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ABSTRACT

The irregular moons of the Jovian planets are a puzzling part of the solar system inventory. Unlike regular
satellites, the irregular moons revolve around planets at large distances in tilted and eccentric orbits. Their
origin, which is intimately linked with the origin of the planets themselves, is yet to be explained. Here we
report a study of the orbital and collisional evolution of the irregular satellites from times after their forma-
tion to the present epoch. The purpose of this study is to find out the features of the observed irregular moons
that can be attributed to this evolution and separate them from signatures of the formation process. We
numerically integrated�60,000 test satellite orbits to map orbital locations that are stable on long time inter-
vals. We found that the orbits highly inclined to the ecliptic are unstable due to the effect of the Kozai
resonance, which radially stretches them so that satellites either escape from the Hill sphere, collide with
massive inner moons, or impact the parent planet. We also found that prograde satellite orbits with large
semimajor axes are unstable due to the effect of the evection resonance, which locks the orbit’s apocenter to
the apparent motion of the Sun around the parent planet. In such a resonance, the effect of solar tides on a
resonant moon accumulates at each apocenter passage of the moon, which causes a radially outward drift of
its orbital apocenter; once close to the Hill sphere, the moon escapes. By contrast, retrograde moons with
large orbital semimajor axes are long-lived. We have developed an analytic model of the distant satellite
orbits and used it to explain the results of our numerical experiments. In particular, we analytically studied
the effect of the Kozai resonance. We numerically integrated the orbits of the 50 irregular moons (known by
2002 August 16) for 108 yr. All orbits were stable on this time interval and did not show any macroscopic var-
iations that would indicate instabilities operating on longer time spans. The average orbits calculated from
this experiment were then used to probe the collisional evolution of the irregular satellite systems. We found
that (1) the large irregular moons must have collisionally eliminated many small irregular moons, thus shap-
ing their population to the currently observed structures; (2) some dynamical families of satellites could have
been formed by catastrophic collisions among the irregular moons; and (3) Phoebe’s surface must have been
heavily cratered by impacts from an extinct population of Saturnian irregular moons, much larger than the
present one.We therefore suggest that theCassini imaging of Phoebe in 2004 can be used to determine the pri-
mordial population of small irregular moons of Saturn. In such a case, we will also better understand the
overall efficiency of the formation process of the irregular satellites and the physical conditions that existed
during planetary formation. We discovered two dynamical families of tightly clustered orbits within the
Jovian retrograde group. We believe that these two clusters may be the remnants of two collisionally dis-
rupted bodies. We found that the entire Jovian retrograde group and the Saturnian inclination groups were
not produced by single breakups, because the ejection velocities derived from the orbital structures of these
groups greatly exceed values calculated bymodern numerical models of collisional breakups. Taken together,
the evidence presented here suggests that many properties of the irregular moons previously assigned to their
formation process may have resulted from their later dynamical and collisional evolution. Finally, we have
found that several irregular moons, namely, Pasiphae, Sinope, S/2001 J10, S/2000 S5, S/2000 S6, and
S/2000 S3, have orbits characterized by secular resonances. The orbits of some of these moons apparently
evolved by some slow dissipative process in the past and became captured in tiny resonant volumes.
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1. INTRODUCTION

This paper deals with irregular satellites of the Jovian
planets. We informally define the irregular satellites as those
moons that are far enough from their parent planet that the
precession of their orbital plane is primarily controlled by
the Sun. This implies that a satellite with a semimajor axis a
greater than acrit � (2lJ2R

2a3p)1/5 is an irregular satellite
(Burns 1986). In this expression, l is the ratio of the planet’s

mass to the Sun’s, J2 is the planet’s second zonal harmonic
coefficient, R is the planet’s equatorial radius, and ap is the
planet’s semimajor axis. According to this definition, we
currently3 know of 31 irregular satellites at Jupiter, 13 at
Saturn, five at Uranus, and one at Neptune (Nereid).4 Note
that our definition excludes Neptune’s large moon, Triton.

1 Southwest Research Institute, Suite 400, 1050 Walnut Street, Boulder,
CO 80302.

2 Space Systems/Loral MS L-27, 3825 Fabian Way, Palo Alto,
CA 94303.

3 By 2002 August 16.
4 By 2003 March 9, these numbers increased: we know of 12 new

irregular satellites of Jupiter (S/2003 J1–J12; Sheppard 2003a, 2003b,
2003c); S/2001 U1 (Holman, Kavelaars, & Milisavljevic 2002) is the sixth
known irregular moon of Uranus; Neptune has gained three new irregular
moons (S/2002 N1–N3; Holman et al. 2003). The orbits of these new
moons are yet to be precisely determined.
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Tables 1 and 2 list the physical and orbital properties of the
irregular satellites.5 Figure 1 shows their current orbits. In
the following, we briefly summarize what we know about
the irregular satellites.

Jupiter.—Jupiter’s irregulars come in two groups: six pro-
grade and 25 retrograde moons.6 Five of the prograde
moons move on similar orbits with semimajor axes
a � (0.21–0.23)RH, eccentricities e � 0.1–0.2, and inclina-
tions to the ecliptic (or invariable plane) i � 30�. Here
RH = ap(l/3)

1/3 is the Hill radius of the planet (�0.355 AU
for Jupiter; Table 1). The sixth prograde moon, S/1975 J1
(Themisto), has a smaller orbital distance from Jupiter
(a � 0.14RH). The orbits of the retrograde moons have
larger semimajor axes [a � (0.36–0.47)RH], are more eccen-
tric than the orbits of the prograde moons, and have
i � 140�–167�.

Assuming an albedo of 0.04, the diameters (D) of the six
prograde moons range from 4 to 75 km (Rettig, Walsh, &
Consolmagno 2001), except for large Himalia, which is
�150 � 120 km across, with an albedo A = 0.05 (Porco et
al. 2003). By contrast, the retrograde moons are smaller (2–
60 km in diameter; see Sheppard & Jewitt 2002). The pro-
grade moons spectrally resemble each other. Their visual
colors are gray like the colors of the C-type asteroids (Sykes
et al. 2000, Rettig et al. 2001). It is thus conceivable that the
prograde moons are fragments of a captured C-type aste-
roid. The retrograde moons exhibit much greater color
diversity than the prograde satellites. Carme, Pasiphae, and
Sinope are redder, possibly resembling D-type Trojan
asteroids. The near-infrared colors of Sinope are signifi-
cantly different from those of Carme and Pasiphae; Ananke
is unusually faint in the near-infrared (Sykes et al. 2000).
Moreover, Carme shows a peculiar upturn in the ultraviolet
part of its spectrum, which distinguishes it from other
satellites (Tholen & Zellner 1984). Taken together, the
greater diversity among retrograde satellites suggests a more

TABLE 1

Orbits and Sizes of the Irregular Moons of Jupiter as of 2002 August 16

ID Satellite

i

(deg) e

a

(AU)

a

(RH
j )

Torb

(yr)

H

(mag)

D

(km)

Jupiter (RH
5 = 0.355 AU):

1 ................ S/1975 J1 45.7 0.204 0.049 0.138 0.3554 14.5 8

2 ................ J13 (Leda) 26.7 0.147 0.074 0.208 0.6530 13.5 15

3 ................ J6 (Himalia) 30.2 0.166 0.076 0.214 0.6787 8.1 120 � 150

4 ................ J7 (Elara) 28.9 0.221 0.078 0.220 0.7113 10.0 75

5 ................ J10 (Lysithea) 27.8 0.104 0.079 0.223 0.7124 11.7 35

6 ................ S/2000 J11 28.2 0.208 0.083 0.234 0.7784 16.0 4

7 ................ S/2000 J3 148.5 0.233 0.133 0.375 1.57 15.2 6

8 ................ S/2000 J7 145.7 0.127 0.137 0.386 1.63 14.6 7

9 ................ S/2000 J5 149.2 0.239 0.136 0.383 1.63 15.5 5

10 .............. J12 (Ananke) 147.0 0.252 0.140 0.394 1.70 12.2 30

11 .............. S/2000 J10 165.5 0.198 0.149 0.420 1.86 15.6 5

12 .............. J11 (Carme) 166.3 0.263 0.148 0.417 1.84 11.3 40

13 .............. S/2000 J9 163.8 0.189 0.150 0.422 1.88 15.2 6

14 .............. S/2000 J4 161.3 0.323 0.152 0.428 1.92 15.9 4

15 .............. S/2000 J6 164.8 0.315 0.155 0.437 1.97 15.8 4

16 .............. J8 (Pasiphae) 140.0 0.380 0.156 0.439 2.00 10.3 50

17 .............. J9 (Sinope) 158.0 0.370 0.158 0.445 2.04 11.6 35

18 .............. S/2000 J2 166.3 0.267 0.161 0.454 2.09 15.1 6

19 .............. S/2000 J8 150.3 0.575 0.163 0.459 2.12 14.8 6

20 .............. S/1999 J1 142.3 0.107 0.165 0.466 2.17 14.2 10

21 .............. S/2001 J10 147.0 0.156 0.127 0.358 1.46 16.5 2

22 .............. S/2001 J8 165.3 0.475 0.138 0.389 1.67 16.4 2

23 .............. S/2001 J9 141.9 0.272 0.139 0.392 1.69 16.5 2

24 .............. S/2001 J2 149.0 0.295 0.139 0.392 1.68 15.7 4

25 .............. S/2001 J7 145.9 0.176 0.140 0.394 1.70 16.2 3

26 .............. S/2001 J3 150.3 0.251 0.142 0.400 1.72 15.5 4

27 .............. S/2001 J6 165.4 0.288 0.153 0.431 1.96 16.6 2

28 .............. S/2001 J4 150.1 0.345 0.156 0.439 1.95 16.1 3

29 .............. S/2001 J11 165.7 0.291 0.156 0.439 2.01 16.1 3

30 .............. S/2001 J5 155.0 0.454 0.157 0.442 2.00 16.4 2

31 .............. S/2001 J1 151.9 0.415 0.159 0.448 2.06 15.4 4

Notes.—The columns are identification number (ID), name of the satellite, inclination (i, measured with
respect to the ecliptic), eccentricity (e), semimajor axis (a) in AU and in Hill radii (RH

5 �0.355 AU), orbital
period (Torb), absolute magnitude (H ), and estimated diameter (D). The albedo A used to convert H into D is
0.04 (Rettig et al. 2001), except for Himalia, which has an irregular shape and A = 0.05 (Porco et al. 2003).
The satellites were ordered by increasing semimajor axis. The 11 irregular moons that were announced on 2002
May 16 (Sheppard et al. 2002) were listed separately (numbered 21–31; Sheppard et al. 2002). Source:
http://ssd.jpl.nasa.gov/sat_elem.html and http://ssd.jpl.nasa.gov/sat_props.html.

5 See http://ssd.jpl.nasa.gov/sat_elem.html and
http://ssd.jpl.nasa.gov/sat_props.html for up-to-date lists.

6 Twelve newmoons, S/2003 J1–J12, all seem to be retrograde.
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heterogeneous parent body or a capture and subsequent
fragmentation of more than one parent body.

Kessler (1981) found that the prograde irregular Jovian
satellites have a lifetime against collisions with each other of
�1 billion years, while the retrograde moons are unlikely to
have collided in the age of the solar system. These collision
rates were computed by Kessler for the four prograde and
four retrograde moons known at that time. By contrast, a
total population of�100 Jovian irregulars withD > 1 km is
inferred from modern observational surveys (Sheppard &
Jewitt 2002). The collisional evolution of the Jovian irregu-
lar moons may thus be more important than calculated by
Kessler (1981) due to the large number of bodies moving on
crossing orbits.

Saturn.—Saturn’s 13 irregulars form three groups of
moons with similar inclinations: the 34� inclination group
(three members), the 46� group (four members), and the
Phoebe group (six members). The two former groups were
proposed by Gladman et al. (2001) to be remnants of larger
satellites that were collisionally disrupted after capture. The
semimajor axes of Saturn’s irregular moons range between
0.17RH and 0.36RH. The moons are 6–32 km across (assum-
ing 6% albedo), except for the large retrograde moon
Phoebe, which is�220 km in diameter. Phoebe has a neutral
color (Simonelli et al. 1999); in addition, water ice was
recently detected on Phoebe (Owen et al. 1999). Owen et al.
argued that this implies that Phoebe originated in the outer
solar system, not as an escaped C-type main-belt asteroid as
proposed by Hartmann (1987). Phoebe will be imaged by
the Cassini camera at sub-kilometer resolution as the space-
craft approaches Saturn in 2004. Gladman et al. (2001) sug-
gested that the Phoebe group of moons was created by a
cratering impact on Phoebe’s surface. If so, the Cassini

imaging should reveal a large crater on Phoebe that may
have been formed by this event.

Uranus.—Uranus’s five known irregular moons move on
retrograde orbits (Gladman et al. 1998, 1999).7 Their diame-
ters range between 20 and 120 km, assuming a 7% albedo.
The moons have a red color (Gladman et al. 1998). Their
orbits are retrograde and have a � (0.1–0.25)RH. The large
semimajor axis spread of the irregular moons of Uranus
suggests that these bodies formed independently, rather
than having a common origin in a few parent bodies. This
situation contrasts with the irregular moon systems of
Jupiter and Saturn, which are clustered at a few orbital
locations. In the latter case, the observed moons may be the
largest members of groups that consist of (yet to be
discovered) sub–10 km bodies.

Neptune.—Neptune’s moon Nereid has a diameter of 340
km and a neutral or slightly blue color (Thomas, Veverka,
& Helfenstein 1996). It has the highest eccentricity (�0.75)
among all known irregular satellites. Nereid’s orbit is pro-
grade with an inclination of only 7� to Neptune’s orbital
plane. Nereid’s highly eccentric orbit was hypothesized to
have originated from perturbations by captured Triton,
whose migrating orbit could have also destabilized many
other moons of Neptune (Goldreich et al. 1989). As with
Phoebe, water ice was recently detected on Nereid (Brown
et al. 1999). The spectrum and albedo of Nereid appear
intermediate between those of the Uranian satellites
Umbriel and Oberon, suggesting a surface composed of a
combination of water ice frost and a dark and spectrally
neutral material. According to Brown et al. (1999), the

TABLE 2

Orbits and Sizes of the Irregular Moons of Saturn, Uranus, and Neptune as of 2002 August 16

ID Satellite

i

(deg) e

a

(AU)

a

(RH
j )

Torb

(yr)

H

(mag)

D

(km)

Saturn (RH
6 = 0.438 AU):

1 ................ S/2000 S5 48.5 0.164 0.076 0.174 1.24 12.3 17

2 ................ S/2000 S6 49.2 0.365 0.076 0.174 1.24 12.8 14

3 ................ Phoebe 173.2 0.175 0.086 0.196 1.49 6.9 240

4 ................ S/2000 S2 47.1 0.462 0.100 0.228 1.87 11.5 25

5 ................ S/2000 S8 148.6 0.210 0.104 0.237 1.98 13.8 8

6 ................ S/2000 S3 48.5 0.339 0.114 0.260 2.27 10.2 45

7 ................ S/2000 S10 34.2 0.616 0.116 0.265 2.34 13.3 10

8 ................ S/2000 S11 34.9 0.381 0.119 0.272 2.43 10.9 30

9 ................ S/2000 S4 34.9 0.637 0.120 0.274 2.47 12.5 16

10 .............. S/2000 S9 169.5 0.265 0.123 0.280 2.55 14.1 7

11 .............. S/2000 S12 174.7 0.107 0.131 0.299 2.82 14.0 7

12 .............. S/2000 S7 174.9 0.532 0.137 0.313 3.01 14.0 7

13 .............. S/2000 S1 172.9 0.385 0.156 0.356 3.63 11.9 20

Uranus (RH
7 = 0.469) AU:

1 ................ S/1997U1 (Caliban) 139.6 0.081 0.048 0.102 1.59 8.8 60

2 ................ S/1999U2 (Stephano) 141.6 0.145 0.053 0.113 1.84 10.9 20

3 ................ S/1997U2 (Sycorax) 152.9 0.504 0.081 0.173 3.53 7.1 120

4 ................ S/1999U3 (Prospero) 146.3 0.324 0.110 0.235 5.50 10.1 30

5 ................ S/1999U1 (Setebos) 147.9 0.522 0.119 0.253 6.25 10.0 30

Neptune (RH
8 = 0.777 AU):

1 ................ Nereid 7.3 0.751 0.037 0.048 0.99 4.6 340

Notes.—The columns are the same as in Table 1. The albedo A used to convert H into D is A = 0.05 for the
Saturnian irregular moons (Gladman et al. 2001); andA = 0.07 for the Uranian irregulars (Gladman et al. 1998,
1999). The size of Nereid was taken from Thomas, Veverka, & Helfenstein 1991. The data come from Gladman
et al. 1998, 1999, 2001, and Jacobson 2000, 2001. The satellites are ordered by increasing semimajor axis.

7 The newly discoveredmoon, S/2001U1, is also retrograde.
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spectrum thus provides support for the hypothesis that
Nereid is a satellite formed in a circumplanetary
environment rather than a captured object.

Gladman et al. (2000) searched most of Neptune’s Hill
sphere for satellites and found that Neptune probably does
not have other irregular satellites brighter than an Rmagni-
tude of 23.5, corresponding to a diameter of 70 km for an
assumed 7% albedo. Holman et al. (2001) searched the
region within �360 of Neptune to a magnitude limit of
R � 25.5 and found two candidate satellites of Neptune.
Finally, on 2003 January 13, three new irregular satellites
were announced by the same observers (Holman et al.
2003). S/2002 N1, N2, and N3 have substantially larger
orbits than Nereid: a � 0.13–0.15 AU (Nereid has
a � 0.037 AU). S/2002 N1 is retrograde and probably has
the largest orbital tilt with respect to the ecliptic of all
natural moons (i � 120�). S/2002 N2 and S/2002 N3 have
prograde orbits and similarly large orbital inclinations

(i � 57� and �43�, respectively). Orbital eccentricities of
these�20–50 km diameter moons are yet to be determined.

As a general characteristic of the orbital distribution of
the irregular satellites, we note that no moon has an inclina-
tion in the range between �50� and �140� (except for the
new moons of Neptune, S/2002 N1 and S/2002 N2; Fig. 1).
This is probably an effect of the so-called Kozai resonance,
which destabilizes moons with these inclinations either by
decreasing their pericenter distance q = a(1 � e) within the
reach of the massive inner moons, to q < R (where R is the
planetary radius), or by driving the apocenter Q = a(1 + e)
to distances where solar tides outweigh the planet’s gravity
(Carruba et al. 2002b). We also note that the closer the
planet is to the Sun, the more distant are its irregular satel-
lites when expressed in Hill radii. This may be one signature
of the formation process of irregular satellites that can be
gleaned from their present orbits, because long-term orbital
instabilities are not expected to have such a selective effect.

Fig. 1.—Orbits and sizes of 50 irregular moons as of 2002 August 16: (a) Jovian satellites (31 objects) and (b) Saturnians (13), Uranians (5), and Nereid.
Jovian satellites form two large groups with prograde and retrograde orbits. Saturnians are distributed in three groups, with members of each group having
similar inclinations. Uranian irregulars have retrograde orbits. The size of each symbol is proportional to the size of the object. The center of each symbol
denotes the orbital elements of a satellite: the semimajor axes and inclinations are shown in polar coordinates, with the orbital inclination being the angle
counted from the positive X-axis. The planetocentric distance of each moon varies in the range shown by the line segments extending radially from the
coordinate center. The length of a segment is 2ae, where a is the semimajor axis and e is the eccentricity of the corresponding moon. Inclination is measured
with respect to the ecliptic.
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The standard model for the formation of the regular
satellites is that they have formed by two-body accretion in
circumplanetary nebulae (see Stevenson, Harris, & Lunine
1986 for a review, and Mosqueira & Estrada 2001, 2002a,
2002b and Canup &Ward 2002 for recent models), in much
the same way as the planets are thought to have formed in
the solar nebula. This model cannot be applied to the irregu-
lar satellites, because (1) they are, in general, well separated
from the regular satellite systems, making it unlikely that
they have formed from the same circumplanetary nebula;
(2) their eccentricities, in general, are too large to have been
the result of straightforward accretion; and most impor-
tantly, (3) most of them follow retrograde orbits, so they
could not have formed in the same disk as the prograde
regular satellites.

As a result, the irregular satellites are assumed to have
been captured by planets from heliocentric orbits. However,
their current orbits cannot result from a purely gravitational
three-body, Sun-planet-satellite, capture because of the
time-reversibility of Newton’s laws of motion (i.e., if there is
a path in, there must be a path out).8 If the capture hypothe-
sis is correct, presumably some sort of dissipation process
must have produced permanent captures. Three major
scenarios for the formation of the irregular moons have
been proposed; all are based on the idea of satellite capture
from a heliocentric orbit.

1. A collisional scenario was originally proposed for the
four prograde and four retrograde irregular satellites of
Jupiter known before 2000. Moons in these groups have
similar orbits and could have been formed in the collisional
disruption of two parent bodies. Indeed, Colombo &
Franklin (1971) proposed that all eight satellites were
formed by a single collision between an object temporarily
captured in Jovian orbit and one in heliocentric orbit. Since
the orbits of the prograde and retrograde Jovian groups are
tightly clustered at largely distinct semimajor axis, however,
a single collision is an unlikely scenario to form these
groups. Thus, at least two collisions were needed. The colli-
sion scenario postulates that the observed groups of moons
with similar orbital elements were formed by the same
disruptive collision that assisted their capture.
2. Heppenheimer & Porco (1977) proposed that retro-

grade irregular satellites were captured as the mass of the
parent body grew via accretion. In this scenario, known as
pull-down capture, the satellites were initially locked in the
1 : 1 mean motion resonance with their parent planet; as the
mass of the planet grows, objects in some 1 : 1 resonant
orbits can slowly transition to planetocentric orbits. A
major weakness of this scenario, as Heppenheimer & Porco
proposed it, is that it does not produce the prograde
irregular satellites.
3. Pollack, Burns, & Tauber (1979) proposed that cap-

ture occurred when an object entered a circumplanetary gas
envelope and decelerated via aerodynamic drag (and also,
in some cases, disintegrated). However, this mechanism has
the problem that once capture occurs, there is very little time
(on the order of 10 years) before the object spirals into the
planet. Pollack et al. circumvented this problem by suggest-
ing that some 104, 100 km planetesimals were captured by

and spiraled into Jupiter over the assumed 105 yr lifetime of
the Jovian gas envelope. After some 105 yr, the envelope
contracts rapidly (in less than 10 years), and a few lucky sur-
vivors, the progenitors of today’s Jovian irregulars, avoid
being swept into the planet. While this scenario may
actually work for Jupiter and Saturn, it is unclear whether it
applies to Uranus and Neptune, because of their less mas-
sive gas envelopes (Pollack, Lunine, & Tittemore 1991).
Smaller fragments, being more strongly coupled to gas,
should experience faster orbital evolution that spirals them
in toward the planet and circularizes their orbits. This is
contradicted by the much larger Phoebe being the closest of
its cluster to Saturn; at Uranus, where Caliban and Sycorax,
the largest irregular moons, are two of the three closest; at
Jupiter, where satellites greatly differing in size have the
same semimajor axis; and by the lack of any general correla-
tion between satellite size and eccentricity (Gladman et al.
2001).

Once the irregular moons became bound to their parent
planets, their planetocentric semimajor axes probably suf-
fered some slow evolution, because of either the increasing
mass of the planet, gas drag, or some other form of dissipa-
tion. This evolution is suggested by the fact that among the
four major retrograde moons of Jupiter studied by Saha &
Tremaine (1993), Pasiphae and Sinope are located in a tiny
portion of the orbital space characterized by the secular res-
onance g � 2s + g5 = 0 (see also Whipple & Shelus 1993).
Here g and s are the apsidal and nodal frequencies of a
moon and g5 is the mean apsidal frequency of Jupiter. Saha
& Tremaine (1993) argued that the resonant capture of
slowly evolving orbits is most likely responsible for this
configuration (Henrard 1983).

Our study is motivated by the recent discoveries of 56
new irregular moons of the Jovian planets (Gladman et al.
1998, 1999, 2001; Sheppard et al. 2001, 2002). Together with
the 10 irregular moons known previously, the total number
of currently known irregulars is 66 (as of 2003 March 8).
Our ultimate goal is to understand the origin of these bodies
and what they can tell us about the formation of the Jovian
planets. In this paper, however, we focus on the current
physical and orbital characteristics of the irregular moons,
such as their orbital stability, occurrence of resonances, and
the fact that most irregular moons form groups of objects
with similar orbits. These issues are fundamental for under-
standing the origin of the irregular satellites. In particular,
we must discriminate between the observed properties of
the satellite systems produced by the formation mechanism
and those resulting from the later evolution.

In x 2, we study the orbital stability of distant satellite
orbits around Jovian planets by means of numerical integra-
tions. In that section, we present the results of our low-
resolution stability surveys. The purpose of these surveys is
to find out whether the orbits of known irregular satellites
bear some characteristics that can be related to their forma-
tionmechanism or whether they randomly sample the whole
parameter space characterized by long-term orbital stabil-
ity. In x 3, we use a semianalytic model of the distant satellite
orbits to explain the instabilities of the highly inclined orbits
found in x 2. In x 4, we summarize the results of our high-
resolution surveys of the orbital stability and compare them
with the orbital distribution of the discovered moons. In x 5,
we numerically integrate the orbits of 50 irregular moons of
the Jovian planets for 108 yr. The purpose of this integration

8 It should be noted, however, that ‘‘ long-lived ’’ temporary captures
can occasionally occur (�100 orbits; Kary &Dones 1996).
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is to see whether these orbits are stable over time intervals
that are comparable to the age of the solar system, and to
determine average orbits. We use the average orbits to clas-
sify irregular satellites into groups of bodies with similar
orbits (x 6). Moreover, we calculate collision rates between
pairs of irregular moons (x 7) and the effect of past colli-
sional evolution that may have produced the populations of
the irregular moons seen today (x 8). In x 9, we systemati-
cally search for orbits of irregular satellites that lie within
resonances. Our conclusions are given in x 10.

We adopt the usual notation, denoting by a, e, i, $, !, �,
�, and M the planetocentric semimajor axis, eccentricity,
inclination, perihelion longitude and argument, node longi-
tude, mean longitude, and mean anomaly of a satellite, and
by aj, ej, ij, $j, !j, �j, �j, and Mj the heliocentric elements of
the jth planet ( j = 5, 6, 7, 8 for Jupiter, Saturn, Uranus, and
Neptune, respectively; in some cases, we use letters J, S, U,
and N for a subscript to indicate the respective planet). The
ratio of the planetary masses (mj) to that of the Sun (M�)
are denoted by lj (=mj/M�). The planetary orbital, perihe-
lion, and nodal frequencies are denoted by nj, gj, and sj,
respectively; n, g, and s are the same frequencies for the sat-
ellite’s orbit. In a generic case, the planetary elements,
masses, and frequencies are denoted by the subscript p. The
universal gravitational constant is G. If M�, AU, and the
Julian year are used for units, GM� = (365.25k)2, where
k = 0.01720209895 is the Gauss constant.

2. LOW-RESOLUTION STABILITY SURVEYS

Here we summarize the results of our stability surveys of
distant satellite orbits. The idea was to numerically integrate
a large number of test orbits for a long enough time interval
to find locations where orbits are stable over long time
spans. We compare these locations with the orbits of real
satellites and draw constraints from this comparison on the
formation mechanism of the irregular moons. Because
we use a low-resolution grid for the initial (a, e, i) of test
orbits, we call this survey ‘‘ the low-resolution survey ’’ (our
‘‘ high-resolution surveys ’’ are discussed in x 4).

We numerically integrated the orbits of the four Jovian
planets and test satellites. The initial positions and velocities
of the planets were obtained from the JPLDE405 ephemeris
on JED 2,451,544.5 (2000 January 1).9 They were rotated to
the invariable plane determined by the total angular
momentum of the solar system and were corrected for the
barycenter of the inner solar system. The masses of the
terrestrial planets were then added to the mass of the Sun.

All test satellites were assumed massless with no effect on
the other bodies in the integration. We integrated 2000 test
satellites for each planet (1000 in prograde and 1000 in ret-
rograde orbits). We used 10 test orbits with the same initial
(a, e, i) and with random initial (!, �, �). The initial (a, e, i)
were distributed on a grid: 0.1RH

j � a � 0.9RH
j , with a step

Da = 0.2RH
j , 0 � e � 0.75 (De = 0.25), and 0� � i � 180�

(Di = 20�). Here the inclination i is referred to the planetary
invariable plane.

We modified the second-order WHM integrator in Swift
(Levison & Duncan 1994)10 that uses the Wisdom-Holman
map (Wisdom & Holman 1991) so that the planets are

integrated in the heliocentric frame and the satellites are
integrated in the planetocentric frame. This choice is prob-
ably the best solution for minimizing the integration error
of the symplectic scheme. We used a time step (h) equal to
1/20 of the orbital period of test satellites having a = 0.1RH

(the innermost orbits in the integration). This was about
0.011, 0.027, 0.077, and 0.15 yr for satellites of Jupiter,
Saturn, Uranus and Neptune, respectively. The integration
time span was 106 yr.

We tested the precision of the integrator in the three-body
Sun-Jupiter-moon system, where Jupiter’s orbit was
assumed to be circular. With this assumption, the Jacobi
constant is an integral of motion (e.g., Murray & Dermott
1999). The Jacobi constant with respect to the jth planet is
defined as

Cj ¼
V 2

2
� nj x ðR� VÞ � GM�

�
1

R�
þ

lj

Rj

�
; ð1Þ

where R and V are the center-of-mass position and velocity
vectors of a satellite, R� and Rj are the satellite-Sun and sat-
ellite-planet distances, nj is a vector perpendicular to the
planet’s orbital plane, and knjk = nj. We use this definition
of the Jacobi constant, which formally corresponds to the
orbital energy per unit mass of the test body in the reference
system centered at the Sun-planet barycenter, and rotating
with the angular speed and direction determined by nj;
hence, it includes the effective centrifugal potential:
�nj x (R � V). For the irregular moons of the jth planet,
Cj � �3(njaj)

2/2. For each integrated orbit of a test Jovian
satellite (0.1RH

5 � a � 0.9RH
5 ), we compute the maximum

fractional error produced by the integrator as
�C�5 = [max (C�5 )�min (C�5 )]/C�5;0, where C�5 = C5 +
3(n5a5)

2/2, C�5;0 is the initial value, and max (C�5 ) and
min (C�5 ) are the maximum andminimum values reached by
C�5 in the integration time span. With this definition,
�C�5 � �a, where �a is the expected fractional error of the
integrator in the satellite’s semimajor axis (Hamilton &
Krivov 1997).

According to our tests, the fractional error �C�5 is nearly
independent of a if a fixed time step is used for orbits with
0.1RH

j � a � 0.9RH
j . This was expected because at large a,

the stronger solar perturbations that cause larger errors in
the WHM scheme (/a3) are compensated by better sam-
pling of orbital revolutions (/n2 / a�3 for the second-order
WHM). With h = 0.011 yr, �C�5 � 10�4, which we consider
satisfactory for our purposes. For comparison, the maxi-
mum expected error in the semimajor axis is about 1/10 of
Jupiter’s diameter. Note that this apparent error can be
largely reduced by the use of a symplectic corrector
(Wisdom, Holman, & Touma 1996) and that the intrinsic
precision of the integrator is in fact much better. According
to our tests, the fractional error �C�5 with h = 0.011 yr is
only a weak function of the eccentricity and inclination of
the test orbit.

The planets and the Sun were assumed to be point masses.
A test satellite was eliminated if its planetocentric distance
was larger than 1 Hill radius (outer limit) or smaller than
the semimajor axis of the outermost massive regular satellite
(inner limit,Rin). At planetocentric distances larger than the
outer limit, the satellite is no longer gravitationally bound
to its parent planet. At planetocentric distances smaller than
the inner limit, the satellite crosses the orbit of a massive
regular moon and suffers large orbital variations during

9 See http://ssd.jpl.nasa.gov/eph_info.html.
10 See http://www.boulder.swri.edu/~hal/swift.html.
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approaches to this object.We justify our choice of the physi-
cal model, removal criteria, and integration time span by a
series of experiments. These experiments are explained at
the end of this section.

For Jupiter, we chose Rin
5 = 0.0125 AU, because the out-

ermost massive satellite Callisto (2403 km radius,
1076 � 1020 g mass) has this semimajor axis. For Saturn, we
ran two experiments with Rin

6 = 0.00815 AU and
Rin

6 = 0.0237 AU, respectively. These limits correspond to
the planetocentric distances of Titan (2575 km radius,
1345.5 � 1020 g mass) and Iapetus (718 km radius,
15.9 � 1020 g mass), respectively. For Uranus,
Rin

7 = 0.00389 AU (Oberon, 761.4 km radius, 30.14 � 1020

g mass). For Neptune, Rin
8 = 0.00236 AU (Triton, 1352.6

km radius, 214.7 � 1020 g mass).
The results of our surveys are shown using a bar code in

Figure 2. See the figure legend for the definition of the bar
code. The pattern of stability in Figure 2 shows some
common characteristics for all the Jovian planets, which we
discuss in the following.

The test orbits started at i � 90� were unstable. Carruba
et al. (2002b) showed that this instability occurs due to the
so-called Kozai resonance (Kozai 1962). The Kozai reso-
nance locks ! about 90� or 270� and causes coupled oscilla-
tions of e and i. Consequently, the orbit’s pericenter
q = a(1 � e) can be driven to planetocentric distances
smaller than Rin, when e > ecrit = 1 � Rin/a. If so, such an
orbit is removed from the integration because it either
impacts the planet, impacts a massive satellite, or is strongly
perturbed and escapes from the Hill sphere (we justify this
later). A simple illustration of how the Kozai resonance
works is shown in Figure 3 for the test Jovian satellite orbits
started at a = 0.1RH, e = 0.5, and i = 40�. The effect of the
Kozai resonance explains why no known irregular moon

has i � 90� (Carruba et al. 2002b). We conclude that the rel-
atively flat inclination distribution of the observed irregular
moons does not constrain their formation mechanism.

There exists a certain asymmetry between the stability
limits of prograde and retrograde orbits: the retrograde
orbits are generally more stable at larger semimajor axes
than the prograde orbits. This asymmetry also occurs in a
simple three-body model where the planet is placed on a cir-
cular orbit. Since the Jacobi constant (eq. [1]) is conserved
in this model, arguments have been proposed assuming
C = const (from more recent works, we cite Alvarellos 1996
andHamilton &Krivov 1997). Comparing the value ofC(a)
of circular prograde orbits with the semimajor axis a with
C(L1), the value of the Jacobi constant at the Lagrangian
point11 L1, Alvarellos (1996) argued that the prograde cir-
cular orbits become unbound for a e 0.48RH, because
C(a) > C(L1) for these semimajor axes, which means the
Jacobi constant does not confine planetocentric orbits. This
turns out to be a good approximation of the semimajor axis
limit for unstable orbits found numerically. Alvarellos also
showed by means of numerical integrations that the initially
circular retrograde orbits are stable at larger semimajor axes
than the prograde orbits. According to his work, the insta-
bilities of circular retrograde orbits occur for a e (0.72–
0.97)RH. Unfortunately, Alvarellos was unable to derive
this limit analytically, since for 0.25RH d a d 0.72RH, all
circular retrograde orbits are stable albeit having
C(a) > C(L1).

Hamilton & Krivov (1997) proposed that the asymmetry
occurs due to different dynamics of prograde and retrograde

11 FollowingMurray &Dermott (1999), we call L1 the Lagrangian point
located between the planet and the Sun.

Fig. 2.—Results of the low-resolution surveys of the stability of the distant satellite orbits. There are four vertical line segments at each initial a- and i-value
whose lengths are proportional to the number of surviving test orbits at four eccentricity values (0, 0.25, 0.5, and 0.75, from left to right). The full length of 0.1
(in the scale of the Y-axis) means that all 10 integrated test orbits survived over 106 yr. When no orbit survived with the initial (a, e, i), a dot was plotted at the
corresponding location. In the case of Saturn, we show the result with Rin

6 = 0.00815 AU (corresponding to Titan). This result does not greatly differ from the
one using Rin

6 = 0.0237 AU (corresponding to Iapetus). With Rin
6 = 0.0237 AU, however, most orbits with initial i � 60� were unstable, unlike in (b), where

most orbits at these inclinations were stable.
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orbits imposed by the Jacobi constant conservation. They
analytically showed that the phase trajectory portraits of
prograde satellites with a e 0.53RH have a saddle point at
e = 0. Consequently, large eccentricities can be enforced at
these semimajor axis. For retrograde orbits, Hamilton &
Krivov computed that the saddle point at e = 0 occurs for
a e 0.69RH, again in a good agreement with the instability
limit found numerically.

To explain the asymmetry between prograde and retro-
grade satellites, we use the concept of the so-called evection
resonance (e.g., Kaula & Yoder 1976; Touma & Wisdom
1998). The evection resonance occurs when the period of the
precession of the satellite orbit’s apsis and the period of the
planet’s orbital revolutions around the Sun are the same.
Figure 4 shows the evolution of one test prograde satellite
orbit started at Jupiter; initially, a = 0.5RH = 0.1775 AU,
e = i = M = 0. The initial semimajor axis is larger than the
critical semimajor axis found for prograde orbits by
Alvarellos (1996). Indeed, the orbit is unstable. The
behavior of the angle$ � �5 shows that the orbit is affected
by the evection resonance. This resonance is mathematically
described by a ‘‘ nonconvex ’’ resonant normal form, which
permits an indefinite growth of one of the actions (e goes

to 1). More intuitively, the resonance locks the orbit’s
apocenter to the apparent motion of the Sun around the
parent planet. In this configuration, the effect of solar tides
on a resonant moon accumulates at each aphelion passage
of the moon, which causes an outward radial drift of its
orbital apocenter; once close to the Hill sphere, the moon
escapes. This is exactly what is seen in Figure 4 at t � 40 yr
after the start of the integration. Other prograde test
satellites started at a = (0.5–0.9)RH behave similarly with
progressively shorter escape times at larger initial a. For the
retrograde orbits, the evection resonance occurs only at
semimajor axis a e 0.7RH because their periods of $ are
generally longer than those of prograde satellites (e.g., Saha
& Tremaine 1993).

What did we learn from the stability surveys about the
irregular moons? (1) First of all, there is no major discrep-
ancy between the current orbits of the irregular moons and
the orbital locations characterized by stable satellite
motion; the orbits of all known moons are located in the
region characterized by long-term stability. (2) The preva-
lence of retrograde moons (36 retrograde vs. 14 prograde, as
of 2002 August 16) may reflect the larger region of stability
of the retrograde orbits. Indeed, some retrograde moons, if

Fig. 3.—The evolution of ! and e of the Jovian satellite orbits induced
by solar tides. The trajectories were computed analytically using the
averaged three-body model with Jupiter in a circular orbit around the Sun.
In this model, H* = (1 � e2)1/2 cos i is the integral of motion. We show
trajectories for H* = 0.575. This value corresponds to the Jovian moons
started with e = 0.5 and i = 40� (those with initial a = 0.0355 AU are
shown by triangles). For e > ecrit = 1 � Rin

5 /a � 0.65, the orbits are
Callisto-crossing because q < Rin

5 = 0.0125 AUwhen ! = 90� or ! = 270�.
The figure shows why some test orbits started at a = 0.0355 AU, e = 0.5,
and i = 40� were eliminated in the stability surveys (open symbols), while
other orbits, with the same initial a, e, and i, were long-lived ( filled
symbols). The initial value of the argument of perijove ! decided the fate.
The orbits started with ! � 90� or ! � 270� never had e > ecrit. Thus, these
orbits were long-lived because they never become Callisto-crossing during
the cycle of !. Conversely, the orbits started with ! � 0� or ! � 180� were
short-lived because they become Callisto-crossing when ! evolves to �90�

or�270�. The structure of trajectories seen in this figure is characteristic for
the Kozai resonance (Kozai 1962).

Fig. 4.—Evolution of the orbital elements of a test Jovian moon started
in a circular, planar, and prograde orbit with a = 0.5RH

5 � 0.178 AU. The
orbit of this moon was short-lived and became unbound at t � 39 yr.
The bottom panel shows the evolution of $ � �J. This angle was nearly
stationary for most of the evolution because of the effect of the evection
resonance (e.g., Kaula & Yoder 1976; Touma & Wisdom 1998). The
eccentricity increase up to �1—the cause of the eventual escape—was
induced by resonant effects.
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placed on prograde orbits with their a and e unchanged,
would be dynamically short-lived. (3) No moons have near-
polar orbits and/or a very large semimajor axis, because of
the destabilizing effects of the Kozai and evection resonan-
ces. (4) The lack of prograde moons of Uranus and the lack
of retrograde moons of Neptune is not a consequence of the
long-term instabilities of satellite orbits at these planets.
Such moons, if formed at early epochs, would be
dynamically long-lived (see end of this section).

Let us now explain our choice of the physical model, of
the removal criteria, and of the integration time span. Con-
cerning the physical model, we neglected the effect of the ter-
restrial planets. This choice is justified because their
perturbations are on the order of lj(a/ap)

3, where lj,
1 � j � 4, is the mass of the jth terrestrial planet divided by
the mass of the Sun and a/ap is the ratio of the satellite’s and
the parent planet’s semimajor axes (e.g., Kovalevsky & Sag-
nier 1977). For example, the perturbations exerted by Earth
on Jupiter’s moon Pasiphae are less than �10�10 of the
monopole field of Jupiter. We also neglected the effect of
second and higher harmonics of the parent planet’s gravita-
tional potential and of the massive inner moons. To grossly
account for the destabilizing effect of the massive inner
moons on crossing orbits, we discarded those test satellites
that reached distances �Rin

j , judging them unstable. To jus-
tify these choices, we performed additional experiments. We
run stability surveys for the Jupiter irregular moons with
the same initial orbits as before. We used, however, different
integration setups in each case. (i) Instead of discarding a
test satellite when its distance drops below the orbit of
Callisto (�0.0125 AU), we removed it when the orbital peri-
jove q < 70,000 km � 0.00047 AU, that is, when the orbit
intersected the 1 bar Jupiter surface. (ii) The same as (i), but
accounting for the second harmonic of the gravitational
field of Jupiter and assuming that J2 = 14,735 � 10�6

(Jacobson 2000). (iii) The same as (i), but including
Ganymede and Callisto as massive bodies in the integration.
We used the planetocentric version of the second-order sym-
plectic integrator (Levison & Duncan 1994), and a time step
of 0.001 yr (�1/20 of Ganymede’s orbital period). In all
these experiments, we compared patterns of stable/unstable
orbits and the total number of discarded test bodies.

The difference between (iii) and the standard case (i.e.,
q < 0.0125 AU) is marginal. For prograde orbits, 78.7% of
test bodies were discarded in the standard case (55.1% out-
side the outer limit, 23.6% inside the inner limit), and 74.8%
are discarded in experiment (iii) (62.3% out, 9% in, 1.7%
impact Ganymede, 1.8% impact Callisto). For retrograde
orbits, 68.5% were discarded in the standard case (41.2%
out, 27.3% in), and 64.3% in (iii) (49% out, 7.9% in, 1.8%
impact Ganymede, 5.6% impact Callisto). The patterns of
orbital stability in the standard and (iii) experiments were
practically the same. We conclude that the Galilean satel-
lites of Jupiter efficiently eliminate those irregular moons
that reach q < 0.0125 AU (see also Alvarellos et al. 2002).
Similar roles are played by Titan/Iapetus, Oberon, and
Triton for the satellite systems around Saturn, Uranus, and
Neptune, respectively. Thus, it is justified to discard the test
satellite orbits of planet jwhen q < Rin

j .
It is interesting to note that including the J2 of Jupiter

slightly increases the number of discarded orbits. For
example, there were 64.2% (59.1% out, 5.1% in) discarded
prograde orbits in (i), and 70.9% (67% out, 3.9% in) dis-
carded prograde orbits in (ii). Similarly, there were 55.1%

(49.2% out, 5.8% in) discarded retrograde orbits in (i), and
60.7% (55.2% out, 5.5% in) discarded retrograde orbits in
(ii). This occurred due to the smaller pericenter distances
attained by orbits during the Kozai cycle when the oblate-
ness effects were taken into account. Thus, in (ii), the orbits
were unstable in a larger range of the initial i. Nevertheless,
when J2 was included in the experiments with the standard
removal criteria (q < 0.0125 AU in case of Jupiter), it
caused only a small variation of the number of removed
orbits. This justifies our choice of the physical model and
the standard removal criteria used to produce Figure 2.

The integration time span (1 Myr) is short compared
with the duration of the solar system (�4.6 � 109 yr).
One may thus wonder whether the stability of orbits over
1 Myr is sufficiently indicative of the stability of orbits
over the age of the solar system. Figure 5 shows the
number of surviving test satellites at time t observed in
our standard experiments. This figure shows that the
escape rate at t � 106 yr is much smaller that the escape
rate at previous times. This is especially clear for Jupiter,
where only three moons escaped at 105 yr < t < 106 yr.
Thus, for Jupiter, the stability pattern seen in Figure 2a
should not drastically change at later times. A similar
result was obtained by Carruba et al. (2002b), who inte-
grated a few hundred test orbits over 109 yr. For other
planets, a significant decay in the surviving satellite popu-
lations is observed at 105 yr < t < 106 yr. Thus, the

Fig. 5.—Fraction of bound orbits at time t in our low-resolution surveys.
Two curves per planet show this fraction for the prograde (bottom curve)
and retrograde satellite orbits (top curve), respectively. Initially, all orbits
were bound; large number of orbits became unbound in latter evolution.
For all planets, the original population of the prograde satellite orbits was
reduced by a larger factor than the population of the retrograde orbits. For
Saturn, we usedRin

6 = 0.0237 AU here (corresponding to Iapetus). Ordered
by the increasing fraction of bound satellite orbits at t = 106 yr, the planets
are Saturn, Jupiter, Uranus, and Neptune. If, however, Rin

6 = 0.00815 AU
is used (corresponding to Titan), Jupiter becomes the planet with fewest
survivors. The number of escape events per time interval is the largest at
t < 100 yr. At t > 105 yr, the escape rate is low. For example, only three
satellites of Jupiter become unbound at 105 yr < t < 106 yr.
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stability regions shown in Figure 2 for these planets
would shrink somewhat if longer time spans were used.
The largest effect is expected for the retrograde satellites
of Saturn and Neptune, where �3% and �4% of the ini-
tial orbits escape at 105 yr � t � 106 yr. Extrapolating
this trend to 4.6 � 109 yr, we estimate that some d12%
and d16% additional escapes of retrograde orbits may
occur at 106 yr < t < 4.6 � 109 yr, respectively. We
believe, however, that the main characteristic of the dis-
tribution of orbits stable over the age of the solar system
may be already grasped from our 106 yr numerical inte-
grations. We use longer integration time spans in our
high-resolution surveys (x 4).

3. SEMIANALYTIC MODEL

The orbital evolution of an irregular moon can be
described by the Hamiltonian

H ¼ �
G2m2

j

2L2
þH1ðL;G;H; l; g; h; tÞ ; ð2Þ

where H1(L, G, H, l, g, h, t) is obtained by writing the
perturbation due to the Sun

H1 ¼ �GM�

�
1

D
� r x r�

r3�

�
ð3Þ

in the Delaunay variables

L ¼
ffiffiffiffiffiffiffiffiffiffiffi
Gmja

q
; l ¼ M ;

G ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
; g ¼ ! ;

H ¼G cos i ; h ¼ � : ð4Þ

Here r and r� are the planetocentric positions of the moon
and the Sun, respectively, This model assumes that the
Keplerian orbit of a massless satellite around its parent
planet j is perturbed solely by the Sun; direct effects of planets
other than planet j are neglected. We add the masses of the
planets i < j into the mass of the Sun (M�). Similarly, we add
the masses of the massive inner satellites of the planet j into
mj. The Hamiltonian (eq. [2]) is a good model for the per-
turbed motion of irregular satellites because solar tides are
much larger than other perturbations. We evaluate equation
(3) as a function of equation (4) numerically using the formal-
ism described by Nesvorný et al. (2002b), or by using an
expansion in powers of a/aj5 1 (see Šidlichovský 1991).

Assuming that a is nonresonant, we can average equation
(3) over mean anomalies (l and lj), neglect constant terms,
and expand the resulting secular Hamiltonian in powers of
ej and ij. This gives

Hsec ¼ gj�gj þ sj�sj þ
X
n	0

KðnÞðG;H; g; h; $�
j ;�

�
j Þ ; ð5Þ

where �gj and�sj are the canonical momenta that are conju-
gate to $�

j = gjt and ��j = sjt, respectively. Here K(n) is of
degree n in ej and ij. The leading term of this expansion is
K(0). This zeroth-order term is independent of the planetary
eccentricities and inclinations, so that—by the d’Alembert
rules—it is also independent of the planetary angles$�

j and
��j . Moreover, the d’Alembert rules also imply that K(0) is
independent of h (i.e., of the longitude of the ascending
node). We thus identify an integrable approximation of

equation (3) that is usually called the Kozai Hamiltonian:

HKozai ¼ Kð0ÞðG;H; gÞ ð6Þ

(Kozai 1962; Carruba et al. 2002b).
To order (a/aj)

2, the Kozai Hamiltonian is

Kð0Þ ¼
M�n

2
j

16ðM� þmjÞ
a2½ð2þ 3e2Þð3 cos2 i � 1Þ

þ 15e2 sin2 i cos 2g
 ð7Þ

(see Kinoshita & Nakai 1999). This expression is valid for
every value of e and i but neglects terms of order higher than
2 in a/aj. For irregular satellites, where 0.001 d a/ap d
0.03, equation (7) is nevertheless an excellent approxima-
tion. In the following, we study the dynamics described by
equation (7).

Because equation (7) does not depend on h, the conjugate
momentum H / (1 � e2)1/2 cos i is a constant of the
motion. We show a dozen curves H = const (six for pro-
grade and six for retrograde orbits) in Figure 6. Because
motion occurs on these curves, e and i are correlated: for
prograde orbits (0� � i < 90�), e increases when i decreases,
and vice versa; for retrograde orbits (90� � i < 180�), e
increases when i also increases, and vice versa. The maxi-
mum e and i that can be reached by an orbit with fixedH are
related through emax = sin imax.

Figures 7 and 8 show the trajectories of equation (7) for six
values ofH. Figure 7 shows the trajectories parameterized by

Fig. 6.—Loci of the !-libration (solid curves) and the limits of the last
librating trajectories in e and i (dashed curves). The dotted lines are defined
as H = const, where six values of H for both the prograde and retrograde
orbits correspond to emax = 0.2, 0.6, 0.8, 0.9, 0.95, and 0.99. The phase por-
traits on these manifolds are shown in Figs. 7 and 8. The orbital elements
(e, i) of 50 irregular moons are shown when ! � 90� (triangles). The filled
symbols are the orbits that show ! libration: S/2000 S5 and S/2000 S6
(prograde) and S/2001 J10 (retrograde). Orbits of these moons librate
around ! = 90� (see also Fig. 5 in Carruba et al. 2002b).
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(e cos !, e sin !), and Figure 8 shows trajectories in
(sin i cos !, sin i sin !). These dynamical portraits are
independent of massesm� andmj, and nearly independent of
a/aj. We have checked by computing the same phase
portraits from the exact K(0)(G, H, g) (using the double-
averaging procedure described in Nesvorný et al. 2002b) that
terms (a/aj)

3 and higher inK(0)(G, H, g) can be neglected for
the orbital distances of the irregular satellites.

Libration of ! around 90� or 270� can occur for
sin i > (25)

1/2, that is, for 39=23 < i < 140=77. The libration
center is located at sin i = [(2 + 3e2)/5]1/2. Figure 6 shows
the minimum inclination of a librating orbit and the libra-
tion center. The maximum eccentricity reached by a trajec-
tory starting at e = 0 and i0 is e = [1 � (5/3) cos2 i0]

1/2. If
we assume that satellites that reach a(1 � e) � Rin

j are
removed by the effect of the massive inner moons, we

Fig. 7.—Evolution of (e cos !, e sin !) for six values ofH = const. These values correspond to emax = 0.2, 0.6, 0.8, 0.9, 0.95, and 0.99 (from (a) to ( f )). The
thick line shaped like a figure eight separates librating and circulating trajectories. The dynamics seen in (c)–( f ) is characteristic for the Kozai resonance (see
also Fig. 2 in Thomas &Morbidelli 1996).
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calculate that this happens for

i 	 arccos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
5 ½1� ð1� Rin

j =aÞ
2


q
ð8Þ

(Gladman et al. 2001; Carruba et al. 2002b). We plot these
limits in the upper panels of Figures 9–12 to compare them
with the results of our high-resolution surveys (next
section).

Figure 6 also shows the eccentricity and inclination of the
orbits of the 50 known irregular moons when their ! � 90�.
These values were obtained by a numerical integration of
the exact equations of motion (x 5). Three satellites with !-
librating orbits (S/2000 S5, S/2000 S6, and S/2001 J10) are
within or close to the libration region in Figure 6. Other sat-
ellites that fall into the area between the solid and dashed
lines do not actually move on !-librating trajectories, but

Fig. 8.—Evolution of (sin i cos !, sin i sin !) for six values of H = const. These values correspond to emax = 0.2, 0.6, 0.8, 0.9, 0.95, and 0.99 (from (a) to
( f )).
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follow a figure-eight trajectory just outside the separatrices
of the libration island (see Fig. 7).

4. HIGH-RESOLUTION STABILITY SURVEYS OF
DISTANT SATELLITE ORBITS

The integration setup of our high-resolution surveys was
similar to that of the low-resolution surveys. We tracked,
however, a larger number of orbits. Moreover, motivated
by the results of the low-resolution surveys and of the ana-
lytic model, we selected the initial values of ! to properly
account for the effect of the Kozai resonance. We performed
two surveys per planet with ! = 0� in the first and ! = 90�

in the second. According to Figure 3, the first choice corre-
sponds to orbits with circulating !. The second choice,
! = 90�, corresponds to orbits for which ! and e oscillate
around a fixed value. The maximum eccentricity attained by
the orbits started with ! = 90� should be generally smaller
than the maximum e attained by orbits started with ! = 0�

(Fig. 3). We thus expect different stability patterns
depending on the initial value of !.

The other two angles, � and �, were chosen at random
between 0� and 360�. As in the low-resolution surveys, we
started orbits with 0.1RH

j � a � RH
j and 0� � i � 180� for

satellites of planet j. Here, however, we used a finer grid than
in the low-resolution surveys. For Jupiter, we used
�a = 0.01RH

j and Di = 2� (a total of 8281 test orbits); for
other planets, we used �a = 0.02RH

j and Di = 4� (a total of
2116 test orbits). Moreover, we used four values of the
initial eccentricity: e = 0, 0.25, 0.5, and 0.75. In total, more
than 50,000 orbits were followed.

The coarser grid used for initial orbits in the case of
Saturn, Uranus, and Neptune allowed us to reduce the CPU
demand and to use longer integration time spans for these
orbits. According to Figure 5, long integration time spans
are required for the satellites of Saturn, Uranus, and
Neptune to correctly account for the long-term instabilities.
We used 0.5, 2, 6, and 10 Myr integration time spans for the
stability surveys of the distant satellite orbits around
Jupiter, Saturn, Uranus, and Neptune, respectively.

Jupiter.—Figure 9 shows the results for Jupiter. The
asymmetry between stable locations of prograde and retro-
grade orbits can readily be seen in this figure. At small
eccentricities, the stability limit of the planar prograde
orbits extends only up to a � 0.4RH

j ; conversely, the planar
retrograde orbits are stable up to a � 0.7RH

j . In x 3, we
explained that this asymmetry occurs due to the asymmetric
location of the evection resonance.

Figure 9 also clearly shows the effect of the Kozai reso-
nance on the orbital stability of Jovian irregular moons:
most orbits with i � 90� are unstable due to large eccentric-
ities enforced by this resonance (x 3). For the initially circu-
lar orbits of test satellites (Fig. 9, top), there is not much
difference between the ! = 0� and ! = 90� plots, since the
maxima attained by the eccentricities are the same (Fig. 7).
We compute the limits of the stable orbits from
a(1 � emax) > Rin

5 using equation (8). The bold U-shaped
curves in the top panels of Figure 9 show the largest
(smallest) stable inclinations as a function of a for prograde
(retrograde) orbits. These limits are in good agreement with
the numerical results.

For prograde orbits with e � 0, the largest stable initial
inclination for a d 0.4RH

j is �60�. With ! = 90�, this limit-
ing inclination is nearly independent of the eccentricity for

e d 0.5. For retrograde orbits with e � 0, the smallest
stable initial inclination is �120�. With ! = 90�, this
limiting inclination increases to �130� at e � 0.5. Similar
results were published by Carruba et al. (2002b).

The stable satellite orbits form ‘‘ wedges ’’ centered at
(0, 0) in Figure 9. The limits of these regions in (a, i) can be
empirically given in terms of simple functional forms. For
small e, the prograde orbits with i d 60� and a d 0.4RH

j ,
and the retrograde orbits with i e 120� and
a d (0.4 + 0.3i/60�)RH

j are stable. For prograde orbits, the
semimajor axis range of stable orbits is roughly the same for
all e d 0.5. For retrograde orbits, this range shrinks with
increasing eccentricity. For example, the retrograde orbits
started with e = 0.5 and ! = 0 are stable if i e 130� and
a d (0.4 + 0.1i/50�)RH

j . The angular and radial extents of
the stability wedges are determined by the Kozai and
evection resonances, respectively.

As expected, the orbits of all Jovian irregular satellites are
located within the stable wedges. Only the orbits of
Pasiphae and S/2000 J8, due to their higher eccentricities,
are located somewhat close to the instability limit. We will
show in x 5 that the orbits of all Jovian irregulars, including
Pasiphae and S/2000 J8, are long-lived.

Saturn.—The region of stable irregular satellite orbits
of Saturn (Fig. 10) is somewhat smaller than that of
Jupiter because Rin

6 > Rin
5 . For Saturn, we assume that

Rin
6 = 0.0237 AU (roughly the semimajor axis of Iapetus),

which is more than 2 times larger than the Rin
5 = 0.0125

AU used for Jupiter (the semimajor axis of Callisto). Is
our value of Rin

6 justified? Iapetus is much smaller than
Callisto, and it may not be large enough to effectively
eliminate small bodies on crossing orbits. Although we
were unable to precisely calculate the effect of Iapetus,
some of our experiments suggest that this moon may
indeed operate as an effective sink for the irregular
moons that reach �0.0237 AU. For example, the average
lifetime against an impact on Iapetus of a 10 km diame-
ter moon with a = 0.2 AU, e = 0.9, and i = 30� is about
500 Myr. Thus, if a comparable time interval is spent by
a prograde irregular satellite in the high-eccentricity
regime during the Kozai cycle, such a satellite is doomed
to impact Iapetus. For a similar retrograde satellite (i.e.,
a = 0.2 AU, e = 0.9, and i = 150�), the lifetime is only
�180 Myr, that is, only �4% of the age of the solar
system. Moreover, the gravitational scattering effect of
Iapetus is probably more effective in removing the orbit-
crossing population than collisions. We thus believe that
our choice of Rin

6 is justified.
In our model with Rin

6 = 0.0237 AU, the instabilities
caused by the Kozai resonance show up at 60� d i d 120�.
For ! = 0� and e � 0.5, the range of unstable inclinations
widens to 40� d i d 140�. At e e 0.75, all test distant
satellite orbits are unstable.

Uranus and Neptune.—The pattern of stable/unstable
orbits is similar for these planets (Figs. 11 and 12). The
instabilities due to the Kozai resonance occur in a narrower
inclination range (80� d i d 100� for e = 0 and/or
! = 90�) than for Jupiter and Saturn. This results from the
very small planetocentric distances, at which Uranus’s and
Neptune’s irregular moons start to interact with the massive
inner moons (Oberon is at Rin

7 = 0.00389 AU, Triton is at
Rin

8 = 0.00236 AU).
Another major difference with respect to Figures 9 and 10

is that many highly eccentric satellite orbits of Uranus and
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Fig. 9.—Results of the high-resolution surveys of the stability of distant satellite orbits of Jupiter. Test orbits with lifetimes shorter than 0.5Myr are denoted
by dots; hence, blank regions represent stability. The gray semicircle at the origin shows the region not sampled by our initial conditions (a < 0.1RH

J ). In each
panel, we also plot those known Jovian irregulars that have |e(t) � epanel| � 0.125 when !(t) = !panel at time t, where epanel and !panel are the initial values of the
surveyed test orbits shown in each panel (labels in upper right corners). For each irregular moon’s orbit, we show the instantaneous elements at time t. These
values were obtained by numerically integrating the orbits (x 5). The bold U-shaped curves in the top panels show the limits of stable inclinations calculated
from eq. (8). Above these curves, the orbital perijove of an irregular moon drops down to the locations of the massive Jovian moons during the Kozai
cycle. [See the electronic edition of the Journal for color versions of Figures 9–12.]



Neptune are long-lived. These orbits are located in the wide
blank regions in Figures 11 and 12 (bottom). Again, this
occurs because of the small values of Rin

7 and Rin
8 . Note that

Neptune’s irregular satellite Nereid, if placed on its current
orbit about Jupiter, would be moving on a Callisto-crossing
short-lived orbit. In general terms, this tells us that the
orbital configurations of massive inner satellites and of the

irregular moons are interrelated, not permitting crossing
orbits during the Kozai cycle.

As a concluding remark for this section, we note that the
regions of stable retrograde satellites in Figures 11 and 12
shrink with eccentricity (from a d 0.7RH at e = 0 and
i � 180� to a d 0.4RH at e = 0.75 and i � 180�), while the
boundary of stable prograde orbits does not show the same

Fig. 10.—Results of the high-resolution surveys of the stability of distant satellite orbits of Saturn. Test orbits with lifetimes shorter than 2Myr are denoted
by dots. See legend of Fig. 9.
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behavior. We believe that the evection resonance, which
becomes larger at larger e, is defining these patterns; it is
conceivable that more eccentric orbits suffer stronger reso-
nant-driven instabilities than the near-circular ones.
Detailed calculations of this effect, however, are left for
future studies.

5. LONG-TERM EVOLUTION OF THE
IRREGULAR MOONS

We have numerically integrated for 108 yr the orbits of all
presently known irregular satellites for which we have good
initial orbits (50 orbits in total). Our motivation was to

Fig. 11.—Results of the high-resolution surveys of the stability of distant satellite orbits of Uranus. Test orbits with lifetimes shorter than 6Myr are denoted
by dots. See legend of Fig. 9.
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determine (i) the average orbits of the moons, (ii) whether
resonances occur, and (iii) whether the orbits of irregular
moons are stable and/or show slow chaotic evolution over
very long time spans.

The irregular satellites form several distinct dynamical
groups with members of each group having similar orbits.

These groups were suggested to represent remnants of dis-
rupted larger objects (Colombo & Franklin 1971; Pollack
et al. 1979; Gladman et al. 2001). The average orbital ele-
ments are useful in this context, because unlike the instanta-
neous orbital elements, they are more constant over long
time spans. Thus, the average elements calculated in (i) will

Fig. 12.—Results of the high-resolution surveys of the stability of distant satellite orbits of Neptune. Test orbits with lifetimes shorter than 10 Myr are
denoted by dots. See legend of Fig. 9.
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be used to determine which irregular satellites have similar
orbits, and thus may share a common origin.

Saha & Tremaine (1993) showed that the orbits of
Pasiphae and Sinope are affected by resonances. Since reso-
nant orbits are rare if satellites form in random orbits and
the orbits do not subsequently evolve, this result may sug-
gest that some slow dissipative evolution of orbits of these
satellites occurred in the past resulting in resonant captures
(see Roy & Ovenden 1954, 1955; Goldreich 1965; Murray &
Dermott 1999). In (ii), we will perform an analysis similar to
that of Saha & Tremaine for the 50 known irregular moons.
If other resonances are identified, the case for some,
probably primordial, orbital evolution will receive further
support.

The irregular satellites have a < 0.5RH; it is hard to
explain how their orbits could have originated recently,
because significant energy dissipation would be needed to
form them from one of the larger reservoirs of small bodies
in the solar system. Thus, the irregular satellites are
expected to be long-lived objects, and their origin probably
dates back to the early stages of the formation of the solar
system, when sources of dissipation were numerous (e.g.,
Pollack et al. 1979; Saha & Tremaine 1993). We will verify
for the first time whether this scenario is supported by the
stability of the moons’ orbits over time intervals comparable
to the age of the solar system.

Our numerical model of the long-term evolution of the
irregular satellites’ orbits accounts for the gravitational per-
turbations from the Sun and four Jovian planets, which are
assumed to be point masses. Effects of the parent planet’s
oblateness, relativistic corrections, and massive satellites
were neglected. For irregular moons, these effects are
smaller than 10�6 times the monopole field of the parent
planet (Saha & Tremaine 1993). We corrected planetary
positions and velocities for the center of mass of the inner
solar system and added the masses of the terrestrial planets
into the Sun. Moreover, we corrected the satellite positions
and velocities for the center of mass of the massive inner sat-
ellite systems and added the masses of inner moons into
their parent planets.

The initial orbits of the planets and their satellites were
obtained from the JPL Horizons Web page.12 For the
moons of Jupiter, Uranus, and Neptune, we used the
epoch 2000 as a starting date. Because the ephemerides
of some of the irregular moons of Saturn were not avail-
able on this date, we used the epoch 2001 for the integra-
tion of the Saturn satellite system. The ephemerides were
complete on this date. The precision of the initial orbital
elements was poor for those moons that were discovered
recently. We discuss later whether some of our conclu-
sions may be affected by uncertainties in the initial orbits.
The reference plane used for the numerical integration
was the invariable plane of the solar system determined
by its total angular momentum. The initial position and
velocity vectors of all integrated bodies were rotated to
this reference system.

Unlike for the stability surveys, we used a fourth-order
symplectic integrator for the integration of the real
bodies (Yoshida 1990; Wisdom & Holman 1991). We
made this choice because we required better integration
precision here than the precision required for the numeri-

cal surveys. According to our tests, the fourth-order sym-
plectic integrator conserved the Jacobi constant better
than the second-order integrator when time steps were
adjusted in such a way that there were equal CPU
demands in both cases. Typically, �C* d 10�7 for the
time steps we used with the fourth-order method. We
programmed the fourth-order symplectic scheme in mixed
variables (fourth-order WHM; Wisdom & Holman 1991)
using the existing routines of Swift (Levison & Duncan
1994). As before, we used the planetocentric reference
system for satellites and the heliocentric reference system
for planets. Moreover, we used a symplectic corrector in
order to suppress short period variations of the orbital
elements (Wisdom et al. 1996).

We used step sizes of 0.0178 and 0.0417 yr for the inner
and outer irregular satellites of Jupiter, respectively. The
former value is about 1/20 of the orbital period of the inner-
most prograde satellite; the latter value was used by Saha &
Tremaine (1993). We used step sizes of 0.0621, 0.0788, and
0.0495 yr for satellites of Saturn, Uranus, and Neptune,
respectively. These step sizes are 1/20 of the orbital period
of the innermost irregular satellite of these planets. The inte-
gration precision resulting from the selected step sizes is
good enough for our purposes. All integrated satellite orbits
remained bound over this interval. We will summarize and
use the results of this simulation in the following sections.

6. SATELLITE FAMILIES

To determine which satellites have similar orbits and may
thus share a common origin, we computed the average orbi-
tal elements of the 50 integrated orbits by averaging the
osculating elements over 0 yr � t � 108 yr. The average
values are listed in Tables 3 and 4 and are plotted in Figure
13. In a few cases, we numerically integrated the same orbit
with two different time steps. This allowed us to estimate
errors of the averaged elements resulting from the integra-
tion procedure. For Jupiter, J13 Leda—the second inner-
most Jovian irregular moon—was integrated with
h = 0.0178 yr (standard h) and h = 0.0089 yr (reduced h)
time steps. The differences of averaged orbital elements
determined from the two runs were practically zero. Simi-
larly, S/1999 J1—the outermost Jovian irregular moon—
was integrated with h = 0.0417 yr (standard h) and
h = 0.0178 yr (reduced h) time steps. In this case, the maxi-
mum differences were 5 � 10�6 AU, 1.4 � 10�3, and 0=03
for a, e, and i, respectively. This precision is satisfactory.

Figure 14 shows the osculating and average orbital ele-
ments for the retrograde group of irregular moons of Jupi-
ter. This figure clearly demonstrates the usefulness of the
averaged elements for the identification of dynamical
groupings. The retrograde group looks like one, widely dis-
persed cluster in the space of the osculating orbital elements
(Fig. 14, top). In the space of the average orbital elements,
however, several much tighter clusters become apparent.
We will discuss these and other dynamical structures in the
following. We will adopt the terminology used in studies of
asteroids and call groups of satellites with similar average
elements satellite families. It is likely that at least some
satellite families originated by collisional breakups of large
precursor moons.

We use the Gauss equations to relate the size of a satellite
family in the average orbital elements (�a, �e, �i) with a12 http://ssd.jpl.nasa.gov/horizons.html
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selected velocity impulse (�V ):

�a

a
¼ 2

na
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p ½ð1þ e cos f Þ�VT þ ðe sin f Þ�VR
 ;

�e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

na

�
eþ 2 cos f þ e cos2 f

1þ e cos f
�VT þ ðsin f Þ�VR

�
;

�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

na

cosð!þ f Þ
1þ e cos f

�VW : ð9Þ

Here �VT, �VR, and �VW are components of �V along the
direction of the orbital motion, in the radial direction, and
perpendicular to the orbital plane, respectively. Assuming

that a satellite family originated by a collisional disruption,
f and ! are the true anomaly and the perihelion argument of
the disrupted parent body at the instant of the impact. If
fragments are isotropically ejected from the breakup site
with velocities Vejc exceeding the escape velocity Vesc by
�V = (V2

ejc � V2
esc)1/2 < Vmax, equation (9) shows that their

osculating orbital elements will be located within an ellip-
soid centered at the parent body’s initial-(a, e, i) orbit. The
shape and orientation of the ellipsoid are determined by
Vmax, f, and !. The same structure is conserved by the
transformation from the osculating to proper elements.

Jupiter.—The prograde group of Jovian irregular moons
is more compact than the retrograde group (Fig. 13).

TABLE 3

Average, Minimum, and Maximum over 10
8
Years of the Orbital Elements of the Irregular Moons of Jupiter

ID Satellite ave (a) min (a) max (a) ave (e) min (e) max (e) ave (i) min (i) max (i)

Prograde Group

3................. J6 (Himalia) 0.076428 0.0758 0.0771 0.15909 0.1098 0.2097 28.591 26.99 30.14

4................. J7 (Elara) 0.078334 0.0777 0.0792 0.21262 0.1512 0.2765 28.048 26.08 29.96

5................. J10 (Lysithea) 0.078114 0.0775 0.0788 0.11581 0.0770 0.1549 27.634 26.24 28.97

2................. J13 (Leda) 0.074449 0.0739 0.0751 0.16327 0.1151 0.2126 28.075 26.50 29.61

6................. S/2000 J11 0.083526 0.0826 0.0847 0.24874 0.1741 0.3269 28.590 26.27 30.91

Ananke Family

10............... J12 (Ananke) 0.140674 0.1354 0.1470 0.24287 0.0653 0.4660 147.733 142.48 152.36

7................. S/2000 J3 0.139842 0.1347 0.1460 0.22378 0.0614 0.4282 148.676 143.94 152.82

9................. S/2000 J5 0.139732 0.1346 0.1459 0.23813 0.0641 0.4571 147.843 142.80 152.36

8................. S/2000 J7 0.138719 0.1337 0.1446 0.23201 0.0425 0.4792 145.802 140.32 152.61

24............... S/2001 J2 0.140936 0.1356 0.1473 0.24123 0.0617 0.4654 147.643 142.37 152.27

26............... S/2001 J3 0.140764 0.1355 0.1471 0.22441 0.0689 0.4157 150.130 145.48 154.03

25............... S/2001 J7 0.139049 0.1340 0.1451 0.24114 0.0679 0.4572 148.018 142.82 152.52

Carme Family

12............... J11 (Carme) 0.154496 0.1473 0.1643 0.26329 0.1092 0.4258 164.530 160.93 167.03

18............... S/2000 J2 0.155906 0.1485 0.1659 0.25226 0.0991 0.4157 164.745 161.24 167.15

14............... S/2000 J4 0.153312 0.1463 0.1631 0.27764 0.1213 0.4418 164.395 160.62 166.98

15............... S/2000 J6 0.152432 0.1455 0.1619 0.27139 0.1188 0.4381 164.483 160.64 167.15

13............... S/2000 J9 0.154433 0.1472 0.1642 0.26006 0.1070 0.4221 164.785 161.19 167.19

11............... S/2000 J10 0.153363 0.1464 0.1628 0.25766 0.1087 0.4169 164.732 161.27 167.12

27............... S/2001 J6 0.152177 0.1454 0.1616 0.27217 0.1194 0.4347 164.580 160.91 167.07

22............... S/2001 J8 0.152934 0.1459 0.1625 0.27509 0.1213 0.4374 164.447 160.71 166.98

29............... S/2001 J11 0.155678 0.1483 0.1659 0.27134 0.1125 0.4381 164.711 161.04 167.26

Pasiphae and S/2000 J8 (?)

16............... J8 (Pasiphae) 0.156712 0.1484 0.1686 0.38708 0.1289 0.7115 148.429 138.10 155.81

19............... S/2000 J8 0.158126 0.1495 0.1707 0.42390 0.1700 0.6911 149.930 140.41 157.36

S/2001 J5 and S/2001 J1 (?)

30............... S/2001 J5 0.157404 0.1493 0.1686 0.33067 0.1059 0.5902 149.512 142.04 155.518

31............... S/2001 J1 0.159625 0.1511 0.1717 0.33219 0.1119 0.5948 150.643 143.01 156.575

Other

1................. S/1975 J1 0.049422 0.0493 0.0495 0.25130 0.0735 0.4654 44.409 39.31 47.68

17............... J9 (Sinope) 0.158110 0.1500 0.1697 0.29671 0.0771 0.5488 157.385 150.89 161.58

20............... S/1999 J1 0.158959 0.1506 0.1698 0.29398 0.0512 0.6036 145.131 137.93 151.92

21............... S/2001 J10 0.129176 0.1254 0.1330 0.14645 0.0613 0.2711 145.459 142.45 148.18

23............... S/2001 J9 0.139814 0.1345 0.1463 0.29397 0.0755 0.5731 144.323 137.80 150.88

28............... S/2001 J4 0.153579 0.1463 0.1631 0.28828 0.0843 0.5373 148.992 142.57 154.34

Notes.—The columns are identification number (ID), name of the satellite, average, minimum, and maximum of the semimajor axis [ave (a),
min (a), and max (a), a in AU], average, minimum, and maximum of the eccentricity [ave (e), min (e), and max (e)], and average, minimum, and
maximum of the inclination [ave (i), min (i), and max (i), i in degrees with respect to the invariable plane of the solar system]. The satellites are
grouped into clusters with similar average orbits.
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Assuming that these groups were formed by two collisional
breakups, this would mean that the collision that formed
the prograde group was less energetic than the one that
formed the retrograde group (Colombo & Franklin 1971).
We calculate from Gauss’s equations that 50 m
s�1 d �V d 400 m s�1 for the prograde group, and 300 m
s�1 d �V d 500 m s�1 for the retrograde group. Curiously,
both these velocity ranges (especially the one for the retro-
grade group) are inconsistent with the velocity dispersion of
multi-kilometer collisional fragments derived for cata-
strophic collisions by other means. For example, laboratory
impact experiments, where centimeter-sized projectiles are
shot into targets, and numerical hydrocode experiments,
which are capable of simulating hypervelocity collisions
among large bodies, both indicate that mean and median
ejection velocities from impacts are on the order of several
times 10 m s�1 (Benz & Asphaug 1999; Michel et al. 2001,
2002). Whenever high velocities are obtained in hydrocode
models, the fragment distribution is dominated by small
and thus unobservable fragments (e.g., Pisani, Dell’Oro, &
Paolicchi 1999). Though it is possible that hydrocode results
are inaccurate in these circumstances, their results have been
substantiated using both laboratory impact experiments

and underground nuclear explosions (e.g., Benz & Asphaug
1999).

We are thus left with a contradiction: either we invoke
some mechanism that further disperses orbits in addition to
the velocity spread expected from their formation, or we
should reject a simple scenario for the collisional origin of
the two satellite groups. A closer inspection of the retro-
grade satellite group shows that there seem to exist several
subclusters (Fig. 14). The average orbits of eight satellites,
S/2000 J2, J4, J6, J9, and J10 and S/2001 J6, J8, and J11,
cluster tightly around the average orbit of J11 Carme, a 40
km diameter moon; six satellites, S/2000 J3, J5, and J7 and
S/2001 J2, J3, and J7, have orbits similar to J12 Ananke, a
30 km diameter moon. Moreover, the satellite S/2000 J8
may be part of the group related to Pasiphae.13 If we use
Gauss’s equations to compute �V for these groups, we find 5
m s�1 d �V d 50 m s�1 for the group of Carme (which we
call the Carme family) and 15 m s�1 d �V d 80 m s�1 for

TABLE 4

Average, Minimum, and Maximum over 10
8
Years of the Orbital Elements of the

Irregular Moons of Saturn, Uranus, and Neptune

ID Satellite ave (a) min (a) max (a) ave (e) min (e) max (e) ave (i) min (i) max (i)

First InclinationGroup

9................. S/2000 S4 0.12126 0.1179 0.1256 0.51777 0.3394 0.7149 38.0703 28.953 46.98

7................. S/2000 S10 0.117059 0.1145 0.1204 0.46900 0.3070 0.6482 37.4936 29.942 45.02

8................. S/2000 S11 0.109487 0.1073 0.1121 0.49066 0.3199 0.6913 37.4598 29.233 45.80

Second InclinationGroup

4................. S/2000 S2 0.10035 0.0990 0.1018 0.34628 0.1091 0.6563 49.2317 39.62 55.36

6................. S/2000 S3 0.117386 0.1150 0.1201 0.31801 0.0705 0.6073 47.7310 39.83 53.68

1................. S/2000 S5 0.0755614 0.0752 0.0760 0.30824 0.0945 0.5713 47.8947 40.33 52.68

2................. S/2000 S6 0.0759147 0.0755 0.0763 0.30272 0.0940 0.5733 47.9994 40.40 52.69

Phoebe Group (?)

3................. Phoebe 0.0864781 0.0860 0.0870 0.16426 0.1390 0.1910 175.179 173.97 176.44

13............... S/2000 S1 0.153335 0.1488 0.1596 0.33684 0.2222 0.4541 173.064 170.61 175.10

12............... S/2000 S7 0.135534 0.1324 0.1400 0.47092 0.3587 0.5765 175.563 173.31 177.51

10............... S/2000 S9 0.124208 0.1218 0.1267 0.20792 0.1443 0.2790 167.139 164.92 169.11

11............... S/2000 S12 0.129377 0.1272 0.1319 0.11547 0.0707 0.1654 176.048 174.82 177.33

S/2000 S8 Alone

5................. S/2000 S8 0.104117 0.1030 0.1054 0.27315 0.1746 0.3826 152.007 148.17 155.61

Caliban and Stephano (?)

1................. Caliban 0.047900 0.0479 0.0479 0.19215 0.0700 0.3173 141.185 138.31 144.60

2................. Stephano 0.053133 0.0531 0.0532 0.23253 0.1233 0.3418 143.460 140.23 147.04

Other

3................. Sycorax 0.081501 0.0811 0.0820 0.51967 0.4410 0.6027 156.932 150.88 162.92

4................. Prospero 0.109518 0.1084 0.1109 0.43781 0.3057 0.5833 149.323 142.53 156.15

5................. Setebos 0.117106 0.1154 0.1192 0.57755 0.4494 0.7085 153.575 144.42 162.10

Nereid

1................. Nereid 0.03690 0.0369 0.0369 0.74602 0.7350 0.7571 9.663 5.368 13.474

Note.—The columns are the same as in Table 3.

13 From the recently discovered moons of Jupiter (not integrated here):
S/2003 J1, J5, J9, J10, and J11 may be members of the cluster around J11
Carme, while S/2003 J6 has an orbit similar to J12 Ananke.
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the group of Ananke (the Ananke family). These velocities
are much more compatible with a �V expected from simple
collisional breakups than the velocities computed for the
whole retrograde group. We thus propose that the retro-
grade group of Jovian irregular moons witnessed a more
complicated collisional history than thought before. It
seems likely that at least two low-velocity fragmentations of
two distinct precursor bodies occurred within this group.
The spectral differences between Carme andAnanke suggest
that these immediate precursor bodies correspond to two
captured satellites instead of having a common ancestor
(Luu 1991; Sykes et al. 2000; Brown 2000; Rettig et al.
2001).

Assuming that the prograde satellite group formed by a
single collisional breakup, it is also hard to explain why its

members have widely dispersed hai and hei but nearly the
same value of hii (here and in the following, angle brackets
denote the average elements). According to Gauss’s
equations, this would suggest that either cos ( f + !) � 0
(collision occurred far from the nodes of the parent moon’s
orbit) or �VW was a factor of �5 smaller than the other two
components of �V. The latter alternative would require that
the impactor and the parent moon were moving on nearly
coplanar orbits at the time of their collision and that the
fragments were anisotropically ejected from the site of the
breakup with small �VW velocities.

Saturn.—Following Gladman et al. (2001), we classify
the irregular moons of Saturn into groups of similar average
orbital inclinations. We thus have the first satellite inclina-
tion group (S/2000 S4, S10, and S11), the second satellite

Fig. 13.—Average orbital elements of the irregular moons (hai, hei, hii). For retrograde orbits, we show hii � 180�, where hii is their average inclination with
respect to the planetary invariable plane. Several groups of moons with similar average orbits are readily visible in this plot. The Jovian irregulars form two
groups of prograde and retrograde moons. The retrograde group shows several subclusters (e.g., the Carme and Ananke families; see Fig. 14). The Saturnian
irregulars form two groups of moons with nearly the same orbital inclinations (first and second inclination groups; Gladman et al. 2001). The irregular moons
of Uranus S/1997 U1 Caliban and S/1999 U2 Stephano also have similar orbits. Some of these groups may have been formed by catastrophic disruptions of
large parent moons. Gladman et al. (2001) proposed that the group of Saturnian moons with inclinations similar to that of Phoebe originated in a cratering
impact on Phoebe.
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inclination group (S/2000 S2, S3, S5, and S6), and a rather
loosely clustered Phoebe group (Phoebe and S/2000 S1, S7,
S9, and S12). Our first and second satellite groups corre-
spond to the 34� and 46� inclination groups of Gladman et
al. (2001). Here, however, because our reference plane is the
invariable plane of the solar system instead of the ecliptic
used by Gladman et al., the average inclinations hii we
compute for the first and second inclination groups are
�38� and�48�, respectively.

We believe that the moons in each of these inclination
groups probably do not have a common collisional ori-
gin, unless (1) asymmetric and large-magnitude ejection
velocity fields occurred and/or (2) collisions occurred
early and some subsequent primordial mechanism modi-
fied the semimajor axes. Otherwise, it is hard to recon-
cile the magnitude and components of �V computed from
the Gauss equations with the current understanding of
collisional breakups (see Michel et al. 2001, 2002).
We obtain 30 m s�1 d �V d 60 m s�1 and �VW/

[(�V2
T + �V2

R)/2]
1/2 � 5 for the first inclination group,

60 m s�1 d �V d 300 m s�1 and �VW/[(�V2
T + �V2

R)/
2]1/2 � 10 for the second inclination group, and 100 m
s�1 d �V d 400 m s�1 for the Phoebe group. One char-
acteristic of the irregular satellite systems we find from
this calculation is that �VW derived from Gauss’s equa-
tions is consistently smaller (by a factor of e5) than the
other two components of �V. This seems to contradict a
simple collisional scenario that would produce similar
components of �V, as observed for young asteroid
families in the main belt (Nesvorný et al. 2002a).

S/2000 S5 and S/2000 S6 have nearly identical average
orbits (Fig. 13 and Table 4). The differences of average orbi-
tal elements between these two moons are 3.5 � 10�4 AU,
5.5 � 10�3, and 0=1 in hai, hei, and hii, respectively. We will
show in x 9 that the orbital evolution of both moons is char-
acterized by the Kozai resonance (Kozai 1962). These are
the first two moons ever discovered having this kind of the
orbital behavior (see also Ćuk et al. 2002). Other examples

Fig. 14.—The retrograde group of Jovian irregular moons: (a, b) instantaneous osculating orbits of the moons; (c, d ) average orbits. In (a, b), the orbital
elements of the moons in the Carme and Ananke families are connected by line segments with J11 Carme and J12 Ananke, respectively. In (c, d ), the average
orbits of these moons are tightly clustered around the average orbits of J11 Carme and J12 Ananke. The similarity of the average orbits of these moons
suggests their common origin.
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of the Kozai resonance in our solar system include Pluto
and some near-Earth asteroids and ecliptic comets.

Uranus.—Because of the small number of Uranus’s irreg-
ular moons known at this moment, is impossible to tell
whether their orbits can be grouped in some way. We might
be tempted to link S/1997 U1 Caliban and S/1999 U2
Stephano, but this association is purely speculative. In fact,
the orbital distribution of Uranus’s irregular moons is
statistically consistent with a random distribution of the
retrograde orbits within the stability limits determined by
our surveys.

7. COLLISIONS AMONG IRREGULAR MOONS

A satellite family can be formed when a large object
(parent body) collides with a high-speed impactor (projec-
tile). If the energy of this collision is high enough, the parent
body is broken into pieces and the pieces are dispersed in
space. They assume orbits similar to the parent body’s pre-
impact orbit. If the observed groups of satellites originated
in this way, it is likely that their parent bodies were bound to
the planet prior to the disruptive collision. Otherwise, it is
hard to explain why the member moons of at least some sat-
ellite families have very similar orbits that are so strongly
gravitationally bound to the planet. The collision of two
stray bodies on unbound orbits may also produce satellites;
such satellites, however, are not expected to have similar
orbits.

In past eons, the dominant type of collisions in the irregu-
lar satellite systems of the Jovian planets were presumably
the collisions among the moons. The current flux of external
impactors such as the ecliptic and nearly isotropic comets
(Zahnle et al. 2003), escaped Trojans or asteroids, etc., is far
too low to produce many collisions. The situation was very
probably different in early stages of the formation of the
solar system, when the outer solar system may have been
inhabited by a population of small bodies with a total mass
of �50–200 MEarth (Hahn & Malhotra 1999). At that time,
the rate of collisions with external impactors may have been
important. Thus, the satellite families may date back to
ancient collisions.

Here we concentrate on collisions among irregular
satellites, which are also a plausible way to produce satellite
families. Our method to compute the rate of collisions
among moons is similar to that of Kessler (1981). He calcu-
lates that a population of bodies with the same a, e, and i
and random �,$, and� has the space density distribution

Pðr; �Þ ¼ 1

2�3a2r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � ðr=a� 1Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 � � cos2 i

p ð10Þ

with the limits

að1� eÞ �r � að1þ eÞ ; ð11Þ
�i �� � i : ð12Þ

Here r = (x2 + y2 + z2)1/2 and � = arcsin (z/r), where x, y,
and z are the Cartesian coordinates. We normalized the
above distribution to a total number of one body in the pop-
ulation. Thus, P(r, �)Dx Dy Dz is the probability that the
body is located within a box of size Dx � Dy � Dz centered
at (x, y, z).

Assuming random angles, we compute the probability of
collision per unit time between a body with orbital elements

(a1, e1, i1) and a body with orbital elements (a2, e2, i2) as

Pcol ¼ �ðR1 þ R2Þ22�
Z rmax

rmin

Z �max

�min

P1ðr; �ÞP2ðr; �Þ

� Vcolðr; �Þr2 cos� dr d� ; ð13Þ

where P1 and P2 are the probability distributions (eq. [10])
assuming (a1, e1, i1) and (a2, e2, i2), respectively; Vcol =
|V1�V2|, where V1 and V2 are the orbital velocities of the
two bodies; rmin = max [a1(1 � e1), a2(1 � e2)], rmax =
min [a1(1 + e1), a2(1 + e2)], �max = min (i1, i2, 180� � i1,
180� � i2), and �min = ��max; and � = �(R1 + R2)

2 is the
total cross section of the two moons, with R1 and R2 being
their radii. The orbital velocities V1 and V2 at (x, y, z) are
computed from (a1, e1, i1) and (a2, e2, i2), respectively.

We evaluate the above integral numerically (Press et al.
1992). We verified that using this algorithm, we calculate
values of the collision probabilities that agree within 10%
with the collision probabilities reported by Bottke &
Greenberg (1993) and Manley, Migliorini, & Bailey (1998)
for their test cases of asteroidal and cometary orbits. Next
we used this algorithm to compute the rates of collisions
among the irregular moons. For each moon, we assumed
that its orbital elements (a, e, i) were fixed and equal to the
averaged values (Tables 3 and 4). Moreover, we neglected
the gravitational focusing of the moons. Gravitational
focusing is negligible in the regime of sizes and encounter
velocities investigated here.

Jupiter.—Table 5 shows the collision rates and mean
collision velocities that characterize collisions between
each pair of irregular moons in the Jovian prograde
group. In total, about five satellite-satellite collisions
would occur in this group over 4.5 Gyr. This tells us that
some of the moons we see today may be by-products of
past satellite-satellite collisions. Moreover, Himalia has a
rather large probability of colliding with other moons in
the group (0.67–1.46 collisions [!] with each known pro-
grade moon per 4.5 Gyr). Consequently, Himalia must
have accreted a number of small irregular moons, former
members of the prograde group. We thus propose that
the population of small irregular satellites in prograde
orbits may have been larger in the past and partially
vanished by cratering impacts on the larger members of
the prograde group.

Using scaling laws for the impact energy threshold
needed to catastrophically disrupt a body (Q�

D; Benz &
Asphaug 1999), we calculate that Himalia would get dis-
rupted by an impact by Elara (�1.5 impacts per 4.5 Gyr).
Similarly, Elara would be disrupted by an impact by
Lysithea and/or by Leda. These latter events, however, are
less probable. In broader sense, these results suggest that the
prograde group of Jovian irregular moons could have had a
rich collisional history in the past 4.5 Gyr and that its cur-
rent structure could have derived from past satellite-satellite
collisions.

The retrograde group of Jovian irregular satellites has a
much lower rate of collisions among themselves due to lon-
ger orbital periods of these moons and due to the large vol-
ume of space occupied by their orbits. In total,d1 collision
would have occurred in this group over 4.5 Gyr.Mutual col-
lisions between moons in the retrograde group thus seem to
be only marginally relevant. Note, however, that if the total
number of Jovian retrograde moons is much larger than the
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25 currently known objects (Sheppard & Jewitt 2002),
collisions in the retrograde groupmay still be important.

We have noticed a few cases of possible collisions between
prograde and retrograde Jovian irregular moons. For
example, there is a 10% chance that Elara (prograde) is hit
by S/2000 J8 (retrograde) over 4.5 Gyr. Despite the small
size of S/2000 J8 (D � 6 km), the specific energy (Q*; see,
e.g., Holsapple et al. 2003) of such a collision is nearly 108

ergs g�1 due to the large impact speeds between prograde
and retrograde objects (�6 km s�1). This is about 25% of
the Q�

D needed to disrupt (and disperse) Elara, according to
the empirical scaling law we are using (Benz & Asphaug
1999). We caution, however, that the scaling law derived by
Benz & Asphaug predicts larger Q�

D than values computed
by other authors (Housen & Holsapple 1990; Holsapple
1994; Melosh & Ryan 1997). If smaller values of Q�

D better
represent the real threshold for a breakup, a collision
between Elara and S/2000 J8 (Q* � 108 ergs g�1) would
have been catastrophic.

Our method predicts a zero collision probability for
moons with average orbits that do not cross. For example,
the average orbits of Pasiphae and Elara do not cross but
barely miss each other by only 0.001 AU (Table 2); equation
(13) used with average orbital elements then gives Pcol = 0
for this couple. In reality, however, Pasiphae is not collision-
ally decoupled from Elara and other moons of the prograde
group, because when the evolutions of the orbits are taken
into account, the orbit of Pasiphae can reach down to plan-
etocentric distances as small as 0.045 AU. To compute the
collision probability of Pasiphae with the prograde moons,
we made use of our 108 yr integration of orbits of the irregu-
lar moons. At each time step (each 1000 yr), we evaluated
Pcol (eq. [13]) using the instantaneous orbital elements of
Pasiphae and the prograde irregular moons. The average
rate of collisions was then computed by averaging these col-
lision probabilities over the 108 yr integration time span.

Using this method, we computed that Pasiphae and Elara
have a 14% probability of colliding over the age of the solar
system. Similarly, Pasiphae and Himalia have a 27% proba-
bility of colliding. If we account for all collisions of Pasiphae
with the moons in the prograde group that would be disrup-
tive for Pasiphae (Q* > Q�

D, with Q�
D again from Benz &

Asphaug 1999), we end up with a �50% chance that
Pasiphae survives over the age of the solar system. Other
moons in the retrograde group have smaller but nonnegli-
gible rates of disruptions by impacts from the prograde
group. This collisional coupling between the prograde and
retrograde groups suggests that both populations may have
evolved by collisions in the past.

As a by-product of the above computation, we have
checked whether the use of average elements in equation
(13) is justified for those moons with overlapping average
orbits. For example, using the average orbits we previously
computed that Elara and Himalia should collide 1.46 times
over the age of the solar system with hVcoli � 1.64 km s�1.
Using the instantaneous orbital elements of Elara and
Himalia to compute Pcol, and averaging Pcol over 10

8 yr, we
obtain 1.5 collisions per 4.5 Gyr and a 1.65 km s�1 impact
speed. Both these values are in good agreement with the
result calculated by using the average orbits. The use of
average elements is, however, not precise for average orbits
that barely cross each other. For example, S/2000 J8 and
Elara have about 5.8% probability of colliding over 4.5 Gyr
according to our refined calculation, while the method
based on average orbits gives an 8.1% probability. Also the
impact speeds differ somewhat: 6.25 versus 6.01 km s�1,
respectively. Thus, the actual collision rates and collision
velocities may be somewhat different from the values shown
in Tables 5, 6, and 7 for those average orbits that have a
small overlap. As a matter of fact, S/2000 J8 has larger colli-
sion rates with Himalia (�17%) than with Elara, even
though the average orbits of S/2000 J8 and Himalia are
noncrossing. The larger cross section of Himalia is the main
factor here.

The rate of collisions among the irregular moons calcu-
lated here raises the question whether the satellite families
(x 6) formed in the early solar system by impacts from plan-
etesimals in the residual protoplanetary disk or whether
they can be of more recent origin. For example, the Ananke
and Carme families probably date back to the primordial
stage of the solar system, because the current collision rates
among moons in the retrograde Jovian group are too low.
Conversely, we believe that the prograde group of Jovian
irregulars may have been produced more recently and

TABLE 5

Collision Rates, Velocities, and Impact Energies for Pairs of Member Moons of the

Prograde Jovian Group

ID 1 ID 2

1014Pcol/�

(km�2 yr�1)

Collisions

per 4.5 Gyr

Vcol

(km s�1)

Q*

(108 ergs g�1)

Q�
D

(108 ergs g�1) Q*/Q�
D

3 3.9 0.95 1.56 0.2 9.2 0.02

4 4.1 0.38 1.65 1.1 4.3 0.26

5 3.9 0.11 1.49 8.7 1.5 5.8

2...................

6 3.4 0.01 1.76 2.9 0.5 5.8

4 3.1 1.46 1.64 25.8 9.2 2.8

5 3.5 1.07 1.51 2.2 9.2 0.24

3...................

6 3.3 0.66 1.73 0.004 9.2 0.0004

5 2.6 0.36 1.62 13.3 4.4 3.04...................

6 2.6 0.18 1.68 0.02 4.4 0.005

5................... 6 1.9 0.03 1.73 0.2 1.5 0.13

Notes.—The columns are identification numbers of the moons (ID 1 and ID 2), ‘‘ intrinsic ’’ collision probability
(Pcol/�, Pcol from eq. [13]), number of collisions expected for each pair over 4.5 Gyr, mean collision velocity (Vcol),
mean specific impact energy (Q*), critical specific energy needed to catastrophically break up the larger moon in the
pair and disperse the fragments (Q�

D, Benz & Asphaug 1999), and the ratio of the specific to critical energies (Q*/Q�
D).

A catastrophic breakup of the target is expected forQ*/Q�
D > 1.
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evolved to its current structure by many other collisions. In
this sense, the prograde Jovian group may be an analog of
asteroid families in the main belt.

Saturn.—Saturn’s system of irregular moons differs from
that of Jupiter. The prograde and retrograde orbits of the
Saturnian irregular moons show a large range of semimajor
axes. Thus, collisions are possible between nearly any pair
of moons (Table 6). Except for collisions involving Phoebe,
however, the collision rates are usually low as a consequence
of smaller orbital velocities than those of the Jovian irregu-
lars, and due to the small sizes of the satellites. In fact, the
collision rate of any pair of moons in the Saturnian satellite
system (Phoebe excluded) is smaller than 0.02 collisions per
pair of bodies per 4.5 Gyr.

Impacts of small moons on Phoebe are thus the main
manifestation of the current collisional activity in the
Saturnian irregular satellite system. In total, we calculate
that some six to seven impacts of irregular moons on Phoebe
occur over 4.5 Gyr using the currently known population.
Most of these impacts are impacts by prograde satellites
(�75%; Table 6). Despite the large impact velocities of the
prograde moons on retrograde Phoebe (�3 km s�1), none of

these impacts would disrupt Phoebe, because typically
Q*5Q�

D. The largest impact energy would characterize the
impact of the 45 km diameter moon S/2000 S3; 0.6 such
impacts occur over 4.5 Gyr withQ* � 0.15Q�

D.
Phoebe’s surface should thus bear marks of the intense

bombardment by impactors from prograde satellite orbits.
We predict that the craters produced by these impacts will
be a few tens of kilometers in diameter and should be clearly
visible during the Cassini flyby of Phoebe in 2004. More-
over, intense cratering should have occurred on Phoebe’s
surface by impacts by smaller irregular moons. For compar-
ison, Zahnle et al. (2003) found that impacts of ecliptic
comets on satellites strongly dominate over impacts by
nearly isotropic comets. Zahnle et al. estimated that one 20
km crater should be created on Phoebe by an ecliptic comet
impact every 11–27 billion years. This cratering rate is small
compared with the cratering rate on Phoebe from the satel-
lite impacts. We thus predict that most large craters that the
Cassini spacecraft images may reveal on Phoebe were either
created during primordial epochs or resulted from the pro-
grade satellites’ impacts at later times. Moreover, ejecta
from Phoebe’s surface produced by impacts may be the

TABLE 6

Collision Rates, Velocities, and Specific Impact Energies for Pairs of Saturn’s Irregular Moons

ID 1 ID 2

1014Pcol/�

(km�2 yr�1)

Collisions

per 4.5 Gyr

Vcol

(km s�1)

Q*

(108 ergs g�1)

Q�
D

(108 ergs g�1) Q*/Q�
D

3 1.6 1.17 2.97 0.16 21.2 0.007

4 0.51 0.01 1.48 34.3 0.98 35.

6 0.36 0.02 1.39 5.2 2.2 2.4

1...................

8 0.43 0.01 1.63 24.0 1.3 18.5

3 1.6 1.16 2.99 0.09 21.2 0.004

6 0.36 0.01 1.39 2.9 2.2 1.3

2...................

8 0.46 0.01 1.63 13.4 1.3 10.3

4 0.81 0.64 3.14 0.56 21.2 0.03

5 0.49 0.33 0.94 0.002 21.2 <0.001

6 0.66 0.61 3.16 3.3 21.2 0.15

7 0.67 0.47 3.33 0.04 21.2 0.002

8 0.59 0.49 3.28 1.0 21.2 0.05

9 0.49 0.36 3.33 0.16 21.2 0.008

10 0.29 0.20 0.47 <0.001 21.2 <0.001

3...................

12 1.5 1.04 0.68 <0.001 21.2 <0.001

4................... 6 0.28 0.02 1.24 13.2 2.2 6.0

5................... 6 0.54 0.02 2.72 2.1 2.2 0.95

8 0.18 0.01 1.20 21.2 2.2 9.6

10 0.37 0.01 2.48 1.2 2.2 0.55

6...................

11 0.36 0.01 2.45 1.2 2.2 0.55

TABLE 7

Collision Rates, Velocities, and Specific Impact Energies for Pairs of Uranus’s Irregular Moons

ID 1 ID 2

1014Pcol/�

(km�2 yr�1)

Collisions

per 4.5 Gyr

Vcol

(km s�1)

Q*

(108 ergs g�1)

Q�
D

(108 ergs g�1) Q*/Q�
D

2 2.1 0.15 0.57 0.61 3.2 0.19

3 0.87 0.32 0.72 3.3 8.3 0.40

1...................

5 0.23 0.02 0.68 2.9 3.2 0.91

3 0.56 0.12 0.67 0.10 8.3 0.12

4 0.21 0.006 0.55 4.5 1.3 3.5

2...................

5 0.24 0.007 0.65 6.3 1.3 4.8

4 0.11 0.03 0.46 0.16 8.3 0.023...................

5 0.13 0.03 0.49 0.18 8.3 0.02

4................... 5 0.07 0.003 0.42 8.9 1.3 6.8
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source of the dark material that is responsible for the large
albedo variations on Iapetus (Cruikshank et al. 1983; Bell,
Cruikshank, & Gaffey 1985; Jarvis et al. 2000). Indeed, dust
material escaping Phoebe’s gravity evolves due to Poynting-
Robertson drag to later impact Iapetus from a retrograde
orbit (Burns et al. 1996; Hamilton 1997).

Uranus.—The irregular moons of Uranus have low but
nonnegligible collision rates: 0.69 collisions are expected to
occur among its five irregular moons over 4.5 Gyr. Such col-
lisions are characterized by small impact velocities (typically
0.58 km s�1). This small rate of collisions among Uranus’s
irregulars may explain why, unlike Saturn’s and Jupiter’s
irregular moons, the irregular moons of Uranus do not
show clear groupings of objects in the space of the average
orbital elements (Fig. 13)—an expected outcome of cata-
strophic collisions among the moons. On the other hand, it
is also possible that we see only the largest members of
groupings that consist of yet-to-be-discovered sub–10 km
moons and that have primordial origins. In any case, we
find that very few collisions would occur among the
Uranian irregular moons over 4.5 Gyr. We conclude that
both the observations and the theoretical modeling suggest
that the collisional activity in the Uranus satellite system
was probably unimportant for shaping the size and orbital
distribution of the currently observed moons.

One of the general characteristics that can be noted in the
orbital distribution of known irregular moons is that the
closer that the planet is to the Sun, the more distant are its
irregular satellites when expressed in units of the Hill radius
of the planet. Can this be a consequence of the collisional
evolution of the moons? More distant planets have larger
Hill spheres than Jupiter. Moons with a = fRH

j , where
0 < f < 1, also have lower orbital speeds for larger j and
fixed f. Thus, the rate of collisions of satellites at a fractional
distance f from the jth planet is lower for larger j. Does this
allow the moons of distant planets to be collisionally
long-lived at small f ?

We performed a simple experiment. We placed the
Uranian system of irregular moons at Jupiter. In doing so,
we left the eccentricities and inclinations of the moons’
orbits fixed and also kept the values of the semimajor axes
fixed in terms of the Hill radius (i.e., f = const). We then
computed the rates of collisions among the new orbits. This
experiment showed that Uranus’s irregular moons, when
placed at Jupiter, are collisionally short-lived. The colli-
sional rates were a factor of �14 larger than the collisional
rates of the real Uranian system; about eight to nine cata-
strophic collisions occurred among the five moons of the
displaced Uranian system over 4.5 Gyr. These collisions
would eliminate most of the bodies and leave the region
depleted. Similarly, the Saturnian system of irregular
moons, when placed at Jupiter, experienced �25
catastrophic collisions over 4.5 Gyr.

We thus propose that the observed semimajor axis distri-
bution of the irregular satellites may have resulted from
mutual collisions among moons at small a. In any case, the
Jovian irregular moons with a d (0.1–0.2)RH

5 and in cross-
ing orbits must be collisionally short-lived unless they are
very few and/or very small. Only one known irregular moon
actually has a within this range (S/1975 J1). Gladman et al.
(2001) proposed another explanation for the semimajor-axis
distribution of the irregular moons. They suggested that
such a distribution developed in early stages of the solar sys-
tem formation when moons became captured and evolved

by gas drag in the circumplanetary gas nebulae (Pollack
et al. 1979).

8. PROGRADE-RETROGRADE COLLISIONS AS AN
EVOLUTIONARY PROCESS

We have shown in the previous section that collisions
between prograde and retrograde irregular moons in the
Jovian satellite system may occur. Such collisions are, how-
ever, unlikely even on gigayear timescales when the collision
rates are computed using the current populations: we esti-
mated that the largest retrograde moon, Pasiphae, has
about a 50% chance of colliding with a moon in the pro-
grade group over 4.5 Gyr; other retrograde moons have
smaller collision rates. For this reason, the prograde and
retrograde groups of moons are now nearly collisionally
decoupled. Does this also mean that they were collisionally
decoupled in the past? Not necessarily. In fact, the present
orbital structures may be in part a product of past collisions
between prograde and retrograde moons.

Figure 15 shows the rate of collisions between small test
satellites orbiting a planet at selected distances and the larg-
est irregular moon of the planet (Himalia, Phoebe, Sycorax,
and Nereid for Jupiter, Saturn, Uranus, and Neptune,
respectively). We used e = 0.25 and i = 160� for the test sat-
ellite orbits at Jupiter, e = 0.3 and i = 40� at Saturn, e = 0.3
and i = 30� at Uranus, and e = 0.3 and i = 160� at
Neptune. The orbital inclinations of these test orbits were
chosen so that the sense of orbital motion of the moons is
opposite to that of the large irregular moons. Moreover, we
used e and i that are typical for the systems of observed sat-
ellites at each planet except for Uranus and Neptune, where
no moons are seen to have the desired inclinations (except
S/2002 N1). Note that the collision probability is not a very
sensitive function of e and i; the results we obtained are thus
representative for a large range of e and i.

The question we want to answer is whether a small irregu-
lar satellite moving in a test orbit would last over the age of
the solar system without having collided with any other
larger moon. The collision of a small (say, a few kilometers)
object with a body of the size of Himalia, Phoebe, Sycorax,
or Nereid would obviously be destructive for the small
moon. Moreover, since such impacts occur at hypervelocity
speeds (e.g., e6 km s�1 for the Jupiter retrograde moons
impacting prograde Himalia,e3 km s�1 for the Saturn pro-
grade moons impacting retrograde Phoebe; Table 6), they
would leave large craters on the surfaces of the large moons.

Most Jovian retrograde irregular moons with 0.05
AU d a d 0.11 AU would impact Himalia over 4.5 Gyr.
(This semimajor axis range corresponds to e50% impact
probability in Fig. 15a.) Thus, if such a hypothetical popula-
tion of irregular moons existed in the past, it would be
largely depleted at present by past collisions with the large
moons in the prograde group. The currently known moons
in the retrograde group are located outside the outer edge of
the determined depletion zone, at 0.13–0.16 AU. They are
thus mostly protected from collisions with Himalia and
other large moons of the prograde group. Note that only
collisions with Himalia were shown in Figure 15; if colli-
sions with other large moons of the prograde group were
considered, the outer limit of the depletion zone would
move to a � 0.12 AU. We conclude that the dichotomy of
the Jovian irregular satellite system (i.e., groups of prograde
and retrograde moons widely separated in a) may have
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developed through collisions between the prograde and
retrograde moons over the last 4.5 Gyr, with prograde
Himalia playing a major role in this process.

The Saturnian irregular satellite system is different: the
prograde and retrograde moons in this system show no
semimajor axis groupings. Most of them move on crossing
orbits. Collisions are thus possible between nearly any pro-
grade-retrograde pair of moons. We calculate that the colli-
sion rates with Phoebe are lower than the rate of collisions
with Himalia (compare Fig. 15awith 15b). This may explain
the difference of the currently observed orbital distributions
of the Jovian and Saturnian irregular moons. We believe
that the Saturnian prograde satellite system must have been
more numerous in the past and should have been depleted
by a factor of 30%–100% at 0.05 AU d a d 0.15 AU by
collisions with Phoebe. The moons removed from this
region must have produced craters on Phoebe’s surface.

The rate of collisions between test prograde satellites and
Sycorax in the Uranian system is far too low to explain the
lack of prograde irregular moons at this planet (Fig. 15c).
Only at a � 0.05 AU would nearly 50% of small prograde
moons have been collisionally destroyed. The result is much
more interesting for Neptune, where Nereid, due to its large

cross section, has a large number of collisions with retro-
grade moons at 0.01–0.1 AU (Fig. 15d). Thus, it may be
argued that the lack of such satellites14 resulted from
collisions with Nereid over the past 4.5 Gyr.

To understand this effect better, we studied a larger range
of test orbits.

Figure 16 shows the number of collisions between a small
test satellite and Nereid as a function of the small satellite’s
orbital elements. There is a large number of collisions at
small a. The moons with i � iNereid � 10� and i �
180� � iNereid have larger collision rates with Nereid than
the moons with 30� d i d 150�. Moreover, the retrograde
moons have a larger rate of collisions with Nereid than the
prograde moons. This distribution of collision rates is
expected from simple geometric considerations and
equation (13).

We thus propose that Nereid could have eliminated a
large fraction of the primordial population of small irregu-
lar moons at Neptune. The effect of collisions with Nereid
is, however, limited to small distances from Neptune

Fig. 15.—Number of collisions per 4.5 Gyr suffered by small test irregular moons of Jupiter, Saturn, Uranus, and Neptune with Himalia, Phoebe, Sycorax,
and Nereid, respectively (semimajor-axis locations of these moons are denoted by dashed lines), as a function of their semimajor axis. The small test moons
were assumed to orbit their parent planets in the opposite direction to that of the large irregular moons. The hypothetical primordial populations of such small
irregular moons must have been depleted at those semimajor axes at which the number of collisions is substantial. Note the high collision rates of the
Neptunian moons with Nereid.

14 Indeed, the newly discovered irregular moons of Neptune have
a � 0.13–0.15AU.
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[a d (0.1–0.15)RH
8 ]. At larger distances, moons may be col-

lisionally decoupled from Nereid and may be collisionally
(and dynamically) long-lived. This is the case for S/2002
N1, N2, and N3, which all have a � 0.18RH

8 . These newly
discovered moons present an interesting constraint on the
scenario proposed by Goldreich et al. (1989), in which
Triton is captured and sweeps through the Neptune’s Hill
sphere, because the survival of S/2002 N1, N2, and N3 may
be difficult in this scenario.

9. RESONANCES

Orbital resonances of bodies in our solar system are com-
mon. They are often related to processes acting at early
epochs. For example, it has been proposed that Plutinos

were captured into their resonant orbits by the radial migra-
tion of Neptune during late stages of the formation of the
solar system (Malhotra 1995). Other resonances may be
more recent: for example, the Galilean satellites might have
evolved to their current configuration (characterized by the
Laplace resonance) by tidal effects.15 In this section, we
study the orbits of the irregular satellites to determine
whether some of themmove in resonant orbits.

We used our 108 yr orbital histories of the 50 irregular
moons to compute the time evolution of resonant angles
that are allowed by the d’Alembert rules (e.g., Morbidelli
2002). This evolution was then visually inspected to see
whether some resonant angle oscillates around a fixed value.
To select resonant angles that slowly evolve with time, we
first determined the frequencies g and s for each moon (the
mean apsidal and nodal frequencies) and combined the cor-
responding angles ($ and �) so that the resulting angle
changes slowly. We then completed this selection by combi-
nations of the planetary angles so that the constructed reso-
nant angle obeys the d’Alembert rules and checked whether
it shows resonant behavior.

As a result of this systematic search, we found that several
irregular satellites actually have resonant orbits (Table 8).
Some of these cases were previously known: (1) Pasiphae
and Sinope show periods of resonant behavior, where
� = $�2� + $5 librates about 180� (Whipple & Shelus
1993; Saha & Tremaine 1993). (2) Sinope (and possibly also
S/2001 J11) interact with the 6 : 1 mean motion resonance,
where n � 6n5 � 0 (Saha & Tremaine 1993). (3) The orbits
of S/2001 J10, S/2000 S5, and S/2000 S6 are locked in the
Kozai resonance, where ! librates about 90� with a full
amplitude of about 60� (see also Carruba et al. 2002a). (4)
The apsis of S/2000 S3 becomes temporarily locked to that
of Saturn (Vashkov’yak 2001; Ćuk et al. 2002); this reso-
nance is known as �6 in the asteroidal dynamics literature
(Morbidelli 2002). We discuss some of these results below.

Figure 17 shows the evolution of the resonant arguments
� = $ � � + $5 for Pasiphae and Sinope. Initially,
Pasiphae’s orbit is locked in the secular resonance and �
oscillates with �180� amplitude about 180�. In later times,
the amplitude of � shows stochastic variations. At
t � 2.7 � 107 yr, when � starts circulating, the orbit escapes
from the resonance. Sinope’s orbit has intermittent periods
of resonant and nonresonant behavior.

Saha & Tremaine (1993) proposed that the resonant
orbits of Pasiphae and Sinope resulted from some kind of
slow dissipative orbital evolution (such as that due to gas
drag). Otherwise, it is difficult to explain why orbits of two
of the four largest Jovian retrograde moons are located in
tiny resonant volumes of the orbital space. Figure 17 shows
that Pasiphae’s and Sinope’s orbits evolve from the reso-
nant to near-resonant locations and vice versa on 107 yr
timescales. For this reason, and if Pasiphae and Sinope
really became captured in the secular resonance by the usual
resonant capture mechanism (Henrard 1983), the dissipa-
tive evolution of orbits over the resonant locations must
have occurred in less then �107 yr and the dissipation must
have stopped shortly after capture occurred. Otherwise,
according to Figure 17, the captured orbits would evolve

Fig. 16.—Collisions of hypothetical irregular satellites of Neptune with
Nereid. Three symbol sizes were used. From the smallest to the largest size,
the symbols denote the orbits with larger than 18%, 39%, and 63%
probabilities of colliding with Nereid in 4.5 Gyr. Small Neptunian moons
at small semimajor axes impact Nereid on timescales that are short
compared with the age of the solar system. Orbits of three new irregular
satellites of Neptune (S/2002 N1, N2, and N3; Holman et al. 2003) are
located at larger distances from Neptune, and are safe from collisions with
Nereid unless they have very high eccentricities. Orbital eccentricities of
these newmoons are yet to be determined.

15 Note, however, that their primordial migration due to interactionwith
a proto-satellite disk may have produced a similar result (Peale & Lee 2002;
Canup&Ward 2002).
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from their resonant locations and would continue their
orbital decay toward the planet. This sets an upper limit on
the timescale of dissipative evolution that produced the cap-
tures. On the other hand, the dissipative evolution must
have been slow enough so that capture can actually occur.
This assumes that Tcross 4 T�, where Tcross is the time to

cross the resonance by the dissipative evolution and T� is
the libration period of �. The quantity T� for Pasiphae is
typically a few times 10,000 yr. Taken together, 104

yr5Tcross d 107 yr. This sets a weak but still important
constraint on the formation of the irregular satellites.

We did not find any other orbit among the 26 simu-
lated retrograde irregular moons of Jupiter that showed
resonant behavior similar to that of Pasiphae and Sinope,
nor did we detect an orbit among any of the Jovian
irregulars that were locked in one of the other tiny reso-
nances. Although this conclusion is preliminary, because
some of the orbits we used may have substantial errors,
we believe that resonances are not as common among the
retrograde Jovian moons as it might have seemed before.
Similarly, resonances are also rare among the irregular
moons of the other planets. On the other hand, among
the large irregular moons of the gas-giant planets (Jupiter
and Saturn), the orbits of Pasiphae, Sinope, and S/2000
S3 are resonant or near-resonant. Does this mean that
30–50 km diameter bodies, such as the three resonant
irregular moons, suffered dissipative evolution with
Tcross 4 104 yr and became captured, while smaller
bodies evolved faster and ‘‘ jumped ’’ over the resonances?
This size dependence of the capture efficiency would be
expected, for example, in the case of gas drag.

We have found that three irregular satellites (from the
total of 50) have orbits locked in the Kozai resonance. In
two cases, S/2000 S5 and S/2000 S6, the nominal orbits that
were used for our integration were good enough to be sure
that this result is robust. In the case of S/2001 J10, which
was discovered only recently (Sheppard et al. 2002), we are
not so sure and will have to wait until the orbit improves
with additional observations.

In all three cases, ! oscillates around 90� with 60� full
amplitude (Fig. 18) that is nearly constant over 108 yr. Only
the orbit of S/2000 S5 suffers transitions that occasionally
change the amplitude by �5�. These transitions, however,
seem to follow a regular pattern and we do not expect them
to accumulate to the degree that S/2000 S5 could leave the
Kozai resonance on 109 yr timescales. The resonant behav-
ior of these orbits is thus very likely primordial. The fact
that only a small fraction (three out of 50) of the irregular
satellites had primordial orbits in the Kozai resonance prob-
ably means that the capture of the irregular moons was
driven by mechanisms other than the Kozai resonance;
otherwise, we would expect a larger fraction of the irregular
moons to have this orbital behavior today.

TABLE 8

Irregular Satellites Found to Occupy or Interact with a Resonance

ID Satellite Type of Resonance References

16............... J8 (Pasiphae) g � 2s + g5 = 0 Saha & Tremaine 1993;Whipple & Shelus 1993

g�2s + g5 = 0 Saha & Tremaine 1993;Whipple & Shelus 1993

17............... J9 (Sinope) n � 6n5 = 0 Saha & Tremaine 1993

21............... S/2001 J10 g � s = 0 (Kozai)

29............... S/2001 J11 n � 6n5 = 0 (?)

4................. S/2000 S2 g � g6 = 0 (?) Ćuk et al. 2002

6................. S/2000 S3 g � g6 = 0 Ćuk et al. 2002

1................. S/2000 S5 g � s = 0 (Kozai) Carruba et al. 2002a

2................. S/2000 S6 g � s = 0 (Kozai) Carruba et al. 2002a

Note.—The third column denotes the type of the resonance. The fourth column gives a reference for
cases that have been known previously or were found recently by independent studies.

Fig. 17.—Evolution of the resonant arguments � = $ � � + $5 for
two irregular moons of Jupiter: (a) Pasiphae and (b) Sinope. The orbits of
both satellites show periods of resonant behavior, where � librates around
180�.
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We have found that Saturn’s irregular satellite S/2000 S3
is affected by the secular resonance g � g6 = 0, where g and
g6 are the moon’s and planetary apsidal frequencies (see also
Ćuk et al. 2002). Periods of resonant behavior (Fig. 19),
when the apsis of this moon’s orbit oscillates with a large
amplitude about that of Saturn, alternate with other epochs
when the angle �6 = $ � $6 rotates over the full 360

� inter-
val. The period of resonant oscillations of �6 is typically
30,000–40,000 yr. The resonance occurs because the orbit of
S/2000 S3 has very slow g due to its high inclination (48�;
Table 4). According to Ćuk et al., S/2000 S2 also may be
locked in the resonance g � g6 = 0. We did not obtain the
same result: our nominal orbit of S/2000 S2 is nonresonant.
We acknowledge, however, that the orbit of S/2000 S2
needs to be improved before the final conclusion is drawn.
Recently, Yokoyama et al. (2002) have developed a semi-
analytic model based on a fifth-order expansion in a/aj of
the disturbing function that describes this type of
resonance.

It is interesting to note that S/2000 S3 has a �45 km
diameter and is the largest among Saturn’s irregulars except
for Phoebe (Table 2). This once again points toward dissipa-
tive evolution of orbits with a size-dependent rate. In this

scenario, larger bodies such as S/2000 S3 could have been
captured into the resonances because their orbits evolved
slowly enough to be captured, while smaller bodies with
faster orbital decays jumped over resonances. On the other
hand, the orbital decay of S/2000 S3 could not have lasted
much longer than the typical time interval on which the
intermittent behavior of �6 occurs. Because �6 typically
switches from resonant to nonresonant mode in 30,000–
500,000 time intervals (the period of resonant behavior
shown in Fig. 19 is among the longest observed), the
resonant crossing time must have been of this order or
shorter.

Finally, concerning the long-term stability of the irregular
satellites’ orbits, all 50 integrated orbits were long-lived. In
most cases, the orbits did not show any macroscopic chaotic
evolutions in 108 yr. In a few cases, however, the integrated
orbit was clearly chaotic and underwent small transitions
(e.g., the case of S/2000 S5 discussed above). We do not
expect that these transitions could accumulate over gigayear
timescales to a degree such that the satellite’s orbit would
become unbound.

10. CONCLUSIONS

Studies of the orbital and collisional evolution of the
irregular moons of the Jovian planets may tell us about how
this interesting component of the solar system inventory
looked soon after the planets and their satellite systems
formed. This, in turn, may help to solve the problem of the
formation of the Jovian planets in our solar system and
to better understand the formation of planets in general.

Fig. 18.—Resonant orbit of S/2000 S5. This orbit shows librations of !
around 90�, which is characteristic for the Kozai resonance.

Fig. 19.—Resonant orbit of S/2000 S3. The apsis of this moon’s orbit
oscillates with a large amplitude about that of Saturn. The figure shows
the time interval during which oscillations of the angle �6 = $ � $6 are
particularly stable. At other times, �6 shows intermittent behavior with
resonant and nonresonant evolutions.
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In this paper, we obtained results that improved our
understanding of the irregular moons in several respects:

1. We have shown that collisions among the irregular sat-
ellites might have been important for shaping their orbital
and size-frequency distributions. For example, observations
suggest that the closer that the planet is to the Sun, the more
distant are its irregular satellites when expressed in Hill
radii. We proposed that this distribution may have been
produced by the collisional removal of inner irregular
moons.We have shown that the irregular satellites of Saturn
and Uranus would be collisionally short-lived if placed at
Jupiter. We also argued that other characteristics of the
irregular satellites, such the existence of two groups of pro-
grade and retrograde moons at largely distinct semimajor
axes at Jupiter, may have resulted from the collisional evo-
lution. Collisions between prograde and retrograde irregu-
lar moons with similar semimajor axes are frequent and
occur at large collision velocities. Thus, a hypothetical pop-
ulation of moons at the semimajor axes between the pro-
grade and retrograde groups of Jupiter would have been
substantially eroded by collisions with large moons of either
group. We estimated that the typical rates of collisions
among the irregular moons are such that 0.5–10 disruptive
collisions occur within a specific population over 4.5 Gyr.
We believe that such a moderate current rate of collisions
might have gradually developed by the collisional
elimination of much larger primordial populations.
2. Phoebe should have suffered at least six or seven

impacts from the population of the Saturnian irregular
moons over the last 4.5 Gyr. Such impacts must have
created craters on Phoebe’s surface several tens of kilo-
meters in size. By contrast, the current cratering rate by
comets on Phoebe is at least 1 order in magnitude lower
(Zahnle et al. 2003). We predict that most large craters on
Phoebe, which will be imaged at sub-kilometer resolution
by theCassini spacecraft in 2004, were created by impacts of
irregular moons. The number of craters on Phoebe’s surface
may thus tell us the total population of irregular satellites
that formed at Saturn. Moreover, we suggested that the
dark material excavated by satellite impacts from surface of
Phoebe could have been transferred to Iapetus, where it
covered the leading hemisphere of this moon and created
the observed surface layer of low reflectance albedo (Jarvis
et al. 2000).
3. We studied groups of satellites that show similar

orbits. We argued that some of these groups are not com-
patible with simple scenarios of a single collisional breakup
of one parent body per group. Otherwise, unusual ejection
fields must be invoked to explain the current distribution of
orbits. We discovered two new satellite families. The Carme
family (nine members, possibly also S/2003 J1, J5, J9, J10,
and J11) and Ananke family (seven members, possibly also
S/2003 J6) were previously unresolved in the widely dis-
persed retrograde group of Jovian irregular moons. The
ejection velocity fields computed for these families from the
Gauss equations are compatible with simple collisional
breakup scenarios. Moreover, S/1997 U1 Caliban and
S/1999 U2 Stephano at Uranus have similar average orbits.
These moons may have a common ancestor, but further
observations are needed to see whether other fragments of
the hypothetical parent moon exist at the same location.

4. We found that S/2000 S5, S/2000 S6, and possibly
also S/2001 J10 have orbits characterized by the Kozai reso-
nance. Does this constrain the formation mechanism of
these moons? Indeed, the locking of the argument of peri-
center ! at 90� might have been important to avoid certain
orbital configurations that would produce very small peri-
center distances during the capture. Note that S/2000 S5
and S/2000 S6 also have the smallest semimajor axes of all
the known Saturnian irregular moons. In general, however,
the Kozai resonance was not a driving mechanism for the
capture, because otherwise a larger fraction of the irregular
moons would be expected to reside within the resonance
today. We verified that Pasiphae and Sinope show periods
of resonant behavior, where � = $ � 2� + $5 librates
about 180� (Whipple & Shelus 1993; Saha & Tremaine
1993). Similarly, the apsis of S/2000 S3 becomes tempora-
rily locked to that of Saturn (Ćuk et al. 2002). These reso-
nant configurations suggest that the orbits of at least some
irregular moons evolved by a dissipative mechanism in the
past. We discussed the possible timescales on which this
dissipation occurred.
5. We have shown that prograde-retrograde collisions

between large irregular moons may have been an important
mechanism that eliminated large fractions of the population
of small irregular satellites at specific distances from the
planets. Probably the most interesting case is that of Nereid.
Small irregular moons of Neptune with a d 0.15RH

8 are
doomed to impact Nereid if they have large enough eccen-
tricities to move on Nereid-crossing orbits. Thus, the lack of
irregular satellites of Neptune with small a may be attrib-
uted to Nereid’s accretional cross section sweeping through
space. Conversely, at a e 0.15RH

8 , Neptune’s moons are
long-lived. The orbits of three newly discovered Neptune’s
irregular satellites (S/2002 N1, N2, and N3) satisfy this
condition.
6. By means of numerical integrations and a semianalytic

model, we studied the orbital dynamics and stability of the
irregular moons of the Jovian planets. We have shown that
satellites with i � 90� are unstable due to the effect of the
Kozai resonance (see also Carruba et al. 2002a, 2002b).
Moreover, we have shown that the distant retrograde orbits
are stable to larger distances from planets than the prograde
orbits. This asymmetry can be explained by the effect of the
resonance between the apsis of the satellite’s orbit and the
planet’s orbital revolutions around the Sun. This resonance,
called the evection resonance in the theory of the Moon’s
orbit (e.g., Kaula &Yoder 1976), excites eccentricities of the
prograde moons with a e 0.5RH to values close to 1, thus
driving them out of the Hill sphere. We have developed a
semianalytic model of the distant satellites’ orbits, which
explains the orbital behavior of the irregular moons and
validates our numerical results. The orbits of all known
irregular moons are dynamically long-lived.
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mous referee for constructive criticism of the manuscript.
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Bell, J. F., Cruikshank, D. P., &Gaffey,M. J. 1985, Icarus, 61, 192
Benz,W., &Asphaug, E. 1999, Icarus, 142, 5
Bottke,W. F., &Greenberg, R. 1993, Geophys. Res. Lett., 20, 879
Brown,M. E. 2000, AJ, 119, 977
Brown, R. H., Cruikshank, D. P., Pendleton, Y., & Veeder, G. J. 1999,
Icarus, 139, 374

Burns, J. A. 1986, in Satellites, ed. J. A. Burns & M. S. Matthews (Tucson:
Univ. Arizona Press), 1

Burns, J. A., Hamilton, D. P., Mignard, F., & Soter, S. 1996, in IAU
Colloq. 150, Physics, Chemistry, and Dynamics of Interplanetary Dust,
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