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A COUNTEREXAMPLE
TO THE BARTLE-GRAVES SELECTION THEOREM

FOR MULTILINEAR MAPS

CECÍLIA S. FERNANDEZ

(Communicated by Theodore W. Gamelin)

Abstract. We present an example showing that the multilinear version of the
Bartle-Graves Selection Theorem is false, even on finite dimensional spaces.

1. Introduction

The Bartle-Graves Selection Theorem [1] in the context of Banach spaces can be
formulated as follows (see also [2] or [3]):

If E and F are Banach spaces and u : E → F is continuous, linear and surjective,
then there exists a continuous function g : F → E such that u ◦ g is the identity
map on F .

It is natural to ask whether the multilinear version of the above result remains
true. The goal of the present work is to show that this is not the case. More
precisely, we shall present a continuous bilinear onto map which does not have a
continuous right inverse.

2. Main result

Theorem. There are Banach spaces E1, E2, F and a continuous bilinear map
from E1 × E2 onto F which does not have a continuous right inverse.

Proof. Let Pj(C) denote the set of all complex polynomials with degree≤ j, normed
by

‖p‖ = max
0≤k≤j

|ak| (p(z) = a0 + a1z + ... + ajz
j ∈ Pj(C)).

Clearly, Pj(C) is a Banach space. Consider Pj(C)× Pj(C) normed by

‖(p, q)‖ = max{‖p‖, ‖q‖} (p, q ∈ Pj(C)),

and let
u : (p, q) ∈ P1(C)× P1(C) 7→ pq ∈ P2(C),

where pq denotes the usual multiplication between the polynomials p and q. Clearly,
u is a continuous bilinear map. Moreover, the Fundamental Theorem of Algebra
allows us to conclude that u is onto.
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Let g be a right inverse of u. Then, for a, b, c ∈ C, a 6= 0, we must have

g(az2 + bz + c) = (α(a, b, c)(z − −b− h(a, b, c)
2a

), β(a, b, c)(z − −b + h(a, b, c)
2a

)),

(1)

where h(a, b, c) is a square root of b2− 4ac, and α(a, b, c) and β(a, b, c) are complex
numbers such that α(a, b, c)β(a, b, c) = a.

Suppose that g is continuous and consider the following function:

ϕ : c ∈ C 7→ h(1, 0,−c)
2

∈ C.

Clearly, [ϕ(c)]2 = c for all c ∈ C. Moreover, ϕ is continuous. Indeed, let c0 ∈ C
and put α0 = α(1, 0,−c0). Let 0 < ε < |α0|

2 and ε1 = min{ε, |α0|ε
2(1+|ϕ(c0)|)}. Since g

is continuous at the polynomial z2 − c0, there is a δ > 0 such that

‖g(z2 − c)− g(z2 − c0)‖ < ε1 whenever |c− c0| < δ.(2)

By (1), we have that

g(z2 − c0) = (α0(z + ϕ(c0)),
1
α0

(z − ϕ(c0)))

and

g(z2 − c) = (α(z + ϕ(c)),
1
α

(z − ϕ(c))),

where α = α(1, 0,−c). So, by (2) and the definition of the norm on P1(C), we get
that

|α0ϕ(c0)− αϕ(c)| < ε1 and |α− α0| < ε1 whenever |c− c0| < δ.

By the above inequalities and the choice of ε1 we finally get that |ϕ(c)−ϕ(c0)| < ε
whenever |c − c0| < δ. This proves the continuity of ϕ at c0. Since c0 is arbitrary
in C, ϕ is continuous.

Thus, ϕ is a continuous branch of the square root on the whole complex plane.
But this cannot happen (cf. [4], page 183). Therefore, g is not continuous. Since g
is an arbitrary right inverse for u, we have the desired result.

3. Some remarks

3.1. By identifying Pj(C) canonically with Cj+1, we can regard the mapping u
defined in the proof of the Theorem as follows:

u : ((a, b), (c, d)) ∈ C2 ×C2 7→ (ac, ad + bc, bd) ∈ C3.

Since Cn is canonically isomorphic to R2n, we can then see u as a continuous
bilinear map from R4×R4 onto R6, which does not have a continuous right inverse
(by the Theorem). Thus, the Bartle-Graves Selection Theorem also fails for bilinear
maps in the real case.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



COUNTEREXAMPLE TO THE BARTLE-GRAVES SELECTION THEOREM 2689

3.2. For all m ≥ 2, there are Banach spaces E1, ..., Em, F and a continuous m-
linear map from E1×...×Em onto F which does not have a continuous right inverse.
Indeed, the case m = 2 is the Theorem. Now, let m ≥ 3. Consider

v : (λ1, ..., λm−2, p, q) ∈ C× ...×C︸ ︷︷ ︸
m−2 times

×P1(C)× P1(C) 7→ λ1 · · ·λm−2pq ∈ P2(C).

Clearly, v is a continuous m-linear surjective map. Now, let f be a right inverse for
v. Then, for a, b, c ∈ C, a 6= 0, we have that

f(az2 + bz + c) = (λ1(a, b, c), ..., λm−2(a, b, c),

α(a, b, c)(z − −b− h(a, b, c)
2a

), β(a, b, c)(z − −b + h(a, b, c)
2a

)),

where h(a, b, c) is a square root of b2 − 4ac and α(a, b, c) and β(a, b, c) are com-
plex numbers satisfying λ1(a, b, c) · · · λm−2(a, b, c)α(a, b, c)β(a, b, c) = a. If f were
continuous, the argument used in the proof of the Theorem would imply that the
function c ∈ C 7→ h(1,0,−c)

2 ∈ C is a continuous branch of the square root on C,
which would be a contradiction. Thus, the Bartle-Graves Selection Theorem fails
for m-linear maps whenever m ≥ 2.

3.3. Let f be a continuous linear surjective map. The fact that f has a continuous
right inverse is equivalent to the fact that f is open at the origin. We shall verify
that this equivalence can fail if f is an m-linear map with m ≥ 2. For this, consider
the following:

Proposition. The mapping v defined in remark 3.2 is open at the origin.

Proof. It is clearly enough to show that the mapping u defined in the proof of the
Theorem is open at the origin. For this purpose, fix 0 < ε < 1. Let δ > 0 be such
that δ < ε4/2 and

| −B ±
√

B2 − 4AC| < ε2 whenever |A| < δ, |B| < δ and |C| < δ.

Fix A, B, C ∈ C with |A| < δ, |B| < δ and |C| < δ. The proposition will follow as
soon as we establish the existence of points a, b, c, d ∈ C with

|a| < ε, |b| < ε, |c| < ε, |d| < ε and (az + b)(cz + d) = Az2 + Bz + C.

If A = 0, it is enough to put a = 0, b = ε2/2, c = B/b and d = C/b. Thus, assume
A 6= 0. In order to have (az + b)(cz + d) = Az2 + Bz + C, it must be the case that

az + b = α(z − r1) and cz + d = β(z − r2),

where αβ = A and r1, r2 are the roots of Az2 + Bz + C (which implies a = α,
b = −αr1, c = β and d = −βr2). Without loss of generality, we may assume

r1 =
−B +

√
B2 − 4AC

2A
and r2 =

−B −√
B2 − 4AC

2A
.

So, our problem is reduced to finding α, β ∈ C such that αβ = A, |α| < ε, |β| < ε,
|αr1| < ε and |βr2| < ε. We have two cases:

Case 1. |r1| < ε or |r2| < ε :
If |r1| < ε, then put α = ε

2 and β = 2A
ε ; else put α = 2A

ε and β = ε
2 .

Case 2. |r1| ≥ ε and |r2| ≥ ε :
In this case, α =

√
C

r1
and β =

√
C

r2
will do the trick.
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nando Ferrari s/n. 29060-900, Vitória, ES, Brasil
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