

We summarize the previous remarks in a diagram.

K = Q(ζ) (1 − ζ) = P

K+ = Q(ζ + ζ−1) ((1 − ζ)(1 − ζ−1)) = p

Q p

2

p−1
2G+

G

4.2 Galois modules

Let L be a field extension of Q that is Galois. Then the Galois groupGL = Gal(L/Q)
acts on L as an automorphism. Therefore, it acts on anything that is canonically
defined in terms of L, such as the unit group L∗, the unit group O∗

L of the ring
of integers of L, the group IL of invertible OL-ideals, the group PL of principal
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fractional OL-ideals and the class group of L. All subgroups of these groups that
are closed under the induced Galois action have a Galois action as well.

Abelian groups with a Galois action of Galois group G are Z[G]-modules. Therefore,
all groups mentioned above are Z[G]-modules. Let q be a prime number. A Z[G]-
module that is annihilated by q is also an Fq [G]-module.

There are two useful concepts concerning elements of group rings, namely the weight

and the size. Let Q ⊂ L be a field extension that is Galois and let H be the Galois
group Gal(L/Q). Then H acts on the multiplicative group L∗.

Definition 4.1. Consider the group ring Z[H ]. Define the weight of θ =
∑

σ∈H nσσ
in Z[H ] by

w(θ) =
∑

σ∈H

nσ .

The weight function is additive and multiplicative, so it defines a homomorphism
Z[H ] → Z. Therefore, its kernel is a Z[H ]-ideal.

Definition 4.2. The kernel of the weight homomorphism is called the augmentation
ideal of Z[H ].

The other important property of elements of Z[H ] is the size.

Definition 4.3. Consider the group ring Z[H ]. Define the size of an element

θ =
∑

σ∈H nσσ ∈ Z[H ] by

‖θ‖ =
∑

σ∈H

|nσ|.

It is easy to see that for all elements θ1 =
∑

σ∈G nσσ and θ2 =
∑

σ∈Gmσσ in
Z[H ] we have that ‖θ1θ2‖ =

∑

σ∈G

∑

ϕψ=σ |nϕmψ| ≤ (
∑

σ∈G |nσ |) · (
∑

σ∈G |mσ |) =
‖θ1‖ · ‖θ2‖. From the triangle inequality in Z it follows that for all elements θ1 and
θ2 in H we have ‖θ1 + θ2‖ ≤ ‖θ1‖ + ‖θ2‖.

In our case, where we take group rings over the Galois groups G and G+, the group
rings Fq [G] and Fq[G

+] have a nice structure if q does not divide p− 1, as we show
in the following lemma.

Lemma 4.4. If q does not divide p − 1, the the group ring Fq [G] equals a finite

product of finite fields, i.e.

Fq [G] ∼=
<∞
∏

i

Fi,

for finite fields Fi. The same statement holds for the group ring Fq [G
+].

Proof. The group G = Gal(Q(ζ)/Q) is isomorphic to (Z/pZ)∗. Therefore, G is a
cyclic group and it has a generator σ, say. Note that σp−1 = 1. It follows that all
elements of Fq [G] are of the form

∑p−1
i=1 nσσ

i. Now the identification σ 7→ X gives

rise to an isomorphism Fq [G]
∼−→ Fq[X ]/(Xp−1 − 1).

The polynomial Xp−1−1 is separable in Fq , since its derivative equals (p−1)Xp−2,
which does not equal 0, because q does not divide p−1 by assumption. The Chinese
Remainder Theorem tells us that Fq[X ]/(Xp−1−1) ∼=

∏

g Fq [X ]/(g(X)), where the

g ∈ Fq[X ] are the irreducible polynomials that divide Xp−1. Since Xp−1 − 1 is
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separable, all g’s occur with multiplicity 1. Therefore, all the Fq [X ]/(g(X)) are
finite field extensions of Fq , so they are finite fields themselves.

For the group ring Fq [G
+], the proof is completely similar:

Fq[G
+]

∼−→ Fq[X ]/(X
p−1
2 − 1).

�

4.3 Cyclotomic units

One of the concepts we use in the new part of the proof is the concept of cyclotomic

units. In this section we give a definition and we formulate Thaine’s theorem.

Definition 4.4. Let E be Z[ζ]∗, the group of units of OK . Let V be the multiplica-

tive group generated by {±ζ, 1 − ζa : 1 < a ≤ p − 1}. We define the cyclotomic
units C of K = Q(ζ) by

C = V ∩ E.
We also define the cyclotomic units C+ of K+ = Q(ζ + ζ−1). Let E+ be

(Z[ζ + ζ−1])∗, the group of units of OK+ . Then we define C+ by

C+ = E+ ∩ C.

In order to give a better idea of what these cyclotomic units look like, we state the
following lemma. For a proof, see [18] again.

Lemma 4.5. The cyclotomic units C+ of K+ are generated by −1 and the units

ξa = ζ
1−a
2

1 − ζa

1 − ζ
,

where 1 < a ≤ p−1
2 . The cyclotomic units C of K are generated by ζ and the

cyclotomic units of K+.

There exists a connection between the cylotomic units of K+ and the class number
h+ of K+, as we can see in the following theorem. For a proof, see chapter 8 in
[18].

Theorem 4.6. The cyclotomic units C+ of K+ = Q(ζ + ζ−1) are of finite index

in the full unit group E+ = OK+ , and

h+ = [E+ : C+].

This theorem states that the number of elements of the class group of K+ equals the
number of elements in E+/C+, but the equality does not come from some canonical
isomorphism of the groups ClK+ and E+/C+. Even though ClK+ and E+/C+ need
not be isomorphic as Z[G+]-modules, they do share certain properties as Galois-
modules. The following theorem, that was proven by Thaine [16], states that their
Sylow-q-subgroups have an important propery in common. Let (E+/C+)q denote
the q-Sylow subgroup of E+/C+ and let (ClK+)q denote the q-Sylow subgroup of
the class group of K+. Now Thaine’s theorem states the following:

Theorem 4.7 (Thaine). If ε is an element of Z[G+] that annihilates (E+/C+)q
and q does not divide p− 1, then the element ε also annihilates (ClK+)q.
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4.4 Stickelberger’s theorem

In the proof of a theorem of Mihăilescu we want to use Stickelberger’s theorem. To
be able to do this, we first have to give some definitions. For more details on this
subject, see [18], chapter 6, for example.

Definition 4.5. Define the Stickelberger element θS as follows:

θS =

p−1
∑

a=1

a

p
σ−1
a ∈ Q[G].

Definition 4.6. Define the Stickelberger ideal by:

IS = Z[G] ∩ θSZ[G].

According to [18], section 6.2, the following lemma holds.

Lemma 4.8. Let I ′ be the ideal of Z[G] generated by elements of the form c− σc,
with gcd(c, p) = 1. Let β ∈ Z[G]. Then

βθS ∈ Z[G] ⇔ β ∈ I ′.

Proof. For a real number x, let bxc denote the entier of x, i.e. bxc is the largest
integer that is smaller than or equal to x. Let {x} denote the fractional part of x,
i.e. {x} = x− bxc.

Let us compute (c− σc)θS :

(c− σc)θS = (c− σc)

p−1
∑

a=1

a

p
σ−1
a

=

p−1
∑

a=1

ca

p
σ−1
a −

p−1
∑

a=1

a

p
σ−1
c−1a

=

p−1
∑

a=1

ca

p
σ−1
a −

p−1
∑

a=1

{

ca

p

}

σ−1
a

=

p−1
∑

a=1

(

ca

p
−
{

ca

p

})

σ−1
a . (4.2)

It follows that (c− σc)θS ∈ Z[G].

Suppose that (
∑p−1
a=1 xaσa)θS ∈ Z[G], with the xa elements of Z. Then we have:

(

p−1
∑

a=1

xaσa)(

p−1
∑

c=1

c

p
σ−1
c ) =

p−1
∑

a=1

p−1
∑

c=1

xa
c

p
σaσ

−1
c

=

p−1
∑

b=1

p−1
∑

a=1

xa

{

ab

p

}

σ−1
b . (4.3)

The coefficient of σ1 is equal to

p−1
∑

a=1

xa

{

a

p

}

=

p−1
∑

a=1

xa
a

p
=

1

p

p−1
∑

a=1

xaa,
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so p divides
∑p−1
a=1 xaa. Note that p = pσ1 = (p+ 1)− σp+1 in Z[G]. It follows that

p is an element of I ′. Therefore,
∑p−1

a=1 xaa is an element of I ′. We obtain that

p−1
∑

a=1

xaσa =

p−1
∑

a=1

xa(σa − a) +

p−1
∑

a=1

xaa ∈ I ′.

This is what we wanted to prove. �

We can determine a set of generators of the Stickelberger ideal IS .

Lemma 4.9. The Stickelberger ideal IS is generated by elements θc, where

θc =

p−1
∑

a=1

⌊

ac

p

⌋

σ−1
a ,

for all integers c with gcd(c, p) = 1.

Proof. From lemma 4.8 it follows that IS = (θS)I ′. So we have to show that (θS)I ′

is generated by elements θc as above. Since I ′ is defined as the ideal generated by
elements c − σc, it suffices to show that for all c that are coprime with p we have
(c− σc)θS = θc.

Now let us determine (c− σc)θS :

(c− σc)θS =

p−1
∑

a=1

(

ca

p
−
{

ca

p

})

σ−1
a

=

p−1
∑

a=1

⌊

ca

p

⌋

σ−1
a

= θc. (4.4)

So indeed (c − σc)θS = θc, and we obtain that I is generated over Z by all the θc
with gcd(p, c) = 1. �

We get an important property of the Stickelberger ideal from Stickelberger’s theo-
rem. For a proof, see [18] again.

Theorem 4.10 (Stickelberger). Let J be a fractional ideal of Q(ζ) and suppose

that θ is an element of the Stickelberger ideal IS. Then Jθ is a principal ideal. In

other words: the Stickelberger ideal annihilates the class groep of Q(ζ).

Like there is a connection between the group E+/C+ and the class number h+ of
K+, there also is a connection between the Stickelberger ideal and the class numbers
of K and K+. The ideal I−S is an ideal of the ring Z[G], but it is also a subgroup
of Z[G]− = Z[G](1 − ι). Iwasawa’s theorem states that the index of I−S in Z[G]−

equals the number h−, which is defined as the quotient h
h+ of the class number h

of K and the class number h+ of K+. It follows that the index of I−S in Z[G]− is
finite. We will use this in chapter 6. For a proof, see [18, chapter 6]. Theorem 4.10
in [18] states that h+ indeed divides h.

Theorem 4.11 (Iwasawa). The index [Z[G]− : I−S ] equals h−.

Let ι = σp−1 denote complex conjugation. By I−S we denote the Z[G]-ideal that
is obtained by multiplying the Stickelberger ideal IS by the element 1 − ι, i.e.
I−S = IS(1 − ι). Using the generators of the Stickelberger ideal we found in lemma
4.9, we construct a Z-basis for the ideal I−S .
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Lemma 4.12. For all integers c that are coprime to p, let θc denote the element

(c− σc)θS as in lemma 4.9. For the integers k = 1, . . . , p−1
2 , define elements θ̃k of

I−S as follows:

θ̃k = (θk+1 − θk)(1 − ι).

Then θ̃1, . . . , θ̃ p−1
2

form a Z-basis of I−S = IS(1 − ι) and the elements θ̃k all satisfy

‖θ̃k‖ ≤ p− 1.

Proof. In lemma 4.9 we saw that the Stickelberger ideal IS is generated over Z by
all the θc. We have the following equality:

θc + pθS =

p−1
∑

a=1

⌊

ac

p

⌋

σ−1
a + p

p−1
∑

a=1

a

p
σ−1
a

=

p−1
∑

a=1

(⌊

ac

p

⌋

+ a

)

σ−1
a

=

p−1
∑

a=1

⌊

ac

p
+ a

⌋

σ−1
a

=

p−1
∑

a=1

⌊

a(c+ p)

p

⌋

σ−1
a

= θc+p. (4.5)

It follows that the ideal IS is generated over Z by the finite set θ1 = 0, θ2, . . . , θp−1,
pθS . We have an other useful equality:

θc(1 − ι) + θp−c(1 − ι) = (c− σc)θS(1 − ι) + (p− c− σp−c)θS(1 − ι)

= θS(p(1 − ι) − σc + σc(p−1) − σ−c + σ−c(p−1))

= θS(p(1 − ι) − σc + σ−c − σ−c + σc)

= pθS(1 − ι). (4.6)

From this equality it follows that the ideal I−S is generated by the elements θ1(1−ι),
θ2(1−ι), . . . , θ p+1

2
(1−ι). Since θ1 = 0, the ideal I−S is also generated by the elements

θ̃1, θ̃2, . . . , θ̃ p−1
2

, where θ̃k = (θk+1 − θk)(1 − ι).

These elements even form a basis of I−S , because the Z-rank of I−S is p−1
2 . We can

see this as follows. The Z-rank of Z[G] is equal to p− 1. This is immediately clear
from the definition of Z[G]. In Z[G], we have σ(1−ι) = σ−σι and σι(1−ι) = σι+σ.
It follows that the Z-rank of Z[G](1−ι) is equal to p−1

2 . The index of I−S = IS(1−ι)
in Z[G](1− ι) is finite. This is a consequence of the Iwasawa class number formula,
which we saw in theorem 4.11. It says that the index [Z[G](1 − ι) : I−S ] equals h−.

So we know that the index of I−S in Z[G](1 − ι) is finite and therefore, the Z-rank
of I−S has to be equal to p−1

2 as well.

Now we are left with the size of the θ̃k. First, we compute the weight of θS :

w(θS) =

p−1
∑

a=1

a

p
=

1 + 2 + 3 + . . .+ p− 1

p
=

1

p

p− 1

2
p =

p− 1

2
.
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Since the weight function is a ring homomorphism, for all integers c that are coprime
to p we have:

w(θc) = w(c− σc) · w(θS) = (c− 1)
p− 1

2
.

As we saw in lemma 4.9, we also have θc =
∑p−1
a=1

⌊

ac
p

⌋

σ−1
a . This implies that all

coefficients of θc+1 − θc are positive or equal to 0. Therefore

‖θc+1 − θc‖ = w(θc+1 − θc) =
p− 1

2
.

It follows that

‖θ̃k‖ = ‖(θk+1 − θk)(1 − ι)‖ ≤ ‖θk+1 − θk‖ · ‖1 − ι‖ = p− 1.

This is what we wanted to show. �
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Chapter 5

Results by Cassels,

Mihăilescu, Bugeaud and

Hanrot

In this chapter we derive some results concerning possible solutions of the Catalan
equation (1.1) using Stickelberger’s theorem. In the first section, we state Cassels’
theorem and some of its consequences. In the second section, we state a result of
Mihăilescu that will be a very important ingredient of the proofs in chapter 6 and
chapter 8.

5.1 Cassels’ theorem and some consequences

We start by a theorem that Cassels proved in 1962. For a proof, see [3] or [14].

Theorem 5.1 (Cassels). Let p and q be odd primes and let x and y be positive

integers such that xp − yq = ±1. Then p divides y and q divides x.

If x and y both are negative, then we can write (−x)p − (−y)q = −xp + yq = −1.
From Cassels’ theorem it follows that p divides −y and q divides −x and therefore
p divides y and q divides x. So it follows that for all non-zero integers x and y such
that xp − yq = 1, p divides y and q divides x.

Cassels’ theorem yields the following useful lemma.

Lemma 5.2. Let p and q be odd primes and let x and y be non-zero integers such

that xp − yq = 1. Then there exist non-zero integers a and b, and positive integers

u and v such that
{

x− 1 = pq−1aq
xp−1
x−1 = puq, where p 6 |u, gcd(a, u) = 1 and y = pau,

(5.1)

and
{

y + 1 = qp−1bp
yq+1
y+1 = qvp, where q 6 | v, gcd(b, v) = 1 and x = qbv.

(5.2)
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Proof. Note that yq = xp − 1 = (x − 1)x
p−1
x−1 . From lemma 3.3 we know that

gcd(x − 1, x
p−1
x−1 ) = 1 or p. In our case p divides y and therefore pq divides yq =

(x− 1)x
p−1
x−1 .

If p divides xp−1
x−1 , then xp − 1 ≡ 0 (mod p) and also xp − 1 ≡ x − 1 (mod p), so p

divides x−1. Conversely, we have xp−1
x−1 = xp−1 +xp−2 + . . .+x+1 ≡ p (modx−1),

so if p divides x−1, then p divides xp−1
x−1 as well. It follows that gcd(x−1, x

p−1
x−1 ) = p.

Let i be an integer greater than or equal to 1 such that pi divides x − 1 and pi+1

does not. Say, x − 1 = pid, where gcd(p, d) = 1. Then the following congruence
holds:

xp − 1 = (pid+ 1)p − 1

≡ pi+1d+
1

2
(p− 1)p2i+1d2 (mod p3i+1). (5.3)

Therefore,

xp − 1

x− 1
≡ pi+1d+ 1

2 (p− 1)p2i+1d2

pid
(mod p2i+1)

≡ p+
1

2
(p− 1)pi+1d (mod p2i+1)

≡ p (mod p2) (5.4)

and p2 does not divide xp−1
x−1 .

It follows that there exists a non-zero integer a and a positive integer u such that

x− 1 = pq−1aq (5.5)

xp − 1

x− 1
= puq (5.6)

and
y = pau, (5.7)

where p does not divide u and gcd(a, u) = 1. The proof of the second part of the
lemma is completely similar to that of the first part. �

Let p and q be odd primes. From now on, we assume that x and y are non-zero
integers such that xp − yq = 1.

Cassels’ theorem also can be used to make estimates for the sizes of x and y. From
lemma 5.2, for instance, it follows immediately that

|x| ≥ pq−1 − 1 (5.8)

and
|y| ≥ qp−1 − 1. (5.9)

However, we need stronger estimates than these. From the following theorem we
derive a stronger estimate for |x|.

Theorem 5.3. Let p, q and v be defined as in lemma 5.2. If p does not divide

q − 1, then qp−2 divides v − 1.
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Proof. In lemma 5.2 we saw that there is a positive integer v such that yq+1
y+1 = qvp.

Therefore,

q(vp − 1) =
yq + 1

y + 1
− q = yq−1 − yq−2 + yq−3 − . . .− y + 1 − q

= yq−1 − 1 + −yq−2 − 1 + yq−3 − 1 − . . .− y − 1

= ((−y)q−1 − 1) + ((−y)q−2 − 1) + . . .+ (−y − 1). (5.10)

Since y + 1 divides all of the (−y)i − 1, we find that y + 1 divides q(vp − 1).
From lemma 5.2, we also know that there exists a non-zero integer b such that
y + 1 = qp−1bq. It follows that qp−1bq divides q(vp − 1). Therefore, qp−2 divides
vp − 1, so vp ≡ 1 (mod qp−2). The order of the group (Z/qp−2Z)∗ equals ϕ(qp−2) =
qp−3(q − 1). According to our assumption, p does not divide this order. It follows
that v ≡ 1 (mod qp−2), which is what we wanted to show. �

From this theorem, we derive the following estimate.

Corollary 5.4. The inequality

|x| ≥ qp−1

holds.

Proof. If p divides q − 1, then p is smaller than q. Since xp = yq + 1, we have
|x|p ≥ |y|q − 1. Because p < q, we find |x| > |y|. We use equation (5.9), which
states that |y| ≥ qp−1 − 1. Therefore, |x| > |y| ≥ qp−1 − 1, so |x| ≥ qp−1.

If p does not divide q − 1, then we use theorem 5.3 and we find that qp−2 divides
v − 1. Since v is greater than 1, this implies that v ≥ qp−2 + 1. Because we have
that x = qvb, it follows that |x| = |qvb| ≥ qv ≥ qp−1 + q > qp−1. �

The lemma we prove next also is a very useful corollary of lemma 5.2.

Lemma 5.5. The number λ := x−ζ
1−ζ is an element of OK = Z[ζ]. The principal

ideal (λ) is a q-th power of an OK-ideal.

Proof. From (5.1) we know that p divides x− 1. Therefore, x ≡ 1 (mod Pp−1). It
follows that x − ζ ≡ 1 − ζ ≡ 0 (mod P), so P divides (x − ζ). But P2 does not,
since x − ζ = x − 1 + 1 − ζ ≡ 1 − ζ (mod P2) 6≡ 0 (mod P2). Hence λ = x−ζ

1−ζ is an

algebraic integer such that (λ) is not divisible by P. Note that λσ ∈ OK = Z[ζ] for
all σ ∈ G, because λ is an element of OK . Also, for all σ ∈ G, P does not divide
(λσ): the same argument applies since (1 − ζ) = (1 − ζσ) for all σ ∈ G.

We will look at the greatest common divisor of the two ideals (λσ) and (λτ ) for σ
and τ in G. For all elements λ and τ in G we have the identity

(1 − ζσ)λσ − (1 − ζτ )λτ = (1 − ζσ)
x− ζσ

1 − ζσ
− (1 − ζτ )

x− ζτ

1 − ζτ
= ζτ − ζσ .

Therefore, for different elements σ and τ in G, the greatest common divisor of (λσ)
and (λτ ) is a divisor of the ideal (ζτ − ζσ) = p. Since P does not divide (λσ) or
(λτ ), it follows that gcd(λσ , λτ ) = 1. So the numbers λσ , where σ ∈ G, are pairwise
coprime.

Let us consider the following product:

∏

σ∈G

λσ =
∏

σ∈G

x− ζσ

1− ζσ
=
xp − 1

x− 1

∏

σ∈G

1

1 − ζσ
=

1

p

xp − 1

x− 1
.
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From (5.6) we know that xp−1
x−1 = puq for a positive integer u, so

∏

σ∈G

λσ = uq

for a positive integer u. Since all principal ideals (λσ) are pairwise coprime, each of
them is a q-th power of an OK-ideal. �

5.2 Results by Mihăilescu

In this section we prove several results of Mihăilescu. The most important one is
that q2 divides x. The following lemma will be useful for this purpose. An element
a of a ring R is called nilpotent if there exists an integer n such that an = 0.

Lemma 5.6. The ring OK/(q) does not contain nilpotent elements, and if α, β ∈
OK = Z[ζ] satisfy the congruence αq ≡ βq (mod q), then αq ≡ βq (mod q2).

Proof. First, we show that the ring OK/(q) does not have nilpotent elements.
As we showed in lemma 4.2, q is unramified in K = Q(ζ). So (q) is of the form
(q) = q1 · q2 · . . . · qs, where the qi are distinct prime ideals of OK = Z[ζ]. The
Chinese Remainder Theorem now tells us that

OK/(q) ∼= OK/q1 ×OK/q2 × . . .OK/qs.

Since all qi are prime ideals, it follows that OK/(q) has no nilpotent elements other
than 0.

Let α, β ∈ Z[ζ] such that αq ≡ βq (mod q). Then we have:

(α− β)q ≡ αq − βq ≡ 0 (mod q).

Since OK/(q) does not have nilpotent elements other than 0, it follows that α−β ≡
0 (mod q). Therefore, α = β + kq, with k ∈ OK . It follows that αq = (β + kq)q ≡
βq + qβq−1kq + 1

2q(q − 1)βq−2(kq)2 + . . .+ (kq)q ≡ βq (mod q2). �

Let ι = σp−1 denote complex conjugation. By I−S we denote the Z[G]-ideal that
is obtained by multiplying the Stickelberger ideal IS by the element 1 − ι, i.e.
I−S = IS(1 − ι). Let α be an element of K∗, then α1−ι = α

ᾱ , so for all embeddings
σ of K in C we have that |σ(α1−ι)| = 1.

Now we have the following theorem, which is due to Mihăilescu.

Theorem 5.7 (Mihăilescu). For any θ ∈ I−S , the element (x−ζ)θ is a q-th power

in K = Q(ζ). We also have that q2 divides x and p2 divides y.

Proof. Let θ be an element of I−S and write θ = (1−ι)θ′, with θ′ ∈ IS . Put λ = x−ζ
1−ζ ,

as we did in lemma 5.5. This lemma says that (λ) is a q-th power of an OK-ideal,
(λ) = aq , say. From Stickelberger’s theorem it follows that aθ

′

is a principal ideal,
aθ

′

= (α), say, with α ∈ K = Q(ζ). So (λθ
′

) = (aq)θ
′

= (aθ
′

)q = (α)q . Therefore,
λθ

′

= ηαq , where η is a unit in OK = Z[ζ]. We obtain a useful equality for the
element (x− ζ)θ:

(x− ζ)θ = (λ(1 − ζ))θ = λ(1−ι)θ′(1 − ζ)(1−ι)θ
′

=
(

λ
λ̄

)θ′
(

1−ζ
1−ζ̄

)θ′

=
(

λθ′

λ̄θ′

)(

1−ζ
1−ζ̄

)θ′

= η
η̄

(

α
ᾱ

)q
(

1−ζ
1−ζ̄

)θ′

.
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We will show that η
η̄ is a root of unity. We use lemma 1.6 of [18], which says that if

ν is an algebraic integer all of whose conjugates have absolute value 1, then ν is a
root of unity. We already know that η

η̄ ∈ Z[ζ] and it is clear that all conjugates of

η have absolute value 1. Therefore, η
η̄ is a root of unity. Of course, 1−ζ

1−ζ̄
= −ζ is a

root of unity as well.

It follows that (x − ζ)θ is equal to a q-th power times a root of unity. All roots of
unity in Q(ζ) are of the form ±ζa, with a an integer. Since p and q are coprime and
q is odd, all these roots of unity are q-th powers in Q(ζ). Therefore, the element
(x− ζ)θ is a q-th power in K = Q(ζ). This settles the first part of the theorem.

Since (1 − ζ−1x)θ is equal to (−ζ−1(x − ζ))θ, it is equal to (x − ζ)θ times a root
of unity. Since (x− ζ)θ is a q-th power in K, we obtain that (1 − ζ−1x)θ is a q-th

power in K as well. Since (x − ζ)θ is an element of Z[ζ], and η
η̄ and

(

1−ζ
1−ζ̄

)θ

are

elements of Z[ζ]∗, we have
(

α
ᾱ

)q ∈ OK = Z[ζ]. Therefore, α
ᾱ ∈ OK = Z[ζ]. So we

have that (x − ζ)θ is a q-th power in Z[ζ] and so is (1 − ζ−1x)θ , let us say that
(1 − ζ−1x)θ = aq.

Using Cassels’ result that q divides x (theorem 5.1), we find that (1 − ζ−1x)θ ≡
1 (mod q). Now we use lemma 5.6, applied to α = a and β = 1, and we obtain

(1 − ζ−1x)θ ≡ 1 (mod q2).

If θ =
∑

σ∈G nσσ, then we have

(1 − ζ−1x)θ =
∏

σ∈G

(1 − σ(ζ−1)x)nσ

≡
∏

σ∈G

(1 − nσσ(ζ−1)x) (mod q2)

≡ 1− x
∑

σ∈G

nσσ(ζ−1) (mod q2).

Therefore, 1−x∑σ∈G nσσ(ζ−1) ≡ 1 (mod q2). Now either q2 divides x, or q divides
∑

σ∈G nσσ(ζ−1). In the latter case, q divides nσ for all σ ∈ G. But if, for instance,

θ = (1 − ι)θ2 = −σ−1
1 − . . .− σ−1

p−1
2

+ σ−1
p+1
2

+ . . .+ σ−1
p−1,

this is not true. We conclude that q2 divides x, which is what we wanted to prove.
If (x, y, p, q) is a solution of the Catalan equation with p and q odd primes and x
and y non-zero integers, then so is (−y,−x, q, p). Because we have shown that q2

divides x, we also know that p2 divides y. �

From this theorem we derive the following corollary.

Corollary 5.8. Let p and q be odd primes. If xp−yq = 1 has a solution in non-zero

integers x and y, then the congruences

pq−1 ≡ 1 (mod q2)

and

qp−1 ≡ 1 (mod p2)

hold.

This result is called the double Wieferich relation.
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Proof. In theorem 5.7 we saw that q2 divides x. Together with equation (5.1) this
yields

pq−1aq ≡ −1 (mod q2), (5.11)

with a a non-zero integer. Since pq−1 ≡ 1 (mod q), it follows that aq ≡ −1 (mod q).
Therefore, a ≡ −1 (mod q) and aq ≡ −1 (mod q2). Together with equation (5.11)
this implies that

pq−1 ≡ 1 (mod q2).

By symmetry, we also find that qp−1 ≡ 1 (mod p2). �

5.3 Small p and q

Our proof in chapter 6.1 only works if p and q are at least 5, and our proof in
chapter 8 needs p and q to be at least 7. So we have to deal with the cases in which
p or q are small separately.

In 2000, Bugeaud and Hanrot [19] published an article in which they proved that
the Catalan equation has no solution in non-negative integers x and y if p or q is
smaller than 43.

The proof we give for the small cases, depends on the following theorem. The proof
is similar to that of Bugeaud and Hanrot and our version is based on the treatment
of René Schoof.

First, we prove the following lemma.

Lemma 5.9. The following equality holds:

p−1
∑

i=1

ζi

(1 − ζi)2
=

1 − p2

12
.

Proof. Define the function f(X) as the p-th cyclotomic polynomial, i.e.

f(X) =
∏

ζ 6=1

(X − ζ) = Xp−1 +Xp−2 + . . .+X + 1.

We compute the logarithmic derivative of f and we obtain:

f ′(X)

f(X)
=
∑

ζ 6=1

1

X − ζ
=
∑

ζ 6=1

ζ−1

Xζ−1 − 1
=
∑

ζ 6=1

ζ

ζX − 1
.

Therefore,

∑

ζ 6=1

ζ

ζ −X
=

1

X

∑

ζ 6=1

ζ

ζ 1
X − 1

=
1

X

f ′( 1
X )

f( 1
X )

=
Xp−2f ′( 1

X )

Xp−1f( 1
X )

=
Xp−2 + 2Xp−3 + . . .+ (p− 2)X + p− 1

Xp−1 +Xp−2 + . . .+X + 1
. (5.12)

So define g(X) = Xp−2 + 2Xp−3 + . . .+ (p− 2)X + p− 1, and we find

∑

ζ 6=1

ζ

(1 − ζ)2
= −

(

g

f

)′

(1) =
g(1)f ′(1) − f(1)g′(1)

(f(1))2
.
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We can compute these numbers: f(1) = p, f ′(1) = 1 + 2 + . . .+ p− 1 = 1
2p(p− 1),

g(1) = p − 1 + p − 2 + . . . + 2 + 1 = 1
2p(p − 1) and g′(1) =

∑p−1
i=1 (p − i)(i − 1) =

∑p−1
i=1 ((p + 1)i− p+ i2) = (p + 1) 1

2p(p− 1) − p(p− 1) + 1
6p(p− 1)(2p− 1). So we

find:

∑

ζ 6=1

ζ

(1 − ζ)2
=

1
4p

2(p− 1)2 − p
∑p−1
i−1 (p− i)(i− 1)

p2

=
1
4p

2(p− 1)2 − 1
6p

2(p− 1)(2p− 1)

p2

=
1 − p2

12
. (5.13)

�

Theorem 5.10. Let p and q be odd primes. Let h−p be the relative class number

of Q(ζ). If q does not divide h−p , then the Catalan equation xp − yq = 1 has no

solution in non-zero integers x and y.

Proof. Define π as the generator 1− ζ of the ideal P above p. From equation (5.1)
we know that x ≡ 1 (mod pq−1) ≡ 1 (modπ4).

In lemma 5.5 we saw that
(

x− ζ

1 − ζ

)

= aq ,

with a an ideal in OK = Z[ζ]. We see that aq is a principal ideal, so q divides the
class number hp of Q(ζ). By assumption, q does not divide h−p , so q divides h+

p ,
which is the class number of K+ = Q(ζ + ζ−1).

From theorem 14 in [18], we know that the natural map ψ : ClK+ −→ ClK is injec-

tive. Therefore, #(ClK/ψ(ClK+)) =
hp

h+
p

= h−p . Consider the class [a]qψ(ClK+) =

[1], since aq is a principal ideal. But on the other hand, [a]qψ(ClK+) = ([a]ψ(ClK+))q .
Since gcd(h−p , q) = 1, it follows that [a]ψ(ClK+) ∈ ψ(ClK+). Therefore, there exists
an ideal class [b] ∈ ClK+ such that ψ([b]) = [a]. So there exists an γ ∈ K∗ = Q(ζ)∗

such that a = (γ)b′, where we view b′ = bOK as an OK-ideal. From this equality
we see that b′q is a principal ideal as well. We find that there exist an element
β ∈ K∗ = Q(ζ)∗ and a unit η0 such that x−ζ

1−ζ = η0βγ
q .

Put µ = x−1
ζ−1 = x−1

π . Note that µ is an algebraic integer, as we saw in lemma 5.5.
We have

µ+ 1 =
x− ζ

1 − ζ

and

µ̄+ 1 =
x− ζ̄

1 − ζ̄
.

It follows that µ+1
µ̄+1 = x−ζ

1−ζ
1−ζ̄
x−ζ̄

= −ζ−1 x−ζ
x−ζ̄

, so there exists α ∈ Q(ζ) such that

µ+ 1

µ̄+ 1
= αq .

Consider the element

η = ( q
√

1 + µ+ ζ
−1
q q
√

1 + µ̄)q = (1 + µ̄)(α+ ζ
−1
q )q .
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This last equality is an equality of elements of Q(ζ). Of course, (1+ µ̄)αi is integral

for all integers i ≤ q. Since ζ
−1
q = ζr for some integer r, we find that η is integral,

i.e. is an element of Z[ζ]. It is obvious that q
√

1 + µ+ ζ
−1
q q
√

1 + µ̄ divides (1 + µ+

ζ−1(1 + µ̄))q , since for all a, b ∈ Q(ζ) we have a + b = (a
1
q + b

1
q )
∑q−1

i=0 x
q−1−i

q y
i
q .

We have

1 + µ+ ζ−1(1 + µ̄) =
x− ζ

1 − ζ
+ ζ−1x− ζ̄

1 − ζ̄
=
x− ζ

1 − ζ
+
ζ̄ − x

1 − ζ
= ζ−1 1 − ζ2

1 − ζ
,

which is a unit as we saw in lemma 4.3. Therefore, η is a unit in Z[ζ] itself, so

NQ(ζ)/Q(η) = 1.

Note that µ = x−1
1−ζ = x−1

π has at least 3 factors π, so µ+ 1 is very close to 1 under

the π-adic valuation. Now Hensel’s lemma applied to the valuation ring Zp[ζ] and

polynomial Xq − (µ + 1) implies that u = q
√

1 + µ+ ζ
−1
q q
√

1 + µ̄ ∈ Zp[ζ]. In Zp[ζ],
the norm N(u) of u equals 1.

Using the Taylor series expansion of q
√

1 + µ, we find the following equalities. Note
that µ depends on ζ.

N(u) =
∏

ζ 6=1

(1 +
µ

q
+ ζ−

1
q +

ζ−
1
q µ̄

q
+ (modµ2))

=
∏

ζ 6=1

(1 + ζ−
1
q )
∏

ζ 6=1






1 +

µ
q + ζ

−
1
q µ̄
q

1 + ζ−
1
q

+ (mod µ2)







= N(−1− ζ)
∏

ζ 6=1






1 +

µ
q + ζ

−
1
q µ̄
q

1 + ζ−
1
q

+ (modµ2)







= 1 +
∑

ζ 6=1

µ+ ζ−
1
q µ̄

q(1 + ζ−
1
q )

+ (modµ2). (5.14)

This last equality holds because N(−1−ζ) = (−1)p−1+(−1)p−2+. . .+(−1)+1 = 1.

Writing µ as x−1
1−ζ we find:

1 = N(u) = 1 +
∑

ζ 6=1

x− 1

q

1
1−ζ + ζ

−
1
q

1−ζ̄

1 + ζ−
1
q

+ (mod

(

(x− 1)

(

x− 1

π2

))

). (5.15)

Since q and q are coprime integers, there exists r ∈ {0, 1, . . . , p − 1} such that
r ≡ − 1

q (mod p). Using this, we rewrite one of the terms in the expression above
and we obtain:

1
1−ζ + ζ

−
1
q

1−ζ̄

1 + ζ−
1
q

=
1 − ζ1+r

(1 − ζ)(1 + ζr)
=

1 − (1 + π)r+1

−π(1 + (1 + π)r)

=
1 − 1 − (r + 1)π + (mod π2)

−π(2 + rπ + (modπ2))
=
r + 1

2
+ (modπ). (5.16)
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Note that r+1
2 is independent of ζ.

It follows that
∑

ζ 6=1

1 − ζr

(1 − ζ)(1 + ζr)
≡ (p− 1)

r − 1

2
(modπ). (5.17)

Since we work in Zp[ζ], we obtain also

∑

ζ 6=1

1 − ζr

(1 − ζ)(1 + ζr)
≡ (p− 1)

r − 1

2
(mod p). (5.18)

From (5.15) and (5.18) we get:

1 ≡ 1 +
(x− 1)(p− 1)(r + 1)

2q
(mod(x− 1)p).

So p divides r + 1, so q ≡ 1 (mod p). Therefore,

µ+ ζ−
1
q µ̄ =

x− 1

1 − ζ
+ ζ−1 x− 1

1− ζ̄
= 0,

so the linear term in the Taylor series of q
√

1 + µ+ ζ−
1
q q
√

1 + µ̄ equals 0. So,

N(u) =
∏

ζ 6=1

(1 +

( 1
q

2

)

µ2 + ζ−
1
q + ζ−

1
q

( 1
q

2

)

µ̄2) + (modµ3)

= 1 +
∑

ζ 6=1

( 1
q

2

)

(x− 1)2
1

(1−ζ)2 + ζ−1

(1−ζ̄)2

1 + ζ−1
+ (mod µ3). (5.19)

We compute the term
1

(1−ζ)2
+ ζ−1

(1−ζ̄)2

1+ζ−1 , using the identity −ζ̄(1 − ζ) = 1 − ζ̄ :

1
(1−ζ)2 + ζ−1

(1−ζ̄)2

1 + ζ−1
=

1 + ζ−1(−ζ)2
(1 − ζ)2(1 + ζ−1)

=
1 + ζ

(1 − ζ)2(1 + ζ−1)

=
(1 + ζ)ζ

(1 − ζ)2(ζ + 1)
=

ζ

(1 − ζ)2
. (5.20)

So we conclude:

N(u) = 1 +
∑

ζ 6=1

( 1
q

2

)

(x− 1)2
ζ

(1 − ζ)2
+ (modµ3). (5.21)

Lemma 5.9 implies that

N(u) = 1 +

( 1
q

2

)

(x− 1)2
1 − p2

12
+ (mod

(

(x− 1)2
x− 1

π3

)

).

It follows that x−1
π3 divides

( 1
q

2

)

1−p2

12 in Zp[ζ]. Therefore, x− 1 divides (q−1)(1−p2)π3

3

in Zp[ζ], so pq−1 divides q − 1, which is a contradiction. Therefore, the equation
xp − yq = 1 does not have any solutions in non-zero integers x and y. �

By symmetry, it follows that if p does not divide h−q , then the Catalan equation
xp − yq = 1 has no solution in non-zero integers x and y as well.

Corollary 5.11. If p or q is smaller than 7, then the Catalan equation xp−yq = 1
has no solution in non-zero integers x and y.

Proof. Let us say that p < 7. Then h−p = 1, so q does not divide h−p , since q is
prime. Now we apply theorem 5.10 and we are done. �
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Chapter 6

The first case: q divides p − 1

In this chapter we deal with the case in which q divides p − 1. Assuming that a
solution of the Catalan equation exists in this case, we finally arrive at a contradic-
tion, so actually we prove in this chapter that if x and y are integers and p and q
are odd primes such that xp − yq = 1, then q does not divide p− 1. We follow the
treatment of René Schoof.

We noted already that if (x, y, p, q) is a solution of the Catalan equation, then so is
(−y,−x, q, p). Thus if we show that there are no solutions to the Catalan equation
in which p divides q− 1, then we have also shown that there are no solutions to the
Catalan equation in which q divides p− 1.

First, we deal with the case in which p and q are both at least 5. The following
theorem implies the result of this chapter.

Theorem 6.1 (Mihăilescu). Let p and q be primes that are at least equal to 5.

Put s =
⌊

3q
2(p−1)2

⌋

. If
(

s+ p−1
2
s

)

> s+1
3 (p− 1)2 + 1, then the equation xp− yq = 1 has

no solutions in non-zero integers x and y.

What this theorem tells us is that if we have two primes p and q that are at least
5, then the Catalan equation has no solution if q is ‘much larger’ than p. We will
show that if p divides q − 1, then the condition of the theorem is fulfilled.

For the rest of this chapter, let p and q be primes with p, q ≥ 5 and assume that x
and y are non-zero integers such that xp − yq = 1.

Before we start proving theorem 6.1, we prove the following lemma.

Lemma 6.2. If
(

s+ p−1
2
s

)

> s+1
3 (p − 1)2 + 1, then there exist more than q distinct

elements θ ∈ I−S such that

‖θ‖ ≤ 3

2

q

p− 1
.

Proof. We use lemma 4.12. It tells us that the elements θ̃1, . . . , θ̃ p−1
2

form a Z-basis
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of I−S and that they all satisfy ‖θ̃i‖ ≤ p− 1. Now consider the elements of the form

θ =

p−1
2
∑

i=1

λiθ̃i,

with λi ∈ Z≥0. If the λi satisfy

p−1
2
∑

i=1

λi ≤ s =

⌊

3

2

q

(p− 1)2

⌋

,

then θ has the propery that ‖θ‖ ≤ 3
2

q
p−1 .

It is easy to see that there are
(

s+ p−1
2
s

)

elements θ like this. Choosing p−1
2 dots

in a row of s + p−1
2 is the same as choosing non-negative integers λ1, . . . , λ p−1

2 +1

that add up to s. Of course, this is the same as choosing non-negative integers

λ1, . . . , λ p−1
2

such that
∑

p−1
2

i=1 λi ≤ s.

Further, there are as many elements θ =
∑p−1
i=1 λiθ̃i that satisfy ‖θ‖ ≤ 2

3
q

p−1 with

all λi ∈ Z≤0. Therefore, there are at least 2
(

s+ p−1
2
s

)

−1 elements θ in I−S that satisfy
‖θ‖ ≤ 3

2
q
p−1 .

By the assumption that
(

s+ p−1
2
s

)

> s+1
3 (p − 1)2 + 1, this number is strictly larger

than 2
3 (s+ 1)(p− 1)2, which is at least q. It follows that the number of elements θ

in I−S that satisfy ‖θ‖ ≤ 3
2

q
p−1 is greater than q, which is what we wanted to show.

�

Proof of theorem 6.1. In this proof, we will use the definitions and results from
section 4.4 and chapter 5. We work in the group ring Z[G] and the field Q(ζ).

We assumed that there exists a solution in non-zero integers x and y to the Catalan
equation xp−yq = 1. We will show that the absolute value of x is very small, which
is contradictory to corollary 5.4. We do this by constructing a special element θ in
the ideal I−S , and manipulating with the element α ∈ K∗ that satisfies (x−ζ)θ = αq .
Therefore, such a solution does not exist.

By theorem 5.7 we know that for all θ ∈ I−S we have (x − ζ)θ = αq for some
α ∈ K∗. For a given θ, this element α is unique, since K = Q(ζ) does not contain
any primitive q-th roots of unity.

The map ϕ : I−S → K∗ given by θ 7→ α, where α is the element of K∗ such that
(x − ζ)θ = αq , is an injective homomorphism. It is easy to see that ϕ indeed is
a homomorphism. and we want to show that this homomorphism ϕ is injective.
Suppose we have two elements θ and θ′ of I−S such that ϕ(θ) = ϕ(θ′). That means

that (x−ζ)θ = (x−ζ)θ′ , which is equivalent to (x−ζ)θ−θ′ = 1. Therefore, it suffices
to show that x − ζ and all its conjugates x − ζσ are multiplicatively independent,
i.e. if

∏

σ∈G(x− ζσ)nσ = 1, then all the nσ are equal to 0.

So assume we have
∏

σ∈G(x−ζσ)nσ = 1. As we did in lemma 5.5, put λ = x−ζ
1−ζ . We

know that (λσ) and (λτ ) are coprime for distinct σ and τ in G. We also saw before
that the ideal (1−ζ)2 does not divide (x−ζ), nor its conjugates. It follows that the
ideals (x− ζσ) and (x− ζτ ) only have one factor (1− ζ) in common. We show that
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all ideals (x− ζσ) have a prime factor distinct from (1− ζ). It is known that (1− ζ)
divides (x − ζσ) for all σ ∈ G, so we have to show that (x − ζσ) does not divide
(1− ζ). It is easy to see that this is the case, because the norm N(x− ζσ) > p and
N(1− ζ) = p. Let pσ be a prime divisor of x− ζσ , that is distinct from (1− ζ). Let
e ≥ 1 be the multiplicity of pσ in (x− ζσ). It follows that the ideal penσ

σ divides 1,
which of course implies that nσ = 0. So all the nσ are equal to 0, which is what we
wanted to prove. It follows that the homomorphism ϕ is injective.

The α we find for θ ∈ I−S lies on the unit circle under all embeddings τ : Q(ζ) ↪→ C.
We can show this in the following way. If γ is an element of K∗, then we have for
all embeddings τ :

|τ(γ1−ι)|2 = |τ(γ)1−ι| = 1.

Since 1− ι divides θ = θ′(1− ι) for all θ ∈ I−S , we have that |τ((x− ζ)θ)| = 1 for all
embeddings τ , so |τ(αq)| = |τ(α)|q = 1 and therefore, |τ(α)| = 1.

All elements θ of the ideal I−S are of the form θ = θ′(1−ι), where θ′ ∈ IS . Therefore,
w(θ) = w(θ′(1 − ι)) = w(θ′)w(1 − ι) = 0. It follows that the ideal I−S is contained
in the augmentation ideal Iaug of Z[G]. In particular, for any θ ∈ I−S we have
xθ = xw(θ) = 1, and therefore,

(1 − ζ

x
)θ = (

x− ζ

x
)θ = (x − ζ)θ. (6.1)

Choose an embedding σ : Q(ζ) ↪→ C.

Consider the principal branch of the complex logarithm, i.e. log(reia) = log r+ia for
all elements reia, with r ∈ R and −π < a ≤ π. For an element z ∈ C, define Arg(z)
as the principal value of the argument of z, i.e. |z|eArg(z) = z and −π < Arg(z) ≤ π.
With this convention, we have for all z1, z2 ∈ C:

| log(z1z2)| ≤ | log(z1)| + | log(z2)|.

Equation (6.1) implies that αq = (1 − ζ
x )θ. Therefore, σ(αq) is rather close to 1

and we can use the Taylor expansion of the principal branch of the logarithm. We
estimate | log(σ(α)q)|:

| log(σ(α)q)| = | log(σ(αq))| = | log(σ((1 − ζ

x
)θ))|

= | log(
∏

τ∈G

(1 − σ(ζτ )

x
)nτ )| ≤

∑

τ∈G

|nτ | · | log(1 − σ(ζτ )

x
)|. (6.2)

To be able to estimate this expression further, we use the Taylor expansion of the

logarithm to estimate the | log(1 − σ(ζτ )
x )|. For all τ ∈ G we have:

| log(1 − σ(ζτ )

x
)| =

∣

∣

∣

∣

∣

−σ(ζτ )

x
− 1

2

(

σ(ζτ )

x

)2

− 1

3

(

σ(ζτ )

x

)3

− . . .

∣

∣

∣

∣

∣
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≤
∣

∣

∣

∣

σ(ζτ )

x

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

σ(ζτ )2

x2

∣

∣

∣

∣

+
1

3

∣

∣

∣

∣

σ(ζτ )3

x3

∣

∣

∣

∣

+ . . .

=
1

|x| +
1

2

1

|x|2 +
1

3

1

|x|3 + . . .

≤ 1

|x|

(

1 +
1

|x| +
1

|x|2 +
1

|x|3 + . . .

)

=
1

|x|
1

1 − 1
|x|

. (6.3)

Putting the equations (6.2) and (6.3) together, we obtain:

| log(σ(α)q)| ≤
∑

τ∈G

|nτ | ·
(

1

|x|
1

1 − 1
|x|

)

≤
∑

τ∈G

|nτ |
(

1

|x|
1

1 − 1
3

)

=
∑

τ∈G

|nτ |
3

2|x|

= ‖θ‖ 3

2|x| . (6.4)

Here we used that |x| ≥ 3. This is obviously true, see for instance (5.1).

Since |σ(α)q | = 1, we know that

| log(σ(α)q)| = | log |σ(α)q | + iArg(σ(α)q)| = |Arg(σ(α)q)|.

Together with (6.4) this implies that

|Arg(σ(α)q)| = | log(σ(α)q)| ≤ 3

2

‖θ‖
|x| . (6.5)

Now we know that − 3
2
‖θ‖
|x| ≤ Arg(σ(α)q) ≤ 3

2
‖θ‖
|x| . Also, we have that Arg(σ(α)q) ≡

qArg(σ(α)) (mod 2π). We conclude that there exists an integer k associated to θ
satisfying − q

2 < k < q
2 and

|Arg(σ(α)) − 2kπ

q
| ≤ 3

2

‖θ‖
q|x| . (6.6)

Note that this inequality tells us that for all θ ∈ I−S , the corresponding σ(α) is close
to a q-th root of unity, since we already saw that |σ(α)| = 1.

If ‖θ‖ ≤ q
p−1 , then there is exactly one integer k such that inequality (6.6) is

satisfied. We can see this as follows. Suppose there are two integers k and l, such

that both |Arg(σ(α)) − 2kπ
q | ≤ 3

2
‖θ‖
q|x| and |Arg(σ(α)) − 2lπ

q | ≤ 3
2
‖θ‖
q|x| . Then we

obtain:

|2kπ
q

− 2lπ

q
| ≤ |Arg(σ(α)) − 2kπ

q
| + |Arg(σ(α)) − 2lπ

q
| ≤ 3‖θ‖

q|x| . (6.7)
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Therefore,

|k − l| ≤ 3

2π

‖θ‖
|x| ≤ 3

2π

q

(p− 1)|x| ≤
3

2π

q

(p− 1)qp−1
< 1,

where we use corollary 5.4. It follows that k = l.

In lemma 6.2 we saw that there are more than q elements θ in I−S with size ‖θ‖ ≤
q
p−1 . The box principle now implies that there exist two distinct elements in I−S of

size at most 3
2

q
p−1 to which the same integer k is associated. This means that these

elements have corresponding α’s that are close to the same q-th root of unity. Let us
call them θ̄1 and θ̄2. For i = 1, 2, let αi denote the element such that (x−ζ)θ̄i = αqi .

Define θ̄ = θ̄1 − θ̄2 and let α denote the number such that (x− ζ)θ̄ = αq . It follows
that α = α1

α2
. Since θ̄1 and θ̄2 are close to the same q-th root of unity, we expect

σ(α) to be close tp 1. We make this explicit in the following estimations. Note that
| log(σ(α))| equals |Arg(σ(α))|, because |σ(α)| = 1. We estimate | log(σ(α))|:

| log(σ(α))| = |Arg(σ(α))|
≤ |Arg(σ(α1)) − Arg(σ(α2))|

= |Arg(σ(α1)) −
2kπ

q
+

2kπ

q
− Arg(σ(α2))|

≤ |Arg(σ(α1)) −
2kπ

q
| + |Arg(σ(α2)) −

2kπ

q
|

≤ 3

2

‖θ1‖
q|x| +

3

2

‖θ2‖
q|x|

≤ 2 · 3

2

3q
2(p−1)

q|x| =
32

2

1

|x|(p− 1)
. (6.8)

Using this inequality, we estimate |σ(α) − 1|. We also use the Taylor expansion of
the exponential function.

|σ(α) − 1| = |elog(σ(α)) − 1|

= | − 1 + 1 + log(σ(α)) +
1

2!
log(σ(α))2 +

1

3!
log(σ(α))3 + . . . |

≤ | log(σ(α))| + 1

2!
| log(σ(α))|2 +

1

3!
| log(σ(α))|3 + . . .

≤ 32

2

1

|x|(p− 1)
+

1

2!

(

32

2

1

|x|(p− 1)

)2

+
1

3!

(

32

2

1

|x|(p− 1)

)3

+ . . .

≤ 32

2

1

|x|(p− 1)

(

1 +
1

|x| +
1

|x|2 + . . .

)

=
32

2

1

|x|(p− 1)|
1

1 − 1
|x|

≤ 32

2

1

|x|(p− 1)

1

1 − 1
3

=
33

22

1

|x|(p− 1)
. (6.9)

We find that σ(α − 1) is very small, which indeed implies that σ(α) is close to 1.
Of course, since |σ(α) − 1| = σ(α − 1)σ(α− 1), the same is true for its complex
conjugate. For all other embeddings τ : Q(ζ) ↪→ C we also have that |τ(α)| = 1, so
|τ(α − 1)| = |τ(α) − 1| ≤ |τ(α)| + 1 = 2. We obtain the following estimate for the
norm of α− 1:

|N(α− 1)| = |
∏

σ∈G

σ(α − 1)|
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≤
(

33

22

1

|x|(p− 1)

)2

2p−3. (6.10)

Note that the number α − 1 does not equal 0, because α = 1 would imply θ̄ = 0,
which is not true, because we defined θ = θ̄1 − θ̄2, with θ̄1 and θ̄2 distinct elements
of I−S .

Consider the principal ideal (α). Let J be the denominator of (α) and let J ′ be the
numerator. Since |N(α)| =

∏

σ∈G |σ(α)| = 1, we have N(J) = N(J ′). Since (α)q =

(x−ζ)θ̄ , the ideal Jq is the denominator of (x−ζ)θ̄ and the ideal J ′q is de numerator
of the same ideal. In fact, Jq =

∏

nσ≤0(x − ζσ)nσ and J ′q =
∏

nσ>0(x − ζσ)|nσ|.

We obtain that the ideal (JJ ′)q equals
∏

τ∈G(x− ζτ )|nτ |. This yields:

N((JJ ′)q) = N(J)2q ≤ N(
∏

τ∈G

(x− ζτ )|nτ |). (6.11)

We estimate this latter norm. Computing the norm of x− ζτ we find

N(x− ζτ ) =
∏

σ∈G

σ(x − ζτ )

=
∏

σ∈G

(x − σ(ζ))

= xp−1 + xp−2 + . . .+ x+ 1

≤ |x|p−1 +

(

p

1

)

|x|p−2 +

(

p

2

)

|x|p−3 + . . .+

(

p

p− 1

)

|x| + 1

= (|x| + 1)p−1. (6.12)

Since ‖θ̄‖ = ‖θ̄1 − θ̄2‖ ≤ ‖θ̄1‖ + ‖θ̄2‖ ≤ 3 q
p−1 , we have

N(
∏

τ∈G

(x− ζτ )|nτ |) ≤ (|x| + 1)‖θ̄‖(p−1) ≤ (|x| + 1)3q.

It follows that N(J) is at most (|x| + 1)
3
2 .

We defined J as being the denominator of α. That is equivalent to saying that
J · (α) is an OK-ideal. If J · (α) is an OK-ideal, then J · (α − 1) is an OK-ideal as
well. Therefore, the denominator of (α) equals the denominator of (α− 1).

All this leads to the following inequality:

(|x| + 1)−
3
2 ≤ N(J)−1 ≤ |N(α− 1)| ≤

(

33

22

1

|x|(p− 1)

)2

2p−3.

This yields:

√

|x| + 1 ≤ (|x| + 1)2

|x|2
(

33

22

1

p− 1

)2

2p−3 ≤
(

33

22

1

p− 1

)2

2p−2 ≤ 46

(p− 1)2
2p−2.

(6.13)

But, using corollary 5.4, we also have:

√

|x| + 1 ≥
√

qp−1 =
√
qp−1 ≥

√
5
p−1

.
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However,
√

5
p−1

> 46
(p−1)2 2p−2 for all primes p ≥ 5. This is impossible, so we have

proven the theorem. �

Before proving that in the case of this chapter the Catalan equation has no solutions,
we prove the following lemma.

Lemma 6.3. Let k ≥ 2 and s ≥ 4 be integers. If the inequality

(

s+ k

s

)

>
4

3
(s+ 1)k2 + 1

holds, then it also holds for all pairs of integers s′ and k′ for which s′ ≥ s and

k′ ≥ k.

Proof. This lemma can be proven by induction. It suffices to take care of the steps
s 7→ s+ 1 and k 7→ k + 1.

First, we explain the step s 7→ s+1. We want to show that
(

s+1+k
s+1

)

> 4
3 (s+2)k2+1,

given that
(

s+k
s

)

> 4
3 (s+ 1)k2 + 1. Let us estimate

(

s+1+k
s+1

)

:

(

s+ 1 + k

s+ 1

)

=
s+ 1 + k

s+ 1

(

s+ k

s

)

>
s+ k + 1

s+ 1
(
4

3
(s+ 1)k2 + 1)

>
s+ k + 1

s+ 1

4

3
(s+ 1)k2 + 1

= (s+ 1 + k)
4

3
k2 + 1. (6.14)

Therefore, it suffices to show that s+ k + 1 > s+ 2, which is obviously true, since
k ≥ 2.

Next, we explain the step k 7→ k+1. We want to show that
(

s+k+1
s

)

> 4
3 (s+1)(k+

1)2 + 1, given that
(

s+k
s

)

> 4
3 (s+ 1)k2. We obtain the following inequalities:

(

s+ k + 1

s

)

=
s+ k + 1

k + 1

(

s+ k

s

)

>
s+ k + 1

k + 1
(
4

3
(s+ 1)k2 + 1)

>
s+ k + 1

k + 1

4

3
(s+ 1)k2 + 1. (6.15)

So it suffices to show that s+k+1
k+1 k2 > (k+1)2, which is equivalent to (s+k+1)k2 >

(k+1)3. Therefore, since s ≥ 4, it suffices to show that (k+5)k2 > (k+1)3. Because
we have k ≥ 2, this is indeed true. �

The corollary we now derive from theorem 6.1 is the main result of this chapter.

Corollary 6.4. For any pair of primes p, q with p and q both greater than or equal

to 5 such that p divides q− 1, the equation xp − yq = 1 has no solution in non-zero

integers x and y.

Proof. By assumption, we have q ≡ 1 (mod p), therefore there exists an integer k
such that q = 1 + kp. Also, we saw in corollary 5.8 that qp−1 ≡ 1 (mod p2). If we

45



compute qp−1, we find:

qp−1 = (1 + kp)p−1

= 1 + (p− 1)kp+

(

p− 1

2

)

(kp)2 + . . .+ (p− 1)(kp)p−2 + (kp)p−1

≡ 1 + (p− 1)kp (mod p2). (6.16)

It follows that 1 + (p − 1)kp ≡ 1 (mod p2). Since p does not divide p− 1, we have
that p divides k. So q = 1 + kp ≡ 1 (mod p2).

We conclude that q is of the form q = 1+ lp2, for some positive integer l. Of course,
q cannot be equal to 1 + p2 or 1 + 3p2, because these numbers are even. It cannot
be equal to 1 + 2p2 either, because this number is divisible by 3. It follows that
q ≥ 1 + 4p2 > 4(p− 1)2.

The number s =
⌊

3
2

q
(p−1)2

⌋

in the statement of theorem 6.1 thus satisfies s ≥ 6.

The inequality of lemma 6.3 is satisfied for the pairs (s, k) = (6, 4), (7, 3) and (9, 2).
Therefore, according to the lemma, it is satisfied for all pairs (s, k) with s ≥ 4 and
k ≥ 4, except for the pair (s, k) = (6, 3) and the pairs (s, k) with k = 2 and s ≤ 8.

Now put k = p−1
2 and apply lemma 6.3. It follows that the inequality in the

statement of theorem 6.1 is satisfied for all primes p ≥ 5, except this with p−1
2 = 3

and s = 6 and those with p−1
2 = 2 and s ≤ 8. However, these primes do not

correspond to pairs of primes p, q ≥ 5 such that q ≡ 1 (mod p2). We can see this in
the following way. Suppose that p−1

2 = 3 and s = 6. Then p = 3 and 3
2

q
(p−1)2 < 7,

which implies that q < 168. But we already saw that q ≥ 1 + 4p2 = 197, so this
is impossible. Now consider the other case, in which p−1

2 = 2 and s ≤ 8. Then we
have p = 5 and from s ≤ 8 it follows that q < 96. But again, q > 1 + 4p2 = 101, so
this case also is impossible. Therefore, the condition of theorem 6.1 is satisfied for
all primes p and q that are greater than or equal to 5 such that q ≡ 1 (mod p). �
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Chapter 7

A Runge-type theorem

From now on, we assume that p and q are primes such that p > q ≥ 7 and p does
not divide q − 1, and that x and y are non-zero integers such that xp − yq = 1.
Define G = Gal(Q(ζ)/Q) ∼= (Z/pZ)∗, as we did in chapter 4.

In this chapter we will prove a theorem of Mihăilescu, using Runge’s method. We
follow the treatments of Bilu in [1] and Schoof. The theorem we prove is the
following:

Theorem 7.1. Suppose that θ ∈ Z[G]. If 1 + ι divides θ, q divides w(θ) and θ has

the property that (x− ζ)θ = αq for some α ∈ K∗ = Q(ζ)∗, then θ ∈ qZ[G].

Let θ be
∑

σ∈G nσσ. We want to show that the coefficients nσ are divisible by q.
Of course, this is the same as showing that for all σ ∈ G the integer nσ + qkσ is
divisible by q for an integer kσ . So without loss of generality we may assume that
nσ lies between 0 and q−1 for all σ ∈ G. Note that the coefficients of q

∑

σ∈G σ−θ
then lie between 1 and q.

The weight of θ+q
∑

σ∈G σ−θ equals q(p−1). Therefore, one of θ and q
∑

σ∈G σ−θ
has weight mq, with m an integer such that 0 ≤ m ≤ p−1

2 . So by using q
∑

σ∈G σ−θ
instead of θ if necessary, we may assume that θ has weight at most q p−1

2 .

By assumption, there exists α ∈ Q(ζ)∗ such that (x− ζ)θ = αq .

Since the weight of θ equals mq, we have

(

1 − ζ

x

)θ

=

(

1

x

)θ

(x− ζ)θ =

(

1

x

)w(θ)

(x− ζ)θ =
( α

xm

)q

. (7.1)

We will analyse this element α taking a q-th root in Q(ζ)∗ using a power series.
Runge’s method consists of showing that a certain partial sum of this power series
is so close to the root we have, that they are actually equal. We show that the
difference of this partial sum and the root is an algebraic integer that has norm
smaller than 1, so it has to be 0.
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The power series we use is the following:

F (T ) = (1 − ζT )
θ
q =

∏

τ∈G

(1 − ζτT )
nτ
q ,

where we define (1 − ζτT )
nτ
q as

∑

k≥0

(nτ
q

k

)

(−ζτT )k ∈ Q(ζ + ζ−1)[[T ]]. Viewed as
a series in R, it has radius of convergence 1. Since 1 + ι divides θ, this series has
coefficients in Q(ζ + ζ−1). We write F (T ) =

∑

k≥0 αkT
k, with αk ∈ Q(ζ + ζ−1).

As we see in equation (7.1), we use this series for T = 1
x , which is small because |x|

is large, as we saw in corollary 5.4, for instance.

Let Fl(T ) denote the l-th partial sum of F (T ), i.e. Fl(T ) =
∑l

k=0 αkT
k. Let F τ (T )

denote the power series obtained by applying τ to the coefficients of F (t).

Lemma 7.2. This power series F (T ) has the following properties.

1. The power series F (T ) has the form

F (T ) =
∑

k≥0

ak
k!qk

T k

with ak ∈ Z[ζ] and ak ≡ (−
∑

τ∈G nτ ζ
τ )k (mod q).

2. Let σ be an embedding σ : Q(ζ + ζ−1) ↪→ R. Under this embedding, F (T ) can

be viewed as a power series in R[[T ]]. Then for any t ∈ R with |t| < 1 we have

that

|F (t) − Fl(t)| ≤
(

m+ l

m+ 1

) |t|l+1

(1 − |t|)m+l
.

If in addition t ∈ Q satisfies |t| < 1 and F (t) = (1 − ζt)
θ
q ∈ K = Q(ζ), then

for all τ ∈ G we have that τ(F (t)) = F τ (t).

Proof.

1. We have the following more general fact. Let R be a domain of characteristic
0 and let I ⊂ R be an ideal. Suppose we have two power series

∑

k≥0
ak

k! T
k

and
∑

k≥0
bk

k! T
k such that ak ≡ ak (mod I) and bk ≡ bk (mod I) for all k ≥ 0.

Then the product of these two power series is equal to
∑

k≥0
ck

k! T
k, with

ck =
∑k

j=0

(

k
j

)

ajbk−j ≡ ∑k
j=0

(

k
j

)

ajbk−j (mod q) ≡ (a + k)k (mod q). We

apply this result with R = Z[ζ] and the power series

(1 − ζτqT )nτ/q =
∑

k≥0

(

1

q

)k
nτ (nτ − q)(nτ − 2q) . . . (nτ − (k − 1)q)

k!
(ζτ qT )k

=
∑

k≥0

nτ (nτ − q)(nτ − 2q) . . . (nτ − (k − 1)q)

k!
(−ζτT )k (7.2)

for all τ ∈ G.

The coefficients of this power series are indeed of the form ak

k! with ak =
nτ (nτ − q)(nτ − 2q) . . . (nτ − (k − 1)q)(−ζτ )k ∈ Z[ζ]. We see immediately
that ak ≡ (−nτ ζτ )k (mod q). Therefore, F (qT ) =

∑

k≥0
ck

k! T
k with ck ≡

(−
∑

τ∈G nτζ
τ )k (mod q). This is what we wanted to show.
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2. Compare the series
∑

k≥0

(nτ
q

k

)

(−ζτT )k with the series
∑

k≥0

(−nτ
q

k

)

(−T )k.
For our embedding σ : Q(ζ) ↪→ R the absolute values of the coefficients of the
first series are smaller than the coefficients of the second series, because the
following inequality holds for all positive rational numbers a and all integers
k.

∣

∣

∣

∣

(

a

k

)∣

∣

∣

∣

=

∣

∣

∣

∣

a(a− 1)(a− 2) . . . (a− (k − 1))

k!

∣

∣

∣

∣

≤ (−1)k
−a(−a− 1)(−a− 2) . . . (−a− (k − 1))

k!

= (−1)k
(−a
k

)

. (7.3)

It follows that
∣

∣

∣

∣

σ

((nτ

q

k

)

(−ζτ )k
)∣

∣

∣

∣

=

∣

∣

∣

∣

(nτ

q

k

)

(−σ(ζτ ))k
∣

∣

∣

∣

=

∣

∣

∣

∣

(nτ

q

k

)∣

∣

∣

∣

≤ (−1)k
(−nτ

q

k

)

.

Note that we use here that the nτ ≥ 0 for all τ ∈ G.

So the absolute values of the coefficients of F (T ) are smaller than the coeffi-

cients of
∏

τ∈G(1 − T )−nτ/q = (1 − T )−
1
q

P

τ∈G nτ = (1 − T )−m. So for t ∈ R

with |t| < 1 we have:

|F (t) − Fl(t)| ≤ |(1 − t)−m − sl(t)|,

where sl(t) denotes the sum of the terms of degree at most l of the Taylor
series expansion of (1 − t)−m.

Now from the standard estimate of the remainder term of a Taylor series we
obtain:

(1 − t)−m − sl(t) =
dl+1(1 − z)−m

dzl+1

∣

∣

∣

∣

z=ξ

tl+1

(l + 1)!
,

for some ξ ∈ R with |ξ| < |t|.
So,

(1 − t)−m − sl(t) =
tl+1

(l + 1)!

(m+ l)!

(m− 1)!
(1 − |ξ|)−m−l

= tl+1

(

m+ l

l + 1

)

1

(1 − |ξ|)m+l

≤ |t|l+1

(1 − |t|)l+m
(

m+ l

l + 1

)

. (7.4)

This is what we wanted to prove.

Since 1 + ι divides θ, we know that (1 − ζt)
θ
q = F (t) ∈ Q(ζ + ζ−1) for

t ∈ Q. Under the embedding σ, view F (T ) as a series in R[[T ]] again. For

all embeddings τ : Q(ζ + ζ−1) ↪→ R, we find τ(F (t)) = τ((1 − ζt)
θ
q ) =

(1 − τ(ζ)t)
θ
q ∈ R.

On the other hand, F τ (t) =
∏

ν∈G(1 − ζτν t)
nν
q = (1 − ζt)τθ, which lies in R

under the embedding σ, because if 1 + ι divides θ, then 1 + ι divides τθ, too.

Now τ(F (t)) and F τ (t) are both a q-th root of the image of (1 − ζτ t)θ in
R under the embedding σ. Since R does not contain primitive q-th roots of
unity, this root is unique and therefore, τ(F (t)) = F τ (t).
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Consider equation 7.1 again, which says that

(

1 − ζ

x

)θ

=
( α

xm

)q

.

Since 1 + ι divides θ, we know that
(

1 − ζ
x

)θ

∈ Q(ζ + ζ−1) and is totally positive,

i.e. under all embeddings σ : Q(ζ + ζ−1) ↪→ R we have σ

(

(

1 − ζ
x

)θ
)

> 0.

Note that since (x − ζ)θ is an algebraic integer, α is an algebraic integer, too.
Of course, since (x − ζ)θ ∈ Q(ζ + ζ−1), α is contained in Z[ζ + ζ−1]. Because
(

α
xm

)q
=
(

1 − ζ
x

)θ

is totally positive, so is α
xm , because q is odd.

Now consider xmF ( 1
x ). We know that for t ∈ R with |t| < 1, F (t) converges under

all embeddings of Q(ζ) in R. Because |x| ≥ qp−1, obviously 1
x < 1. So σ(F ( 1

x))
converges in R for all embeddings σ. So σ(xmF ( 1

x )) converges to a q-th root of

σ((1 − ζ
x)θ) in R. But R does not have any q-th roots of unity other than 1, so

under all embeddings σ we have σ(xmF ( 1
x )) = σ(α).

Remember that Fl(T ) denotes the l-th partial sum of the series F (T ). Define
γ = qm+ordq(m!)xmFm( 1

x). Lemma 7.2.1 implies γ ∈ Z[ζ + ζ−1].

The most important step in our Runge-type argument consists of showing that for
every embedding σ : Q(ζ + ζ−1) ↪→ R we have

|σ(qm+ordq(m!)α− γ)| < 1.

From the second statement in lemma 7.2.2 we know

|σ(qm+ordq(m!)α− γ)| = |qm+ordq(m!)xmσ(α) − σ(γ)|

= qm+ordq(m!)|xmσ(F (
1

x
)) − xmσ(Fm(

1

x
))|

= qm+ordq(m!)|xmF σ( 1

x
) − F σm(

1

x
)|. (7.5)

From the first statement in lemma 7.2.2 it follows that

|xmF σ( 1

x
) − F σm(

1

x
)| ≤

(

2m

m+ 1

) |x|m 1
|x|m+1

(1 − 1
|x|)

2m

=

(

2m

m+ 1

)

1

|x|
1

(1 − |x|)2m . (7.6)

Putting inequalities (7.5) and (7.6) together, we find

|σ(qm+ordq(m!)α− γ)| ≤ qm+ordq(m!)

(

2m

m+ 1

)

1

|x|
1

(1 − |x|)2m

= q
m+b m

q
c+b m

q2 c+...
(

2m

m+ 1

)

1

|x|
1

(1 − |x|)2m

≤ qm+ m
q−1

(

2m

m+ 1

)

1

|x|
1

(1 − |x|)2m

≤ qm+ m
q−1 qm

log 4
log q

1

|x|
1

(1 − |x|)2m . (7.7)
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We get this last inequality from the fact that
(

2m
m+1

)

< (1 + 1)2m = 4m = qm
log 4
log q .

Now we estimate this last expression qm+ m
q−1 qm

log 4
log q 1

|x|
1

(1−|x|)2m using 0 ≤ m ≤ p−1
2 ,

which implies q > 2m, and |x| ≥ qp−1, which we proved in corollary 5.4. From these
bounds we obtain:

1

(1 − |x|)2m ≤ 1

(1 − |x|)p−1
≤ 1

(1 − qp−1)p−1
<

1

(1 − qp−1)p−1

(qp−1)p

qp−1 − 1

=

(

qp−1

qp−1 − 1

)p

=

(

1 − 1

qp−1

)−p

. (7.8)

And, using again that m ≤ p−1
2 and |x| ≥ qp−1, it follows from (7.7) and (7.8) that

|σ(qm+ordq(m!)α− γ)| ≤ q
p−1
2 (−1+ 1

q−1 + log 4
log q

)

(

1 − 1

qp−1

)−p

. (7.9)

Our aim is to show that this expression we found here is smaller than 1. To do this,
we take the q-logarithm and we show that it is negative. Taking the q-logarithm,
we obtain:

p− 1

2

(

−1 +
1

q − 1
+

log 4

log q

)

− p
log(1 − 1

qp−1 )

log q
.

Now we use that q is at least 7. We find:

p− 1

2

(

−1 +
1

q − 1
+

log 4

log q

)

≤ p− 1

2

(

−1 +
1

6
+

log 4

log q

)

and

− log(1− 1

qp−1
) = log(

qp−1 − 1

qp−1
)−1 = log(

qp−1

qp−1 − 1
) ≤ log(

72

72 − 1
) = log(

49

48
) <

1

48
.

Therefore,

p− 1

2

(

−1 +
1

q − 1
+

log 4

log q

)

− p
log(1 − 1

qp−1 )

log q

≤ p− 1

2

(

−1 +
1

6

log 4

log q

)

+
p

48 log 7
< 0

for all p ≥ 7. This is what we wanted to show.

We conclude that for all embeddings σ : Q(ζ+ζ−1) ↪→ R, we have |σ(qm+ordq(m!)α−
γ)| < 1. Remember that α and γ are algebraic integers, so qm+ordq(m!)α − γ is
an algebraic integer, so its norm is an integer. However, we showed that for all
embeddings in R its absolute value is smaller than 1. It follows that qm+ordq(m!)α−γ
equals 0. We obtain:

qm+ordq(m!)α = γ = qm+ordq(m!)xmFm(
1

x
) =

m
∑

k=0

qm+ordq(m!) ak
k!qk

xm−k.

We know that qm+ordq(m!)α is an algebraic integer, and all terms of the series on
the right-hand side are algebraic integers as well. If m = 0, then θ = 0 and we are
done. If m ≥ 1, then qm+ordq(m!)α is obviously divisible by q. For k < m, all terms
qm+ordq(m!) ak

k!qk are divisible by q. It follows that the m-th term is also divisible

by q. Note that the m-th term qm+ordq(m!) am

m!qm has as many factors q as am has.

Therefore, am ≡ 0 (mod q).
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On the other hand, from lemma 7.2.1 we know that

am ≡
(

−
∑

τ∈G

nτζ
τ

)m

(mod q).

In lemma 5.6 however, we proved that the ring Z[ζ]/(q) does not have any nilpotent
elements. Therefore, it follows that q divides

∑

τ∈G nτ ζ
τ . Since the ζτ are linearly

independent over Q, we find that q divides nτ for all τ ∈ G. We conclude that
θ ∈ qZ[G], which is what we wanted to show.

Actually, the result we use in chapter 8 does not concern the group ring Z[G], but
it concerns Z[G+]. But the analogue of theorem 7.1 for the group ring Z[G+] is a
corollary of theorem 7.1, as we show now.

Corollary 7.3. If θ ∈ Z≥0[G
+] such that w(θ) ≡ 0 (mod q) and if ((x−ζ)(x−ζ−1))θ

is a q-th power in Q(ζ + ζ−1)∗, then θ ∈ qZ[G+].

Proof. Suppose θ ∈ Z≥0[G
+] satisfies the conditions of the statement. Reducing

the coefficients of θ modulo q, we find an element θ′ =
∑

p−1
2

a=1 nσa
σa of Fq[G

+]. Here
σa denotes the element of G+ that maps ζ + ζ−1 to ζa + ζ−a.

Define θ̃ ∈ Fq [G] as follows: θ̃ =
∑

p−1
2

a=1 nσa
(σa +σ−a). Here σa denotes the element

of G that maps ζ to ζa. Note that θ̃ is divisible by 1 + ι. Since w(θ) =
∑

σ∈G+ nσ
is divisible by q, the weight of θ̃ is 0 in Fq. Therefore, θ′ ∈ (1+ ι)Iaug. We find that

(x− ζ)θ̃ = (x− ζ)
P

p−1
2

a=1 nσa (σa+σ−a)

= (x− ζ)
P

p−1
2

a=1 nσaσa(x− ζ)
P

p−1
2

a=1 nσaσ−a

= ((x − ζ)(x − ζ−1))
P

p−1
2

a=1 nσaσa

= ((x − ζ)(x − ζ−1))θ
′

. (7.10)

It follows that (x − ζ)θ̃ differs from (x − ζ)θ by a q-th power in Q(ζ + ζ−1)∗. By

assumption, ((x − ζ)(x − ζ−1))θ is a q-th power in Q(ζ + ζ−1)∗, so (x − ζ)θ̃ is a
q-th power in Q(ζ + ζ−1)∗. Theorem 7.1 now tells us that θ′ = 0 in Fq[G], so all
coefficients nσ are divisible by q. Therefore, θ ∈ qZ[G+], which is what we wanted
to show. �
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Chapter 8

The second case: q does not

divide p − 1

In this chapter we put all ingredients from the previous chapters together. We
assume there exists a solution in non-zero integers x and y of the equation xp−yq =
1, where p and q are distinct odd primes that are at least 7. Note that in section 5.3
we dealt with the cases in which p or q is smaller than 7. Without loss of generality,
we assume p > q. Eventually, we derive a contradiction from all this.

We make a further assumption in this chapter, namely that q does not divide p− 1.
We are allowed to do this since the case in which q does divide p− 1 has been dealt
with in chapter 6.

So the theorem we prove in this chapter is the following.

Theorem 8.1. Let p and q be distinct odd primes that are at least equal to 7, such

that q does not divide p− 1. Then the Catalan equation xp− yq = 1 has no solution

in non-zero integers x and y.

In this chapter, we will work mainly in the field Q(ζ + ζ−1).

8.1 An exact sequence

From the equation xp − yq = 1, it follows that

yq = xp − 1 =

p−1
∏

i=0

(x− ζi). (8.1)

First, we define a very useful subgroup of Q(ζ + ζ−1)∗.

Definition 8.1. We define H as follows:

H = {α ∈ Q(ζ + ζ−1)∗ : ∀l 6= p : ordl α ≡ 0 (mod q)},
where the l’s range over the prime ideals in OK+ .
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It can be shown easily that H is a subgroup of Q(ζ + ζ−1)∗. Since for all elements
σ ∈ G+ we have σ(p) = p, the subgroup H is closed under the Galois action
and therefore, it is a Z[G+]-module. As we noted in section 4.2, a Z[G+]-module
that is annihilated by q is an Fq [G

+]-module as well. We find that the group
H/Q(ζ+ ζ−1)∗q is an Fq[G

+]-module. First, note that Q(ζ+ ζ−1)∗q ⊂ H ; since the
elements of Q(ζ + ζ−1)∗ are q-th powers itself, the ideals they generate will be q-th
powers of fractional ideals.

We will show thatH contains the element (x−ζ)(x−ζ−1). From lemma 5.5, we know
that in Q(ζ), the element x−ζ

1−ζ generates a q-th power of an OK-ideal. Therefore, in

Q(ζ + ζ−1), the element (x− ζ)(x− ζ−1) generates an ideal of the form pkaq , with
a an OK+-ideal an k an integer. Therefore, ordl((x − ζ)(x − ζ−1)) ≡ 0 (mod q) for
all prime ideals l distinct from p. So (x− ζ)(x − ζ−1) is an element of H .

We define an element ξ of H/Q(ζ + ζ−1)∗q as follows.

Definition 8.2. The element ξ of H/Q(ζ+ ζ−1)∗q is the image of (x− ζ)(x− ζ−1)
under the projection map H −→ H/Q(ζ + ζ−1)∗q.

We have to give some more definitions before we can state the main theorem of this
section.

Definition 8.3. Define the subgroup E of Q(ζ + ζ−1)∗ as follows.

E = {α ∈ Q(ζ + ζ−1)∗ : ∀l 6= p : ordl α = 0},

where the l ranges over the prime ideals of OK+ .

Just as for H , it is easy to see that E indeed is a subgroup of Q(ζ+ ζ−1)∗. Actually,
it is isomorphic (as groups) to E = E+ × 〈λ〉, where λ = (1 − ζ)(1 − ζ−1). This is
the case because if α is an element of E , then for all prime ideals l 6= p of OK+ we
have ordl α = 0. Therefore, (α) = pk for some integer k and it follows that α = uλk,
with u a unit of OK+ . So we find a group homomorphism E −→ E+ ×〈λ〉 given by
uλk 7→ (u, λk), that is bijective.

Definition 8.4. ClK+ [q] denotes the q-torsion part of the class group ClK+ of

K+ = Q(ζ + ζ−1), i.e.

ClK+ [q] = {[a] ∈ ClK+ : [a]q = [1]}.

From now on, we denote Fq [G
+] by R.

In this section we prove the following theorem.

Theorem 8.2. Let the sequence

1 −→ E/Eq ψ′

−→ H/Q(ζ + ζ−1)∗q
ψ−→ ClK+ [q] −→ 1 (8.2)

of Fq[G
+]-modules be defined as follows.

The map ψ′ is induced by the embedding E −→ H.

For α in H/Q(ζ+ ζ−1)∗q, we have (α) = pkaq for some fractional OK+-ideal a and

an integer k. Now define the map ψ as follows: for each coset of H/Q(ζ + ζ−1)∗q,
choose a representative, α, say. We define ψ(αQ(ζ + ζ−1)∗q) = [a]ClK+ [q]. Then

this sequence is exact.
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Proof. It is clear that all groups in the sequence are indeed Fq [G
+]-modules.

Note that for all α ∈ H with (α) = pkaq, we have that aq is a principal ideal.
Therefore, the image of ψ is indeed contained in ClK+ [q].

Since ψ′ is induced by the embedding E −→ H , it is a well-defined R-linear homo-
morphism which is injective. From the definition of ψ′ it is obviously an R-linear
homomorphism as well.

It is easy to see that ψ is a well-definedR-linear homomorphism too. For [a]ClK+ [q] ∈
ClK+ [q], we know that aq is a principal ideal, with generator α, say. The image of
αQ(ζ + ζ−1)∗q under ψ now equals [a]ClK+ [q]. Therefore, ψ is surjective.

We need to show that the image of ψ′ equals the kernel of ψ. Let us find out what
the kernel of ψ looks like. The kernel of ψ consists of cosets αQ(ζ+ζ−1)∗q such that
ψ(αQ(ζ + ζ−1)∗q) = [a]ClK+ [q] = [1]ClK+ [q]. This means that the ideal (α) equals
pk(β)q , for some β ∈ Q(ζ + ζ−1)∗. It follows that α = λkβq , so αH/Q(ζ + ζ−1)∗q is
the image under ψ′ of the element λkE/Eq . It is obvious that every element in the
image of ψ′ maps to [1]ClK+ [q] under ψ.

It follows that the sequence we defined above is indeed an exact sequence of Fq [G
+]-

modules. �

8.2 The module E/E q is isomorphic to Fq[G
+] as an

Fq[G
+]-module

In this section we show that E/Eq is R-isomorphic to R = Fq [G
+] itself.

Theorem 8.3. The Fq [G
+]-module E/Eq is free of rank 1 over Fq[G

+].

First, we prove the following lemma which will help us in the proof of this theorem.

Lemma 8.4. Suppose L ⊂ V = Z[G+] ⊗Z R is both a lattice of full rank and a

Z[G+]-submodule. Then L/qL ∼=Z[G+] Fq [G
+] for all primes q that do not divide

#G+.

Proof. Note that Z[G+]⊗Z R is isomorphic to
∏

σ∈G+ R. As L contains an R-basis
for V and Q is dense in R, we know that Q · L is dense in V .

Define e = (1, 0, . . . , 0) ∈ V . Note that the σ(e) for σ ∈ G+ are linearly independent
over R, since σ(e) = (0, . . . , 0, 1, 0, . . . , 0) with the 1 on place σ−1. Of course, it
could be the case that e 6∈ Q · L. But we can find e′ ∈ V such that e′ is as close
to e as we want. In particular, we can choose e′ such that the σ(e′) are linearly
independent over R as well. Write e′ = (εσ)σ∈G+ .

Now choose N ∈ Z such that Ne′ ∈ L. Such an N obviously exists, because
e′ ∈ Q · L. Define L′ = Z[G+] ·Ne′. Because L is a Z[G+]-module, L′ ⊂ L. Then
L′ ∼=Z[G+] Z[G+], by the map θNe′ 7→ θ. In other words: L′ is free of rank 1 as a
Z[G+]-module.

We can see easily that L/L′ ∼=Z[G] qL/qL
′. The map ϕ defined by

ϕ : L/L′ −→ qL/qL′
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l + L′ 7−→ ql + qL′ (8.3)

is an Z[G+]-linear isomorphism, since multiplication by q is Z[G+]-linear and it
induces this isomorphism.

Our claim is now that L′/qL′ ∼=Z[G+] Fq[G
+]. We already know that L′ ∼=Z[G+]

Z[G+]. Therefore, L′/qL′ ∼=Z[G+] Z[G+]/qZ[G+] ∼=Z[G+] Fq[G
+].

There exists a finite simple filtration of L/qL′. In lemma 4.4 we showed that Fq[G
+]

is a finite product of finite fields, so L/qL′ is isomorphic to a direct sum of vector
spaces. Therefore, if we take a submodule that is not equal to 0 or to the module
itself, then the dimension of this submodule is at least 1 smaller than the dimension
of the module itself. It follows that each sequence L/qL′ ⊃ L1 ⊃ L2 ⊃ L3 ⊃ . . . of
distinct submodules is finite.

We can construct a simple filtration in two ways, namely via L′/qL′ or via qL/qL′,
let us say:

L/qL′ ⊃M1 ⊃ . . . ⊃Mi−1 ⊃ L′/qL′ ⊃ . . . ⊃ {0}
and

L/qL′ ⊃ N1 ⊃ . . . ⊃ Nj−1 ⊃ qL/qL′ ⊃ . . . ⊃ {0}.
Of course, L/qL′ is Jordan-Hölder equivalent to itself, so there exists a permutation
π of the indices such that Mi/Mi+1

∼= Nπ(i)/Nπ(i)+1. Therefore, (L′/qL′)/{0} ∼=
L′/qL′ and (L′/qL′)/(qL/qL′) ∼= L/qL are Jordan-Hölder equivalent as modules
over Z[G+] and over Fq[G

+].

We already saw in lemma 4.4 that if q does not divide the order p− 1, then Fq[G
+]

is isomorphic to a finite product of finite fields, so an Fq[G
+]-module M is a finite

product of vector spaces. Therefore, if M ′ and M are Fq [G
+]-modules such that

M ′ ⊂ M , then M ∼=Fq[G+] M
′ ⊕ (M/M ′). So every module is isomorphic to the

direct sum of its Jordan-Hölder factors.

It follows that L′/qL′ and L/qL are isomorphic to the same direct sum of the same
quotients Mi/Mi+1 and, therefore, they are Fq[G

+]-isomorphic. �

Proof of theorem 8.3. We already noted that E ∼= E+ × 〈λ〉. The Dirichlet unit
theorem tells us that E+ = O∗

K+
∼= µK+ × η1 × η2 × . . . × ηn−1, with µK+ the

subgroup of K+ = Q(ζ + ζ−1) consisting of roots of unity, the ηi elements of E+

called fundamental units and n = p−1
2 , the number of elements in G+. Therefore,

E+ ∼= {±1}× Zn−1

and
E ∼= {±1}× Zn,

where the isomorphisms are isomorphisms of groups. Here we use that λ is not a
unit.

It follows that
E/Eq ∼= (Z/qZ)n.

The prime q does not divide 2n = p− 1 by assumption.
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Consider the following map:

L : E+ = O∗
K+ −→

∏

σ∈G+

R

u 7−→ (log |σ(u)|)σ∈G+ . (8.4)

It is easy to see that L is a homomorphism. According to the Dirichlet unit
theorem, the kernel kerL equals µK+ = {±1} and the image L(E+) is a lat-
tice of rank n − 1 in

∏

σ∈G+ R. In fact, L(E+) is contained in the hyperplane
H = {(xσ)σ∈G+ ∈ ∏

σ∈G+ R :
∑

σ∈G+ xσ = 0}, because
∑

σ∈G+ log |σ(u)| =
log |

∏

σ∈G+ σ(u)| = log |N(u)| = 0, since |N(u)| = 1 for all u ∈ E+ = O∗
K+ .

We have the map

L : E −→
∏

σ∈G+

R

x 7−→ (log |σ(x)|)σ∈G+ . (8.5)

This map L is a homomorphism as well. Of course, L(E+) is contained in L(E).
We have for all elements x of E that x = uλk with u ∈ E+ and k ∈ Z. Note that
N(λ) = N((1 − ζ)(1 − ζ−1)) =

∏p
a=1(1− ζa) = p, so L(E) 6⊂ H. Therefore, L(E) is

a lattice of rank n in
∏

σ∈G+ R.

It is clear that L is a Z[G+]-linear map. Therefore, L(E) is a Z[G+]-submodule of
∏

σ∈G+ R.

From lemma 8.4 it follows that L(E)/qL(E) ∼=Z[G+] Fq[G
+].

The map L defined by

L : E/Eq −→ L(E)/qL(E)

e+ Eq 7−→ L(e) + qL(E). (8.6)

gives an isomorphism of Z[G+]-modules.

We conclude that E/Eq ∼=Z[G+] L(E)/qL(E) ∼=Z[G+] Fq[G
+]. Since E/Eq is a Fq [G

+]-
module, it follows that E/Eq ∼=Fq[G+] Fq[G

+]. �

8.3 All cyclotomic units belong to ξIaug

In the previous section we saw that E/Eq is R-isomorphic to R = Fq [G
+]. In lemma

4.4 we saw what Fq[G
+] looks like: it is isomorphic to a finite product of finite

fields.

Summarizing, we have the following situation:

R = Fq[G
+] ∼= Fq [X ]/(X

p−1
2 − 1) ∼=

<∞
∏

i

(finite fields).

Lemma 8.5. The subset C+Eq/Eq ⊂ E/Eq is R-isomorphic to an R-ideal a.
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Proof. Since C+ is closed under the Galois action, C+Eq/Eq is a sub-R-module of
E/Eq ∼= R. Therefore, it is R-isomorphic to an ideal of R. �

We are interested in the structure of the R-ideal a. The following lemma tells us
more about it.

Lemma 8.6. The R-ideal a is a principal ideal (e), with e2 = e.

Proof. We saw that R is isomorphic to a finite product of finite fields, let us say
there are n fields F1, . . . , Fn in the product. Therefore, all ideals in R are isomorphic
to an ideal of this finite product of finite fields. Of course, all ideals I ⊂ ∏n

i=1 Fi
are of the form I = I1 × . . . × In, with Ij ⊂ Fj an ideal for all j = 1, . . . , n. Since
the only ideals of a field are the trivial ideals 0 and Fi itself, all ideals in R have a
generator e = (e1, . . . , en), where ei equals 0 or 1. Of course, for such a generator
we have that e2 = e. �

This ideal a has an other interesting property. Let Iaug be the augmentation ideal
of the weight homomorphism on R = Fq[G

+].

Lemma 8.7. The ideal a is contained in the augmentation ideal Iaug.

Proof. Remember that the augmentation ideal Iaug is defined as the kernel of the
weight homomorphism. So we want to show that for all elements a =

∑

σ∈G+ aσσ ∈
a, the sum

∑

σ∈G+ aσ equals 0. From lemma 4.5 it is easy to see that for all

cyclotomic units c ∈ C+, we have that the norm N(c) = c
P

σ∈G+ σ equals 1.

Let a =
∑

σ∈G+ aσσ be an element of a and let ϕ be the R-isomorphism be-
tween C+Eq/Eq and a. Define cEq to be the inverse image of a under ϕ, i.e.
cEq = ϕ−1(a). Then we have that ϕ((cEq)

P

σ∈G+ σ) = ϕ(Eq) = 0 and, on the
other hand, ϕ((cEq)

P

σ∈G+ σ) = (
∑

σ∈G+ σ)ϕ(cEq) = (
∑

σ∈G+ σ) · a. It follows that

(
∑

σ σ)(
∑

σ∈G+ aσσ) =
∑

ψ∈G+(
∑

τσ=ψ aσ)ψ = 0. Therefore, p−1
2

∑

σ∈G+ aσ = 0,
so
∑

σ∈G+ aσ = 0, which is what we wanted to show. �

Lemma 8.8. The ideal a annihilates the q-torsion part ClK+ [q] of the class group

of Q(ζ + ζ−1).

Proof. Since the isomorphism ϕ : E/Eq −→ R also gives an isomorphism between
C+Eq/Eq and a, the quotients E/C+Eq and R/a are R-isomorphic as well. It fol-
lows that the R-ideal a annihilates E/C+Eq . Because E+/C+E+q is contained in
E/C+Eq , the ideal a also annihilates E+/C+E+q. Of course, the generator e of a,
that exists according to lemma 8.6, also annihilates E+/C+E+q.

Choose a non-negative integer m such that the Sylow-q-subgroup (E+/C+)q of
E+/C+ equals E+/(C+E+qm

). Of course we have to show that such an m exists.
We know that the group E+/C+ is finite and abelian, so it is isomorphic to the
direct product of its Sylow-subgroups. In other words, we have

E+/C+ ∼= Sp1 × Sp2 × . . .× Spt
,

where the pi are the distinct prime divisors of #(E+/C+). Now consider (E+/C+)q
m

,
where qm = #(E+/C+)q . Then we find:

∼= Sq
m

p1 × Sq
m

p2 × . . .× Sq
m

pt
.

If pi does not equal q, then Sq
m

pi

∼= Spi
. If pi = q, then Sq

m

pi
= {1}. It follows that

(E+/C+)q ∼= (E+/C+)/(E+/C+)q
m

. Also, the group (E+/C+)q
m

is isomorphic to
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the group E+qm

/(C+∩E+qm

) by the isomorphism ϕ : uq
m

C+ 7→ uq
m

(C+ ∩E+qm

).
It follows that

(E+/C+)q ∼= (E+/C+)/(E+/C+)q
m

∼= (E+/C+)/(E+qm

/(C+ ∩ E+qm

))
∼= E+/C+E+qm

. (8.7)

We have the following inclusions:

E+ ⊃ C+E+q ⊃ C+E+q2 ⊃ C+E+q3 ⊃ . . . ⊃ C+E+qm

.

Choose an ε ∈ Z[G+] such that ε maps to e under the canonical map Z[G+] −→
Fq[G

+]. We know that e annihilates E+/C+E+q . It follows that ε also annihilates
E+/C+E+q .

The claim is now that ε also annihilates all quotients C+E+q/C+E+q2 ,

C+E+q2/C+E+q3 , . . ., C+E+qm−1

/C+E+qm

. We can see this as follows. For
k = 1, . . . ,m− 1, define the map

ϕ : C+E+qk−1

/C+E+qk −→ C+E+qk

/C+E+qk+1

uC+E+qk 7−→ uqC+E+qk+1

. (8.8)

First, we show that ϕ is well-defined. Let u, u′ be elements of E+ such that

uC+E+qk

= u′C+E+qk

, so u = u′cvq
k

for some c ∈ C+ and v ∈ E+. Then

ϕ(uC+E+qk

) = uqC+E+qk+1

= (u′cvq
k

)qC+E+qk+1

= u′qC+E+qk+1

= ϕ(u′C+E+qk

). (8.9)

It is obvious that ϕ is an R-linear group homomorphism. Also, we have that ϕ is

surjective: the coset uq
k

C+E+qk+1

has the coset uq
k−1

C+E+qk

as an original.

It follows that ϕ(uC+E+q)ε = ϕ((uC+E+q)ε) = ϕ(C+E+q) = C+E+q2 , so since ε

annihilatesE+/C+E+q and the map ϕ is surjective, it also annihilates C+E+q/C+E+q2 .

Similarly, it follows that ε annihilates all quotients C+E+q/C+E+q2 , . . .,

C+E+qm−1

/C+E+qm

.

Now our claim is that εm annihilates E+/C+E+qm

= (E+/C+)q . Let uC+E+qm

be an element of E+/C+E+qm

. We know that ε annihilates E+/C+E+q, so
(uC+E+q)ε = uεC+E+q , so uε ∈ C+E+q . We know that ε annihilates

C+E+q/C+E+q2 , so (uεC+E+q2)ε = uε
2

C+E+q2 = C+E+q2 , so uε
2 ∈ C+E+q2 . If

we go on like this, we find that εm annihilates E+/C+E+qm

.

From Thaine’s theorem 4.7, we obtain that εm annihilates (ClK+)q as well. Since all
elements in ClK+ [q] have order 1 or q, the prime q is an exponent of ClK+ [q]. From
group theory, it follows that #ClK+ [q] divides qn for some integer n. Therefore,
ClK+ [q] is a q-group and it is contained in the Sylow-q-subgroup (ClK+)q . So εm

also annihilates ClK+ [q].

Under the map Z[G+] −→ Fq[G
+], the element εm 7→ em = e. Suppose εm =

∑

σ∈G+ εσσ, with εσ ∈ Z. We have e =
∑

σ∈G+ eσσ with eσ ∈ Fq[G
+] such that
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eσ is a representative of the coset ε̄σ for all σ ∈ G+. Therefore, for an ideal class
[b] ∈ ClK+ [q] we have

[b]ε
m

= [b](
P

σ∈G+ εσσ)m

= [b(
P

σ∈G+ (eσ+kσq)σ)m

= [b](
P

σ∈G+ eσσ+q
P

σ∈G+ kσσ)m

= [b](
P

σ∈G+ eσσ)m

= [b]e
m

= [b]e, (8.10)

with kσ ∈ Z for all σ ∈ G+. On the other hand, [b]ε
m

= [1]. Therefore, e annihilates
ClK+ [q], which is what we wanted to show. �

We show that a maps H/Q(ζ + ζ−1)∗q into C+Eq/Eq .

Lemma 8.9. We have that

(H/Q(ζ + ζ−1)∗q)a ⊂ C+Eq/Eq.

Proof. Consider the exact sequence 8.2 of R-modules again. Let ψ′ be the injective
map E/Eq −→ H/Q(ζ + ζ−1)∗q . Then we have for all αQ(ζ + ζ−1)∗q ∈ H/Q(ζ +
ζ−1)∗q :

ψ′((αQ(ζ + ζ−1)∗q)ε
m

) = (ψ′(αQ(ζ + ζ−1)∗q))ε
m

= [1],

because εm annihilates ClK+ [q]. Therefore, for all αQ(ζ+ζ−1)∗q ∈ H/Q(ζ+ζ−1)∗q

we have (αQ(ζ+ζ−1)∗q)ε
m ∈ ker(ψ) = im(ψ′) = E/Eq. So εm mapsH/Q(ζ+ζ−1)∗q

into E/Eq .

Now we show that εm+1 maps H/Q(ζ + ζ−1)∗q into C+Eq/Eq. Note that for all

αQ(ζ + ζ−1)∗q ∈ H/Q(ζ + ζ−1)∗q we have (αQ(ζ + ζ−1)∗q)ε
k

= (αQ(ζ + ζ−1)∗q)e
k

for all positive integers k. Therefore, αε
m

Q(ζ + ζ−1)∗q = αe
m

Q(ζ + ζ−1)∗q ∈ E/Eq ,
so αe

m ∈ E . It follows that αε
m+1

= αe
m+1

= αe
m

e ∈ C+Eq, because αe
m ∈ E and e

annihilates E/C+Eq . We obtain that εm+1 maps H/Q(ζ + ζ−1)∗q inside C+Eq/Eq.
�

Before we can prove the main result of this section, we prove the following lemma,
in which we use the Runge-type theorem we saw in chapter 7.

Remember that ξ is the element of H/Q(ζ+ ζ−1)∗q that is the image of (x− ζ)(x−
ζ−1) under the projection map H −→ H/Q(ζ + ζ−1)∗q .

Lemma 8.10. We have the following R-isomorphism:

ξa ∼= a.

Proof. It is obvious that ξa ⊂ H/Q(ζ + ζ−1)∗q , because ξ ∈ H/Q(ζ + ζ−1)∗q .

Consider the map

ϕ : Iaug −→ H/Q(ζ + ζ−1)∗q

θ 7−→ ξθ. (8.11)

Of course, we also have the restriction map

ϕ′ : a −→ ξa ⊂ H/Q(ζ + ζ−1)∗q

θ 7−→ ξθ. (8.12)

It is obvious that ϕ and ϕ′ are homomorphisms. We show that ϕ is R-linear. Let
θ and θ′ be elements of Iaug. Then ϕ(θ · θ′) = ξθ·θ

′

= (ξθ)θ
′

= ϕ(θ)θ
′

. Of course, ϕ′

is R-linear as well.
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An equivalent formulation of corollary 7.3 is the following: the map given by

Iaug −→ H/Q(ζ + ζ−1)∗q

θ 7−→ ξθ (8.13)

is injective. Therefore, ϕ′ is injective as well.

By definition of ξa, the map ϕ′ is surjective. So we have shown that a is R-
isomorphic to ξa. �

We conclude that

a ∼= ξa ⊂ (H/Q(ζ + ζ−1)∗q)a ⊂ C+Eq/Eq ∼= a. (8.14)

It follows that all the ‘⊂’ actually are ‘=’. Therefore,

C+/(C+ ∩ Eq) ∼= C+Eq/Eq = (H/Q(ζ + ζ−1)∗q)a = ξa ⊂ ξIaug . (8.15)

8.4 The contradiction

The aim of this section is to derive a contradiction from the facts we found in
the previous section, together with the fact that q2 divides x, which we proved in
theorem 5.7.

By abuse of notation, let ξ denote the element (x − ζ)(x − ζ−1) ∈ H . We start by
proving the following lemma.

Lemma 8.11. If γ ∈ C+, then for all σ ∈ G there exist non-negative integers nσ
and there exists δ ∈ OK+ such that δqγ =

∏

σ∈G+(σ(ξ))nσ . The element γ is a q-th
power modulo q2OK+ .

Proof. At the end of the previous section, we concluded that C+/(C+ ∩ Eq) is
contained in ξIaug = (ξQ(ζ + ζ−1)∗q)Iaug = ξIaugQ(ζ + ζ−1)∗q . It follows that if
γ ∈ C+, then γ ∈ ξθQ(ζ + ζ−1)∗q , for some θ ∈ Iaug, so there exists θ′ ∈ Z[G+] and

δ ∈ Q(ζ + ζ−1)∗ such that γδq = ξθ
′

. We can choose θ′ =
∑

σ∈G+ nσσ such that

the coefficients nσ of θ′ are non-negative integers, since the difference between ξθ

and ξθ
′

is a q-th power, no matter what lift of θ we choose.

We need to show that the δ we find in this way is an algebraic integer, i.e. that
it is an element of OK+ . Of course, γ ∈ O∗

K+ and also γ−1 ∈ O∗
K+ . Let σ be an

element of G+. Then we find that σ(ξ) = σ((x − ζ)(x− ζ−1)) = (x− ζa)(x− ζ−a)
for some a ∈ Z. Since (x−ζa)(x−ζ−a) = x2− (ζa+ζ−a)x+1 ∈ Z[ζ+ζ−1] = OK+ ,
we obtain ξθ

′ ∈ OK+ . It follows that δq = γ−1ξθ
′ ∈ Z[ζ + ζ−1] = OK+ . Since δ is

integral over OK+ , it is an element of OK+ , which is what we wanted to show.

We have σ(ξ) = (x − ζa)(x − ζ−a) = x2 − (ζa + ζ−a)x + 1 for some integer a. We
saw in theorem 5.7 that q2 divides x. Therefore, σ(ξ) ≡ 1 (mod q2). It follows that
δqγ =

∏

σ∈G+ σ(ξ)nσ ≡ 1 (mod q2). So δq−1γ is the inverse of δ modulo q2OK+ and
γ ≡ (δq−1γ)q (mod q2). This means that γ is a q-th power modulo q2OK+ . �

Lemma 8.12. The element 1 + ζ of Q(ζ) is a q-th power modulo q2Z[ζ].
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Proof. First, we show that (1 + ζ)p ∈ C+. Note that 1 + ζ = 1−ζ2

1−ζ , so (1 + ζ)p =
(

1−ζ2

1−ζ

)p

= ξp2 ∈ C+, with ξ2 defined as we did in theorem 4.5. Applying lemma

8.11 we obtain that (1 + ζ)p is a q-th power modulo q2OK+ . We need to show that
1 + ζ is a q-th power modulo q2OK . Since all elements of OK+ = Z[ζ + ζ−1] are
also elements of OK = Z[ζ], we have the following identity:

(1 + ζ)p = αq + q2Z[ζ],

for some α ∈ Z[ζ]. Of course, (1 + ζ)p ∈ C+ ∈ Z[ζ + ζ−1]∗, so there exists
a ∈ Z[ζ + ζ−1]∗ such that a(1 + ζ)p = 1. Therefore, we have that a(1 + ζ)p−1 is the
inverse of 1 + ζ, so 1 + ζ ∈ Z[ζ + ζ−1]∗.

Since p and q are coprime, there exists s ∈ Z such that ps ≡ 1 (mod q), let us say
that ps = 1 + kq. We find that:

(1 + ζ)(1 + ζ)kq = (1 + ζ)1+kq = (1 + ζ)ps = ((1 + ζ)p)s ≡ αqs (mod q2Z[ζ]).

Therefore, 1 + ζ ≡ (αs)q((1 + ζ)−k)q (mod q2Z[ζ]), so 1 + ζ is a q-th power modulo
q2Z[ζ]. �

We conclude that 1 + ζ ≡ αq (mod q2Z[ζ]) for some α ∈ Z[ζ].

Of course, the Galois group G = Gal(Q(ζ)/Q) acts on Q(ζ) and also on Z[ζ]. For
a ∈ Z, let σa denote the element of G that sends ζ to ζa. Of course, if two integers
a and b are congruent modulo p, then σa = σb. The following lemma tells us more
about σq .

Lemma 8.13. For all α ∈ Z[ζ] we have that σq(α) ≡ αq (mod qZ[ζ]).

Proof. Since q is unramified in Q(ζ), we know that there exists a Frobenius auto-
morphism τq ∈ G, i.e. τq(α) ≡ αq (mod q) for all α ∈ Z[ζ]. Since this congruence
holds for α = ζ, we find that τq equals σq . Therefore, for all α ∈ Z[ζ] we have
σq(α) ≡ αq (mod q). �

Now we apply σq to 1 + ζ. On the one hand, this yields σq(1 + ζ) = 1 + ζq , and on
the other hand σq(1 + ζ) ≡ σq(α

q) ≡ (σq(α))q ≡ βq (mod q2Z[ζ]) for some β ∈ Z[ζ].
Therefore,

1 + ζq ≡ βq (mod q2Z[ζ])

for some β ∈ Z[ζ].

Since σq(1+ζ) = 1+ζq ≡ βq (mod q2Z[ζ]), we have σq(1+ζ) ≡ βq ≡ σq(β) (mod qZ[ζ]).
Applying σ−1

q , we find 1+ζ ≡ β (mod qZ[ζ]), so 1+ζ = β+qa with a ∈ Z[ζ]. There-
fore,

(1 + ζ)q = (β + qa)q ≡ βq (mod q2Z[ζ]).

It follows that (1 + ζ)q ≡ 1 + ζq (mod q2Z[ζ]), which implies

(1 + ζ)q =

q
∑

i=0

(

q

i

)

ζi ≡ 1 + ζq (mod q2Z[ζ]).

It follows that we have
∑q−1

i=1

(

q
i

)

ζi =
∑p−2
i=0 q

2biζ
i for integers bi. Unique represen-

tation of elements of Z[ζ] as linear combinations of 1, ζ, ζ2, . . . , ζp−2 over Z implies
that q2 divides

(

q
i

)

for all i = 1, . . . , q − 1, which is a contradiction. This completes
the proof of Catalan’s conjecture.
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deuxième série, volume 12, pages 42–43. 1885.

[6] E.Z. Chein. A note on the equation x2 = yq + 1. Proceedings of the American

Mathematical Society, 56:83–84, 1976.

[7] Leonard Eugene Dickson. History of the Theory of Numbers, volume II. Chelsea
Publishing Company, New York, 1952.

[8] L. Euler. Commentationes Arithmeticae I. In Opera Omnia, Series I, volume II,
pages 56–58. B.G. Teubner, Basel, 1915.

[9] Chao Ko. On the diophantine equation x2 = yn + 1, xy 6= 0. Scientia Sinica,
14:457–460, 1965.
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