
Abstract

Architecture Description Languages (ADLs) are
emerging as viable tools for formally representing the
architectures of systems. While growing in number,
they vary widely in terms of the abstractions they
support and analysis capabilities they provide.
Further, many languages not originally designed as
ADLs serve reasonably well at representing and
analyzing software architectures. This paper
summarizes a taxonomic survey of ADLs that is in
progress. The survey characterizes ADLs in terms of
(a) the classes of systems they support; (b) the
inherent properties of the languages themselves; and
(c) the process and technology support they provide to
represent, refine, analyze, and build systems from an
architecture. Preliminary results allow us to draw
conclusions about what constitutes an ADL, and how
contemporary ADLs differ from each other.

1. Introduction

Architecture description languages (ADLs) are formal
languages that can be used to represent the architec-
ture of a software-intensive system. As architecture
becomes a dominating theme in large system devel-
opment and acquisition, methods for unambiguously
specifying an architecture will become indispensable.

By architecture, we mean the components that com-
prise a system, the behavioral specifications for those
components, and the patterns and mechanisms for in-
teractions among them. Note that a single system is
usually composed of more than one type of compo-
nent: modules, tasks, functions, etc. An architecture
can choose the type of component most appropriate
or informative to show, or it can include multiple
views of the same system, each illustrating different
componentry.

To date, architectures have largely been represent-
ed by informal circle-and-line drawings in which the
nature of the components, their properties, the se-
mantics of the connections, and the behavior of the
system as a whole are poorly (if at all) defined. Even
though such figures often give an intuitive picture of
the system’s construction, they usually fail to answer
such questions as:

• What are the components? Are they modules that ex-
ist only at design-time, but are compiled together be-
fore run time? Are they tasks or processes threaded
together from different modules, assembled at com-
pile-time, and form run time units? Or are they some-
thing as nebulous as “functional areas,” as in data
flow diagrams, or something else entirely?

• What do the components do? How do they behave?
What other components do they rely on?

• What do the connections mean? Do they mean “sends
data to,” “sends control to,” “calls,” “is a part of,”
some combination of these, or something else? What
are the mechanisms used to fulfill these relations?

• ADLs result from a linguistic approach to the formal
representation of architectures, and as such they ad-
dress the shortcomings of informal representations.
Further, as will be shown, sophisticated ADLs allow
for early analysis and feasibility testing of the design
decisions1.

ADLs trace their roots to module interconnection
languages of the 1970s. ADLs today are in a maturing
phase but several exist. Current examples include
Rapide [12], UniCon [18], ArTek [19], Wright [1], and
Meta-H [21].

This paper describes a survey of contemporary
ADLs that is currently in progress. Using the tech-
niques of domain analysis, a questionnaire was pro-
duced that characterizes an individual ADL in terms

A Survey of Architecture Description Languages

Paul C. Clements

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 1521

Eighth International Workshop on Software Specification and Design,
Germany, March 1996

of the systems and architectures it can support, the
analysis or automated development it can facilitate or
provide, and intrinsic qualities about the ADL itself.
The questionnaire has been applied to over a dozen
ADLs to date and the resulting data allows ADLs to
be compared and contrasted. The data also provides
insight into the question of when a language is an
ADL as opposed to some other kind of language,
such as a requirements, programming, or modelling
language.

2. Architecture and ADLs

An architecture plays several roles in project devel-
opment, all of them important, and all of them facili-
tated by a formal representation of the architecture,
such as with an ADL. A formal architecture represen-
tation is more likely to be maintained and followed
than an informal one, can more readily be consulted
and treated as authoritative, and can more easily be
transferred to other projects as a core asset. Roles in-
clude:

• Basis for communication: Project team members,
managers, and customers all turn to the architecture
as the basis for understanding the system, its develop-
ment, and how it works during execution.

• Project blueprint: The choice of architectural compo-
nents is institutionalized in the developing organiza-
tion’s team structure, work assignments, management
units, schedule and work breakdown structures, inte-
gration plans, test plans, and maintenance processes.
Once it is made, an architectural decision has an ex-
tremely long lifetime and survives even outside of the
software that it describes.

• Blueprint for product line development. An architec-
ture may be re-used on other systems for which it is
appropriate. If managed carefully, an entire product
family may be produced using a single architecture.
In this case, the importance of an appropriate archi-
tecture is magnified across all the projects it will
serve.

1. The survey draws a distinction between the language, the analysis that
can be performed on architectural information representable by the lan-
guage, and the tools that actually exist to perform such analysis. However,
just as no one would use Ada without an Ada compiler, it is not likely that
anyone would adopt an ADL for a project without also adopting any edit-
ing, refinement, analysis, or system-building tools that come with it. Thus,
in a survey designed to help practitioners choose an ADL, we view an
ADL as the language plus its supporting toolset, the sum of which practi-
tioners will use as the basis for selection, usage, and after-the-fact evalu-
ation. Nevertheless, we point out where the language captures information
that could be, but perhaps has not yet been, exploited by an analysis tool.

• Embodiment of earliest design decisions: The archi-
tecture represents the first mapping from require-
ments to computational components. The selection of
components and connections, as well as the allocation
of functionality to each component, is a codification
of the earliest design decisions about a project. All
downstream design decisions must be consistent with
the architectural choices. As such, architectural deci-
sions are the hardest to change, and have the most far-
reaching consequences.

• First approach to achieving quality attributes: An ar-
chitecture can either allow or preclude the achieve-
ment of most of a system’s targeted quality attributes.
Modifiability, for example, depends extensively on
the system’s modularization, which reflects the en-
capsulation strategies. Reusability of components de-
pends on how strongly coupled they are with other
components in the system. Performance depends
largely upon the volume and complexity of the inter-
component communication and coordination, espe-
cially if the components are physically distributed
processes. Thus, an architecture embodies decisions
about quality priorities and tradeoffs, and represents
the earliest opportunity for evaluating those decisions
and tradeoffs.

Some ADLs provide an opportunity for architec-
ture-level analysis, such as automatic simulation gen-
eration, schedulability analysis, and the like.
However, even in the absence of automated analysis
capabilities, other evaluative strategies can be ap-
plied to the architecture [5]. Thus, these early design
decisions and quality attribute tradeoffs can be tested
before they are too expensive to change.

3. ADLs and their relationship to other lan-
guages

How do ADLs differ from programing languages,
requirements languages, modelling languages, and
the like? Given a language for expressing properties
or behaviors of a system, what are the criteria for de-
ciding if it is an ADL or not? Unfortunately, it isn’t
clear.

In principle, ADLs differ from requirements lan-
guages because the latter describe problem spaces
whereas the former are rooted in the solution space.
In practice, requirements are often divided into be-
havioral chunks for ease of presentation, and lan-
guages for representing those behaviors are
sometimes well-suited to representing architectural
components, even though that was not the original

goal of the language. For example, Modechart [10], a
requirements language similar to Statechart [7], ex-
hibited stronger analytical capabilities than any other
ADL in our survey because of the presence of a mod-
el-checking verifier. Modechart was considered to be
an ADL because its componentry (state machines)
could be interpreted as architectural components. But
Modechart was not designed to be an ADL, and so it
is easy to produce artifacts in Modechart that do not,
under any reasonable semantic interpretation, corre-
spond to an architectural view of a system.

In principle, ADLs differ from programming lan-
guages because the latter bind all architectural ab-
stractions to specific point solutions whereas ADLs
intentionally suppress or vary such binding. In prac-
tice, architecture is embodied and recoverable from
code, and many languages provide architecture-level
views of the system. For example, Ada offers the abil-
ity to view a system just in terms of its package spec-
ifications, which are the interfaces to components.
However, Ada offers little or no architecture-level an-
alytical capabilities, nor does it provide architecture-
level insight into how the components are “wired” to-
gether.

In principle, ADLs differ from modelling languages
because the latter are more concerned with the behav-
iors of the whole rather than of the parts, whereas
ADLs concentrate on representation of components.
In practice, many modelling languages allow the rep-
resentation of cooperating components and can rep-
resent architectures reasonably well.

Figure 1: Requirements languages, programming
languages, and modelling languages have as-

pects in common with ADLs.

Two leading ADL researchers offer their desiderata
for ADLs. Shaw lists the following as important prop-

erties that ADLs should exhibit [18]:
• ability to represent components (primitive or compos-

ite) along with property assertions, interfaces and im-
plementations;

• ability to represent connectors, along with protocols,
property assertions, and implementations

• abstraction and encapsulation

• types and type checking

• ability to accommodate analysis tools openly

Luckham lists the following as requirements for an
ADL [13]:

• component abstraction

• communication abstraction

• communication integrity (limiting communication to
those components connected to each other architec-
turally)

• ability to model dynamic architectures

• ability to reason about causality and time

• hierarchical refinement support

• relativity, the mapping of behaviors to (possibly dif-
ferent) architectures, as a first step towards checking
conformance.

These lists illustrate the different points of view
about what constitutes an ADL. There is no clear line
between ADLs and non-ADLs. Languages can, how-
ever, be discriminated from one another according to
how much architectural information they represent,
and our survey has attempted to capture this. Lan-
guages that were born as ADLs show a clear advan-
tage in this area over languages built for some other
purpose and later co-opted to represent architectures.
In Section 6, we will re-visit this issue in light of the
survey results.

4. The ADL survey

This section outlines the purpose, form, content,
and methodology of the ADL survey.

4.1: Purpose

Our survey of ADLs was intended to provide infor-
mation to three communities:

• architects, who must choose an ADL. Our survey is
intended to highlight the capabilities and qualities of
ADLs presently available. It is not a score card or
even an evaluation; ADLs are not better or worse than

Requirements
languages

Programming
languages

Modelling
languages

each other. Rather, they feature different capabilities
and qualities, and the best choice is use specific.

• technology sponsors, who fund development of
ADLs and ADL tools. Our survey is intended to allow
them to spot and re-direct duplicative work.

• ADL creators. Our survey is intended to allow cre-
ators to identify capability areas that have, to date,
been largely passed over by ADLs.

4.2: Form

Drawing from previous efforts to survey ADLs [20]
as well as other kinds of specification languages [2],
we crafted a feature analysis of ADLs. Feature analysis
is a tool of certain domain analysis methods such as
the Feature-Oriented Domain Analysis (FODA)
method [11]; it proceeds by cataloguing user-visible
system features in a structured fashion. In our survey,
the domain consisted of the set of languages that
might be considered ADLs; “user-visible” means ap-
parent to a user of the language.

The feature analysis took the form of a survey ques-
tionnaire; the questionnaire is the manifestation of a
framework of important features that a particular
ADL may or may not have. An ADL in the survey is
characterized by answering a series of questions
about its capabilities, features, and usage history. A
set of completed questionnaires thus provides a basis
for comparing and contrasting the ADLs with each
other, and ADLs with languages that would not be
considered ADLs.

Features are structured into the following three cat-
egories: system-oriented features, language-oriented
features, and process-oriented features.

System-oriented features

System-oriented features are related to the applica-
tion system derived from the architecture descrip-
tion. For example, certain ADLs may not be able to
express real-time constraints about a system’s archi-
tectural components, while others can. All features in
this category are attributes of an end system; howev-
er, they reflect on the ability of the ADL to express or
describe those attributes at the architectural level.

Specific questions from the survey include2:
Applicability: How suitable is the ADL for
representing a particular type of application system?
• Architectural styles: How well does the ADL al-

low description of architectural styles, such as
those enumerated in [6]? Styles include pipe and
filter, blackboard, etc.

• System class: What broad classes of systems can
have their architectures represented with the
ADL? Classes include: hard real-time, soft real-
time, embedded, distributed, dynamic architec-
tures, imported component systems, other.

• Domains: What application domains is the ADL
designed specifically to support, if any, and how
and to what degree?

Language-oriented features

Language-oriented features are features of the ADL
itself, independent of the system(s) it is being used to
develop. These attributes include the kind of infor-
mation usually found in a language reference manu-
al. An example is how formally specified the ADL’s
syntax and semantics are and what architectural ab-
stractions are embodied by the ADL.

Language-oriented questions include:
Language definition quality
• Formality: How formally are the ADL’s syntax

and semantics defined?
• Completeness: How well is completeness defined

for an architecture descriptions? How does the
ADL treat an incomplete architecture descrip-
tion?

• Consistency: Is self-consistency defined for an ar-
chitecture description? Is it defined between two
different architecture description, or between an
architecture description and some other render-
ing of the system such as a requirements specifica-
tion or coded implementation? Are the consisten-
cy rules built-in or user-defined?

Scope of language: How much non-architecture
information can the ADL represent?
Design History: How well does the ADL provide for
recording architectural design information?
Views: How well does the ADL support different
views that highlight different aspects/perspectives of
the architecture?
• Syntactic view list: Which syntactic views are sup-

ported? Graphical, textual, etc.
• Semantic view list: Which semantic views are sup-

ported? Data flow, control flow, process view, etc.
• Inter-view cross reference: Does the ADL provide

for translating among views?

2. For brevity, a great deal of clarifying elaboration has been omitted, as
has the explanation of the response scales. For instance, the question,
“How does the ADL treat an incomplete architecture description?” is in-
stantiated in the actual questionnaire as several detailed questions dealing
with the operations that can be performed on an incomplete description,
whether built-in or user-defined completeness rules exist or prevail,
whether the language features a wildcard or incompleteness token, etc.
We ask the reader’s indulgence to believe that the subjective-sounding
questions presented in this paper are backed up in the actual questionnaire
with detailed sub-questions that address each issue much more objective-
ly.

• Architectural content of views: Does the ADL
provide views that show mostly architectural in-
formation?

Readability
• Embedded comments
• Presentation control
Characteristics of intended users
• Target users: domain engineer, application engi-

neer, systems analyst, software manager?
• Expertise required: domain expertise, software

design expertise, programming language exper-
tise?

Modifiability of software architecture description
• Ease of change: How well does the ADL support

ease of change of the architecture and its repre-
sentation?

• Scalability: the degree to which the ADL can rep-
resent large and/or complex systems. Hierar-
chies? Cross-referencing? Subset capability?
Composition? Multiple instantiation of tem-
plates?

Variability: How well does the ADL represent the
variations in the application systems that can be
derived from an architecture?
Expressive power of the ADL.
• Powerful primitives featured
• Extensibility
• What abstractions does the ADL support or pro-

vide? Are the abstractions architectural, behav-
ioral, or implementation based?

Process-oriented features

Process-oriented features are features of a process
related to using the ADL to create, validate, analyze,
and refine an architecture description, and build an
application system from it. Included are attributes
that measure or describe how or to what extent an
ADL allows predictive evaluation of the application
system based on architecture-level information.
These attributes measure whether or not the ADL
contains enough information to make an architecture
analyzable, independently of whether or not tools ac-
tually exist that exploit that capability. In addition,
the questionnaire provides a place for existing tools
to be described.

For example, an ADL may allow enough timing in-
formation to be given to support schedulability anal-
ysis. A rate monotonic analysis schedule analyzer (if
it exists for the ADL) would be an example of a tool
that exploits such information.

The analysis areas are primarily drawn from IEEE
Std 1061, “Software Quality Metrics Methodology”
[9]. Many of these attributes are not addressed by any
existing ADLs.

Process-oriented questions are:
Architecture creation support: textual editor,
graphical editor, import tool?
Architecture validation support: syntax checker,
semantics checker, completeness checker,
consistency checker?
Architecture refinement support: browser, search
tool, incremental refinement tool, version control,
architecture comparison?
Architecture analysis support: What support is
provided by the ADL for analyzing architecture-level
information in order to predict or project qualities of
the end system?
• Analyzing for time and resource economy: sched-

ulability, throughput, other time economies,
memory utilization, other resource economics?

• Analyzing for functionality: completeness, cor-
rectness, security, interoperability?

• Analyzing for maintainability: correctability, ex-
pandability, testability?

• Analyzing for portability: hardware indepen-
dence, software independence?

• Analyzing for reliability: error tolerance, degrad-
ed operation capability, availability?

• Analyzing for usability: understandability, ease of
learning, operability?

Application building: building a compilable (or
executable) software system from a specific system
design.
• System composition: the composition or integra-

tion of components’ bodies, in order to produce a
compilable or executable software system for: sin-
gle processor target, distributed homogeneous
system, distributed heterogeneous system, compo-
nents written in more than one language?

• Application generation support: component code
generation, wrapper code generation, test case
generation, documentation generation?

Tool Maturity, availability, and support.
Process support: Does a user’s manual exist? Does a
training course exist?

5. Gathering data

The questionnaire has been circulated to the propri-
etors of over a dozen ADLs to date. Table 1 contains
the list of those who have responded and had their re-
sults validated to date. Other surveys in progress in-
clude those for Rapide [12], Gestalt [17], ACME [4],
and FR [8].

In order to gain confidence in the questionnaire, we
applied it to some languages, such as Modechart, that
would not be considered mainstream ADLs. The in-
tent was to observe how these “cusp” languages
scored in order to try to understand qualities that dis-
tinguish ADLs from non-ADLs.

The intent of the questionnaire was to make as
many of the questions as possible objective, in the
sense that two independent observers would be high-
ly likely to respond the same way to the question.
Where subjectivity was called for (e.g., “how well
does the language support architecture representa-
tions that are easy to change?”) we asked the respon-
dent to provide specific language features and usage
scenarios that justified the answer. Nevertheless, it
has been necessary to conduct a validation interview
for each questionnaire in order to add credibility to
the responses.

6. Conclusions

This section will present the results of the survey to
date and postulate some conclusions about ADLs in
general.

6.1: Survey results

Table 3 distills many of the detailed questions
down into summary statements about the languages’
capabilities. Table 2 explains the answer symbols in
Table 3. Table 3 serves as a quick-reference guide for
readers interested in finding a language for a particu-
lar application. The intent is that the quick-reference
guide would provide a reader with a small set of can-
didate languages mostly likely to suit his or her pur-
pose. For complete details and final selection, the full
surveys of the languages (not reproduced in this pa-
per) should be consulted.

To create the quick-reference guide, the full surveys
were distilled using the following heuristics:

• If it was possible to combine a set of questions into a
general one about the language’s capability without
loss of significant detail, this was done. The rating of
a language’s general capability is either the arithmetic
average of its ratings on the component questions (if
the rating scale is ordered, such as High/Medi-
um/Low), or the answer that appeared most often in
the component questions (if the rating scale is unor-
dered). If the component questions were Yes/No, then
the summary rating reflects the ratio of Yes answers.

• Questions on which all languages scored the same or
nearly the same tended to be suppressed, since they
did not serve as useful discriminators among the lan-
guages.

Shading information is used in the cells to augment
the textual content. The lighter the shading, the more
capable the language rated on the particular issue.

6.2: ADLs versus other languages

Languages that are generally considered “main-
stream” ADLs shared the following aspects:

• The abstractions they provided to the user were archi-
tectural in nature. All represented components and
connections (although Rapide represents connections
only by specifying communication behaviors among
components).

• Most of the views provided by the ADLs contained
predominantly architectural information. This is in
contrast to a programming language or a require-
ments language that tends to show other kinds of in-
formation.

• Analysis provided by the language relies on architec-
ture-level information. Rapide’s discrete event simu-
lator, for instance, uses behavioral information about
each component to generate partially ordered event
sets. UniCon’s interface to the rate monotonic analyz-
er uses black-box performance information about
each component in order to compute schedulability.
This is in contrast to a performance analyzer that
identifies bottlenecks based on implementation infor-
mation (i.e., code).

6.3: Discriminators

The following areas uncovered interesting differ-
ences among the ADLs we surveyed:

• ADLs differed markedly in their ability to handle
real-time constructs at the architectural level. Rough-

Table 1: ADLs surveyed (alphabetical order)

ADL Source Citation

ArTek Teknowledge [19]

CODE Univ. of Texas at Austin [15]

Demeter Northeastern Univ. [16]

Modechart Univ. of Texas at Austin [10]

PSDL/
CAPS

Naval Postgrad. School [14]

Resolve Ohio State Univ. [3]

UniCon Carnegie Mellon Univ. [18]

Wright Carnegie Mellon Univ. [1]

ly half claimed to deal with hard-real-time constructs
such as deadlines; only a small number dealt with
soft-real-time constructs such as tasking priorities.

• ADLs varied in their ability to support the specifica-
tion of particular architectural styles. All ADLs could
represent pipe-and-filter architectures, either directly
or indirectly. Other styles did not fare as well. All pro-
vided hierarchical structuring of components, and
could represent objects, but only a few could handle
object-oriented class inheritance. Only two handled
dynamic architectures.

• The set of surveyed ADLs split evenly on their ability
to let a user define new types of components and con-
nectors, define new statements in the ADL, and rep-
resent non-architectural information (such as require-
ments, or test cases) using the ADL. Extensibility and
scope were good discriminators.

• While all languages provided built-in internal consis-
tency and completeness rules for artifacts rendered in
those languages, only a few allowed the user to define
what was meant by consistency, and only a few dealt
with consistency between different artifacts (e.g., be-
tween an architecture and component designs).

• ADLs varied widely in their ability to support analy-
sis. Rapide features a discrete-event simulator based
on partially-ordered sets of event behaviors. Mode-
chart features a model-checking verifier that takes as
input a logical assertion and reports whether the sys-
tem description guarantees, prohibits, or is merely
compatible with that assertion. UniCon interfaces di-
rectly to a rate monotonic schedule analyzer. A more
general analysis capability (such as in the case of a
verifier) showed up in the questionnaire as the ability
to analyze for many different quality attributes. For
instance, a simulator could be used to analyze for us-
ability by letting users observe the simulated behavior
to see if it meets their expectations.

• ADLs differed in their ability to handle variability, or
different instantiations of the same architecture. All
supported component variability through simple re-
write capability, but few supported maintaining dif-
ferent instantiations of the same architecture simulta-
neously.

• When offering more than one architectural view,
ADLs varied widely in their ability to translate among
those views. View interchangeability is a strong dis-
criminator among the ADLs we surveyed.

6.4: Commonalities

The following commonalities were noticed:
• All of the ADLs surveyed had a graphical syntax; all

but one also had a textual form. Every language but
one featured a formal syntax, and the vast majority
featured formally-defined semantics.

• Every language claimed to be able to model distribut-
ed systems.

• ADLs tended not to provide much support for captur-
ing design rationale and/or history, other than through
generic or general-purpose annotation mechanisms.

• All of the ADLs claimed to handle data flow and con-
trol flow as interconnection mechanisms. Modechart
was the weakest in this regard, because of its ability
to deal only with state predicates (such as “data sent”)
instead of actual data values.

• All ADLs provided help with creation and validation
an refinement of architectures, even if validation was
only done in the context of the language’s own rules
for completeness or legality.

• All featured the ability to represent hierarchical lev-
els of detail, and handle multiple instantiations of a
template as a quick way to perform copying sub-
structures during creation.

• All ADLs support the application engineer, and most
support the domain engineer, even if only indirectly.
Most support the systems analyst by providing up-
front analytical capabilities. None claimed to directly
support project management.

• Finally, a glaring commonality was the lack of in-
depth experience and real-world application that
ADLs currently offer. It is to be hoped that as the ben-
efits of architecture become better understood, that
the benefits of formal representations will be equally
prized, and ADLs will come into their own as viable
technologies for complex system development.

6.5: What constitutes an ADL?

After surveying a broad selection of languages, all
of which have some claim to being ADLs, what can
we conclude about what makes a language an ADL?
The following seems to be a minimal set of require-
ments for a language to be an ADL:

• An ADL must support the tasks of architecture cre-
ation, refinement, and validation. It must embody
rules about what constitutes a complete or consistent
architecture.

• An ADL must provide the ability to represent (even if
indirectly) most of the common architectural styles
enumerated in [6].

• An ADL must have the ability to provide views of the
system that express architectural information, but at
the same time suppress implementation or non-archi-
tectural information.

• If the language can express implementation-level in-
formation, then it must contain capabilities for match-
ing more than one implementation to the architecture-
level views of the system. That is, it must support
specification of families of implementations that all
satisfy a common architecture.

• An ADL must support either an analytical capability,
based on architecture-level information, or a capabil-
ity for quickly generating prototype implementations.

6.6: Future trends

Communicating an architecture to a stakeholder
becomes a matter of representing it in an unambigu-
ous, readable form that contains the information ap-
propriate to that stakeholder. Current trends in ADL
development seems to be focusing on enhancing the
analysis and system-generation capabilities of the
languages. Architecture is, after all, only a means to
an end, and information that developers can infer
about the end system is more valuable than informa-
tion about just the architecture. Being able to quickly
develop a system or manage qualities of the final
product are the real payoff of ADLs. While develop-
ment of architecture languages is proceeding apace,
there is less attention being paid to the following ar-
eas:

• Infrastructures to support ADL development.
Most ADLs share a set of common concepts. Build-
ing tools to support an ADL involves solving a com-
mon set of problems. Development of an ADL devel-
opment environment would facilitate the rapid pro-
duction of ADLs and supporting tools, thus allowing
good ideas to come to market faster. Garlan’s Ae-
sop/ACME work represents an early and important
contribution to this area [4].

• Integration of ADL information with other life-cy-
cle products. As ADLs mature, they will take a more
prominent role in the litany of life-cycle products
(such as detailed design documents, test cases, etc.).
Encouragement should be given to early consider-
ation of the relationship that an architecture descrip-
tion will bear to these other documents. For example,
what test cases might be generated for a system based

on a description of its components and interconnec-
tion mechanisms? What kind of and how much exe-
cutable code can be automatically generated? How
can traceability of architecture to requirements be es-
tablished? This work could culminate in the complete
integration of architecture descriptions into the devel-
opment environment, giving rise to a sort of “archi-
tectorium.” This can be thought of as an exploration
environment in which architectures are drafted, vali-
dated via mapping to requirements, their implications
explored via analysis or rapid prototyping, alterna-
tives suggested in an expert-system-like fashion, and
project infrastructures necessary for development
(e.g., work schedule templates, component-based
configuration control libraries, test plans, etc.) are
generated.

It is to be hoped researchers will be spurred to pro-
vide ADLs that address gaps in current capability,
particularly in analysis and program family support.

7. Acknowledgments

Paul Kogut of Loral is a co-creator of the ADL fea-
ture analysis and a co-author of the SEI report de-
scribing it. Many of the insights in this paper are his.
Thanks are due to the many ADL creators who pa-
tiently filled out our questionnaire, and allowed us to
come visit and discuss the survey results in depth.
This work would not have been possible without
them. Special thanks go to David Garlan, David
Luckham, Bruce Weide, John Hartman, Mary Shaw,
J.C. Browne, and their respective, usually over-
worked, ADL-building teams.

The SEI is sponsored by the U.S. Department of De-
fense.

Table 2: Answer key

Symbol Meaning

Y Yes

N No

H High capability: language provides explicit
features to support this capability

M Medium: language provides generic features
through which this capability may be indi-
rectly achieved

L Low: language provides little support

T Tool specifically developed for the ADL sup-
ports this capability

E External tool provides this capability

P Language provides enough information to sup-
port the capability, but no tool support cur-
rently exists.

Table 3: ADL survey results

Attributes

A
R
T
E
K

C
O
D
E

D
E
M
E
T
E
R

M
O
D
E
C
H
A
R
T

P
S
D
L
/
C
A
P
S

R
E
S
O
LV
E

U
N
I
C
O
N

W
R
I
G
H
T

Applicability

Ability to represent styles M M M M H M M H

Ability to handle real-time issues M N M H H L H L

Ability to handle distributed system issues H H H H H M M M

Ability to handle dynamic architectures L H H L M L ? L

Language definition quality

Attention to completeness of arch. spec. M L H M M L M H

Attention to consistency of arch. spec. L L M L M H L H

Scope of language; intended users

Requirements H L ? H H M L L

Detailed design/algorithms L M H M H M L L

Code M L H L L H H L

Domain engineer Y Y Y N Y N Y Y

Application engineer Y Y Y Y Y Y Y Y

Systems analyst Y N Y Y Y Y N Y

Capturing design history ? L ? L ? ? ? ?

Views

Textual Y N Y Y Y Y Y Y

Graphical Y Y Y Y Y N Y N

Semantic view richness L M H H H L ? L

Inter-view cross reference M L L M M L M L

Support for Variability M L H L H H L H

Expressive power, extensibility H L M M H H M M

Support for architecture creation T T P T T E T N

Support for architecture validation T T E T T P T E

Support for architecture refinement T P P T T P P P

Support for architecture analysis E N P T T P N N

Support for application building N T P N P N N N

Tool Maturity

Available as COTS? N N ? N N N N N

Age (years) 3 ? 10 7 5 ? 2 3

Number of sites in use 11 ? ? 4 12 4 1 1

Customer support available Y Y N N N Y N N

8. References

1. Allen, R., Garlan, D. “Beyond Definition/Use: Archi-
tectural Interconnection,” Proceedings, Workshop on
Interface Definition Languages, Portland Oregon, 20 Jan-
uary 1994l.

2. Clements, P.,Gasarch, C., Jeffords, R. “Evaluation Cri-
teria for Real-Time Specification Languages,” Naval
Research Laboratory Memorandum Report 6935, Feb-
ruary 1992.

3. Edwards, S., Heym, W., Long, T., Sitarman, M., and
Weide, B.; “Specifying Components in RESOLVE,”
Software Engineering Notes, vol. 19, no. 4, October
1994.

4. Garlan, D., Allen, R., Ockerbloom, J. “Exploiting Style
in Architectural Design Environments,” Proceedings of
SIGSOFT ‘94: Foundations of Software Engineering,
December 1994, ACM Press.

5. R. Kazman, L. Bass, G. Abowd, and M. Webb, “SAAM:
A Method for Analyzing the Properties Software
Architectures”. In Proceedings of the 16th International
Conference on Software Engineering, (Sorrento, Italy),
May 1994, pp. 81-90.

6. Garlan, David; and Shaw, Mary. An Introduction to
Software Architecture. (CMU/SEI-93-TR-33). Pitts-
burgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, December 1993. Also in Ambriola,
V.; and Tortora, G. (eds.), Advances in Software Engi-
neering and Knowledge Engineering, Volume I. Sin-
gapore: World Scientific Publishing, 1993.

7. Harel, D.; Lachover, H.; Naamad, A.; Pnueli, A.; Politi,
M.; Sherman, R.; Shtul-Trauring, A.; “STATEMATE: a
working environment for the development of complex
reactive systems” Proceedings of the 10th Interna-
tional Conference on Software Engineering Sin-
gapore April 1988;

8. Hartman, J., Chandrasekaran, B., “Functional Repre-
sentation and Understanding of Software: Technology
and Application,” Proceedings, 1995 Dual-Use Technolo-
gies and Applications Conference, 1995.

9. IEEE Std 610.12, IEEE Standard Glossary of Software
Engineering Terminology, September 1990.

10. Jahanian, F., and Mok, A. “Modechart: A Specification
Language for Real-Time Systems,” IEEE Transactions
on Software Engineering, vol. 20, no. 12, December 1994,
pp. 933-947.

11. Kang, Kyo C.; Cohen, Sholom G.; Hess, James A.;
Novak, William E.; & Peterson, A. Spencer. Feature-
Oriented Domain Analysis (FODA) Feasibility Study
(CMU/SEI-90-TR-21, ADA235785). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon Uni-
versity, Nov. 1990.

12. Luckham, David, John J. Kenney, Larry M. Augustin,
James Vera, Doug Bryan, Walter Mann. “Specification
and Analysis of System Architecture Using Rapide,”
Stanford University technical report, 1993.

13. Luckham, David, Vera, James. “An Event-Based
Architecture Definition Language,” IEEE Transactions
on Software Engineering, to appear.

14. Luqi, Shing, M., Barnes, P., and Hughes, G. “Prototyp-
ing Hard Real-Time Ada Systems in a Classroom Envi-
ronment,” Proceedings of the Seventh Annual Ada
Software Engineering Education and Training (ASEET)
Symposium, Monterey, 12-14 January 1993.

15. Newton, P., Browne, J. “The CODE 2.0 Graphical Par-
allel Programming Language,” Proceedings, ACM
International Conference on Supercomputing, July 1992.

16. Palsberg, J., Xiao, C., Lieberherr, K. “Efficient Imple-
mentation of Adaptive Software (Summary of Deme-
ter Theory)”, Northeastern University, Boxton, 10
January 1995.

17. Schwanke, R., “Industrial Software Architecture with
Gestalt,” technical report, Siemens Corporate
Research, Princeton NJ.

18. Shaw, DeLine, Klein, Ross, Young, Zelesnik “Abstrac-
tions for Software Architectures and Tools to Support
Them,” Carnegie Mellon University, unpublished
report Feb. 1994

19. Terry, Hayes-Roth, Erman, Coleman, Devito, Papana-
gopoulos, Hayes-Roth “Overview of Teknowledge’s
DSSA Program,” ACM SIGSOFT Software Engineering
Notes, October 1994.

20. Vestal, S. A Cursory Overview and Comparison of Four
Architectural Description Languages, technical report,
Honeywell, Feb. 1993

21. Vestal, S. “Mode Changes in a Real-Time Architecture
Description Language,” Proceedings, Proc. Interna-
tional Workshop on Configurable Distributed Sys-
tems: Honeywell Technology Center and the
University of Maryland.

