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Abstract
We present a novel image interpolation algorithm. The algorithm can be used in arbitrary resolution enhance-
ment, arbitrary rotation and other applications of still images in continuous space. High resolution images are
interpolated from the pixel level data-dependent triangulation of lower resolution images. It is simpler than other
methods and is adaptable to a variety of image manipulations. Experimental results show that the new “mesh
image” algorithm is as fast as the bilinear interpolation method. We assess the interpolated images’ quality vi-
sually and also by the MSE measure which shows our method generates results comparable in quality to slower
established methods. We also implement our method in graphics card hardware using OpenGL which leads to
real-time high-quality image reconstruction. These features give it the potential to be used in gaming and image
processing applications.

1. Introduction

Digital image interpolation is the recovery of a continuous
intensity surface from discrete image data samples. It is a
link between the discrete world and the continuous one. In
general, almost every geometric transformation requires in-
terpolation to be performed on an image, e.g. translating, ro-
tating, scaling, warping or other applications. Such opera-
tions are basic to any commercial digital image processing
software.

There are several issues which affect the perceived qual-
ity of the interpolated images: sharpness of edges, freedom
from artifacts and reconstruction of high frequency details.
We also seek computational efficiency, both in time and in
memory. Classical techniques, such as pixel replication, bi-
linear or bicubic interpolation have the problem of blurred
edges or artifacts around edges. Although these methods pre-
serve the low frequency content of the sample image, they
are not able to recover the high frequencies which provide a
picture with visual sharpness.

Standard interpolation methods are often based on at-
tempts to generate continuous data from a set of discrete data
samples through an interpolation function. These methods
attempt to improve the ultimate appearance of re-sampled

images and minimise the visual defects arising from the in-
evitable resampling error.

Traditionally, interpolation is accomplished through con-
volution of the image samples with a single kernel – typ-
ically a bilinear, bicubic1, or cubic B-spline2. A number of
algorithms have been proposed to improve the magnification
results. PDE-based approaches3 apply a nonlinear diffusion
process controlled by the local gradient. POCS (Projection-
Onto-Convex-Set) schemes4 formulate the interpolation as
an ill-posed inverse problem and solve it by regularised iter-
ative projection. Orthogonal transform methods focus on the
use of the discrete cosine transform (DCT)5; 6. Directional
methods7; 8 examine an image’s local structure around edge
areas to direct the interpolation. Variational methods formu-
late the interpolation as the constrained minimisation of a
functional9; 10.

It has been recognised that taking edge information
into account will improve the interpolated image’s qual-
ity 11; 12; 13; 14 and it is known that the human visual system
makes significant use of edges18. Instead of approaching in-
terpolation as simply fitting the interpolation function, these
methods consider also the geometry of the image. Li11 as-
serts that the quality of an interpolated image mainly de-
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pends onthe sharpness across the edgeandthe smoothness
along the edge.

Li et al.11 attempted to estimate local covariance charac-
teristics at low resolution and used them to direct interpo-
lation at high resolution (NEDI - New Edge Directed Inter-
polation) while Allebach et al.12 generated a high resolution
edge map and used it to direct high-resolution interpolation
(EDI - Edge Directed Interpolation). Battiato et al.13 pro-
posed a method by taking into account information about
discontinuities or sharp luminance variations while doing
the interpolation. Morse et al.14; 15 presented a scheme that
uses existing interpolation techniques as an initial approxi-
mation and then iteratively reconstructs the isophotes using
constrained smoothing. They emphasise the importance of
the “smoothness” quality, if the isophotes are not to be vi-
sually intrusive. As will shortly become clear, we too accept
this need to fit the visual geometry.

The above schemes demonstrate improved visual quality
(in terms of sharpening edges or suppressing artifacts) by us-
ing a model to preserve the edges of the image and to tune
the interpolation to fit the source model. However they are
complex compared to traditional methods and thus compu-
tationally expensive.

Another approach is triangulation modelling. Triangula-
tion has been an active research topic during the past decade.
It is popular in geometric modelling. However, image re-
construction using triangles isn’t widely used, probably be-
cause of the large number of triangles needed. Yu et al.16

modelled images as data dependent triangulation meshes
and reconstructed images from the triangulation mesh. Their
approach adapted traditional data-dependent triangulation17

(DDT) with their new cost functions and optimisations. The
data dependent triangulation thus matches the edges in the
image and improves the reconstructed image. Their method
is relatively complex and computationally expensive.

We develop a new edge-directed method for image inter-
polation. We call this animage meshDDT. We do not assume
knowledge of the low-pass filtering kernel or attempt to find
a statistical rule about the local geometry. Our approach is
related to that of Yu but is simpler and faster because it does
not involve any cost function or repeating optimisation pro-
cess. Our mesh is very simple and completely regular. We
avoid the complexity of a full DDT method while keeping
the feature of DDT that improves the reconstruction quality.
We will demonstrate our algorithm used in arbitrary magni-
fication of still images and other applications.

2. Image Mesh Data-Dependent Triangulation

2.1. Principle of the Algorithm

We first consider the case that there is an edge passing be-
tween a square of four pixels. If this edge cuts off one corner,
one pixel will have a value substantially different to the other
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Figure 1: Triangulation in a four-pixel square

three. We call this pixel theoutlier. Imagine that we repre-
sent the brightness of the pixel as the height of a terrain. In
effect, the three similar pixels define a plateau, relatively flat,
while the outlier value is at the bottom of the cliff (if smaller)
or the top of a peak (if higher) (Figure 1). This gives us a hint
that if we want to interpolate a high resolution pixel within
the relatively flat region we should not use the outlier. Clas-
sical interpolation methods like bilinear interpolation suffer
from edge blurring because they use all four pixels to do in-
terpolation. We only use three.

The strength of employing triangles in this way is that we
model edges in the image. In effect we tune the interpolator
to match edges. In Figure 1, when interpolating the high-
resolution pixel falling in triangleabc, the interpolator won’t
use the value ofd which is very different to this plateau.
For two pixels falling in different triangles, the height of the
vertices will be quite different and thus the sharpness of the
edge is kept. It is easy to see that in very smooth regions, the
interpolator keeps smoothness as well, even across triangle
boundaries.

This simple geometry suggest a way to guide the interpo-
lation so that smoothness within the regions and sharpness
between the flat region and cliff region can both be kept.
If the diagonal is to correspond to the edge in the image,
the diagonal should be the one which doesnot connect to
the outlying pixel value, the one most different to the other
three.

Suppose pixelsa, b andc are the same height whiled is
higher than these three. Obviouslya, b and c define a flat
region whiled is the most different pixel to the other three.
Thus we connect diagonalac and get the trianglesabc and
adc. In general, ifb or d is the most different pixel, the edge
should beac, otherwisebd will be the edge. There are other
situations ifa andd are very different tob andc; or a and
b are very different toc andd. In these cases it makes little
difference which diagonal is chosen. The edge is roughly
either horizontal (ad are different tobc) or vertical (ab are
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different tocd) and the triangle will always cross the edge.
It is similar to bilinear interpolation in these cases.

Obviously, using the diagonal to triangulate the four-pixel
square cannot correspond to edges of arbitrary angle. The
diagonal can only roughly represent the orientation of the
edge. We could use sub-pixel triangulation to represent arbi-
trary angles, but that would add more complexity to the algo-
rithm. Our aim is to keep the algorithm as simple as possible.
We will demonstrate in this paper that triangulation by diag-
onal is enough in most situations and can provide excellent
results. It is the direction-selection method that is the key.

Our method thus fits the finest triangular mesh to the
source pixels. This “image mesh” is completely regular ex-
cept that the diagonals are locally selected to run in the same
general direction as any visible edge. To generate a new im-
age, possibly at higher resolution, the target pixels are lo-
cated in the source mesh. We then evaluate each target pixel
from the triangle in which it sits. It is interpolated using only
the information from the three triangle vertices. In edge ar-
eas, the interpolator won’t interpolate any two pixels that fall
in different triangles. In other words, the new high-resolution
image has the edges sharp and the smooth areas smooth.

2.2. Implementation and Optimisation

Suppose the low-resolution image isX and the high-
resolution image to be generated isY. Our algorithm can
be expressed as two steps. We first scan the sample image
X to initialise a 2D array which records the edge direction
of all four-pixel squares. In the second step we scanY. For
eachyi j we inverse map to the sample imageX and use the
array to identify the triangle in which the point falls. Then
we interpolate within that triangle to get the value ofyi j .

In the first step, the algorithm has to determine the outlier
pixel. This has to be done repeatedly, so speed is important.
Instead of finding the outlier directly, we compare the dif-
ferenceja� cj with the differencejb� dj and connect the
pair with smaller difference. The proof that this is equiva-
lent to finding the outlier pixel is in Appendix A. This saves
computing time, needing only two subtractions and a com-
parison. Doing it directly would require sorting four pixels
and then comparing the highest and lowest pixels with the
average value.

We use inverse mapping in the interpolation step because
it has a number of benefits. First it can be used at arbitrary
resolution. We are not constrained in any way by the reso-
lution of the source data. Second, there is no requirement to
align the target grid parallel to the source grid, so arbitrary
rotation is possible at no additional cost. Third, sampling
can be irregular to provide warps, although the sampling rate
must not be too low because this would cause break-up. Fi-
nally it is a single-step method.

We use linear interpolation within the triangles. How-
ever there is some confusion of terminology in the literature,

which we need to clarify before proceeding. “Bilinear inter-
polation” strictly refers to interpolating between four values
and we will use the term only in that sense. In the graphics
community, three-value interpolation, as used in Gouraud
shading, is also called bilinear interpolation, although it is
only a degenerate case. We will distinguish this by calling it
“triangle interpolation”.

Figure 2 shows a flower image with the magnified view of
the tip of the lowest stamen and the pixel level data depen-
dent triangulation mesh of that stamen. (We only show the
diagonals of the triangles for a clearer view.) We represent
the triangulation in two diagrams, each one only containing a
specific direction. The stamen and a black edge near the sta-
men both roughly have NW-SE orientation. It is clear to see
that the corresponding triangles also cluster in the NW-SE
direction, which matches the edges of the image. In particu-
lar, note the absence of NE-SW diagonals near these linear
features.

2.3. Extended Method

Some problems still remain in our basic model. For exam-
ple, close study of the triangulation of the stamen (Figure 2)
reveals a problem. The actual local edge goes in the NW-SE
direction while a few diagonals in the lowest stamen areas
give the NE-SW direction. This leads to some small deteri-
oration of edge quality. These diagonals contradict the local
edge orientation because our basic method only considers
the four-pixel square, ignoring the surrounding values. This
only catches the micro-geometry (pixel level), not the local
geometry due to edges passing through several pixels. To
correct this we have developed an extended model where we
consider this extra information.

We assume the image is locally stationary. That is to say,
the intensity of a pixel is dependent on its spatial neighbour-
hood while independent of the rest of the image. The neigh-
bourhood of a pixel can be modelled as a window around this
pixel. Instead of a normal least-square adaptive edge pre-
diction scheme, we simply consider the neighbourhood win-
dow’s edge direction. Our basic method considers four pix-
els arranged in a square. Our extended method considers 16
pixels arranged as 3�3 squares. To predict the edge direc-
tion in the central square, we consider all of them (Figure 3).
If most of these squares have their diagonals in one partic-
ular direction, then we impose that direction on the central
square. In our case we do this if at least 6 of the 9 squares
have the same direction. All decisions are made on the orig-
inal data so that changes do not influence nearby decisions
taken later.

Obviously our extended model increases complexity, but
very marginally. It is worth noting that this additional com-
plexity is only in preparing the diagonals, not in using the
mesh to interpolate an image.

Figure 4 shows the diagonals resulting from our extended
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Figure 2: Top: a part of a flower image. Second: a magnified
view of the bottom stamen. Third: the pixel level data depen-
dent triangulation of the stamen (NW-SE direction) Bottom:
NE-SW direction
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b s s b

b s s b

b b b b

Figure 3: Neighbourhood of 3� 3 squares

Figure 4: The triangulation mesh of the extended method.
Top: NW-SE direction. Bottom: NE-SW direction
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method. The stamen of Figure 2 has 625 diagonals. Our ba-
sic method generates 418 diagonals in the NW-SE direction
and 207 diagonals in the NE-SW direction while our ex-
tended method produces 438 and 187 diagonals respectively.
They differ only in 20 diagonals, mainly along the stamen
and the black edge: the extended method better preserves
the local geometry.

2.4. Algorithm Analysis

We analyse the complexity of the basic method and the ex-
tended method in this section. Suppose the imageI has width
and heightm, so the number of pixels isn=m2. The number
of triangles in the triangulation is then(m�1)�(m�1)�2.
In our implementation, we use a table to record the orien-
tation of the diagonal in each square. As there are only two
possible diagonal directions for each square of two traingles,
we use one bit to store this information. Thus, the total mem-
ory requirement for the triangulation mesh is(m�1)2 � n
bits. In other words, we need one bit per pixel. For a nor-
mal image with size 1024�1024 the memory requirement
is 128KB. Compared to the standard memory in current PCs,
this is very small. Moreover, the memory requirementn is
linear with the number of pixelsn.

In our basic method, each triangle needs two subtractions
and one comparison, so the total computation is(m� 1)�
(m�1)�2�3� 6n.

Our extended method has two steps in preparing the mesh.
In the first step, we calculate just like the basic method and
set each triangle’s diagonal direction. In the second step,
each triangle needs a sum of eight surrounding squares and
a comparison to decide if there is an overriding edge orien-
tation in local area. Thus, the computation for each triangle
needs two extra computations, and the whole image needs
10n computation which is still linear with image sizen.

Then follows the interpolation step. It is easy to see that
the triangle interpolation has the same complexity as bilin-
ear interpolation which is linear withn. Thus, both the basic
method and the extended method have a time complexity of
O(n).

Our method is thus efficient in both memory and time,
and is suitable for handling large images with a linear de-
pendency on the image size.

2.5. Algorithm Comparison

Yu et al.16 propose an image reconstruction method using
data dependent triangulation. They use a new cost function
and an improved optimisation algorithm to generate an opti-
mised triangulation mesh. Their method is able to model an
image effectively. It is complex to implement and is compu-
tationally slow. It takes several iterations to get an optimised
triangulation and each iteration takes “between 0.5 and 5

seconds” even for a small image (80�80) on a consumer-
grade PC. Another limitation of the method is it cannot catch
single-pixel and small features.

Our method can be thought of as a simplified data de-
pendent triangulation (DDT). It generates the triangulation
mesh simply by inserting diagonals. This leads to some
degradation in quality since a normal DDT can model the
edge at arbitrary angles. However our method provides a
notable trade-off between quality and speed. Although the
DDT method can in principle give higher quality, ours is
very easy to implement and much faster. Also our method
needs only a small byte array to store the triangulation mesh
while a full DDT requires a more complicated structure and
more storage space. An advantage of our extended method
is it is able to catch small and local features.

Other researchers19 also use DDT for data interpola-
tion, aiming at a better optimisation of DDT according to
their cost functions and optimisation processes. Our method
avoids this. We will now demonstrate that the method is ef-
fective and that it does provide high-quality reconstructed
images compared to conventional methods.

3. Experimental Assessment

3.1. Implementations

We implemented several interpolation methods. The im-
ages from bilinear interpolation and bicubic interpolation
were produced from Matlab 5 built-in functions. The NEDI
method was tested from a Matlab program kindly provided
by its originator. We used a C++ program and our own
graphics library to implement our methods.

Greyscale images were processed exactly as already de-
scribed. When selecting edge directions in colour images,
we converted the RGB components of each pixel into lu-
minance using the following formula16 whereL stands for
luminance:

L = 0:21267R+0:71516G+0:07217B

The edge direction was determined by these luminance
values. Interpolation was performed in the R,G,B planes in-
dependently.

3.2. Visual Assessment

We performed preliminary tests both to check the implemen-
tations and to permit a visual assessment of the methods. We
wanted to use an image in both in greyscale and in colour.
The flower image we have used has well-defined edges (to
test edge sharpness), thin linear features and small details
(to ensure they are retained) and smoothly varying areas (to
reveal any discontinuity).

Figures 5 and 6 show the comparison results. All the im-
ages in Figures 5 and 6 are magnified from the flower image
of Figure 2 by a factor of 4.

submitted to COMPUTER GRAPHICSForum(1/2004).



6 D. Su and P.J. Willis / Image Interpolation

Figure 5: Detail of image magnified by 4. Top: bilinear in-
terpolation. Middle: bicubic interpolation. Bottom: NEDI

Figure 6: Detail of image magnified by 4. Top: our basic
method. Bottom: our extended method

Figure 7: Magnified view of the stamen. Left: our basic
method. Right: our extended method
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Figure 7 shows a close-up view of the stamen using our
basic and extended method. This illustrates that the basic
method has some artifacts along the stamen which are re-
duced in the extended method.

Figure 8 shows the various methods used to magnify the
colour flower image by a factor of 3.5.

From visual inspection our method produces better im-
ages than bilinear and bicubic interpolation, while the NEDI
method is better still (Figures 5 and 6). However, it seems
NEDI’s weighting algorithm changes the contrast of the im-
age. The bilinear interpolation suffers from blurring of the
edges. The bicubic method introduces sharper edges but
more artifacts.

We next performed analytical testing.

3.3. Quality Assessment

To perform analytical assessment of the the interpolated im-
ages, we need a quality measure. The degradation based
method20 is not able to report the “jagged” artifacts re-
lated to the orientation of edges. Daly’s visible differences
predictor21 produces an error image which characterises the
regions in the test image that are visually different from the
original image. It is relatively complex to implement and it
is not really feasible to use error images for ranking, as Daly
mentioned in his paper. Therefore we used mean-square er-
ror (MSE) as our assessment tool. The MSE is the cumula-
tive squared error between the reconstructed and the original
image. It is widely used in image processing to evaluate re-
constructed image fidelity.

Our method aims at improving edge quality on magnified
images and retaining a good overall quality as well. Thus we
produced one sample image set of five “edge” images with
size 200� 200 (Figure 9) and used twenty 768� 512 real
nature images as a more general test set.

In theory, there is no perfect way to judge the magnifica-
tion quality. Because the image we have is of fixed resolu-
tion, we don’t know what the ‘correct’ magnified image is.
In order to analyse error, we need to know or simulate this
image. So we start with an original image, generate a lower
resolution version, then use different methods to magnify it.
Then we compare the magnified image with the original im-
age. This is not perfect but it provides a reasonable reference
against which to measure the reconstruction quality.

The down-sampled images could be obtained by averag-
ing or sub-sampling. However, edge blurring and ringing are
introduced by averaging, while sub-sampling breaks down
the geometry and introduces artifacts. We chose a Gaussian
filter as the point-spread function with its standard deviation
representing the radius of the point-spread function. Each
pixel at the target image (the down-sampled image) is con-
sidered as a point-spread function represented by a Gaus-
sian distribution. It is down-sampled from some part of the

Figure 8: A flower image magnified by a factor of 3.5 using:
Top: bilinear interpolation. Middle: bicubic interpolation.
Bottom: our extended method.
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Figure 9: Set of five edge images. The angles are 30, 45, 60,
0 and 90 degrees

source image, represented by another point-spread function.
In this case the radius of the point-spread in the source im-
age is double that of the radius in the target image. Thus, we
calculate the standard deviation of the target Gaussian distri-
bution, then double this to get that of the source image. This
is then used to down-sample, by convolution.

We used pixel replication, bilinear interpolation, bicubic
interpolation, NEDI, our basic method and our extended
method to obtain the reconstructed images. All reconstructed
images are magnified by a factor of two and then compared
to the original image.

3.3.1. Quality of edges

Our first test was to check the quality of well-defined edges.
For the test set we generated five samples with a single edge
of varying angle (30, 45, 60, 0 and 90 degrees). Each edge
is black one side and white the other side (Figure 9). The
down-sampled edge images are magnified by a factor of two
and compared to the original edge images to get the MSE
results which is reported in Table 1. The MSE is performed
on 0 255 range for the grey-scale edge images. We put 0Æ and
90Æ in the same column because they give the same results
for all methods. Our basic and extended methods have the
same results in all these situations because our basic method
is able to preserve the geometry well in these simple cases.

The MSE results report that our method gets the best (low-
est) score in every case except at 0Æ and 90Æ. In these two
cases pixel replication gets the best score, which it is triv-
ially able to do. (In principle it should achieve zero MSE but
the Gaussian sampling introduces some grey edge pixels.)
Bicubic beats us here because its interpolation more sharply
models these high-contrast edges. Our method is the equal
of bilinear interpolation as we expect. Although our triangu-
lation gives edges of 45Æ, it also performs well on 30Æ and
60Æ. Bicubic and bilinear interpolation are slightly worse be-
cause they suffer from artifacts or blurring on the edge. Pixel
replication does not generally catch the geometry very well
and NEDI suffers from the effects of its weighting algorithm.

30Æ 45Æ 60Æ 0Æ;90Æ

Our methods 28.8 28.9 28.8 26.0

Bicubic 29.7 31.5 29.3 22.2

Bilinear 34.0 38.4 34.0 26.0

Replication 41.8 45.4 41.5 9.2

NEDI 43.3 47.6 43.4 27.6

Table 1: MSE results of edge images

3.3.2. Quality of real images

In order to test the method on “smoother” and more typi-
cal images, we used twenty 24-bit 768� 512 colour nature
images as another test set. These images are down-sampled,
magnified by different methods by a factor of two and com-
pared to the original images. We perform the MSE compar-
ison on R,G,B channels independently and Table 2 reported
the averaged MSE values / standard deviations over 20 im-
ages from the test set. BC is the bicubic interpolation, EXT
is our extended method, BL is bilinear interpolation, DDT is
our basic method and PR is pixel replication.

R G B

BC 109.4 / 85.1 119.4 / 106.7 123.8 / 121.2

EXT 117.6 / 92.8 127.8 / 115.2 132.7 / 131.3

BL 118.2 / 92.9 128.4 / 115.2 133.1 / 130.9

DDT 118.6 / 93.6 128.8 / 116.1 133.7 / 132.3

PR 126.1 / 99.7 134.8 / 120.8 138.7 / 137.2

NEDI 198.6 / 180.1 197.9 / 159.9 187.4 / 154.5

Table 2: MSE results of real images

However the standard deviations are very large. We also
did a statistical t-test over the MSE results of the different
methods and this confirmed that no significance could be
read into these results. A full analysis would therefore need
a much bigger set of pictures than we have available. Not-
ing that these have to be of known provenance (for example,
compressing a picture or simply reducing the pixel bit-depth
introduces visually and statistically significant defects) it is
not sufficient simply to analyse a large collection culled from
the web. We therefore ceased any deeper analysis.

Visual inspection of our method shows that it produces
good results, which we believe are due to its edge perfor-
mance. We will now show that our method is intrinsically
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very fast and easily made faster by using the PC graphics
card.

3.4. Performance Assessment

We implemented bilinear interpolation, bicubic interpola-
tion, our basic method and our extended method by C++
code and compared their computational performance. We
used the real natural colour images test set again. We down-
sampled every image to 384� 256 pixels (using the method
described earlier). Then we magnified the down-sampled im-
ages by a factor of 2 and also by a factor of 3.5. We used the
bicubic interpolation proposed by Keys22. Table 3 shows the
performance comparison on a machine with an Intel Pen-
tium4 3G processor and 1G DDR system memory. Our ex-
tended method uses the 3� 3 square window. All figures are
in seconds.

Bilinear Basic Extended Bicubic

magnify 2 0.359 0.406 0.412 3.621

magnify 3.5 1.105 1.162 1.170 10.914

Table 3: Performance comparison

We can see from the table that our method is only slightly
slower than bilinear interpolation. Importantly, bicubic is an
order of magnitude slower than the other methods. The aver-
aged times for calculating the triangle mesh are included in
the above figures. For our basic and extended method these
are 0.041 and 0.049 seconds respectively. Factoring these out
reveals that our methods are linear with the number of pixels
generated.

In conclusion, our extended method is comparable in
speed to bilinear interpolation while providing excellent re-
construction results visually. In comparison to bicubic inter-
polation, our extended method is much faster and visually
better, especially in edge reconstruction. Our method is fast,
simple and modest in memory needs.

3.5. Hardware Implementation

More and more complex graphics operations have moved to
the graphics co-processor or accelerator, including shading,
texturing, anti-aliasing and bilinear interpolation. These fea-
tures of graphics cards make it possible to create extremely
realistic games and simulations.

However the only interpolation algorithms currently avail-
able on graphics cards are triangular and bilinear interpola-
tion: the others are too complex. High quality image recon-
struction in real-time still remains a difficult and unsolved
problem. Our pixel level data dependent triangulation makes
a step in this direction.

A graphics card can handle tens of millions of triangles
per second and it can interpolate within triangles. This sug-
gests that we convert any image to a triangle mesh and then
pass the mesh to the graphics card. The card will deal with
the mesh in real-time.

We have used OpenGL to explore the potential of our
method in hardware implementation. We first generated a
triangle mesh using our basic or extended model. Then we
used OpenGL to pass the mesh to the graphics card so that
it could manipulate the mesh, such as by scaling and rotat-
ing. These manipulations can be in 3D, at no extra cost. Our
experimental results showed that high quality reconstructed
images can be generated in real-time.

We used the OpenGL GL-TRIANGLE-STRIP to build
the triangle mesh. This routine needs all of the trian-
gles to have the same orientation. Thus we started a new
GL-TRIANGLE-STRIP whenever the diagonal direction
changes. All of these strips were saved in a display list which
was then used to render the image.

The program flow of the OpenGL process is as follows:

1. Build a byte array to record the diagonals of the triangles.
2. Set up all the GL-TRIANGLE-STRIP and save them in a

display list.
3. Render the image and call an OpenGL loop, waiting for

keyboard response and doing manipulation correspond-
ing to the key pressed.

We have tested several images with size 768� 512 pix-
els, in the same machine: an Intel Pentium 4 3G processor
and an NVidia GeForce 4 graphics card with 128M memory.
Using our extended method, the time for preparing the mesh
for an image with 768�512 pixels was under 0.2 seconds.
Once the triangle mesh was loaded, the graphics card did all
further manipulation. We used key presses for scaling or ro-
tation, causing the appropriate updates to the transformation
matrix.

The GeForce 4 graphics card specification claims a ren-
dering speed of 136 million vertices per second. This equates
to about 45M independent triangles per second. This latter
rate could increase with triangle strips (due to vertex shar-
ing), though of course thenumberof triangles which can be
rendered at full speed is limited by the card memory. With
our test image meshes having less than 1M triangles, the
graphics card easily gives real-time zooms, translations and
rotations.

4. Other Applications

Figure 10 shows our extended method applied to three colour
images chosen to include edge, texture and smooth features,
magnified by a factor of 2.

Due to the simplicity of our algorithm, it is easy to apply
in other ways. For example, we can rotate the image by any
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angle (Figure 11 – top). We inverse rotate each target pixel
back to the sample image and interpolate the value. We can
also generate a perspective transform of an image. On any
giveny scan line, we calculate the pixel at(x;y) by sampling
the source image at(sx; ty) wheres; t are scale factors which
vary linearly with height (We are assuming they axis is the
centre of the screen). Figure 11 (middle) shows the result.
We can produce a magnifying lens effect (Figure 11 – bot-
tom). If the lens has radiusR, then its disc is filled with the
image from a smaller disc with radiusr at the same centre.
For any pixel insideR, we scale down tor, evaluate the orig-
inal value atr and apply it at radiusR.

In general, these are variants on the same technique: to
evaluate the target pixelp, we evaluate pixelF(p) whereF
is a simple inverse mapping to the original image. Then we
interpolate in the triangle where it falls.

5. Discussion

In this paper we have presented a new method of image in-
terpolation. We represent an image as a data-dependent tri-
angulation mesh. Every four-pixel square is divided into two
triangles with the diagonal corresponding to the local edge
of the image. The desired pixel can then be interpolated from
the triangle in which it falls, determined by inverse mapping.

Other variants of the diagonal choice procedure can also
be tried. For example, a pair of suitable digital filters might
be better at distinguishing the local edge direction; or the
threshold could be different to the one we chose. Other vari-
ants of the sampling procedure can be used, the interpolation
providing some security against sampling defects. These two
procedures are independent and neatly correspond to the im-
age modelling and image rendering phases.

The new interpolation approach generates images with
better visual quality than traditional interpolation schemes.
The error assessment also shows that our scheme produces
good overall image accuracy. The complexity of the new
method is similar to bilinear interpolation and much lower
than the bicubic method. We avoid the time-consuming opti-
misations that others use but still produce good results very
quickly.

Our method has several advantages. It requires no itera-
tion. It achieves arbitrary factor magnification, rotation, per-
spective transform and warp through a single mechanism.
Our scheme is very simple to implement and computation-
ally fast. It requires little data structure overhead to generate
the mesh image. Moreover, our meshes can be rendered on
a graphics card which makes real-time image reconstruction
possible. There is a potential for our method to be used in
gaming and image manipulation generally. We have also ex-
tended our model to an important commercial application:
demosaicing of colour images (the reconstruction of a full-
resolution colour image from themosaicedsample gener-
ated by current single-chip digital cameras)23. We are inves-

Figure 11: Top:Flower image rotated by 27 degrees. Mid-
dle: a perspective view of the flower image. Bottom: a lens
effect of the flower image
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Figure 10: Three sample images of192�192shown upper left. The corresponding larger images are magnified of a factor of
2, using our extended method.

tigating its use in 4-colour separation for printing. Above all,
we have demonstrated that a simple approach, sensibly used,
can rapidly generate excellent results.
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Appendix A: Proof

Consider a four pixel squareabcd. We will first prove that,
if pair ac has smaller difference thanbd, thenb or d is the
outlier pixel and we should connectac. That is to say, ifja�
cj < jb�dj thenb or d is either the biggest or the smallest
pixel.

t t

t t

@
@
@
@
@
@
@

b c

a d
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Supposeja�cj< jb�dj, and supposea� c, thena�c<
jb�dj.

1. Supposeb> d. Thena�c< b�d (b> d;a� c), hence
a�b< c�d (b> d;a� c).
We supposea> b andc< d, thena�b> 0 andc�d< 0,
so we geta�b > c�d. However, we have the formula
a� b < c� d before which means our assumption that
a> b andc< d is wrong.
Becausea> b andc< d is wrong, eithera< b or c> d
or a< b;c> d with the condition (b> d;a� c). In these
cases, eitherb is the biggest pixel (b> a;b> c;b> d) or
d is the smallest pixel (d < c;d < a;d < b).

2. Supposeb< d, thena�c< d�b (b< d;a� c), hence
a�d < c�b (b< d;a� c).
We supposea> d andc< b. Thena�d > 0 andc�b<
0, so we geta�d> c�b. However, we have the formula
a� d < c� b before which means our assumption that
a> d andc< b is wrong.
Becausea> d andc< b is wrong, eithera< d or c> b
or a< d;c> b with the condition (b< d;a� c). In these
cases, eitherb is the smallest pixel (b < c;b< a;b < d)
or d is the biggest pixel (d > b;d > a;d > c).

We have proved that if pairac has the smaller difference
(ja�cj< jb�dj), there are two situations. One is that either
b is the biggest pixel ord is the smallest pixel. The second
is that eitherb is the smallest pixel ord is the biggest pixel.
In either case the outlier is eitherb or d andacshould be the
edge. Using the same method we can prove that if pairbd
has the smaller difference (jb�dj < ja� cj), the outlier is
eithera or c andbd should be the edge.

So we can conclude that drawing the edge between the
least-different diagonal pair gives the same result as drawing
the edge which isolates the outlier.
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