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Abstract. Is randomness in quantum mechanics “algorithmically ran-
dom”? Is there any relation between Heisenberg’s uncertainty relation
and Gödel’s incompleteness? Can quantum randomness be used to tres-
pass the Turing’s barrier? Can complexity shed more light on incom-
pleteness? In this paper we use variants of “algorithmic complexity” to
discuss the above questions.

1 Introduction

Whether a U238 nucleus will emit an alpha particle in a given interval of time
is “random”. If we collapse a wave function, what it ends of being is “random”.
Which slit the electron went through in the double slit experiment, again, is
“random”.

Is there any sense to say that “random” in the above sentences means “truly
random”? When we flip a coin, whether it’s heads or tails looks random, but
it’s not truly random. It’s determined by the way we flip the coin, the force on
the coin, the way force is applied, the weight of the coin, air currents acting on
it, and many other factors. This means that if we calculated all these values,
we would know if it was heads or tails without looking. Without knowing this
information—and this is what happens in practice—the result looks as if it’s
random, but it’s not truly random.

Is quantum randomness “truly random”? Our working model of “truly ran-
dom” is “algorithmic randomness” in the sense of Algorithmic Information The-
ory (see, for example, [5]). In this paper we compare quantum randomness with
algorithmic randomness in an attempt to obtain partial answers to the following
questions: Is randomness in quantum mechanics “algorithmically random”? Is
there any relation between Heisenberg’s uncertainty relation and Gödel’s incom-
pleteness? Can quantum randomness be used to trespass the Turing’s barrier?
Can complexity cast more light on incompleteness? Our analysis is tentative and
raises more questions than offers answers.

2 Algorithmic Randomness

The main idea of Algorithmic Information Theory (shortly, AIT) was traced
back in time (see [15, 16]) to Leibniz, 1686 ([36], 40–41). If we have a finite



set of points (e.g. say, observations of an experiment), then one can find many
mathematical formulae each of which produces a curve passing through them
all, in the order that they were given. Can we say that the given set of points
satisfy the “law” described by such a mathematical formula? If the set is very
large and complex, and the formula is comparatively simpler, then, indeed, we
have a law. In Chaitin’s words [15], “a scientific theory is a computer program
that calculates the observations, and that the smaller the program is, the better
the theory.”1 If the mathematical formula is not substantially simpler than the
data itself, then we don’t have a law; still, there may be another mathematical
formula qualifying as “law” for the given set. If no mathematical formula is
substantially simpler than the set itself, the set is unstructured, law-less. Using
the computer paradigm, if no program is substantially simpler than the set itself,
then the set is “algorithmically random”.

Of course, to make ideas precise we need to define the basic notions, complex
finite set, (substantially) smaller program, etc. A convenient way is to code all
objects as binary strings and use Turing machines as a model of computation.

For technical reasons (see [5, 23]), our model is a self-delimiting Turing ma-
chine, that is a Turing machine C which processes binary strings into binary
strings and has a prefix-free domain: if C(x) is defined and y is either a proper
prefix or an extension of x, then C(y) is not defined. The self-delimiting Turing
machine U is universal if for every self-delimiting Turing machine C there exists
a fixed binary string p (the simulator) such that for every input x, U(px) = C(x):
either both computations U(px) and C(x) stop and, in this case they produce the
same output or both computations never stop. Universal self-delimiting Turing
machines can be effectively constructed. The relation with computability theory
is given by the following theorem:

A set is computably enumerable (shortly, c.e.) iff can be generated by
some self-delimiting Turing machine.

The Omega number introduced in [13]

ΩU =
∑

U(x) stops
2−|x| = 0.ω1ω2 . . . ωn . . . (1)

is the halting probability of U ; |x| denotes the length of the (binary) string x.
Omega is one of the most important concepts in algorithmic information theory
(see [5]).

The program-size complexity induced by C is defined by HC(x) = min{|w| :
C(w) = x} (with the convention that strings not produced by C have infinite
complexity). The complexity HC measures the power of C to compress strings.
For example, if HC(x) ≤ |x| − k, then C can compress at least k bits of x; if

1 The modern approach, equating a mathematical formula with a computer program,
would probably not surprise Leibniz, who designed a succession of mechanical cal-
culators, wrote on the binary notation (in 1679) and proposed the famous “let us
calculate” dictum; see more in Davis [20], chapter one.



HC(x) > |x| − k, then C cannot compress more than k − 1 bits of x. A string
x is algorithmically k–random with respect to C if the complexity HC(x) is
maximal up to k among the complexities of all strings of the same length, that
is, HC(x) ≥ max|y|=|x| HC(y)− k.

One might suppose that the complexity of a string would vary greatly be-
tween choices of self-delimiting Turing machine. The complexity difference be-
tween C and C ′ is at most the length of the shortest program for C ′ that sim-
ulates C. Complexities induced by some self-delimiting Turing machines (called
universal ) are almost optimal, therefore, the complexity of a string is fixed to
within an additive constant. This is the “invariance theorem” (see [5], p. 36):

For every self-delimiting universal Turing machine U and self-delimiting
Turing machine C there exists a constant ε > 0 (which depends upon U
and C) such that for every string x, HU (x) ≤ ε + HC(x).

In what follows we will fix a self-delimiting universal Turing machine U , write
H instead of HU , and use the term “machine” to denote a “self-delimiting Turing
machine”.

Algorithmic random strings are defined as above using U instead of C. This
approach can be extended to “algorithmic random sequences” by requiring that
the initial prefixes of the sequence cannot be compressed with more than a fixed
number of bits, i.e. they are all “almost random”: A sequence x = x1x2 . . . , xn . . .
is algorithmic random if there exists a positive constant c > 0 such that for all
n > 0, H(x1x2 . . . , xn) ≥ n− c. Chaitin’s theorem [13] states that

The bits of ΩU (i.e. the sequence ω1ω2 . . . ωn . . . in (1)) form an algo-
rithmic random sequence.

3 From Algorithmic Randomness to Uncertainty

The randomness of quantum processes has been an integral part of the inter-
pretation of quantum phenomena almost from the very outset of the theory.
In fact, quantum physics is the only theory within the fabric of modern physics
that integrates and is based on randomness. Quantum randomness has been con-
firmed over and over again by theoretical and experimental research conducted
in physics since the first decades of the 20th century.2

But there is a problem: quantum randomness is postulated and is not at
all a mathematical consequence of the standard model of quantum mechanics.
We don’t know whether the randomness of quantum mechanics is genuine or
simply an artefact of the particular mathematical apparatus physicists employ
to describe quantum phenomena. Being pragmatic, perhaps we can accept the
randomness because of the immense success of the applications of quantum me-
chanics. But even here there is room for doubt. As Wolfram ([56], p. 1064) has
2 The conclusion of [4] is : “We find no evidence for short- or long-term correlations

in the intervals of the quantum jumps or in the decay of the quantum states, in
agreement with quantum theory”.



pointed out, “a priori, there may in the end be no clear way to tell whether ran-
domness is coming from an underlying quantum process that is being measured,
or from the actual process of measurement.”

So, what is the relation between algorithmic randomness and quantum ran-
domness? A detailed discussion appears in Svozil [53] (see also [52]). Yurtsever
[57] argued that a string of quantum random bits is, almost certainly, algorith-
mically random. Here we take a different approach.

First and foremost, there is a strong computational similarity: both algo-
rithmic and quantum randomness are uncomputable, they cannot be gener-
ated/simulated by any machine.3 From this point of view, both types of random-
ness are fundamentally different from “deterministic chaos” (computable systems
in which unobservably small causes can produce large effects) or pseudo-random
numbers (generated by software functions; an elegant solution is the so-called
“rule 30” discovered by Wolfram [55]).

The strong uncomputability of algorithmic randomness is expressed by the
theorem:

The set of algorithmic random strings is immune.

That is, no infinite set of algorithmic random strings is c.e. (see [5], p. 119). In
particular, the set of prefixes of a random infinite sequence is immune, hence the
sequence itself is uncomputable.

Quantum randomness is postulated by Born’s measurement postulate: When
a closed quantum physical system in state V = (v1,1, v2,1, . . . , vn,1)T is measured
it yields outcome i with probability |vi,1|2. In this sense, according to Milburn
(see [39], p. 1), the “physical reality is irreducibly random”. For Peres [44],
“in a strict sense quantum theory is a set of rules allowing the computation of
probabilities for the outcomes of tests which follow specific preparations”. In
the standard model (Copenhagen interpretation) of quantum physics, quantum
processes cannot be simulated on a classical Turing machine, not even on a prob-
abilistic Turing machine (in which the available transitions are chosen randomly
with equal probability at each step). The reason is Bell’s Theorem, which, in
Feynman’s words ([26], p. 476), reads: “It is impossible to represent the results
of quantum mechanics with a classical universal device.”

A recently proposed complexity-theoretic analysis [11] of Heisenberg’s un-
certainty principle (see [29]) reveals more facts. The uncertainty principle states
that the more precisely the position is determined, the less precisely the momen-
tum is known in this instant, and vice versa. In its exact form (first published
by Kennard [33]), for all normalized state vectors |Ψ〉,

∆p ·∆q ≥ h̄/2,

where ∆p and ∆q are standard deviations of momentum and position, i.e.

∆2
p = 〈Ψ |p2|Ψ〉 − 〈Ψ |p|Ψ〉2; ∆2

q = 〈Ψ |q2|Ψ〉 − 〈Ψ |q|Ψ〉2.
3 It is also very difficult for humans to produce random digits; based on ‘history’,

computer programs can predict, on average, some of the digits humans will write
down.



For our analysis it is more convenient to define a variation of the program-size
complexity, namely the complexity measure ∇C(x) = min{N(w) | C(w) = x},
the smallest integer whose binary representation produces x via C. Clearly, for
every string x,

2HC(x) ≤ ∇C(x) ≤ 2HC(x)+1 − 1.

Therefore we can say that ∆C(x), the uncertainty in the value ∇C(x), is the
difference between the upper and lower bounds given, namely ∆C(x) = 2HC(x).

The invariance theorem can now be stated as follows:

For every universal machine U and machine C there exists a con-
stant ε > 0 (which depends upon U and C) such that for every string
x, ∆U (x) ≤ ε ·∆C(x).

Let ∆s = 2−s be the probability of choosing a program of length s. Chaitin’s
theorem (cited at the end of Section 2) stating that the bits of ΩU in (1) form
a random sequence can now be presented as a “formal uncertainty principle”:

For every machine C there is a constant ε > 0 (which depends upon U
and C) such that

∆s ·∆C(ω1 . . . ωs) ≥ ε. (2)

The inequality (2) is an uncertainty relation, as it reflects a limit to which we
can simultaneously increase both the accuracy with which we can approximate
ΩU and the complexity of the initial sequence of bits we compute; it relates the
uncertainty of the output to the size of the input. When s grows indefinitely,
∆s tends to zero in contrast with ∆C(ω1 . . . ωs) which tends to infinity; in fact,
the product is not only bounded from below, but increases indefinitely (see also
[11]). From a complexity viewpoint (2) tells us that there is a limit ε up to which
we can uniformly compress the initial prefixes of the binary expansion of ΩU .

The above “formal uncertainty principle” (much like Heisenberg’s uncertainty
principle) is a general one; they both apply to all systems governed by the wave
equation, not just quantum waves. We could, for example, use sound waves
instead of a quantum system by playing two pure tones with frequencies f and
f + ∆C(ω1 . . . ωs). Then ∆s corresponds to the complementary observable, the
length of time needed to perceive a beat.

For the remainder of this section we assume that quantum randomness is
algorithmic randomness.4

4 This is a disputable assumption. Bohm’s interpretation says there are real particles
with trajectories determined by a non-local equation, and the randomness is due to
our ignorance about the state of the rest of the universe. Penrose says that the wave
collapse is deterministic, but uncomputable and occurs when the difference between
superposed space-times gets too large. Fredkin, following a tradition that goes back
to Schrödinger and Einstein, says the wave collapse is computable and, probably,
just a simple pseudo-random function; we have no idea what the structure of space
is like at the Planck scale, which is only about 2−116 metres. Another view sees



The two conjugate coordinates are the random real and the binary numbers
describing the programs that generate its prefixes. Then, the uncertainty in the
random real given an n-bit prefix is 2−n, and the uncertainty in the size of the
shortest program that generates it is, to within a multiplicative constant, 2n.

The Fourier transform is a lossless transformation, so all the information
contained in the delta function δΩ(x) = 1 if x = Ω, δΩ(x) = 0, otherwise, is pre-
served in the conjugate. Therefore, if you need n bits of information to describe
a square wave convergent on the delta function, there must be n bits of infor-
mation in the Fourier transform of the square wave. Since both the information
in the transformed square wave and the shortest program describing the square
wave increase linearly with n, there is an equivalence between the two.

Is (2) a ‘true’ uncertainty relation? We can prove that the variables ∆s and
∆C in (2) are standard deviations of two measurable observables in suitable
probability spaces, see [11]. For ∆s we consider the space of all real numbers
in the unit interval which are approximated to exactly s digits. Consider the
probability distribution Prob(v) = PC(v)/Ωs

C , where PC(x) =
∑

C(y)=x 2−|y|

and Ωs
C =

∑
|x|=s PC(x). For ∆C we consider

β = (∆C(ω1ω2 . . . ωs))1/2 · (Prob(ω1ω2 . . . ωs))−1/2 · (1−Prob(ω1ω2 . . . ωs))−1/2,

and the same space but the random variable Y (ω1ω2 . . . ωs) = β and Y (v) = 0
if v 6= ω1ω2 . . . ωs. Hence, the relation (2) becomes:

σX · σY = ∆s ·∆C(ω1ω2 . . . ωs) ≥ ε.

For example, it is possible to construct a special universal machine C = U0

satisfying the inequality ∆s ·∆U0(ω1 . . . ωs) ≥ 1, for which we have:

σX · σY ≥ 1.

The complexity-theoretic formulation of uncertainty has more “physical
meaning”, as shown in [11]. If the halting probability of the machine is com-
putable, then we can construct a quantum algorithm to produce a set of qubits
whose state is described by the distribution. To illustrate, we consider a quantum
algorithm with two parameters, C and s, where C is a machine for which the
probability of producing each s-bit string is computable. We run the algorithm
to compute that distribution on a quantum computer with s output qubits; it
puts the output register into a superposition of spin states, where the proba-
bility of each state |v〉 is PC(v)/Ωs

C . Next, we apply the Hamiltonian operator
H = β|ω1 . . . ωs〉〈ω1 . . . ωs| to the prepared state. A measurement of energy will
give β with probability P = Prob(ω1ω2 . . . ωs) and zero with probability 1− P .

the classical world as emerging from the collisional interactions of quantum particles
that inherently arise in “hot dense matter”. Collisions destroy the purity of otherwise
coherent states, so quantum randomness (as well as deterministic chaos) may be a
manifestation of the incompleteness of dynamical laws, cf. [41].



The expectation value for energy, therefore, is exactly the same as that of Y ,
but with units of energy, i.e.

∆C(ω1ω2 . . . ωs)[J ] ·∆s ≥ ε[J ],

where [J ] indicates Joules of energy.
Now define

∆t ≡
σQ

|d〈Q〉/dt|
,

where Q is any observable that does not commute with the Hamiltonian; that
is, ∆t is the time it takes for the expectation value of Q to change by one
standard deviation. With this definition, the following is a form of Heisenberg’s
uncertainty principle:

∆E ·∆t ≥ h̄/2.

We can replace ∆E by ∆C(ω1ω2 . . . ωs) by the analysis above; but what about
∆t? If we choose a time scale such that our two uncertainty relations are equiv-
alent for a single quantum system corresponding to a computer C and one value
of s, then the relation holds for C and any value of s:

∆C(ω1ω2 . . . ωs)[J ] ·∆s
h̄

2ε
[J−1 · Js] ≥ h̄

2
[Js].

In this sense, Heisenberg’s uncertainty relation is equivalent to (2).
The uncertainty principle now says that getting one more bit of ΩU requires

(asymptotically) twice as much energy. Note, however, that we have made an
arbitrary choice to identify energy with complexity. We could have chosen to
create a system in which the position of a particle corresponded to the complex-
ity, while momentum corresponded to the accuracy of C’s estimate of ΩU . In
that case, the uncertainty in the position would double for each extra bit. Any
observable can play either role, with a suitable choice of units.

If this were the only physical connection, one could argue that the result is
merely an analogy and nothing more. However, consider the following: let ρ be
the density matrix of a quantum state. Let R be a computable positive operator-
valued measure, defined on a finite-dimensional quantum system, whose elements
are each labelled by a finite binary string. Then the statistics of outcomes in
the quantum measurement is described by R: R(ω1 . . . ωs) is the measurement
outcome, and tr(ρR(ω1 . . . ωs)) is the probability of getting that outcome when
we measure ρ. Under these hypotheses, Tadaki’s inequality (1) (see [54], p. 2),
and the relation (2) imply the existence of a constant τ (depending upon R)
such that for all ρ and s we have:

∆s
. 1
tr(ρR(ω1 . . . ωs))

≥ τ.

In other words, there is no algorithm that, for all s, can produce an experimen-
tal set-up to produce a quantum state and a POVM (positive operator valued
measure) with which to measure the state such that the probability of getting
the result ω1ω2 . . . ωs is greater than 1/(τ2s).



The above analysis is just one small step towards understanding the nature
of quantum randomness—more theoretical and experimental facts are needed.
One possible avenue of attack might be to experimentally test whether quantum
random bits satisfy some properties proven for algorithmic random strings. For
example, one such natural property states the existence of a constant c such that
for every n, the number of algorithmically random strings of length n is greater
than 2n−c.

4 Randomness and Computation

As we have seen, there is no such thing as “software generated” genuine ran-
domness. In John von Neumann’s words: “Anyone who considers arithmetical
methods of producing random digits is, of course, in a state of sin”. On the
other hand, randomness in quantum mechanics is hardly news. So what pre-
vented quantum physics from becoming a dominant source of randomness?

Basically, practical engineering considerations. Until recently, the only quan-
tum random number generators were based on the observation of radioactive
decay in an element like radium. The first book containing a million of quantum
random digits—generated by using radioactive decay from electronic vacuum
tubes—was published by the RAND Corporation in 1955, [47]. The basic ta-
ble was produced during May and June 1947; exhaustive tests found small but
statistically significant biases and adjustments were made. Some of the early
methods can be found in Golenko [28] who describes noise generators based on a
germanium triode, on a gas-discharge tube with magnet, on an electronic trigger
circuit with a switch in its anode supply (photograph in Fig. 44), on a gasotron
with magnet, and on subharmonic generators. But such generators are quite
bulky and the use of radioactive materials may cause health problems.

Fig. 1. Optical system for generating quantum random bits



Fortunately, a beam of light offers an excellent alternative source of ran-
domness (see [32]). Light consists of elementary particles called photons; they
exhibit in certain situations a random behaviour. The transmission upon a semi-
transparent mirror is an example. A photon generated by a source beamed to
a semitransparent mirror is reflected or transmitted with 50 per cent chance
(see Fig. 1), and these measurements can be translated into a string of quantum
random bits. Such a device can be (and was) manufactured, and its functioning
can be monitored in order to confirm that is operating properly.

A spin-off company from the University of Geneva, id Quantique, [30], mar-
kets a quantum mechanical random number generator called Quantis, see Fig. 2.
Quantis is available as an OEM component which can be mounted on a plastic
circuit board or as a PCI card; it can supply a (theoretically, arbitrarily) long
string of quantum random bits sufficiently fast for cryptographic applications.5

Fig. 2. Quantis: OEM and PCI, cf. [31]

Plug these quantum random bits into a PC and we can, in theory at least,
leapfrog Turing’s barrier, that is we obtain a computing device with capability
surpassing that of classical Turing machines. Indeed, as we have already noticed,
no Turing machine can generate quantum random bits! So, the above statement
is true independently of whether quantum random bits are or not algorithmically
random.

Is this interesting? For some authors, the analysis of this type of ‘oracle’
machine is pointless and “one can only pity those engaged in this misguided
enterprise” (cf. [21], p. 207). As the reader arriving at this point can expect, I
do not share this view.

First, it seems that the computing device “PC plus a quantum generator
of random bits”, whose existence can be hardly doubted, is a serious threat
to the Church-Turing Thesis, which, in one variant, states that every effective
computation can be carried out by a Turing machine.

5 id Quantique also supplies quantum random numbers over the internet [42], as well
as HotBits, [27], which generates them via radioactive decay.



Secondly, understanding this device may help coping with complex computa-
tions. Here is a relevant example. Testing whether a number is prime—showing
that it has no factors beside itself and 1—is a crucial process in cryptography,
and although theoretically fast deterministic algorithms for primality testing
have been discovered (see [1]6), in practice they are quite slow and do not pose
any immediate risk to the security of electronic communication.

Probabilistic algorithms, first discovered in the mid 1970s, [43, 46], can help
speed things up, but such probabilistic tests—which essentially use a coin-
flipping source of pseudo-random bits to search for a number’s factors—are only
“probably” correct.7 If you run the probabilistic algorithm using a source of al-
gorithmically random bits, however, it would not only be fast, it would also be
correct every single time (cf [17]). One of the principal tools used in computer
simulation, known as fast Monte-Carlo algorithms, can derive a similar benefit
from the use of algorithmically random numbers (cf. [12]; see more in [5]). It is
an open question whether these results are true for quantum random bits.

Of course, quantum random bits may be imperfect in a practical setting.
For example, as time goes on, the number of radioactive nuclei in a radioactive
substance decreases. A quantum binary random generator may be become biased
when the probability of one outcome is not equal to the probability of the other
outcome. It is however less of a problem than one might expect at first sight. Post-
processing algorithms can be used to remove bias from a sequence of quantum
random numbers affected by bias. The simplest unbiasing procedure was first
proposed by von Neumann [40].8 The bits of a sequence are grouped in strings
of two bits. The strings 00 and 11 are discarded; the string 01 is replaced by
0 and the string 10 is replaced by 1. After this procedure, the bias is removed
from the sequence. The cost of applying an unbiasing procedure to a sequence is
that it is shortened; in the case of von Neumann’s procedure, the length of the
unbiased sequence will be at most 25% of the length of the raw sequence. Other,
more efficient, unbiasing procedures exist. Peres [45] proved that the number of
bits produced by iterating von Neumann’s procedure is arbitrarily close to the
entropy bound.

Thirdly, another open question is: Exactly how much more powerful a Turing
machine working with “an oracle of quantum random bits” can be? 9 This “ma-
chine” (which is different from the classical probabilistic Turing machine) can,
at any time of the computation, ask the “quantum oracle” to supply an arbitrar-
ily long (but finite) quantum random string. It won’t have access to an infinite

6 The asymptotic time complexity of the algorithm is bounded by (log n)12q(log log n),
where q is some polynomial.

7 See [24] for pitfalls in using traditional pseudo-random number generation techniques
and [22] for Nescape error.

8 Unbiasing is a compression procedure.
9 The idea of computing with deterministic chaos was investigated in [49, 50].



sequence, but (theoretically) to an unbounded finite set of quantum random bit
strings.10 Can this immense power be exploited? 11

A superficial attack suggests that it is unlikely that a Turing machine aug-
mented with a source of quantum random strings will be capable of solving the
Halting Problem: even stepping across the Turing barrier is no guarantee of be-
ing able to solve the Halting Problem. But what is the Halting Problem, and
why it is the “Philosopher’s Stone” of computer science?

The Halting Problem is the problem to decide whether an arbitrarily specified
Turing machine halts after a finite number of steps for a given input; the problem
cannot be solved by any Turing machine, as Turing proved in 1936! Solving this
problem would open a huge box of knowledge. For example, assume you want to
know whether every even number greater than 3 is the sum of two primes. We
can see that 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, and so on.

In fact, this conjecture has been verified computationally for numbers up to
several billion. But is it true for all natural numbers?

One can construct a Turing machine that generates the numbers 4, 6, 8, . . .
one after another and checks each of them to see whether it has the above
property or not. The machine stops when it finds the first number not having
the property; otherwise it continues on to the next number. Clearly, knowing
whether this machine stops or not answers the original question. Incidentally,
this question is one of the oldest unsolved problems in number theory, a question
formulated by Goldbach 262 years ago in a letter to Euler (see [37]). Many other
problems can be solved in a similar manner, including the famous Riemann
Hypothesis (see [19]), as Matiyasevich proved in [38], p. 121–122.12

All theoretical proposals for transcending the Turing barrier (see, for exam-
ple, [25, 10, 34]) have been challenged on grounds of physical in-feasibility (see
[21]): they require infinite time, infinite memory resources (or both), infinite
precision measurements, etc. It’s ironic that we now have a method that works
in the physical world, but one that seems difficult to justify mathematically be-
cause it rests on the assumption that quantum processes are genuinely random.
The relation between the Riemann Hypothesis and quantum randomness seems
to be more profound (see [48] and [8], chapter 11). Maybe it’s not a random fact
that in both of them as well as in the fast Monte-Carlo simulation, primes play
a central role.

10 The insight provided by the refutation (see [35, 18]) of Bennett and Gill’s “Random
Oracle Hypothesis”, [3]—which basically states that the relationships between com-
plexity classes which hold for almost all relativized worlds must also hold in the
unrelativized case—suggests that random oracles are extremely powerful; contrast
this scenario with the behaviour of probabilistic primality tests run with algorithmi-
cally random bits, cf. [17].

11 Related results can be found in [2].
12 A rough estimation shows that solving the Goldbach Conjecture is equivalent to

deciding the halting status of a RAM program of less than 2,000 bits; for Riemann
Hypothesis the program will have about 10,000 bits.



5 Complexity and Incompleteness

Gödel’s incompleteness theorem states that every finitely-specified consistent
theory which is strong enough to include arithmetic is either inconsistent, in-
complete or both. Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC)
is such a theory.

Gödel’s original proof as well as most subsequent proofs are based on the
following idea: a theory which is consistent and strong enough can express state-
ments about provability within the theory, statements which are not provable
by the theory, but which through a proof by contradiction, turn out to be
true. This type of proof of incompleteness does not answer the questions of
whether independence (a true and unprovable statement is called independent)
is a widespread phenomenon nor which kinds of statements can be expected to
be independent.

Recall that we fixed the universal machine U and H denotes HU .
The first complexity-theoretic version of incompleteness was discovered by

Chaitin [13]:

Consider a consistent, sound, finitely-specified theory strong enough to
formalise arithmetic and denote by T its set of theorems. Then, there
exists a constant M , which depends upon U and T , such that whenever
the statement “H(x) > n” is in T we have n ≤ M .

As the complexity H(s) is unbounded, each true statement of the form
“H(x) > m” with m > M (and, of course, there are infinitely many such state-
ments) is unprovable in the theory.

The high H-complexity of the statements “H(x) > m” with m > M is a
source of their unprovability. Is every true statement s with H(s) > M unprov-
able by the theory? Unfortunately, the answer is negative because only finitely
many statements s have complexity H(s) ≤ M in contrast with the fact that
the set of all theorems of the theory is infinite. For example, ZFC or Peano
Arithmetic trivially prove all statements of the form “n + 1 = 1 + n”, but the
H-complexity of the statement “n + 1 = 1 + n” grows unbounded with n. Can
the “heuristic principle” proposed by Chaitin in [14], p. 69, namely that “a set
of axioms of complexity N cannot yield a theorem of complexity substantially
greater than N”13 be rescued?

The answer is affirmative, but to obtain it we need to change again the
complexity measure, specifically, we work with the δ–complexity δ(x) = H(x)−
|x| instead of H(x).14 To quickly understand the difference between H and δ note
that the H-complexity of the statements “n+1 = 1+n” grows unbounded with
n, but the “intuitive complexities” of the statements “n + 1 = 1 + n” remain
bounded; this intuition is confirmed by δ–complexity. Of course, a statement
13 The best “approximation” of this principle supported by Chaitin’s proof in [13] is that

“one cannot prove, from a set of axioms, a theorem that is of greater H–complexity
than the axioms and know that one has done it”; see [14], p. 69.

14 It is easy to see that δ(x) ≈ log2∇(x)− |x|.



with a large δ–complexity has also a large H-complexity, but the converse is not
true.

We can now state the complexity-theoretic theorem obtained in Calude and
Jürgensen [7]:

Consider a consistent, sound, finitely-specified theory strong enough to
formalise arithmetic and denote by T its set of theorems. Then, there
exists a constant N , which depends upon U and T , such that T does not
contain any x with δ(x) > N , i.e., such an x is unprovable in the theory.

The above theorem does not hold true for an arbitrary finitely-specified the-
ory and it is possible to have incomplete theories in which there are no high
δ–complexity statements.

Assume now that we have defined in some way the “set of true statements
representable in the theory”, a set which presumably includes all arithmetical
“true statements”. Then, the above theorem shows that any “true statement”
of δ–complexity higher than N is independent of the theory. On this base we
can show (see [7]) that, probabilistically, incompleteness is widespread, thus
complementing the result of Calude, Jürgensen, Zimand [9] stating that the set
of unprovable statements is topologically large:

Consider a consistent, sound, finitely-specified theory strong enough to
formalise arithmetic. The probability that a statement of length n is prov-
able in the theory tends to zero when n tends to infinity, while the prob-
ability that a sentence of length n is true is strictly positive.

Using either ∇ or δ we can re-obtain (for proofs see [11, 7]) Chaitin’s incom-
pleteness result [13] for Omega:

Consider a consistent finitely-specified theory strong enough to formalise
arithmetic. Then, we can effectively compute a constant N such that the
theory cannot determine more than N scattered digits of ΩU = 0.ω1ω2 . . .

The complexity-theoretic characterisation of the randomness of ΩU , recast as
a “formal uncertainty principle” in terms of the complexity ∇, implies Chaitin’s
information-theoretic version of incompleteness for ΩU . This shows that uncer-
tainty implies algorithmic randomness which, in turn, implies incompleteness.
In terms of δ–complexity, high complexity is a source of incompleteness which
implies that probabilistically incompleteness is not artificial—it’s ubiquitous,
pervasive.

We can ask ourselves: How large is the constant N in the above theorem?
The answer depends on the chosen universal machine U . Indeed, in Calude [6]
one proves the following result:

Consider a consistent, sound, finitely-specified theory strong enough to
formalise arithmetic. Then, for each universal machine U we can effec-
tively construct a universal machine W such that ΩU = ΩW such that
the theory can determine at most the initial run of 1’s in the expansion
of ΩU = 0.11 . . . 10 . . ..



As soon as the first 0 appears, the theory becomes useless. If ΩV < 1/2, then
the binary expansion of ΩV starts with 0, and so we obtain Solovay’s theorem
[51]:

Consider a consistent, sound, finitely-specified theory strong enough to
formalise arithmetic. There effectively exists a universal machine V such
that the theory can determine no digit of ΩV .

We finally note that a Turing machine working with an “oracle of quantum
random bits” will outperform a standard Turing machine in generating mathe-
matical theorems from any given set of axioms. Still, even this machine cannot
generate all true statements of arithmetic.

6 Final Comments

Is the question “Why did the electron go through this slit instead of the other
one?”, as unanswerable as the question “Why the nth bit of ΩU is zero?”? This is
a difficult question and we don’t answer it; the paper brings some (pale) light into
this rather dark picture. Namely, we showed that uncertainty implies algorithmic
randomness which, in turn, implies incompleteness. For the machines C whose
halting probabilities ΩC are computable, one can construct a quantum computer
for which the uncertainty relation describes conjugate observables. Therefore, in
these particular instances, the uncertainty relation is equivalent to Heisenberg’s.

We have also argued that even in case quantum randomness is weaker than
algorithmic randomness, still the “Turing machine augmented with a source of
quantum random bits” is more powerful than any Turing machine. This suggests
a new attack on the Church-Turing Thesis, and the following interesting (from
both practical and theoretical points of view) open question: how much power
has this hybrid machine? Finally, we have discussed the role of complexity (in
particular, algorithmic randomness) in understanding incompleteness.
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