

ARM System Developer’s Guide

Designing and Optimizing
System Software

About the Authors

Andrew N. Sloss
Andrew Sloss received a B.Sc. in Computer Science from the University of Herefordshire (UK)

in 1992 and was certified as a Chartered Engineer by the British Computer Society (C.Eng, MBCS).
He has worked in the computer industry for over 16 years and has been involved with the ARM
processor since 1987. He has gained extensive experience developing a wide range of applications
running on the ARM processor. He designed the first editing systems for both Chinese and Egyptian
Hieroglyphics executing on the ARM2 and ARM3 processors for Emerald Publishing (UK). Andrew
Sloss has worked at ARM Inc. for over six years. He is currently a Technical Sales Engineer advising
and supporting companies developing new products. He works within the U.S. Sales Organization
and is based in Los Gatos, California.

Dominic Symes
Dominic Symes is currently a software engineer at ARM Ltd. in Cambridge, England, where

he has worked on ARM-based embedded software since 1995. He received his B.A. and D.Phil. in
Mathematics from Oxford University. He first programmed the ARM in 1989 and is particularly
interested in algorithms and optimization techniques. Before joining ARM, he wrote commercial and
public domain ARM software.

Chris Wright
Chris Wright began his embedded systems career in the early 80s at Lockheed Advanced Marine

Systems. While at Advanced Marine Systems he wrote small software control systems for use on
the Intel 8051 family of microcontrollers. He has spent much of his career working at the Lockheed
Palo Alto Research Laboratory and in a software development group at Dow Jones Telerate. Most
recently, Chris Wright spent several years in the Customer Support group at ARM Inc., training and
supporting partner companies developing new ARM-based products. Chris Wright is currently the
Director of Customer Support at Ultimodule Inc. in Sunnyvale, California.

John Rayfield
John Rayfield, an independent consultant, was formerly Vice President of Marketing, U.S., at

ARM. In this role he was responsible for setting ARM’s strategic marketing direction in the U.S.,

and identifying opportunities for new technologies to serve key market segments. John joined ARM

in 1996 and held various roles within the company, including Director of Technical Marketing and

R&D, which were focused around new product/technology development. Before joining ARM, John

held several engineering and management roles in the field of digital signal processing, software,

hardware, ASIC and system design. John holds an M.Sc. in Signal Processing from the University of

Surrey (UK) and a B.Sc.Hons. in Electronic Engineering from Brunel University (UK).

ARM System
Developer’s Guide

Designing and Optimizing
System Software

Andrew N. Sloss

Dominic Symes

Chris Wright

With a contribution by John Rayfield

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Senior Editor Denise E.M. Penrose
Publishing Services Manager Simon Crump
Project Manager Sarah M. Hajduk
Developmental Editor Belinda Breyer
Editorial Assistant Summer Block
Cover Design Dick Hannus
Cover Image Red Wing No.6 by Charles Biederman

Collection Walker Art Center, Minneapolis
Gift of the artist through the Ford Foundation Purchase Program, 1964

Technical Illustration Dartmouth Publishing
Composition Cepha Imaging, Ltd.
Copyeditor Ken Dellapenta
Proofreader Jan Cocker
Indexer Ferreira Indexing
Interior printer The Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.
© 2004 by Elsevier Inc. All rights reserved.

The programs, examples, and applications presented in this book and on the publisher’s Web site have been included for their instructional
value. The publisher and the authors offer no warranty implied or express, including but not limited to implied warranties of fitness or merchantability
for any particular purpose and do not accept any liability for any loss or damage arising from the use of any information in this book, or any error or
omission in such information, or any incorrect use of these programs, procedures, and applications.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks. In all instances in
which Morgan Kaufmann Publishers is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should
contact the appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical,
photocopying, scanning, or otherwise—without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax:
(+44) 1865 853333, e-mail: permissions@elsevier.com.uk. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com) by
selecting “Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Sloss, Andrew N.

ARM system developer’s guide: designing and optimizing system software/Andrew N.
Sloss, Dominic Symes, Chris Wright.

p. cm.
Includes bibliographical references and index.
ISBN 1-55860-874-5 (alk. paper)
1. Computer software–Development. 2. RISC microprocessors. 3. Computer

architecture. I. Symes, Dominic. II. Wright, Chris, 1953- III. Title.

QA76.76.D47S565 2004
005.1–dc22

2004040366

ISBN: 1-55860-874-5

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com.

Printed in the United States of America
08 07 06 05 04 5 4 3 2 1

Contents

About the Authors ii
Preface xi

Chapter

1 ARM Embedded Systems 3

1.1 The RISC Design Philosophy 4
1.2 The ARM Design Philosophy 5
1.3 Embedded System Hardware 6
1.4 Embedded System Software 12
1.5 Summary 15

Chapter

2 ARM Processor Fundamentals 19

2.1 Registers 21
2.2 Current Program Status Register 22
2.3 Pipeline 29
2.4 Exceptions, Interrupts, and the Vector Table 33
2.5 Core Extensions 34
2.6 Architecture Revisions 37
2.7 ARM Processor Families 38
2.8 Summary 43

Chapter

3 Introduction to the ARM Instruction Set 47

3.1 Data Processing Instructions 50
3.2 Branch Instructions 58
3.3 Load-Store Instructions 60
3.4 Software Interrupt Instruction 73
3.5 Program Status Register Instructions 75
3.6 Loading Constants 78
3.7 ARMv5E Extensions 79
3.8 Conditional Execution 82
3.9 Summary 84

v

vi Contents

Chapter

4 Introduction to the Thumb Instruction Set 87

4.1 Thumb Register Usage 89
4.2 ARM-Thumb Interworking 90
4.3 Other Branch Instructions 92
4.4 Data Processing Instructions 93
4.5 Single-Register Load-Store Instructions 96
4.6 Multiple-Register Load-Store Instructions 97
4.7 Stack Instructions 98
4.8 Software Interrupt Instruction 99
4.9 Summary 100

Chapter

5 Efficient C Programming 103

5.1 Overview of C Compilers and Optimization 104
5.2 Basic C Data Types 105
5.3 C Looping Structures 113
5.4 Register Allocation 120
5.5 Function Calls 122
5.6 Pointer Aliasing 127
5.7 Structure Arrangement 130
5.8 Bit-fields 133
5.9 Unaligned Data and Endianness 136
5.10 Division 140
5.11 Floating Point 149
5.12 Inline Functions and Inline Assembly 149
5.13 Portability Issues 153
5.14 Summary 155

Chapter

6 Writing and Optimizing ARM Assembly Code 157

6.1 Writing Assembly Code 158
6.2 Profiling and Cycle Counting 163
6.3 Instruction Scheduling 163
6.4 Register Allocation 171
6.5 Conditional Execution 180
6.6 Looping Constructs 183
6.7 Bit Manipulation 191
6.8 Efficient Switches 197

Contents vii

6.9 Handling Unaligned Data 201
6.10 Summary 204

Chapter

7 Optimized Primitives 207

7.1 Double-Precision Integer Multiplication 208
7.2 Integer Normalization and Count Leading Zeros 212
7.3 Division 216
7.4 Square Roots 238
7.5 Transcendental Functions: log, exp, sin, cos 241
7.6 Endian Reversal and Bit Operations 248
7.7 Saturated and Rounded Arithmetic 253
7.8 Random Number Generation 255
7.9 Summary 256

Chapter

8 Digital Signal Processing 259

8.1 Representing a Digital Signal 260
8.2 Introduction to DSP on the ARM 269
8.3 FIR filters 280
8.4 IIR Filters 294
8.5 The Discrete Fourier Transform 303
8.6 Summary 314

Chapter

9 Exception and Interrupt Handling 317

9.1 Exception Handling 318
9.2 Interrupts 324
9.3 Interrupt Handling Schemes 333
9.4 Summary 364

Chapter

10 Firmware 367

10.1 Firmware and Bootloader 367
10.2 Example: Sandstone 372
10.3 Summary 379

viii Contents

Chapter

11 Embedded Operating Systems 381

11.1 Fundamental Components 381
11.2 Example: Simple Little Operating System 383
11.3 Summary 400

Chapter

12 Caches 403

12.1 The Memory Hierarchy and Cache Memory 404
12.2 Cache Architecture 408
12.3 Cache Policy 418
12.4 Coprocessor 15 and Caches 423
12.5 Flushing and Cleaning Cache Memory 423
12.6 Cache Lockdown 443
12.7 Caches and Software Performance 456
12.8 Summary 457

Chapter

13 Memory Protection Units 461

13.1 Protected Regions 463
13.2 Initializing the MPU, Caches, and Write Buffer 465
13.3 Demonstration of an MPU system 478
13.4 Summary 487

Chapter

14 Memory Management Units 491

14.1 Moving from an MPU to an MMU 492
14.2 How Virtual Memory Works 493
14.3 Details of the ARM MMU 501
14.4 Page Tables 501
14.5 The Translation Lookaside Buffer 506
14.6 Domains and Memory Access Permission 510
14.7 The Caches and Write Buffer 512
14.8 Coprocessor 15 and MMU Configuration 513
14.9 The Fast Context Switch Extension 515
14.10 Demonstration: A Small Virtual Memory System 520
14.11 The Demonstration as mmuSLOS 545
14.12 Summary 545

Contents ix

Chapter

15 The Future of the Architecture
by John Rayfield 549

15.1 Advanced DSP and SIMD Support in ARMv6 550
15.2 System and Multiprocessor Support Additions to ARMv6 560
15.3 ARMv6 Implementations 563
15.4 Future Technologies beyond ARMv6 563
15.5 Summary 566

Appendix

A ARM and Thumb Assembler Instructions 569

A.1 Using This Appendix 569
A.2 Syntax 570
A.3 Alphabetical List of ARM and Thumb Instructions 573
A.4 ARM Assembler Quick Reference 620
A.5 GNU Assembler Quick Reference 631

Appendix

B ARM and Thumb Instruction Encodings 637

B.1 ARM Instruction Set Encodings 637
B.2 Thumb Instruction Set Encodings 638
B.3 Program Status Registers 645

Appendix

C Processors and Architecture 647

C.1 ARM Naming Convention 647
C.2 Core and Architectures 647

Appendix

D Instruction Cycle Timings 651

D.1 Using the Instruction Cycle Timing Tables 651
D.2 ARM7TDMI Instruction Cycle Timings 653
D.3 ARM9TDMI Instruction Cycle Timings 654
D.4 StrongARM1 Instruction Cycle Timings 655
D.5 ARM9E Instruction Cycle Timings 656
D.6 ARM10E Instruction Cycle Timings 658
D.7 Intel XScale Instruction Cycle Timings 659
D.8 ARM11 Cycle Timings 661

x Contents

Appendix

E Suggested Reading 667

E.1 ARM References 667
E.2 Algorithm References 667
E.3 Memory Management and Cache Architecture (Hardware Overview

and Reference) 667
E.4 Operating System References 668

Index 669

Preface

Increasingly, embedded systems developers and system-on-chip designers select specific
microprocessor cores and a family of tools, libraries, and off-the-shelf components to
quickly develop new microprocessor-based products. A major player in this industry is
ARM. Over the last 10 years, the ARM architecture has become the most pervasive 32-bit
architecture in the world, with more than 2 billion ARM-based processors shipped at the
time of this writing. ARM processors are embedded in products ranging from cell/mobile
phones to automotive braking systems. A worldwide community of ARM partners and
third-party vendors has developed among semiconductor and product design companies,
including hardware engineers, system designers, and software developers. To date, no book
has directly addressed their need to develop the system and software for an ARM-based
embedded design. This text fills that gap.

Our goal has been to describe the operation of the ARM core from a product developer’s
perspective with a clear emphasis on software. Because we have written this book specifically
for engineers who are experienced with embedded systems development but who may be
unfamiliar with the ARM architecture, we have assumed no previous ARM experience.

To help our readers become productive as quickly as possible, we have included a suite
of ARM software examples that can be integrated into commercial products or used as
templates for the quick creation of productive software. The examples are numbered so
that readers can easily locate the source code on the publisher’s Web site. The examples are
also valuable to people with ARM design experience who want to make the most efficient
use of an ARM-based embedded system.

Organization of the Book
The book begins by briefly noting the ARM processor design philosophy and discussing how
and why it differs from the traditional RISC philosophy. The first chapter also introduces a
simple embedded system based on the ARM processor.

Chapter 2 digs more deeply into the hardware, focusing on the ARM processor core and
presenting an overview of the ARM cores currently in the marketplace.

The ARM and Thumb instruction sets are the focus of Chapters 3 and 4, respectively,
and form the fundamental basis for the rest of the book. Explanations of key instructions
include complete examples, so these chapters also serve as a tutorial on the instruction sets.

Chapters 5 and 6 demonstrate how to write efficient code with scores of example that we
have developed while working with ARM customers. Chapter 5 teaches proven techniques

xi

xii Preface

and rules for writing C code that will compile efficiently on the ARM architecture, and it
helps determine which code should be optimized. Chapter 6 details best practices for writing
and optimizing ARM assembly code—critical for improving performance by reducing
system power consumption and clock speed.

Because primitives are basic operations used in a wide range of algorithms, it’s worth-
while to learn how they can be optimized. Chapter 7 discusses how to optimize primitives
for specific ARM processors. It presents optimized reference implementations of com-
mon primitives as well as of more complicated mathematical operations for those who
wish to take a quick reference approach. We have also included the theory behind each
implementation for those who wish to dig deeper.

Audio and video embedded systems applications are increasingly in demand. They
require digital signal processing (DSP) capability that until recently would have been pro-
vided by a separate DSP processor. Now, however, the ARM architecture offers higher
memory bandwidths and faster multiply accumulate operations, permitting a single ARM
core design to support these applications. Chapter 8 examines how to maximize the per-
formance of the ARM for digital processing applications and how to implement DSP
algorithms.

At the heart of an embedded system lie the exception handlers. Efficient handlers
can dramatically improve system performance. Chapter 9 covers the theory and prac-
tice of handling exceptions and interrupts on the ARM processor through a set of detailed
examples.

Firmware, an important part of any embedded system, is described in Chapter 10 by
means of a simple firmware package we designed, called Sandstone. The chapter also reviews
popular industry firmware packages that are available for the ARM.

Chapter 11 demonstrates the implementation of embedded operating systems through
an example operating system we designed, called Simple Little Operating System.

Chapters 12, 13, and 14 focus on memory issues. Chapter 12 examines the various
cache technologies that surround the ARM cores, demonstrating routines for controlling
the cache on specific cache-enabled ARM processors. Chapter 13 discusses the memory
protection unit, and Chapter 14 discusses the memory management unit.

Finally, in Chapter 15, we consider the future of the ARM architecture, highlighting
new directions in the instruction set and new technologies that ARM is implementing in
the next few years.

The appendices provide detailed references on the instruction sets, cycle timing, and
specific ARM products.

Examples on the Web
As we noted earlier, we have created an extensive set of tested practical examples to
reinforce concepts and methods. These are available on the publisher’s Web site at
www.mkp.com/companions/1558608745.

Preface xiii

Acknowledgments
First, of course, are our wives—Shau Chin Symes and Yulian Yang—and families who have
been very supportive and have put up with us spending a large proportion of our home
time on this project.

This book has taken many years to complete, and many people have contributed with
encouragement and technical advice. We would like to personally thank all the people
involved. Writing a technical book involves a lot of painstaking attention to detail, so a big
thank you to all the reviewers who spent time and effort reading and providing feedback—a
difficult activity that requires a special skill. Reviewers who worked with the publisher during
the developmental process were Jim Turley (Silicon-Insider), Peter Maloy (CodeSprite),
Chris Larsen, Peter Harrod (ARM, Ltd.), Gary Thomas (MLB Associates), Wayne Wolf
(Princeton University), Scott Runner (Qualcomm, Inc.), Niall Murphy (PanelSoft), and
Dominic Sweetman (Algorithmics, Ltd.).

A special thanks to Wilco Dijkstra, Edward Nevill, and David Seal for allowing us to
include selected examples within the book. Thanks also to Rod Crawford, Andrew Cum-
mins, Dave Flynn, Jamie Smith, William Rees, and Anne Rooney for helping throughout
with advice. Thanks to the ARM Strategic Support Group—Howard Ho, John Archibald,
Miguel Echavarria, Robert Allen, and Ian Field—for reading and providing quick local
feedback.

We would like to thank John Rayfield for initiating this project and contributing
Chapter 15. We would also like to thank David Brash for reviewing the manuscript and
allowing us to include ARMv6 material in this book.

Lastly, we wish to thank Morgan Kaufmann Publishers, especially Denise Penrose and
Belinda Breyer for their patience and advice throughout the project.

This Page Intentionally Left Blank

1.1 The RISC design philosophy
1.2 The ARM Design Philosophy

1.2.1 Instruction Set for Embedded Systems

1.3 Embedded System Hardware
1.3.1 ARM Bus Technology

1.3.2 AMBA Bus Protocol

1.3.3 Memory

1.3.4 Peripherals

1.4 Embedded System Software
1.4.1 Initialization (Boot) Code

1.4.2 Operating System

1.4.3 Applications

1.5 Summary

C h a p t e r

ARM Embedded
Systems

1

The ARM processor core is a key component of many successful 32-bit embedded systems.
You probably own one yourself and may not even realize it! ARM cores are widely used in
mobile phones, handheld organizers, and a multitude of other everyday portable consumer
devices.

ARM’s designers have come a long way from the first ARM1 prototype in 1985. Over
one billion ARM processors had been shipped worldwide by the end of 2001. The ARM
company bases their success on a simple and powerful original design, which continues
to improve today through constant technical innovation. In fact, the ARM core is not
a single core, but a whole family of designs sharing similar design principles and a common
instruction set.

For example, one of ARM’s most successful cores is the ARM7TDMI. It provides up to
120 Dhrystone MIPS1 and is known for its high code density and low power consumption,
making it ideal for mobile embedded devices.

In this first chapter we discuss how the RISC (reduced instruction set computer) design
philosophy was adapted by ARM to create a flexible embedded processor. We then introduce
an example embedded device and discuss the typical hardware and software technologies
that surround an ARM processor.

1. Dhrystone MIPS version 2.1 is a small benchmarking program.

3

4 Chapter 1 ARM Embedded Systems

1.1 The RISC design philosophy
The ARM core uses a RISC architecture. RISC is a design philosophy aimed at delivering
simple but powerful instructions that execute within a single cycle at a high clock speed.
The RISC philosophy concentrates on reducing the complexity of instructions performed
by the hardware because it is easier to provide greater flexibility and intelligence in software
rather than hardware. As a result, a RISC design places greater demands on the compiler.
In contrast, the traditional complex instruction set computer (CISC) relies more on the
hardware for instruction functionality, and consequently the CISC instructions are more
complicated. Figure 1.1 illustrates these major differences.

The RISC philosophy is implemented with four major design rules:

1. Instructions—RISC processors have a reduced number of instruction classes. These
classes provide simple operations that can each execute in a single cycle. The compiler
or programmer synthesizes complicated operations (for example, a divide operation)
by combining several simple instructions. Each instruction is a fixed length to allow
the pipeline to fetch future instructions before decoding the current instruction. In
contrast, in CISC processors the instructions are often of variable size and take many
cycles to execute.

2. Pipelines—The processing of instructions is broken down into smaller units that can be
executed in parallel by pipelines. Ideally the pipeline advances by one step on each cycle
for maximum throughput. Instructions can be decoded in one pipeline stage. There is
no need for an instruction to be executed by a miniprogram called microcode as on
CISC processors.

3. Registers—RISC machines have a large general-purpose register set. Any register can
contain either data or an address. Registers act as the fast local memory store for all data

CISC RISC

Compiler Compiler

Processor Processor

Code
Generation

Greater
Complexity

Greater
Complexity

Code
Generation

Figure 1.1 CISC vs. RISC. CISC emphasizes hardware complexity. RISC emphasizes compiler
complexity.

1.2 The ARM Design Philosophy 5

processing operations. In contrast, CISC processors have dedicated registers for specific
purposes.

4. Load-store architecture—The processor operates on data held in registers. Separate load
and store instructions transfer data between the register bank and external memory.
Memory accesses are costly, so separating memory accesses from data processing pro-
vides an advantage because you can use data items held in the register bank multiple
times without needing multiple memory accesses. In contrast, with a CISC design the
data processing operations can act on memory directly.

These design rules allow a RISC processor to be simpler, and thus the core can operate
at higher clock frequencies. In contrast, traditional CISC processors are more complex
and operate at lower clock frequencies. Over the course of two decades, however, the
distinction between RISC and CISC has blurred as CISC processors have implemented
more RISC concepts.

1.2 The ARM Design Philosophy
There are a number of physical features that have driven the ARM processor design. First,
portable embedded systems require some form of battery power. The ARM processor has
been specifically designed to be small to reduce power consumption and extend battery
operation—essential for applications such as mobile phones and personal digital assistants
(PDAs).

High code density is another major requirement since embedded systems have lim-
ited memory due to cost and/or physical size restrictions. High code density is useful for
applications that have limited on-board memory, such as mobile phones and mass storage
devices.

In addition, embedded systems are price sensitive and use slow and low-cost memory
devices. For high-volume applications like digital cameras, every cent has to be accounted
for in the design. The ability to use low-cost memory devices produces substantial savings.

Another important requirement is to reduce the area of the die taken up by the embedded
processor. For a single-chip solution, the smaller the area used by the embedded processor,
the more available space for specialized peripherals. This in turn reduces the cost of the
design and manufacturing since fewer discrete chips are required for the end product.

ARM has incorporated hardware debug technology within the processor so that software
engineers can view what is happening while the processor is executing code. With greater
visibility, software engineers can resolve issues faster, which has a direct effect on the time
to market and reduces overall development costs.

The ARM core is not a pure RISC architecture because of the constraints of its primary
application—the embedded system. In some sense, the strength of the ARM core is that
it does not take the RISC concept too far. In today’s systems the key is not raw processor
speed but total effective system performance and power consumption.

6 Chapter 1 ARM Embedded Systems

1.2.1 Instruction Set for Embedded Systems

The ARM instruction set differs from the pure RISC definition in several ways that make
the ARM instruction set suitable for embedded applications:

■ Variable cycle execution for certain instructions—Not every ARM instruction executes
in a single cycle. For example, load-store-multiple instructions vary in the number
of execution cycles depending upon the number of registers being transferred. The
transfer can occur on sequential memory addresses, which increases performance since
sequential memory accesses are often faster than random accesses. Code density is also
improved since multiple register transfers are common operations at the start and end
of functions.

■ Inline barrel shifter leading to more complex instructions—The inline barrel shifter is
a hardware component that preprocesses one of the input registers before it is used
by an instruction. This expands the capability of many instructions to improve core
performance and code density. We explain this feature in more detail in Chapters 2, 3,
and 4.

■ Thumb 16-bit instruction set—ARM enhanced the processor core by adding a second
16-bit instruction set called Thumb that permits the ARM core to execute either
16- or 32-bit instructions. The 16-bit instructions improve code density by about
30% over 32-bit fixed-length instructions.

■ Conditional execution—An instruction is only executed when a specific condition has
been satisfied. This feature improves performance and code density by reducing branch
instructions.

■ Enhanced instructions—The enhanced digital signal processor (DSP) instructions were
added to the standard ARM instruction set to support fast 16×16-bit multiplier oper-
ations and saturation. These instructions allow a faster-performing ARM processor in
some cases to replace the traditional combinations of a processor plus a DSP.

These additional features have made the ARM processor one of the most commonly
used 32-bit embedded processor cores. Many of the top semiconductor companies around
the world produce products based around the ARM processor.

1.3 Embedded System Hardware
Embedded systems can control many different devices, from small sensors found on
a production line, to the real-time control systems used on a NASA space probe. All
these devices use a combination of software and hardware components. Each component
is chosen for efficiency and, if applicable, is designed for future extension and expansion.

1.3 Embedded System Hardware 7

ARM
processor

AHB arbiter

Interrupt controller

AHB-APB bridge

Real-time clock

Serial UARTs

Memory controller

AHB-external bridge

Ethernet

Counter/timers

ROM
SRAM
FLASHROM

DRAM

External bus

Ethernet
physical
driver

Console

ARM Controllers Peripherals Bus

Figure 1.2 An example of an ARM-based embedded device, a microcontroller.

Figure 1.2 shows a typical embedded device based on an ARM core. Each box represents
a feature or function. The lines connecting the boxes are the buses carrying data. We can
separate the device into four main hardware components:

■ The ARM processor controls the embedded device. Different versions of the ARM pro-
cessor are available to suit the desired operating characteristics. An ARM processor
comprises a core (the execution engine that processes instructions and manipulates
data) plus the surrounding components that interface it with a bus. These components
can include memory management and caches.

■ Controllers coordinate important functional blocks of the system. Two commonly
found controllers are interrupt and memory controllers.

■ The peripherals provide all the input-output capability external to the chip and are
responsible for the uniqueness of the embedded device.

■ A bus is used to communicate between different parts of the device.

8 Chapter 1 ARM Embedded Systems

1.3.1 ARM Bus Technology

Embedded systems use different bus technologies than those designed for x86 PCs. The most
common PC bus technology, the Peripheral Component Interconnect (PCI) bus, connects
such devices as video cards and hard disk controllers to the x86 processor bus. This type
of technology is external or off-chip (i.e., the bus is designed to connect mechanically and
electrically to devices external to the chip) and is built into the motherboard of a PC.

In contrast, embedded devices use an on-chip bus that is internal to the chip and that
allows different peripheral devices to be interconnected with an ARM core.

There are two different classes of devices attached to the bus. The ARM processor core is
a bus master—a logical device capable of initiating a data transfer with another device across
the same bus. Peripherals tend to be bus slaves—logical devices capable only of responding
to a transfer request from a bus master device.

A bus has two architecture levels. The first is a physical level that covers the electrical
characteristics and bus width (16, 32, or 64 bits). The second level deals with protocol—the
logical rules that govern the communication between the processor and a peripheral.

ARM is primarily a design company. It seldom implements the electrical characteristics
of the bus, but it routinely specifies the bus protocol.

1.3.2 AMBA Bus Protocol

The Advanced Microcontroller Bus Architecture (AMBA) was introduced in 1996 and has
been widely adopted as the on-chip bus architecture used for ARM processors. The first
AMBA buses introduced were the ARM System Bus (ASB) and the ARM Peripheral Bus
(APB). Later ARM introduced another bus design, called the ARM High Performance Bus
(AHB). Using AMBA, peripheral designers can reuse the same design on multiple projects.
Because there are a large number of peripherals developed with an AMBA interface, hard-
ware designers have a wide choice of tested and proven peripherals for use in a device.
A peripheral can simply be bolted onto the on-chip bus without having to redesign an inter-
face for each different processor architecture. This plug-and-play interface for hardware
developers improves availability and time to market.

AHB provides higher data throughput than ASB because it is based on a centralized
multiplexed bus scheme rather than the ASB bidirectional bus design. This change allows
the AHB bus to run at higher clock speeds and to be the first ARM bus to support widths
of 64 and 128 bits. ARM has introduced two variations on the AHB bus: Multi-layer AHB
and AHB-Lite. In contrast to the original AHB, which allows a single bus master to be
active on the bus at any time, the Multi-layer AHB bus allows multiple active bus masters.
AHB-Lite is a subset of the AHB bus and it is limited to a single bus master. This bus was
developed for designs that do not require the full features of the standard AHB bus.

AHB and Multi-layer AHB support the same protocol for master and slave but have
different interconnects. The new interconnects in Multi-layer AHB are good for systems
with multiple processors. They permit operations to occur in parallel and allow for higher
throughput rates.

1.3 Embedded System Hardware 9

The example device shown in Figure 1.2 has three buses: an AHB bus for the high-
performance peripherals, an APB bus for the slower peripherals, and a third bus for external
peripherals, proprietary to this device. This external bus requires a specialized bridge to
connect with the AHB bus.

1.3.3 Memory

An embedded system has to have some form of memory to store and execute code. You
have to compare price, performance, and power consumption when deciding upon specific
memory characteristics, such as hierarchy, width, and type. If memory has to run twice as
fast to maintain a desired bandwidth, then the memory power requirement may be higher.

1.3.3.1 Hierarchy

All computer systems have memory arranged in some form of hierarchy. Figure 1.2 shows
a device that supports external off-chip memory. Internal to the processor there is an option
of a cache (not shown in Figure 1.2) to improve memory performance.

Figure 1.3 shows the memory trade-offs: the fastest memory cache is physically located
nearer the ARM processor core and the slowest secondary memory is set further away.
Generally the closer memory is to the processor core, the more it costs and the smaller its
capacity.

The cache is placed between main memory and the core. It is used to speed up data
transfer between the processor and main memory. A cache provides an overall increase in
performance but with a loss of predictable execution time. Although the cache increases the

Pe
rf

or
m

an
ce

/c
os

ts

1 MB

Cache

Main
memory

Secondary
storage

1 GB

Memory Size

Figure 1.3 Storage trade-offs.

10 Chapter 1 ARM Embedded Systems

general performance of the system, it does not help real-time system response. Note that
many small embedded systems do not require the performance benefits of a cache.

The main memory is large—around 256 KB to 256 MB (or even greater), depending on
the application—and is generally stored in separate chips. Load and store instructions access
the main memory unless the values have been stored in the cache for fast access. Secondary
storage is the largest and slowest form of memory. Hard disk drives and CD-ROM drives
are examples of secondary storage. These days secondary storage may vary from 600 MB
to 60 GB.

1.3.3.2 Width

The memory width is the number of bits the memory returns on each access—typically
8, 16, 32, or 64 bits. The memory width has a direct effect on the overall performance and
cost ratio.

If you have an uncached system using 32-bit ARM instructions and 16-bit-wide memory
chips, then the processor will have to make two memory fetches per instruction. Each fetch
requires two 16-bit loads. This obviously has the effect of reducing system performance,
but the benefit is that 16-bit memory is less expensive.

In contrast, if the core executes 16-bit Thumb instructions, it will achieve better
performance with a 16-bit memory. The higher performance is a result of the core making
only a single fetch to memory to load an instruction. Hence, using Thumb instructions
with 16-bit-wide memory devices provides both improved performance and reduced cost.

Table 1.1 summarizes theoretical cycle times on an ARM processor using different
memory width devices.

1.3.3.3 Types

There are many different types of memory. In this section we describe some of the more
popular memory devices found in ARM-based embedded systems.

Read-only memory (ROM) is the least flexible of all memory types because it contains an
image that is permanently set at production time and cannot be reprogrammed. ROMs are
used in high-volume devices that require no updates or corrections. Many devices also use
a ROM to hold boot code.

Table 1.1 Fetching instructions from memory.

Instruction size 8-bit memory 16-bit memory 32-bit memory

ARM 32-bit 4 cycles 2 cycles 1 cycle
Thumb 16-bit 2 cycles 1 cycle 1 cycle

1.3 Embedded System Hardware 11

Flash ROM can be written to as well as read, but it is slow to write so you shouldn’t use
it for holding dynamic data. Its main use is for holding the device firmware or storing long-
term data that needs to be preserved after power is off. The erasing and writing of flash ROM
are completely software controlled with no additional hardware circuity required, which
reduces the manufacturing costs. Flash ROM has become the most popular of the read-only
memory types and is currently being used as an alternative for mass or secondary storage.

Dynamic random access memory (DRAM) is the most commonly used RAM for devices.
It has the lowest cost per megabyte compared with other types of RAM. DRAM is dynamic—
it needs to have its storage cells refreshed and given a new electronic charge every few
milliseconds, so you need to set up a DRAM controller before using the memory.

Static random access memory (SRAM) is faster than the more traditional DRAM, but
requires more silicon area. SRAM is static—the RAM does not require refreshing. The
access time for SRAM is considerably shorter than the equivalent DRAM because SRAM
does not require a pause between data accesses. Because of its higher cost, it is used mostly
for smaller high-speed tasks, such as fast memory and caches.

Synchronous dynamic random access memory (SDRAM) is one of many subcategories
of DRAM. It can run at much higher clock speeds than conventional memory. SDRAM
synchronizes itself with the processor bus because it is clocked. Internally the data is fetched
from memory cells, pipelined, and finally brought out on the bus in a burst. The old-style
DRAM is asynchronous, so does not burst as efficiently as SDRAM.

1.3.4 Peripherals

Embedded systems that interact with the outside world need some form of peripheral
device. A peripheral device performs input and output functions for the chip by connecting
to other devices or sensors that are off-chip. Each peripheral device usually performs a single
function and may reside on-chip. Peripherals range from a simple serial communication
device to a more complex 802.11 wireless device.

All ARM peripherals are memory mapped—the programming interface is a set of
memory-addressed registers. The address of these registers is an offset from a specific
peripheral base address.

Controllers are specialized peripherals that implement higher levels of functionality
within an embedded system. Two important types of controllers are memory controllers
and interrupt controllers.

1.3.4.1 Memory Controllers

Memory controllers connect different types of memory to the processor bus. On power-up
a memory controller is configured in hardware to allow certain memory devices to be active.
These memory devices allow the initialization code to be executed. Some memory devices
must be set up by software; for example, when using DRAM, you first have to set up the
memory timings and refresh rate before it can be accessed.

12 Chapter 1 ARM Embedded Systems

1.3.4.2 Interrupt Controllers

When a peripheral or device requires attention, it raises an interrupt to the processor.
An interrupt controller provides a programmable governing policy that allows software to
determine which peripheral or device can interrupt the processor at any specific time by
setting the appropriate bits in the interrupt controller registers.

There are two types of interrupt controller available for the ARM processor: the standard
interrupt controller and the vector interrupt controller (VIC).

The standard interrupt controller sends an interrupt signal to the processor core when
an external device requests servicing. It can be programmed to ignore or mask an individual
device or set of devices. The interrupt handler determines which device requires servicing
by reading a device bitmap register in the interrupt controller.

The VIC is more powerful than the standard interrupt controller because it prioritizes
interrupts and simplifies the determination of which device caused the interrupt. After
associating a priority and a handler address with each interrupt, the VIC only asserts an
interrupt signal to the core if the priority of a new interrupt is higher than the currently
executing interrupt handler. Depending on its type, the VIC will either call the standard
interrupt exception handler, which can load the address of the handler for the device from
the VIC, or cause the core to jump to the handler for the device directly.

1.4 Embedded System Software
An embedded system needs software to drive it. Figure 1.4 shows four typical software
components required to control an embedded device. Each software component in the
stack uses a higher level of abstraction to separate the code from the hardware device.

The initialization code is the first code executed on the board and is specific to a particular
target or group of targets. It sets up the minimum parts of the board before handing control
over to the operating system.

Application

Operating system

Initialization Device drivers

Hardware device

Figure 1.4 Software abstraction layers executing on hardware.

1.4 Embedded System Software 13

The operating system provides an infrastructure to control applications and manage
hardware system resources. Many embedded systems do not require a full operating system
but merely a simple task scheduler that is either event or poll driven.

The device drivers are the third component shown in Figure 1.4. They provide
a consistent software interface to the peripherals on the hardware device.

Finally, an application performs one of the tasks required for a device. For example,
a mobile phone might have a diary application. There may be multiple applications running
on the same device, controlled by the operating system.

The software components can run from ROM or RAM. ROM code that is fixed on the
device (for example, the initialization code) is called firmware.

1.4.1 Initialization (Boot) Code

Initialization code (or boot code) takes the processor from the reset state to a state where the
operating system can run. It usually configures the memory controller and processor caches
and initializes some devices. In a simple system the operating system might be replaced by
a simple scheduler or debug monitor.

The initialization code handles a number of administrative tasks prior to handing control
over to an operating system image. We can group these different tasks into three phases:
initial hardware configuration, diagnostics, and booting.

Initial hardware configuration involves setting up the target platform so it can boot
an image. Although the target platform itself comes up in a standard configuration, this
configuration normally requires modification to satisfy the requirements of the booted
image. For example, the memory system normally requires reorganization of the memory
map, as shown in Example 1.1.

Diagnostics are often embedded in the initialization code. Diagnostic code tests the
system by exercising the hardware target to check if the target is in working order. It also
tracks down standard system-related issues. This type of testing is important for manu-
facturing since it occurs after the software product is complete. The primary purpose of
diagnostic code is fault identification and isolation.

Booting involves loading an image and handing control over to that image. The boot
process itself can be complicated if the system must boot different operating systems or
different versions of the same operating system.

Booting an image is the final phase, but first you must load the image. Loading an image
involves anything from copying an entire program including code and data into RAM, to
just copying a data area containing volatile variables into RAM. Once booted, the system
hands over control by modifying the program counter to point into the start of the image.

Sometimes, to reduce the image size, an image is compressed. The image is then
decompressed either when it is loaded or when control is handed over to it.

Example

1.1
Initializing or organizing memory is an important part of the initialization code because
many operating systems expect a known memory layout before they can start.

14 Chapter 1 ARM Embedded Systems

Before

0xffffffff

0x00000000

I/O Regs I/O Regs

FAST SRAM

FAST SRAM

Boot ROM

Boot ROM

DRAM
large
contiguous
block

DRAM
large
contiguous
block

After

Figure 1.5 Memory remapping.

Figure 1.5 shows memory before and after reorganization. It is common for ARM-based
embedded systems to provide for memory remapping because it allows the system to start
the initialization code from ROM at power-up. The initialization code then redefines or
remaps the memory map to place RAM at address 0x00000000—an important step because
then the exception vector table can be in RAM and thus can be reprogrammed. We will
discuss the vector table in more detail in Section 2.4. ■

1.4.2 Operating System

The initialization process prepares the hardware for an operating system to take
control. An operating system organizes the system resources: the peripherals, memory,
and processing time. With an operating system controlling these resources, they can be
efficiently used by different applications running within the operating system environment.

ARM processors support over 50 operating systems. We can divide operating systems
into two main categories: real-time operating systems (RTOSs) and platform operating
systems.

RTOSs provide guaranteed response times to events. Different operating systems have
different amounts of control over the system response time. A hard real-time application
requires a guaranteed response to work at all. In contrast, a soft real-time application
requires a good response time, but the performance degrades more gracefully if the response
time overruns. Systems running an RTOS generally do not have secondary storage.

Platform operating systems require a memory management unit to manage large, non-
real-time applications and tend to have secondary storage. The Linux operating system is
a typical example of a platform operating system.

1.5 Summary 15

These two categories of operating system are not mutually exclusive: there are operat-
ing systems that use an ARM core with a memory management unit and have real-time
characteristics. ARM has developed a set of processor cores that specifically target each
category.

1.4.3 Applications

The operating system schedules applications—code dedicated to handling a particular task.
An application implements a processing task; the operating system controls the environ-
ment. An embedded system can have one active application or several applications running
simultaneously.

ARM processors are found in numerous market segments, including networking, auto-
motive, mobile and consumer devices, mass storage, and imaging. Within each segment
ARM processors can be found in multiple applications.

For example, the ARM processor is found in networking applications like home
gateways, DSL modems for high-speed Internet communication, and 802.11 wireless
communication. The mobile device segment is the largest application area for ARM pro-
cessors because of mobile phones. ARM processors are also found in mass storage devices
such as hard drives and imaging products such as inkjet printers—applications that are cost
sensitive and high volume.

In contrast, ARM processors are not found in applications that require leading-edge
high performance. Because these applications tend to be low volume and high cost, ARM
has decided not to focus designs on these types of applications.

1.5 Summary
Pure RISC is aimed at high performance, but ARM uses a modified RISC design philosophy
that also targets good code density and low power consumption. An embedded system
consists of a processor core surrounded by caches, memory, and peripherals. The system is
controlled by operating system software that manages application tasks.

The key points in a RISC design philosophy are to improve performance by reducing
the complexity of instructions, to speed up instruction processing by using a pipeline, to
provide a large register set to store data near the core, and to use a load-store architecture.

The ARM design philosophy also incorporates some non-RISC ideas:

■ It allows variable cycle execution on certain instructions to save power, area, and
code size.

■ It adds a barrel shifter to expand the capability of certain instructions.

■ It uses the Thumb 16-bit instruction set to improve code density.

16 Chapter 1 ARM Embedded Systems

■ It improves code density and performance by conditionally executing instructions.

■ It includes enhanced instructions to perform digital signal processing type functions.

An embedded system includes the following hardware components: ARM processors
are found embedded in chips. Programmers access peripherals through memory-mapped
registers. There is a special type of peripheral called a controller, which embedded systems
use to configure higher-level functions such as memory and interrupts. The AMBA on-chip
bus is used to connect the processor and peripherals together.

An embedded system also includes the following software components: Initialization
code configures the hardware to a known state. Once configured, operating systems can be
loaded and executed. Operating systems provide a common programming environment for
the use of hardware resources and infrastructure. Device drivers provide a standard interface
to peripherals. An application performs the task-specific duties of an embedded system.

This Page Intentionally Left Blank

2.1 Registers
2.2 Current Program Status Register

2.2.1 Processor Modes

2.2.2 Banked Registers

2.2.3 State and Instruction Sets

2.2.4 Interrupt Masks

2.2.5 Condition Flags

2.2.6 Conditional Execution

2.3 Pipeline
2.3.1 Pipeline Executing Characteristics

2.4 Exceptions, Interrupts, and the Vector Table
2.5 Core Extensions

2.5.1 Cache and Tightly Coupled Memory

2.5.2 Memory Management

2.5.3 Coprocessors

2.6 Architecture Revisions
2.6.1 Nomenclature

2.6.2 Architecture Evolution

2.7 ARM Processor Families
2.7.1 ARM7 Family

2.7.2 ARM9 Family

2.7.3 ARM10 Family

2.7.4 ARM11 Family

2.7.5 Specialized Processors

2.8 Summary

C h a p t e r

ARM Processor
Fundamentals

2

Chapter 1 covered embedded systems with an ARM processor. In this chapter we will focus
on the actual processor itself. First, we will provide an overview of the processor core and
describe how data moves between its different parts. We will describe the programmer’s
model from a software developer’s view of the ARM processor, which will show you the
functions of the processor core and how different parts interact. We will also take a look at
the core extensions that form an ARM processor. Core extensions speed up and organize
main memory as well as extend the instruction set. We will then cover the revisions to the
ARM core architecture by describing the ARM core naming conventions used to identify
them and the chronological changes to the ARM instruction set architecture. The final
section introduces the architecture implementations by subdividing them into specific
ARM processor core families.

A programmer can think of an ARM core as functional units connected by data buses,
as shown in Figure 2.1, where, the arrows represent the flow of data, the lines represent the
buses, and the boxes represent either an operation unit or a storage area. The figure shows
not only the flow of data but also the abstract components that make up an ARM core.

Data enters the processor core through the Data bus. The data may be an instruction to
execute or a data item. Figure 2.1 shows a Von Neumann implementation of the ARM—
data items and instructions share the same bus. In contrast, Harvard implementations of
the ARM use two different buses.

The instruction decoder translates instructions before they are executed. Each
instruction executed belongs to a particular instruction set.

The ARM processor, like all RISC processors, uses a load-store architecture. This
means it has two instruction types for transferring data in and out of the processor: load
instructions copy data from memory to registers in the core, and conversely the store

19

20 Chapter 2 ARM Processor Fundamentals

Data

Sign extend

Write Read

r15

pc

Rd

Rn RmA
A B Acc

B

N

Result
Register file

r0–r15

ALU

MAC

Address register

Address

Incrementer

Barrel shifter

Instruction
decoder

Figure 2.1 ARM core dataflow model.

instructions copy data from registers to memory. There are no data processing instructions
that directly manipulate data in memory. Thus, data processing is carried out solely in
registers.

Data items are placed in the register file—a storage bank made up of 32-bit registers.
Since the ARM core is a 32-bit processor, most instructions treat the registers as holding
signed or unsigned 32-bit values. The sign extend hardware converts signed 8-bit and 16-bit
numbers to 32-bit values as they are read from memory and placed in a register.

ARM instructions typically have two source registers, Rn and Rm, and a single result or
destination register, Rd. Source operands are read from the register file using the internal
buses A and B, respectively.

The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the regis-
ter values Rn and Rm from the A and B buses and computes a result. Data processing
instructions write the result in Rd directly to the register file. Load and store instructions
use the ALU to generate an address to be held in the address register and broadcast on the
Address bus.

2.1 Registers 21

One important feature of the ARM is that register Rm alternatively can be preprocessed
in the barrel shifter before it enters the ALU. Together the barrel shifter and ALU can
calculate a wide range of expressions and addresses.

After passing through the functional units, the result in Rd is written back to the register
file using the Result bus. For load and store instructions the incrementer updates the address
register before the core reads or writes the next register value from or to the next sequential
memory location. The processor continues executing instructions until an exception or
interrupt changes the normal execution flow.

Now that you have an overview of the processor core we’ll take a more detailed look
at some of the key components of the processor: the registers, the current program status
register (cpsr), and the pipeline.

2.1 Registers
General-purpose registers hold either data or an address. They are identified with the
letter r prefixed to the register number. For example, register 4 is given the label r4.
Figure 2.2 shows the active registers available in user mode—a protected mode normally

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13 sp
r14 lr
r15 pc

cpsr
-

Figure 2.2 Registers available in user mode.

22 Chapter 2 ARM Processor Fundamentals

used when executing applications. The processor can operate in seven different modes,
which we will introduce shortly. All the registers shown are 32 bits in size.

There are up to 18 active registers: 16 data registers and 2 processor status registers. The
data registers are visible to the programmer as r0 to r15.

The ARM processor has three registers assigned to a particular task or special function:
r13, r14, and r15. They are frequently given different labels to differentiate them from the
other registers.

In Figure 2.2, the shaded registers identify the assigned special-purpose registers:

■ Register r13 is traditionally used as the stack pointer (sp) and stores the head of the stack
in the current processor mode.

■ Register r14 is called the link register (lr) and is where the core puts the return address
whenever it calls a subroutine.

■ Register r15 is the program counter (pc) and contains the address of the next instruction
to be fetched by the processor.

Depending upon the context, registers r13 and r14 can also be used as general-purpose
registers, which can be particularly useful since these registers are banked during a processor
mode change. However, it is dangerous to use r13 as a general register when the processor
is running any form of operating system because operating systems often assume that r13
always points to a valid stack frame.

In ARM state the registers r0 to r13 are orthogonal—any instruction that you can apply
to r0 you can equally well apply to any of the other registers. However, there are instructions
that treat r14 and r15 in a special way.

In addition to the 16 data registers, there are two program status registers: cpsr and spsr
(the current and saved program status registers, respectively).

The register file contains all the registers available to a programmer. Which registers are
visible to the programmer depend upon the current mode of the processor.

2.2 Current Program Status Register
The ARM core uses the cpsr to monitor and control internal operations. The cpsr is a
dedicated 32-bit register and resides in the register file. Figure 2.3 shows the basic layout
of a generic program status register. Note that the shaded parts are reserved for future
expansion.

The cpsr is divided into four fields, each 8 bits wide: flags, status, extension, and control.
In current designs the extension and status fields are reserved for future use. The control
field contains the processor mode, state, and interrupt mask bits. The flags field contains
the condition flags.

Some ARM processor cores have extra bits allocated. For example, the J bit, which can
be found in the flags field, is only available on Jazelle-enabled processors, which execute

2.2 Current Program Status Register 23

Fields

Bit

Function
Condition

flags
Interrupt
Masks

Processor
mode

Thumb
state

31 30 29 28

N Z C V

7 6 5 4 0

I F T Mode

Flags Status Extension Control

Figure 2.3 A generic program status register (psr).

8-bit instructions. We will discuss Jazelle more in Section 2.2.3. It is highly probable that
future designs will assign extra bits for the monitoring and control of new features.

For a full description of the cpsr, refer to Appendix B.

2.2.1 Processor Modes

The processor mode determines which registers are active and the access rights to the cpsr
register itself. Each processor mode is either privileged or nonprivileged: A privileged mode
allows full read-write access to the cpsr. Conversely, a nonprivileged mode only allows read
access to the control field in the cpsr but still allows read-write access to the condition flags.

There are seven processor modes in total: six privileged modes (abort, fast interrupt
request, interrupt request, supervisor, system, and undefined) and one nonprivileged mode
(user).

The processor enters abort mode when there is a failed attempt to access memory. Fast
interrupt request and interrupt request modes correspond to the two interrupt levels available
on the ARM processor. Supervisor mode is the mode that the processor is in after reset and
is generally the mode that an operating system kernel operates in. System mode is a special
version of user mode that allows full read-write access to the cpsr. Undefined mode is used
when the processor encounters an instruction that is undefined or not supported by the
implementation. User mode is used for programs and applications.

2.2.2 Banked Registers

Figure 2.4 shows all 37 registers in the register file. Of those, 20 registers are hidden from
a program at different times. These registers are called banked registers and are identified
by the shading in the diagram. They are available only when the processor is in a particular

24 Chapter 2 ARM Processor Fundamentals

User and
system

Fast
interrupt
request

Interrupt
request Supervisor Undefined Abort

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13 sp
r14 lr
r15 pc

cpsr
-

r8_ fiq
r9_ fiq
r10_ fiq
r11_ fiq
r12_ fiq
r13_ fiq
r14_ fiq

spsr_ fiq

r13_irq
r14_irq

spsr_irq

r13_svc
r14_svc

spsr_svc

r13_undef
r14_undef

spsr_undef

r13_abt
r14_abt

spsr_abt

Figure 2.4 Complete ARM register set.

mode; for example, abort mode has banked registers r13_abt, r14_abt and spsr_abt. Banked
registers of a particular mode are denoted by an underline character post-fixed to the mode
mnemonic or _mode.

Every processor mode except user mode can change mode by writing directly to the
mode bits of the cpsr. All processor modes except system mode have a set of associated
banked registers that are a subset of the main 16 registers. A banked register maps one-to-
one onto a user mode register. If you change processor mode, a banked register from the
new mode will replace an existing register.

For example, when the processor is in the interrupt request mode, the instructions you
execute still access registers named r13 and r14. However, these registers are the banked
registers r13_irq and r14_irq. The user mode registers r13_usr and r14_usr are not affected
by the instruction referencing these registers. A program still has normal access to the other
registers r0 to r12.

The processor mode can be changed by a program that writes directly to the cpsr (the
processor core has to be in privileged mode) or by hardware when the core responds to

2.2 Current Program Status Register 25

User mode

Interrupt
request
mode

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13 sp
r14 lr
r15 pc

cpsr
-

r13_irq
r14_irq

spsr_irq

Figure 2.5 Changing mode on an exception.

an exception or interrupt. The following exceptions and interrupts cause a mode change:
reset, interrupt request, fast interrupt request, software interrupt, data abort, prefetch abort,
and undefined instruction. Exceptions and interrupts suspend the normal execution of
sequential instructions and jump to a specific location.

Figure 2.5 illustrates what happens when an interrupt forces a mode change. The figure
shows the core changing from user mode to interrupt request mode, which happens when an
interrupt request occurs due to an external device raising an interrupt to the processor core.
This change causes user registers r13 and r14 to be banked. The user registers are replaced
with registers r13_irq and r14_irq, respectively. Note r14_irq contains the return address
and r13_irq contains the stack pointer for interrupt request mode.

Figure 2.5 also shows a new register appearing in interrupt request mode: the saved
program status register (spsr), which stores the previous mode’s cpsr. You can see in the
diagram the cpsr being copied into spsr_irq. To return back to user mode, a special return
instruction is used that instructs the core to restore the original cpsr from the spsr_irq and
bank in the user registers r13 and r14. Note that the spsr can only be modified and read in a
privileged mode. There is no spsr available in user mode.

26 Chapter 2 ARM Processor Fundamentals

Table 2.1 Processor mode.

Mode Abbreviation Privileged Mode[4:0]

Abort abt yes 10111
Fast interrupt request fiq yes 10001
Interrupt request irq yes 10010
Supervisor svc yes 10011
System sys yes 11111
Undefined und yes 11011
User usr no 10000

Another important feature to note is that the cpsr is not copied into the spsr when a
mode change is forced due to a program writing directly to the cpsr. The saving of the cpsr
only occurs when an exception or interrupt is raised.

Figure 2.3 shows that the current active processor mode occupies the five least significant
bits of the cpsr. When power is applied to the core, it starts in supervisor mode, which is
privileged. Starting in a privileged mode is useful since initialization code can use full access
to the cpsr to set up the stacks for each of the other modes.

Table 2.1 lists the various modes and the associated binary patterns. The last column of
the table gives the bit patterns that represent each of the processor modes in the cpsr.

2.2.3 State and Instruction Sets

The state of the core determines which instruction set is being executed. There are three
instruction sets: ARM, Thumb, and Jazelle. The ARM instruction set is only active when
the processor is in ARM state. Similarly the Thumb instruction set is only active when
the processor is in Thumb state. Once in Thumb state the processor is executing purely
Thumb 16-bit instructions. You cannot intermingle sequential ARM, Thumb, and Jazelle
instructions.

The Jazelle J and Thumb T bits in the cpsr reflect the state of the processor. When both
J and T bits are 0, the processor is in ARM state and executes ARM instructions. This is the
case when power is applied to the processor. When the T bit is 1, then the processor is in
Thumb state. To change states the core executes a specialized branch instruction. Table 2.2
compares the ARM and Thumb instruction set features.

The ARM designers introduced a third instruction set called Jazelle. Jazelle executes
8-bit instructions and is a hybrid mix of software and hardware designed to speed up the
execution of Java bytecodes.

To execute Java bytecodes, you require the Jazelle technology plus a specially modified
version of the Java virtual machine. It is important to note that the hardware portion of
Jazelle only supports a subset of the Java bytecodes; the rest are emulated in software.

2.2 Current Program Status Register 27

Table 2.2 ARM and Thumb instruction set features.

ARM (cpsr T = 0) Thumb (cpsr T = 1)

Instruction size 32-bit 16-bit
Core instructions 58 30
Conditional executiona most only branch instructions
Data processing

instructions
access to barrel shifter and

ALU
separate barrel shifter and

ALU instructions
Program status register read-write in privileged mode no direct access
Register usage 15 general-purpose registers 8 general-purpose registers

+pc +7 high registers +pc

a See Section 2.2.6.

Table 2.3 Jazelle instruction set features.

Jazelle (cpsr T = 0, J = 1)

Instruction size 8-bit
Core instructions Over 60% of the Java bytecodes are implemented in hardware;

the rest of the codes are implemented in software.

The Jazelle instruction set is a closed instruction set and is not openly available. Table 2.3
gives the Jazelle instruction set features.

2.2.4 Interrupt Masks

Interrupt masks are used to stop specific interrupt requests from interrupting the processor.
There are two interrupt request levels available on the ARM processor core—interrupt
request (IRQ) and fast interrupt request (FIQ).

The cpsr has two interrupt mask bits, 7 and 6 (or I and F), which control the masking
of IRQ and FIQ, respectively. The I bit masks IRQ when set to binary 1, and similarly the
F bit masks FIQ when set to binary 1.

2.2.5 Condition Flags

Condition flags are updated by comparisons and the result of ALU operations that specify
the S instruction suffix. For example, if a SUBS subtract instruction results in a register value
of zero, then the Z flag in the cpsr is set. This particular subtract instruction specifically
updates the cpsr.

28 Chapter 2 ARM Processor Fundamentals

Table 2.4 Condition flags.

Flag Flag name Set when

Q Saturation the result causes an overflow and/or saturation
V oVerflow the result causes a signed overflow
C Carry the result causes an unsigned carry
Z Zero the result is zero, frequently used to indicate equality
N Negative bit 31 of the result is a binary 1

With processor cores that include the DSP extensions, the Q bit indicates if an overflow
or saturation has occurred in an enhanced DSP instruction. The flag is “sticky” in the
sense that the hardware only sets this flag. To clear the flag you need to write to the cpsr
directly.

In Jazelle-enabled processors, the J bit reflects the state of the core; if it is set, the core is
in Jazelle state. The J bit is not generally usable and is only available on some processor cores.
To take advantage of Jazelle, extra software has to be licensed from both ARM Limited and
Sun Microsystems.

Most ARM instructions can be executed conditionally on the value of the condition
flags. Table 2.4 lists the condition flags and a short description on what causes them to be
set. These flags are located in the most significant bits in the cpsr. These bits are used for
conditional execution.

Figure 2.6 shows a typical value for the cpsr with both DSP extensions and Jazelle. In
this book we use a notation that presents the cpsr data in a more human readable form.
When a bit is a binary 1 we use a capital letter; when a bit is a binary 0, we use a lowercase
letter. For the condition flags a capital letter shows that the flag has been set. For interrupts
a capital letter shows that an interrupt is disabled.

In the cpsr example shown in Figure 2.6, the C flag is the only condition flag set. The rest
nzvq flags are all clear. The processor is in ARM state because neither the Jazelle j or Thumb t
bits are set. The IRQ interrupts are enabled, and FIQ interrupts are disabled. Finally, you

nzCvq j iF SVCt

31 30 29 28 27 24

0 0 1 0 0 0

7 6 5 4 0

0 1 0 10011

Figure 2.6 Example: cpsr = nzCvqjiFt_SVC.

2.3 Pipeline 29

Table 2.5 Condition mnemonics.

Mnemonic Name Condition flags

EQ equal Z
NE not equal z
CS HS carry set/unsigned higher or same C
CC LO carry clear/unsigned lower c
MI minus/negative N
PL plus/positive or zero n
VS overflow V
VC no overflow v
HI unsigned higher zC
LS unsigned lower or same Z or c
GE signed greater than or equal NV or nv
LT signed less than Nv or nV
GT signed greater than NzV or nzv
LE signed less than or equal Z or Nv or nV
AL always (unconditional) ignored

can see from the figure the processor is in supervisor (SVC) mode since the mode[4:0] is
equal to binary 10011.

2.2.6 Conditional Execution

Conditional execution controls whether or not the core will execute an instruction.
Most instructions have a condition attribute that determines if the core will execute it
based on the setting of the condition flags. Prior to execution, the processor compares the
condition attribute with the condition flags in the cpsr. If they match, then the instruction
is executed; otherwise the instruction is ignored.

The condition attribute is postfixed to the instruction mnemonic, which is encoded
into the instruction. Table 2.5 lists the conditional execution code mnemonics. When a
condition mnemonic is not present, the default behavior is to set it to always (AL) execute.

2.3 Pipeline
A pipeline is the mechanism a RISC processor uses to execute instructions. Using a pipeline
speeds up execution by fetching the next instruction while other instructions are being
decoded and executed. One way to view the pipeline is to think of it as an automobile
assembly line, with each stage carrying out a particular task to manufacture the vehicle.

30 Chapter 2 ARM Processor Fundamentals

ExecuteDecodeFetch

Figure 2.7 ARM7 Three-stage pipeline.

Figure 2.7 shows a three-stage pipeline:

■ Fetch loads an instruction from memory.

■ Decode identifies the instruction to be executed.

■ Execute processes the instruction and writes the result back to a register.

Figure 2.8 illustrates the pipeline using a simple example. It shows a sequence of three
instructions being fetched, decoded, and executed by the processor. Each instruction takes
a single cycle to complete after the pipeline is filled.

The three instructions are placed into the pipeline sequentially. In the first cycle the
core fetches the ADD instruction from memory. In the second cycle the core fetches the
SUB instruction and decodes the ADD instruction. In the third cycle, both the SUB and
ADD instructions are moved along the pipeline. The ADD instruction is executed, the SUB
instruction is decoded, and the CMP instruction is fetched. This procedure is called filling
the pipeline. The pipeline allows the core to execute an instruction every cycle.

As the pipeline length increases, the amount of work done at each stage is reduced,
which allows the processor to attain a higher operating frequency. This in turn increases
the performance. The system latency also increases because it takes more cycles to fill the
pipeline before the core can execute an instruction. The increased pipeline length also means
there can be data dependency between certain stages. You can write code to reduce this
dependency by using instruction scheduling (for more information on instruction scheduling
take a look at Chapter 6).

ADD

ExecuteDecodeFetch

ADDSUB

ADDSUBCMP

Cycle 1

Cycle 2

Time

Cycle 3

Figure 2.8 Pipelined instruction sequence.

2.3 Pipeline 31

Execute Memory WriteDecodeFetch

Figure 2.9 ARM9 five-stage pipeline.

Decode Execute Memory WriteIssueFetch

Figure 2.10 ARM10 six-stage pipeline.

The pipeline design for each ARM family differs. For example, The ARM9 core increases
the pipeline length to five stages, as shown in Figure 2.9. The ARM9 adds a memory and
writeback stage, which allows the ARM9 to process on average 1.1 Dhrystone MIPS per
MHz—an increase in instruction throughput by around 13% compared with an ARM7.
The maximum core frequency attainable using an ARM9 is also higher.

The ARM10 increases the pipeline length still further by adding a sixth stage, as shown
in Figure 2.10. The ARM10 can process on average 1.3 Dhrystone MIPS per MHz, about
34% more throughput than an ARM7 processor core, but again at a higher latency cost.

Even though the ARM9 and ARM10 pipelines are different, they still use the same
pipeline executing characteristics as an ARM7. Code written for the ARM7 will execute on
an ARM9 or ARM10.

2.3.1 Pipeline Executing Characteristics

The ARM pipeline has not processed an instruction until it passes completely through
the execute stage. For example, an ARM7 pipeline (with three stages) has executed an
instruction only when the fourth instruction is fetched.

Figure 2.11 shows an instruction sequence on an ARM7 pipeline. The MSR instruction
is used to enable IRQ interrupts, which only occurs once the MSR instruction completes
the execute stage of the pipeline. It clears the I bit in the cpsr to enable the IRQ inter-
rupts. Once the ADD instruction enters the execute stage of the pipeline, IRQ interrupts are
enabled.

Figure 2.12 illustrates the use of the pipeline and the program counter pc. In the execute
stage, the pc always points to the address of the instruction plus 8 bytes. In other words,
the pc always points to the address of the instruction being executed plus two instructions
ahead. This is important when the pc is used for calculating a relative offset and is an

32 Chapter 2 ARM Processor Fundamentals

MSR

ExecuteDecodeFetch

cpsr
IFt_SVC

cpsr
IFt_SVC

cpsr
iFt_SVC

MSRADD

MSRADDAND

Cycle 1

Cycle 2

Time

Cycle 3

ADDANDSUBCycle 4

Figure 2.11 ARM instruction sequence.

LDRNOPDCD

Execute

pc + 8
(0x8000 + 8)

DecodeFetch

0x8000 LDR pc, [pc,#0]
0x8004 NOP
0x8008 DCD jumpAddress

Time

Figure 2.12 Example: pc = address + 8.

architectural characteristic across all the pipelines. Note when the processor is in Thumb
state the pc is the instruction address plus 4.

There are three other characteristics of the pipeline worth mentioning. First, the exe-
cution of a branch instruction or branching by the direct modification of the pc causes the
ARM core to flush its pipeline.

Second, ARM10 uses branch prediction, which reduces the effect of a pipeline flush by
predicting possible branches and loading the new branch address prior to the execution of
the instruction.

Third, an instruction in the execute stage will complete even though an interrupt has
been raised. Other instructions in the pipeline will be abandoned, and the processor will
start filling the pipeline from the appropriate entry in the vector table.

2.4 Exceptions, Interrupts, and the Vector Table 33

2.4 Exceptions, Interrupts, and the Vector
Table

When an exception or interrupt occurs, the processor sets the pc to a specific memory
address. The address is within a special address range called the vector table. The entries
in the vector table are instructions that branch to specific routines designed to handle a
particular exception or interrupt.

The memory map address 0x00000000 is reserved for the vector table, a set of 32-bit
words. On some processors the vector table can be optionally located at a higher address
in memory (starting at the offset 0xffff0000). Operating systems such as Linux and
Microsoft’s embedded products can take advantage of this feature.

When an exception or interrupt occurs, the processor suspends normal execution and
starts loading instructions from the exception vector table (see Table 2.6). Each vector table
entry contains a form of branch instruction pointing to the start of a specific routine:

■ Reset vector is the location of the first instruction executed by the processor when power
is applied. This instruction branches to the initialization code.

■ Undefined instruction vector is used when the processor cannot decode an instruction.

■ Software interrupt vector is called when you execute a SWI instruction. The SWI
instruction is frequently used as the mechanism to invoke an operating system routine.

■ Prefetch abort vector occurs when the processor attempts to fetch an instruction from an
address without the correct access permissions. The actual abort occurs in the decode
stage.

■ Data abort vector is similar to a prefetch abort but is raised when an instruction attempts
to access data memory without the correct access permissions.

■ Interrupt request vector is used by external hardware to interrupt the normal execution
flow of the processor. It can only be raised if IRQs are not masked in the cpsr.

Table 2.6 The vector table.

Exception/interrupt Shorthand Address High address

Reset RESET 0x00000000 0xffff0000
Undefined instruction UNDEF 0x00000004 0xffff0004
Software interrupt SWI 0x00000008 0xffff0008
Prefetch abort PABT 0x0000000c 0xffff000c
Data abort DABT 0x00000010 0xffff0010
Reserved — 0x00000014 0xffff0014
Interrupt request IRQ 0x00000018 0xffff0018
Fast interrupt request FIQ 0x0000001c 0xffff001c

34 Chapter 2 ARM Processor Fundamentals

■ Fast interrupt request vector is similar to the interrupt request but is reserved for hardware
requiring faster response times. It can only be raised if FIQs are not masked in the cpsr.

2.5 Core Extensions
The hardware extensions covered in this section are standard components placed next to the
ARM core. They improve performance, manage resources, and provide extra functionality
and are designed to provide flexibility in handling particular applications. Each ARM family
has different extensions available.

There are three hardware extensions ARM wraps around the core: cache and tightly
coupled memory, memory management, and the coprocessor interface.

2.5.1 Cache and Tightly Coupled Memory

The cache is a block of fast memory placed between main memory and the core. It allows for
more efficient fetches from some memory types. With a cache the processor core can run
for the majority of the time without having to wait for data from slow external memory.
Most ARM-based embedded systems use a single-level cache internal to the processor.
Of course, many small embedded systems do not require the performance gains that a
cache brings.

ARM has two forms of cache. The first is found attached to the Von Neumann–style
cores. It combines both data and instruction into a single unified cache, as shown in
Figure 2.13. For simplicity, we have called the glue logic that connects the memory system
to the AMBA bus logic and control.

ARM core

Unified cache

Logic and control

On-chip AMBA bus

Main memoryAMBA bus interface unit

Figure 2.13 A simplified Von Neumann architecture with cache.

2.5 Core Extensions 35

ARM core

Data
TCM

Instruction
TCM

Logic and control

On-chip AMBA bus

D + I

D I
D I

Main memoryAMBA bus interface unit

Figure 2.14 A simplified Harvard architecture with TCMs.

By contrast, the second form, attached to the Harvard-style cores, has separate caches
for data and instruction.

A cache provides an overall increase in performance but at the expense of predictable
execution. But for real-time systems it is paramount that code execution is deterministic—
the time taken for loading and storing instructions or data must be predictable. This is
achieved using a form of memory called tightly coupled memory (TCM). TCM is fast SRAM
located close to the core and guarantees the clock cycles required to fetch instructions or
data—critical for real-time algorithms requiring deterministic behavior. TCMs appear as
memory in the address map and can be accessed as fast memory. An example of a processor
with TCMs is shown in Figure 2.14.

By combining both technologies, ARM processors can have both improved performance
and predictable real-time response. Figure 2.15 shows an example core with a combination
of caches and TCMs.

2.5.2 Memory Management

Embedded systems often use multiple memory devices. It is usually necessary to have a
method to help organize these devices and protect the system from applications trying to
make inappropriate accesses to hardware. This is achieved with the assistance of memory
management hardware.

ARM cores have three different types of memory management hardware—no extensions
providing no protection, a memory protection unit (MPU) providing limited protection,
and a memory management unit (MMU) providing full protection:

■ Nonprotected memory is fixed and provides very little flexibility. It is normally used for
small, simple embedded systems that require no protection from rogue applications.

36 Chapter 2 ARM Processor Fundamentals

ARM core

Data
TCM

Data
cache

Instruction
cacheInstruction

TCM

Logic and control

On-chip AMBA bus

D + I

D I
D I

D I
Main memoryAMBA bus interface unit

Figure 2.15 A simplified Harvard architecture with caches and TCMs.

■ MPUs employ a simple system that uses a limited number of memory regions. These
regions are controlled with a set of special coprocessor registers, and each region is
defined with specific access permissions. This type of memory management is used
for systems that require memory protection but don’t have a complex memory map.
The MPU is explained in Chapter 13.

■ MMUs are the most comprehensive memory management hardware available on the
ARM. The MMU uses a set of translation tables to provide fine-grained control over
memory. These tables are stored in main memory and provide a virtual-to-physical
address map as well as access permissions. MMUs are designed for more sophisti-
cated platform operating systems that support multitasking. The MMU is explained in
Chapter 14.

2.5.3 Coprocessors

Coprocessors can be attached to the ARM processor. A coprocessor extends the processing
features of a core by extending the instruction set or by providing configuration reg-
isters. More than one coprocessor can be added to the ARM core via the coprocessor
interface.

The coprocessor can be accessed through a group of dedicated ARM instructions
that provide a load-store type interface. Consider, for example, coprocessor 15: The
ARM processor uses coprocessor 15 registers to control the cache, TCMs, and memory
management.

The coprocessor can also extend the instruction set by providing a specialized group
of new instructions. For example, there are a set of specialized instructions that can

2.6 Architecture Revisions 37

be added to the standard ARM instruction set to process vector floating-point (VFP)
operations.

These new instructions are processed in the decode stage of the ARM pipeline. If the
decode stage sees a coprocessor instruction, then it offers it to the relevant coprocessor.
But if the coprocessor is not present or doesn’t recognize the instruction, then the ARM
takes an undefined instruction exception, which allows you to emulate the behavior of the
coprocessor in software.

2.6 Architecture Revisions
Every ARM processor implementation executes a specific instruction set architecture (ISA),
although an ISA revision may have more than one processor implementation.

The ISA has evolved to keep up with the demands of the embedded market. This
evolution has been carefully managed by ARM, so that code written to execute on an earlier
architecture revision will also execute on a later revision of the architecture.

Before we go on to explain the evolution of the architecture, we must introduce the ARM
processor nomenclature. The nomenclature identifies individual processors and provides
basic information about the feature set.

2.6.1 Nomenclature

ARM uses the nomenclature shown in Figure 2.16 to describe the processor implemen-
tations. The letters and numbers after the word “ARM” indicate the features a processor

ARM{x}{y}{z}{T}{D}{M}{I}{E}{J}{F}{-S}

x—family
y—memory management/protection unit
z—cache
T—Thumb 16-bit decoder
D—JTAG debug
M—fast multiplier
I—EmbeddedICE macrocell
E—enhanced instructions (assumes TDMI)
J—Jazelle
F—vector floating-point unit
S—synthesizible version

Figure 2.16 ARM nomenclature.

38 Chapter 2 ARM Processor Fundamentals

may have. In the future the number and letter combinations may change as more features
are added. Note the nomenclature does not include the architecture revision information.

There are a few additional points to make about the ARM nomenclature:

■ All ARM cores after the ARM7TDMI include the TDMI features even though they may
not include those letters after the “ARM” label.

■ The processor family is a group of processor implementations that share the same
hardware characteristics. For example, the ARM7TDMI, ARM740T, and ARM720T all
share the same family characteristics and belong to the ARM7 family.

■ JTAG is described by IEEE 1149.1 Standard Test Access Port and boundary scan archi-
tecture. It is a serial protocol used by ARM to send and receive debug information
between the processor core and test equipment.

■ EmbeddedICE macrocell is the debug hardware built into the processor that allows
breakpoints and watchpoints to be set.

■ Synthesizable means that the processor core is supplied as source code that can be
compiled into a form easily used by EDA tools.

2.6.2 Architecture Evolution

The architecture has continued to evolve since the first ARM processor implementation
was introduced in 1985. Table 2.7 shows the significant architecture enhancements from
the original architecture version 1 to the current version 6 architecture. One of the most
significant changes to the ISA was the introduction of the Thumb instruction set in ARMv4T
(the ARM7TDMI processor).

Table 2.8 summarizes the various parts of the program status register and the availabil-
ity of certain features on particular instruction architectures. “All” refers to the ARMv4
architecture and above.

2.7 ARM Processor Families
ARM has designed a number of processors that are grouped into different families according
to the core they use. The families are based on the ARM7, ARM9, ARM10, and ARM11
cores. The postfix numbers 7, 9, 10, and 11 indicate different core designs. The ascending
number equates to an increase in performance and sophistication. ARM8 was developed
but was soon superseded.

Table 2.9 shows a rough comparison of attributes between the ARM7, ARM9, ARM10,
and ARM11 cores. The numbers quoted can vary greatly and are directly dependent upon
the type and geometry of the manufacturing process, which has a direct effect on the
frequency (MHz) and power consumption (watts).

2.7 ARM Processor Families 39

Table 2.7 Revision history.

Revision Example core implementation ISA enhancement

ARMv1 ARM1 First ARM processor
26-bit addressing

ARMv2 ARM2 32-bit multiplier
32-bit coprocessor support

ARMv2a ARM3 On-chip cache
Atomic swap instruction
Coprocessor 15 for cache management

ARMv3 ARM6 and ARM7DI 32-bit addressing
Separate cpsr and spsr
New modes—undefined instruction and abort
MMU support—virtual memory

ARMv3M ARM7M Signed and unsigned long multiply instructions
ARMv4 StrongARM Load-store instructions for signed and unsigned

halfwords/bytes
New mode—system
Reserve SWI space for architecturally defined

operations
26-bit addressing mode no longer supported

ARMv4T ARM7TDMI and ARM9T Thumb
ARMv5TE ARM9E and ARM10E Superset of the ARMv4T

Extra instructions added for changing state between
ARM and Thumb

Enhanced multiply instructions
Extra DSP-type instructions
Faster multiply accumulate

ARMv5TEJ ARM7EJ and ARM926EJ Java acceleration
ARMv6 ARM11 Improved multiprocessor instructions

Unaligned and mixed endian data handling
New multimedia instructions

Within each ARM family, there are a number of variations of memory management,
cache, and TCM processor extensions. ARM continues to expand both the number of
families available and the different variations within each family.

You can find other processors that execute the ARM ISA such as StrongARM and
XScale. These processors are unique to a particular semiconductor company, in this case
Intel.

Table 2.10 summarizes the different features of the various processors. The next
subsections describe the ARM families in more detail, starting with the ARM7 family.

40 Chapter 2 ARM Processor Fundamentals

Table 2.8 Description of the cpsr.

Parts Bits Architectures Description

Mode 4:0 all processor mode
T 5 ARMv4T Thumb state
I & F 7:6 all interrupt masks
J 24 ARMv5TEJ Jazelle state
Q 27 ARMv5TE condition flag
V 28 all condition flag
C 29 all condition flag
Z 30 all condition flag
N 31 all condition flag

Table 2.9 ARM family attribute comparison.

ARM7 ARM9 ARM10 ARM11

Pipeline depth three-stage five-stage six-stage eight-stage
Typical MHz 80 150 260 335
mW/MHza 0.06 mW/MHz 0.19 mW/MHz 0.5 mW/MHz 0.4 mW/MHz

(+ cache) (+ cache) (+ cache)
MIPSb/MHz 0.97 1.1 1.3 1.2
Architecture Von Neumann Harvard Harvard Harvard
Multiplier 8 × 32 8 × 32 16 × 32 16 × 32

a Watts/MHz on the same 0.13 micron process.
b MIPS are Dhrystone VAX MIPS.

2.7.1 ARM7 Family

The ARM7 core has a Von Neumann–style architecture, where both data and instructions
use the same bus. The core has a three-stage pipeline and executes the architecture ARMv4T
instruction set.

The ARM7TDMI was the first of a new range of processors introduced in 1995 by ARM.
It is currently a very popular core and is used in many 32-bit embedded processors. It
provides a very good performance-to-power ratio. The ARM7TDMI processor core has
been licensed by many of the top semiconductor companies around the world and is
the first core to include the Thumb instruction set, a fast multiply instruction, and the
EmbeddedICE debug technology.

2.7 ARM Processor Families 41

Table 2.10 ARM processor variants.

CPU core MMU/MPU Cache Jazelle Thumb ISA Ea

ARM7TDMI none none no yes v4T no
ARM7EJ-S none none yes yes v5TEJ yes
ARM720T MMU unified—8K cache no yes v4T no
ARM920T MMU separate—16K /16K D + I

cache
no yes v4T no

ARM922T MMU separate—8K/8K D + I
cache

no yes v4T no

ARM926EJ-S MMU separate—cache and
TCMs configurable

yes yes v5TEJ yes

ARM940T MPU separate—4K/4K D + I
cache

no yes v4T no

ARM946E-S MPU separate—cache and
TCMs configurable

no yes v5TE yes

ARM966E-S none separate—TCMs
configurable

no yes v5TE yes

ARM1020E MMU separate—32K/32K D + I
cache

no yes v5TE yes

ARM1022E MMU separate—16K/16K D + I
cache

no yes v5TE yes

ARM1026EJ-S MMU and
MPU

separate—cache and
TCMs configurable

yes yes v5TE yes

ARM1136J-S MMU separate—cache and
TCMs configurable

yes yes v6 yes

ARM1136JF-S MMU separate—cache and
TCMs configurable

yes yes v6 yes

a E extension provides enhanced multiply instructions and saturation.

One significant variation in the ARM7 family is the ARM7TDMI-S. The ARM7TDMI-S
has the same operating characteristics as a standard ARM7TDMI but is also synthesizable.

ARM720T is the most flexible member of the ARM7 family because it includes an
MMU. The presence of the MMU means the ARM720T is capable of handling the Linux
and Microsoft embedded platform operating systems. The processor also includes a unified
8K cache. The vector table can be relocated to a higher address by setting a coprocessor
15 register.

Another variation is the ARM7EJ-S processor, also synthesizable. ARM7EJ-S is quite
different since it includes a five-stage pipeline and executes ARMv5TEJ instructions. This
version of the ARM7 is the only one that provides both Java acceleration and the enhanced
instructions but without any memory protection.

42 Chapter 2 ARM Processor Fundamentals

2.7.2 ARM9 Family

The ARM9 family was announced in 1997. Because of its five-stage pipeline, the ARM9
processor can run at higher clock frequencies than the ARM7 family. The extra stages
improve the overall performance of the processor. The memory system has been redesigned
to follow the Harvard architecture, which separates the data D and instruction I buses.

The first processor in the ARM9 family was the ARM920T, which includes a separate
D + I cache and an MMU. This processor can be used by operating systems requiring
virtual memory support. ARM922T is a variation on the ARM920T but with half the D + I
cache size.

The ARM940T includes a smaller D + I cache and an MPU. The ARM940T is designed
for applications that do not require a platform operating system. Both ARM920T and
ARM940T execute the architecture v4T instructions.

The next processors in the ARM9 family were based on the ARM9E-S core. This core is
a synthesizable version of the ARM9 core with the E extensions. There are two variations:
the ARM946E-S and the ARM966E-S. Both execute architecture v5TE instructions. They
also support the optional embedded trace macrocell (ETM), which allows a developer to
trace instruction and data execution in real time on the processor. This is important when
debugging applications with time-critical segments.

The ARM946E-S includes TCM, cache, and an MPU. The sizes of the TCM and caches
are configurable. This processor is designed for use in embedded control applications that
require deterministic real-time response. In contrast, the ARM966E does not have the MPU
and cache extensions but does have configurable TCMs.

The latest core in the ARM9 product line is the ARM926EJ-S synthesizable processor
core, announced in 2000. It is designed for use in small portable Java-enabled devices such
as 3G phones and personal digital assistants (PDAs). The ARM926EJ-S is the first ARM
processor core to include the Jazelle technology, which accelerates Java bytecode execution.
It features an MMU, configurable TCMs, and D + I caches with zero or nonzero wait state
memories.

2.7.3 ARM10 Family

The ARM10, announced in 1999, was designed for performance. It extends the ARM9
pipeline to six stages. It also supports an optional vector floating-point (VFP) unit, which
adds a seventh stage to the ARM10 pipeline. The VFP significantly increases floating-point
performance and is compliant with the IEEE 754.1985 floating-point standard.

The ARM1020E is the first processor to use an ARM10E core. Like the ARM9E, it
includes the enhanced E instructions. It has separate 32K D + I caches, optional vector
floating-point unit, and an MMU. The ARM1020E also has a dual 64-bit bus interface for
increased performance.

ARM1026EJ-S is very similar to the ARM926EJ-S but with both MPU and MMU. This
processor has the performance of the ARM10 with the flexibility of an ARM926EJ-S.

2.8 Summary 43

2.7.4 ARM11 Family

The ARM1136J-S, announced in 2003, was designed for high performance and power-
efficient applications. ARM1136J-S was the first processor implementation to execute
architecture ARMv6 instructions. It incorporates an eight-stage pipeline with separate load-
store and arithmetic pipelines. Included in the ARMv6 instructions are single instruction
multiple data (SIMD) extensions for media processing, specifically designed to increase
video processing performance.

The ARM1136JF-S is an ARM1136J-S with the addition of the vector floating-point unit
for fast floating-point operations.

2.7.5 Specialized Processors

StrongARM was originally co-developed by Digital Semiconductor and is now exclusively
licensed by Intel Corporation. It is has been popular for PDAs and applications that require
performance with low power consumption. It is a Harvard architecture with separate D + I
caches. StrongARM was the first high-performance ARM processor to include a five-stage
pipeline, but it does not support the Thumb instruction set.

Intel’s XScale is a follow-on product to the StrongARM and offers dramatic increases in
performance. At the time of writing, XScale was quoted as being able to run up to 1 GHz.
XScale executes architecture v5TE instructions. It is a Harvard architecture and is similar
to the StrongARM, as it also includes an MMU.

SC100 is at the other end of the performance spectrum. It is designed specifically
for low-power security applications. The SC100 is the first SecurCore and is based on
an ARM7TDMI core with an MPU. This core is small and has low voltage and current
requirements, which makes it attractive for smart card applications.

2.8 Summary
In this chapter we focused on the hardware fundamentals of the actual ARM processor.
The ARM processor can be abstracted into eight components—ALU, barrel shifter, MAC,
register file, instruction decoder, address register, incrementer, and sign extend.

ARM has three instruction sets—ARM, Thumb, and Jazelle. The register file contains
37 registers, but only 17 or 18 registers are accessible at any point in time; the rest are
banked according to processor mode. The current processor mode is stored in the cpsr. It
holds the current status of the processor core as well interrupt masks, condition flags, and
state. The state determines which instruction set is being executed.

An ARM processor comprises a core plus the surrounding components that interface it
with a bus. The core extensions include the following:

■ Caches are used to improve the overall system performance.

■ TCMs are used to improve deterministic real-time response.

44 Chapter 2 ARM Processor Fundamentals

■ Memory management is used to organize memory and protect system resources.

■ Coprocessors are used to extend the instruction set and functionality. Coprocessor
15 controls the cache, TCMs, and memory management.

An ARM processor is an implementation of a specific instruction set architecture (ISA).
The ISA has been continuously improved from the first ARM processor design. Processors
are grouped into implementation families (ARM7, ARM9, ARM10, and ARM11) with
similar characteristics.

This Page Intentionally Left Blank

3.1 Data Processing Instructions
3.1.1 Move Instructions

3.1.2 Barrel Shifter

3.1.3 Arithmetic Instructions

3.1.4 Using the Barrel Shifter with Arithmetic Instructions

3.1.5 Logical Instructions

3.1.6 Comparison Instructions

3.1.7 Multiply Instructions

3.2 Branch Instructions
3.3 Load-Store Instructions

3.3.1 Single-Register Transfer

3.3.2 Single-Register Load-Store Addressing Modes

3.3.3 Multiple-Register Transfer

3.3.4 Swap Instruction

3.4 Software Interrupt Instruction
3.5 Program Status Register Instructions

3.5.1 Coprocessor Instructions

3.5.2 Coprocessor 15 Instruction Syntax

3.6 Loading Constants
3.7 ARMv5E Extensions

3.7.1 Count Leading Zeros Instruction

3.7.2 Saturated Arithmetic

3.7.3 ARMv5E Multiply Instructions

3.8 Conditional Execution
3.9 Summary

C h a p t e r

Introduction
to the ARM

Instruction Set

3

This introduction to the ARM instruction set is a fundamental chapter since the infor-
mation presented here is used throughout the rest of the book. Consequently, it is
placed here before we start going into any depth on optimization and efficient algo-
rithms. This chapter introduces the most common and useful ARM instructions and builds
on the ARM processor fundamentals covered in the last chapter. Chapter 4 introduces
the Thumb instruction set, and Appendix A gives a complete description of all ARM
instructions.

Different ARM architecture revisions support different instructions. However, new
revisions usually add instructions and remain backwardly compatible. Code you write for
architecture ARMv4T should execute on an ARMv5TE processor. Table 3.1 provides a
complete list of ARM instructions available in the ARMv5E instruction set architecture
(ISA). This ISA includes all the core ARM instructions as well as some of the newer features
in the ARM instruction set. The “ARM ISA” column lists the ISA revision in which the
instruction was introduced. Some instructions have extended functionality in later archi-
tectures; for example, the CDP instruction has an ARMv5 variant called CDP2. Similarly,
instructions such as LDR have ARMv5 additions but do not require a new or extended
mnemonic.

We illustrate the processor operations using examples with pre- and post-conditions,
describing registers and memory before and after the instruction or instructions are

47

48 Chapter 3 Introduction to the ARM Instruction Set

Table 3.1 ARM instruction set.

Mnemonics ARM ISA Description

ADC v1 add two 32-bit values and carry
ADD v1 add two 32-bit values
AND v1 logical bitwise AND of two 32-bit values
B v1 branch relative +/− 32 MB
BIC v1 logical bit clear (AND NOT) of two 32-bit values
BKPT v5 breakpoint instructions
BL v1 relative branch with link
BLX v5 branch with link and exchange
BX v4T branch with exchange
CDP CDP2 v2 v5 coprocessor data processing operation
CLZ v5 count leading zeros
CMN v1 compare negative two 32-bit values
CMP v1 compare two 32-bit values
EOR v1 logical exclusive OR of two 32-bit values
LDC LDC2 v2 v5 load to coprocessor single or multiple 32-bit values
LDM v1 load multiple 32-bit words from memory to ARM registers
LDR v1 v4 v5E load a single value from a virtual address in memory
MCR MCR2 MCRR v2 v5 v5E move to coprocessor from an ARM register or registers
MLA v2 multiply and accumulate 32-bit values
MOV v1 move a 32-bit value into a register
MRC MRC2 MRRC v2 v5 v5E move to ARM register or registers from a coprocessor
MRS v3 move to ARM register from a status register (cpsr or spsr)
MSR v3 move to a status register (cpsr or spsr) from an ARM register
MUL v2 multiply two 32-bit values
MVN v1 move the logical NOT of 32-bit value into a register
ORR v1 logical bitwise OR of two 32-bit values
PLD v5E preload hint instruction
QADD v5E signed saturated 32-bit add
QDADD v5E signed saturated double and 32-bit add
QDSUB v5E signed saturated double and 32-bit subtract
QSUB v5E signed saturated 32-bit subtract
RSB v1 reverse subtract of two 32-bit values
RSC v1 reverse subtract with carry of two 32-bit integers
SBC v1 subtract with carry of two 32-bit values
SMLAxy v5E signed multiply accumulate instructions ((16 × 16) + 32 = 32-bit)
SMLAL v3M signed multiply accumulate long ((32 × 32) + 64 = 64-bit)
SMLALxy v5E signed multiply accumulate long ((16 × 16) + 64 = 64-bit)
SMLAWy v5E signed multiply accumulate instruction (((32 × 16) � 16) + 32 = 32-bit)
SMULL v3M signed multiply long (32 × 32 = 64-bit)

continued

Chapter 3 Introduction to the ARM Instruction Set 49

Table 3.1 ARM instruction set. (Continued)

Mnemonics ARM ISA Description

SMULxy v5E signed multiply instructions (16 × 16 = 32-bit)
SMULWy v5E signed multiply instruction ((32 × 16) � 16 = 32-bit)
STC STC2 v2 v5 store to memory single or multiple 32-bit values from coprocessor
STM v1 store multiple 32-bit registers to memory
STR v1 v4 v5E store register to a virtual address in memory
SUB v1 subtract two 32-bit values
SWI v1 software interrupt
SWP v2a swap a word/byte in memory with a register, without interruption
TEQ v1 test for equality of two 32-bit values
TST v1 test for bits in a 32-bit value
UMLAL v3M unsigned multiply accumulate long ((32 × 32) + 64 = 64-bit)
UMULL v3M unsigned multiply long (32 × 32 = 64-bit)

executed. We will represent hexadecimal numbers with the prefix 0x and binary numbers
with the prefix 0b. The examples follow this format:

PRE <pre-conditions>
<instruction/s>

POST <post-conditions>

In the pre- and post-conditions, memory is denoted as

mem<data_size>[address]

This refers to data_size bits of memory starting at the given byte address. For example,
mem32[1024] is the 32-bit value starting at address 1 KB.

ARM instructions process data held in registers and only access memory with load and
store instructions. ARM instructions commonly take two or three operands. For instance
the ADD instruction below adds the two values stored in registers r1 and r2 (the source
registers). It writes the result to register r3 (the destination register).

Instruction
Syntax

Destination
register (Rd)

Source
register 1 (Rn)

Source
register 2 (Rm)

ADD r3, r1, r2 r3 r1 r2

In the following sections we examine the function and syntax of the ARM
instructions by instruction class—data processing instructions, branch instructions,

50 Chapter 3 Introduction to the ARM Instruction Set

load-store instructions, software interrupt instruction, and program status register
instructions.

3.1 Data Processing Instructions
The data processing instructions manipulate data within registers. They are move instruc-
tions, arithmetic instructions, logical instructions, comparison instructions, and multiply
instructions. Most data processing instructions can process one of their operands using the
barrel shifter.

If you use the S suffix on a data processing instruction, then it updates the flags in the
cpsr. Move and logical operations update the carry flag C, negative flag N, and zero flag Z.
The carry flag is set from the result of the barrel shift as the last bit shifted out. The N flag
is set to bit 31 of the result. The Z flag is set if the result is zero.

3.1.1 Move Instructions

Move is the simplest ARM instruction. It copies N into a destination register Rd, where
N is a register or immediate value. This instruction is useful for setting initial values and
transferring data between registers.

Syntax: <instruction>{<cond>}{S} Rd, N

MOV Move a 32-bit value into a register Rd = N

MVN move the NOT of the 32-bit value into a register Rd = ∼N

Table 3.3, to be presented in Section 3.1.2, gives a full description of the values allowed
for the second operand N for all data processing instructions. Usually it is a register Rm or
a constant preceded by #.

Example

3.1
This example shows a simple move instruction. The MOV instruction takes the contents of
register r5 and copies them into register r7, in this case, taking the value 5, and overwriting
the value 8 in register r7.

PRE r5 = 5
r7 = 8
MOV r7, r5 ; let r7 = r5

POST r5 = 5
r7 = 5 ■

3.1 Data Processing Instructions 51

3.1.2 Barrel Shifter

In Example 3.1 we showed a MOV instruction where N is a simple register. But N can be
more than just a register or immediate value; it can also be a register Rm that has been
preprocessed by the barrel shifter prior to being used by a data processing instruction.

Data processing instructions are processed within the arithmetic logic unit (ALU).
A unique and powerful feature of the ARM processor is the ability to shift the 32-bit binary
pattern in one of the source registers left or right by a specific number of positions before
it enters the ALU. This shift increases the power and flexibility of many data processing
operations.

There are data processing instructions that do not use the barrel shift, for example,
the MUL (multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add)
instructions.

Pre-processing or shift occurs within the cycle time of the instruction. This is particularly
useful for loading constants into a register and achieving fast multiplies or division by
a power of 2.

N
o

pr
e-

pr
oc

es
si

ng

Pr
e-

pr
oc

es
si

ngRn Rm

Barrel shifter

Result N

Rd

Arithmetic logic unit

Figure 3.1 Barrel shifter and ALU.

To illustrate the barrel shifter we will take the example in Figure 3.1 and add a shift
operation to the move instruction example. Register Rn enters the ALU without any pre-
processing of registers. Figure 3.1 shows the data flow between the ALU and the barrel
shifter.

Example

3.2
We apply a logical shift left (LSL) to register Rm before moving it to the destination register.
This is the same as applying the standard C language shift operator � to the register. The
MOV instruction copies the shift operator result N into register Rd. N represents the result
of the LSL operation described in Table 3.2.

PRE r5 = 5
r7 = 8

52 Chapter 3 Introduction to the ARM Instruction Set

MOV r7, r5, LSL #2 ; let r7 = r5*4 = (r5 << 2)

POST r5 = 5
r7 = 20

The example multiplies register r5 by four and then places the result into register r7. ■

The five different shift operations that you can use within the barrel shifter are
summarized in Table 3.2.

Figure 3.2 illustrates a logical shift left by one. For example, the contents of bit 0 are
shifted to bit 1. Bit 0 is cleared. The C flag is updated with the last bit shifted out of the
register. This is bit (32 − y) of the original value, where y is the shift amount. When y is
greater than one, then a shift by y positions is the same as a shift by one position executed
y times.

Table 3.2 Barrel shifter operations.

Mnemonic Description Shift Result Shift amount y

LSL logical shift left xLSL y x � y #0–31 or Rs
LSR logical shift right xLSR y (unsigned)x � y #1–32 or Rs
ASR arithmetic right shift xASR y (signed)x � y #1–32 or Rs
ROR rotate right xROR y ((unsigned)x � y) | (x � (32 − y)) #1–31 or Rs
RRX rotate right extended xRRX (c flag � 31) | ((unsigned)x � 1) none

Note: x represents the register being shifted and y represents the shift amount.

Bit
31

Bit
2

31

nzcv 1

0

0

0

0

0

0

0

0

1

0

Bit
0

0

Condition ßags

nzCv

Condition ßags

Condition flags
updated when
S is present

1

0

= 0x80000004

= 0x00000008

Figure 3.2 Logical shift left by one.

3.1 Data Processing Instructions 53

Table 3.3 Barrel shift operation syntax for data processing instructions.

N shift operations Syntax

Immediate #immediate
Register Rm
Logical shift left by immediate Rm, LSL #shift_imm
Logical shift left by register Rm, LSL Rs
Logical shift right by immediate Rm, LSR #shift_imm
Logical shift right with register Rm, LSR Rs
Arithmetic shift right by immediate Rm, ASR #shift_imm
Arithmetic shift right by register Rm, ASR Rs
Rotate right by immediate Rm, ROR #shift_imm
Rotate right by register Rm, ROR Rs
Rotate right with extend Rm, RRX

Example

3.3
This example of a MOVS instruction shifts register r1 left by one bit. This multiplies register
r1 by a value 21. As you can see, the C flag is updated in the cpsr because the S suffix is
present in the instruction mnemonic.

PRE cpsr = nzcvqiFt_USER
r0 = 0x00000000
r1 = 0x80000004

MOVS r0, r1, LSL #1

POST cpsr = nzCvqiFt_USER
r0 = 0x00000008
r1 = 0x80000004 ■

Table 3.3 lists the syntax for the different barrel shift operations available on data
processing instructions. The second operand N can be an immediate constant preceded by
#, a register value Rm, or the value of Rm processed by a shift.

3.1.3 Arithmetic Instructions

The arithmetic instructions implement addition and subtraction of 32-bit signed and
unsigned values.

54 Chapter 3 Introduction to the ARM Instruction Set

Syntax: <instruction>{<cond>}{S} Rd, Rn, N

ADC add two 32-bit values and carry Rd = Rn + N+ carry

ADD add two 32-bit values Rd = Rn + N

RSB reverse subtract of two 32-bit values Rd = N − Rn

RSC reverse subtract with carry of two 32-bit values Rd = N − Rn − !(carry flag)

SBC subtract with carry of two 32-bit values Rd = Rn − N− !(carry flag)

SUB subtract two 32-bit values Rd = Rn − N

N is the result of the shifter operation. The syntax of shifter operation is shown in Table 3.3.

Example

3.4
This simple subtract instruction subtracts a value stored in register r2 from a value stored
in register r1. The result is stored in register r0.

PRE r0 = 0x00000000
r1 = 0x00000002
r2 = 0x00000001

SUB r0, r1, r2

POST r0 = 0x00000001 ■

Example

3.5
This reverse subtract instruction (RSB) subtracts r1 from the constant value #0, writing the
result to r0. You can use this instruction to negate numbers.

PRE r0 = 0x00000000
r1 = 0x00000077

RSB r0, r1, #0 ; Rd = 0x0 - r1

POST r0 = -r1 = 0xffffff89 ■

Example

3.6
The SUBS instruction is useful for decrementing loop counters. In this example we subtract
the immediate value one from the value one stored in register r1. The result value zero is
written to register r1. The cpsr is updated with the ZC flags being set.

PRE cpsr = nzcvqiFt_USER
r1 = 0x00000001

SUBS r1, r1, #1

3.1 Data Processing Instructions 55

POST cpsr = nZCvqiFt_USER
r1 = 0x00000000 ■

3.1.4 Using the Barrel Shifter with Arithmetic
Instructions

The wide range of second operand shifts available on arithmetic and logical instructions
is a very powerful feature of the ARM instruction set. Example 3.7 illustrates the use of
the inline barrel shifter with an arithmetic instruction. The instruction multiplies the value
stored in register r1 by three.

Example

3.7
Register r1 is first shifted one location to the left to give the value of twice r1. The ADD
instruction then adds the result of the barrel shift operation to register r1. The final result
transferred into register r0 is equal to three times the value stored in register r1.

PRE r0 = 0x00000000
r1 = 0x00000005

ADD r0, r1, r1, LSL #1

POST r0 = 0x0000000f
r1 = 0x00000005 ■

3.1.5 Logical Instructions

Logical instructions perform bitwise logical operations on the two source registers.

Syntax: <instruction>{<cond>}{S} Rd, Rn, N

AND logical bitwise AND of two 32-bit values Rd = Rn & N

ORR logical bitwise OR of two 32-bit values Rd = Rn | N

EOR logical exclusive OR of two 32-bit values Rd = Rn ∧ N

BIC logical bit clear (AND NOT) Rd = Rn & ∼N

Example

3.8
This example shows a logical OR operation between registers r1 and r2. r0 holds the result.

PRE r0 = 0x00000000
r1 = 0x02040608
r2 = 0x10305070

56 Chapter 3 Introduction to the ARM Instruction Set

ORR r0, r1, r2

POST r0 = 0x12345678 ■

Example

3.9
This example shows a more complicated logical instruction called BIC, which carries out
a logical bit clear.

PRE r1 = 0b1111
r2 = 0b0101

BIC r0, r1, r2

POST r0 = 0b1010

This is equivalent to

Rd = Rn AND NOT(N)

In this example, register r2 contains a binary pattern where every binary 1 in r2 clears
a corresponding bit location in register r1. This instruction is particularly useful when
clearing status bits and is frequently used to change interrupt masks in the cpsr. ■

The logical instructions update the cpsr flags only if the S suffix is present. These
instructions can use barrel-shifted second operands in the same way as the arithmetic
instructions.

3.1.6 Comparison Instructions

The comparison instructions are used to compare or test a register with a 32-bit value.
They update the cpsr flag bits according to the result, but do not affect other registers.
After the bits have been set, the information can then be used to change program flow by
using conditional execution. For more information on conditional execution take a look
at Section 3.8. You do not need to apply the S suffix for comparison instructions to update
the flags.

Syntax: <instruction>{<cond>} Rn, N

CMN compare negated flags set as a result of Rn + N

CMP compare flags set as a result of Rn − N

TEQ test for equality of two 32-bit values flags set as a result of Rn ∧ N

TST test bits of a 32-bit value flags set as a result of Rn & N

3.1 Data Processing Instructions 57

N is the result of the shifter operation. The syntax of shifter operation is shown in
Table 3.3.

Example

3.10
This example shows a CMP comparison instruction. You can see that both registers, r0 and
r9, are equal before executing the instruction. The value of the z flag prior to execution is 0
and is represented by a lowercase z. After execution the z flag changes to 1 or an uppercase
Z. This change indicates equality.

PRE cpsr = nzcvqiFt_USER
r0 = 4
r9 = 4

CMP r0, r9

POST cpsr = nZcvqiFt_USER

The CMP is effectively a subtract instruction with the result discarded; similarly the TST
instruction is a logical AND operation, and TEQ is a logical exclusive OR operation. For
each, the results are discarded but the condition bits are updated in the cpsr. It is important
to understand that comparison instructions only modify the condition flags of the cpsr and
do not affect the registers being compared. ■

3.1.7 Multiply Instructions

The multiply instructions multiply the contents of a pair of registers and, depending upon
the instruction, accumulate the results in with another register. The long multiplies accu-
mulate onto a pair of registers representing a 64-bit value. The final result is placed in
a destination register or a pair of registers.

Syntax: MLA{<cond>}{S} Rd, Rm, Rs, Rn
MUL{<cond>}{S} Rd, Rm, Rs

MLA multiply and accumulate Rd = (Rm∗Rs) + Rn

MUL multiply Rd = Rm∗Rs

Syntax: <instruction>{<cond>}{S} RdLo, RdHi, Rm, Rs

SMLAL signed multiply accumulate long [RdHi, RdLo] = [RdHi, RdLo] + (Rm ∗Rs)

SMULL signed multiply long [RdHi, RdLo] = Rm ∗Rs

UMLAL unsigned multiply accumulate [RdHi, RdLo] = [RdHi, RdLo] + (Rm ∗Rs)

long

UMULL unsigned multiply long [RdHi, RdLo] = Rm ∗Rs

58 Chapter 3 Introduction to the ARM Instruction Set

The number of cycles taken to execute a multiply instruction depends on the processor
implementation. For some implementations the cycle timing also depends on the value
in Rs. For more details on cycle timings, see Appendix D.

Example

3.11
This example shows a simple multiply instruction that multiplies registers r1 and r2 together
and places the result into register r0. In this example, register r1 is equal to the value 2, and
r2 is equal to 2. The result, 4, is then placed into register r0.

PRE r0 = 0x00000000
r1 = 0x00000002
r2 = 0x00000002

MUL r0, r1, r2 ; r0 = r1*r2

POST r0 = 0x00000004
r1 = 0x00000002
r2 = 0x00000002 ■

The long multiply instructions (SMLAL, SMULL, UMLAL, and UMULL) produce a 64-bit
result. The result is too large to fit a single 32-bit register so the result is placed in two
registers labeled RdLo and RdHi. RdLo holds the lower 32 bits of the 64-bit result, and
RdHi holds the higher 32 bits of the 64-bit result. Example 3.12 shows an example of a long
unsigned multiply instruction.

Example

3.12
The instruction multiplies registers r2 and r3 and places the result into register r0 and r1.
Register r0 contains the lower 32 bits, and register r1 contains the higher 32 bits of the
64-bit result.

PRE r0 = 0x00000000
r1 = 0x00000000
r2 = 0xf0000002
r3 = 0x00000002

UMULL r0, r1, r2, r3 ; [r1,r0] = r2*r3

POST r0 = 0xe0000004 ; = RdLo
r1 = 0x00000001 ; = RdHi ■

3.2 Branch Instructions
A branch instruction changes the flow of execution or is used to call a routine. This type
of instruction allows programs to have subroutines, if-then-else structures, and loops.

3.2 Branch Instructions 59

The change of execution flow forces the program counter pc to point to a new address.
The ARMv5E instruction set includes four different branch instructions.

Syntax: B{<cond>} label
BL{<cond>} label
BX{<cond>} Rm
BLX{<cond>} label | Rm

B branch pc = label

BL branch with link pc = label
lr = address of the next instruction after the BL

BX branch exchange pc = Rm & 0xfffffffe, T = Rm & 1

BLX branch exchange with link pc = label, T = 1
pc = Rm & 0xfffffffe, T = Rm & 1
lr = address of the next instruction after the BLX

The address label is stored in the instruction as a signed pc-relative offset and must be
within approximately 32 MB of the branch instruction. T refers to the Thumb bit in the
cpsr. When instructions set T, the ARM switches to Thumb state.

Example

3.13
This example shows a forward and backward branch. Because these loops are address
specific, we do not include the pre- and post-conditions. The forward branch skips three
instructions. The backward branch creates an infinite loop.

B forward
ADD r1, r2, #4
ADD r0, r6, #2
ADD r3, r7, #4

forward
SUB r1, r2, #4

backward
ADD r1, r2, #4
SUB r1, r2, #4
ADD r4, r6, r7
B backward

Branches are used to change execution flow. Most assemblers hide the details of a branch
instruction encoding by using labels. In this example, forward and backward are the labels.
The branch labels are placed at the beginning of the line and are used to mark an address
that can be used later by the assembler to calculate the branch offset. ■

60 Chapter 3 Introduction to the ARM Instruction Set

Example

3.14
The branch with link, or BL, instruction is similar to the B instruction but overwrites the
link register lr with a return address. It performs a subroutine call. This example shows
a simple fragment of code that branches to a subroutine using the BL instruction. To return
from a subroutine, you copy the link register to the pc.

BL subroutine ; branch to subroutine
CMP r1, #5 ; compare r1 with 5
MOVEQ r1, #0 ; if (r1==5) then r1 = 0
:

subroutine
<subroutine code>
MOV pc, lr ; return by moving pc = lr

The branch exchange (BX) and branch exchange with link (BLX) are the third type of
branch instruction. The BX instruction uses an absolute address stored in register Rm. It
is primarily used to branch to and from Thumb code, as shown in Chapter 4. The T bit
in the cpsr is updated by the least significant bit of the branch register. Similarly the BLX
instruction updates the T bit of the cpsr with the least significant bit and additionally sets
the link register with the return address. ■

3.3 Load-Store Instructions
Load-store instructions transfer data between memory and processor registers. There are
three types of load-store instructions: single-register transfer, multiple-register transfer,
and swap.

3.3.1 Single-Register Transfer

These instructions are used for moving a single data item in and out of a register. The
datatypes supported are signed and unsigned words (32-bit), halfwords (16-bit), and bytes.
Here are the various load-store single-register transfer instructions.

Syntax: <LDR|STR>{<cond>}{B} Rd,addressing1

LDR{<cond>}SB|H|SH Rd, addressing2

STR{<cond>}H Rd, addressing2

LDR load word into a register Rd <- mem32[address]

STR save byte or word from a register Rd -> mem32[address]

LDRB load byte into a register Rd <- mem8[address]

STRB save byte from a register Rd -> mem8[address]

3.3 Load-Store Instructions 61

LDRH load halfword into a register Rd <- mem16[address]

STRH save halfword into a register Rd -> mem16[address]

LDRSB load signed byte into a register Rd <- SignExtend

(mem8[address])

LDRSH load signed halfword into a register Rd <- SignExtend

(mem16[address])

Tables 3.5 and 3.7, to be presented is Section 3.3.2, describe the addressing1 and addressing2

syntax.

Example

3.15
LDR and STR instructions can load and store data on a boundary alignment that is the same
as the datatype size being loaded or stored. For example, LDR can only load 32-bit words on
a memory address that is a multiple of four bytes—0, 4, 8, and so on. This example shows
a load from a memory address contained in register r1, followed by a store back to the same
address in memory.

;
; load register r0 with the contents of
; the memory address pointed to by register
; r1.
;

LDR r0, [r1] ; = LDR r0, [r1, #0]
;
; store the contents of register r0 to
; the memory address pointed to by
; register r1.
;

STR r0, [r1] ; = STR r0, [r1, #0]

The first instruction loads a word from the address stored in register r1 and places it into
register r0. The second instruction goes the other way by storing the contents of register
r0 to the address contained in register r1. The offset from register r1 is zero. Register r1 is
called the base address register. ■

3.3.2 Single-Register Load-Store Addressing Modes

The ARM instruction set provides different modes for addressing memory. These modes
incorporate one of the indexing methods: preindex with writeback, preindex, and postindex
(see Table 3.4).

62 Chapter 3 Introduction to the ARM Instruction Set

Table 3.4 Index methods.

Base address
Index method Data register Example

Preindex with writeback mem[base + offset] base + offset LDR r0,[r1,#4]!
Preindex mem[base + offset] not updated LDR r0,[r1,#4]
Postindex mem[base] base + offset LDR r0,[r1],#4

Note: ! indicates that the instruction writes the calculated address back to the base address register.

Example

3.16
Preindex with writeback calculates an address from a base register plus address offset and
then updates that address base register with the new address. In contrast, the preindex offset
is the same as the preindex with writeback but does not update the address base register.
Postindex only updates the address base register after the address is used. The preindex
mode is useful for accessing an element in a data structure. The postindex and preindex
with writeback modes are useful for traversing an array.

PRE r0 = 0x00000000
r1 = 0x00090000
mem32[0x00009000] = 0x01010101
mem32[0x00009004] = 0x02020202

LDR r0, [r1, #4]!

Preindexing with writeback:

POST(1) r0 = 0x02020202
r1 = 0x00009004

LDR r0, [r1, #4]

Preindexing:

POST(2) r0 = 0x02020202
r1 = 0x00009000

LDR r0, [r1], #4

Postindexing:

POST(3) r0 = 0x01010101
r1 = 0x00009004

3.3 Load-Store Instructions 63

Table 3.5 Single-register load-store addressing, word or unsigned byte.

Addressing1 mode and index method Addressing1 syntax

Preindex with immediate offset [Rn, #+/-offset_12]
Preindex with register offset [Rn, +/-Rm]
Preindex with scaled register offset [Rn, +/-Rm, shift #shift_imm]
Preindex writeback with immediate offset [Rn, #+/-offset_12]!
Preindex writeback with register offset [Rn, +/-Rm]!
Preindex writeback with scaled register offset [Rn, +/-Rm, shift #shift_imm]!
Immediate postindexed [Rn], #+/-offset_12
Register postindex [Rn], +/-Rm
Scaled register postindex [Rn], +/-Rm, shift #shift_imm

Example 3.15 used a preindex method. This example shows how each indexing method
effects the address held in register r1, as well as the data loaded into register r0. Each
instruction shows the result of the index method with the same pre-condition. ■

The addressing modes available with a particular load or store instruction depend on
the instruction class. Table 3.5 shows the addressing modes available for load and store of
a 32-bit word or an unsigned byte.

A signed offset or register is denoted by “+/−”, identifying that it is either a positive or
negative offset from the base address register Rn. The base address register is a pointer to
a byte in memory, and the offset specifies a number of bytes.

Immediate means the address is calculated using the base address register and a 12-bit
offset encoded in the instruction. Register means the address is calculated using the base
address register and a specific register’s contents. Scaled means the address is calculated
using the base address register and a barrel shift operation.

Table 3.6 provides an example of the different variations of the LDR instruction. Table 3.7
shows the addressing modes available on load and store instructions using 16-bit halfword
or signed byte data.

These operations cannot use the barrel shifter. There are no STRSB or STRSH instructions
since STRH stores both a signed and unsigned halfword; similarly STRB stores signed and
unsigned bytes. Table 3.8 shows the variations for STRH instructions.

3.3.3 Multiple-Register Transfer

Load-store multiple instructions can transfer multiple registers between memory and the
processor in a single instruction. The transfer occurs from a base address register Rn pointing
into memory. Multiple-register transfer instructions are more efficient from single-register
transfers for moving blocks of data around memory and saving and restoring context and
stacks.

64 Chapter 3 Introduction to the ARM Instruction Set

Table 3.6 Examples of LDR instructions using different addressing modes.

Instruction r0 = r1 + =
Preindex LDR r0,[r1,#0x4]! mem32[r1 + 0x4] 0x4
with
writeback

LDR r0,[r1,r2]! mem32[r1+r2] r2
LDR r0,[r1,r2,LSR#0x4]! mem32[r1 + (r2 LSR 0x4)] (r2 LSR 0x4)

Preindex LDR r0,[r1,#0x4] mem32[r1 + 0x4] not updated
LDR r0,[r1,r2] mem32[r1 + r2] not updated
LDR r0,[r1,-r2,LSR #0x4] mem32[r1-(r2 LSR 0x4)] not updated

Postindex LDR r0,[r1],#0x4 mem32[r1] 0x4
LDR r0,[r1],r2 mem32[r1] r2
LDR r0,[r1],r2,LSR #0x4 mem32[r1] (r2 LSR 0x4)

Table 3.7 Single-register load-store addressing, halfword, signed halfword, signed byte, and
doubleword.

Addressing2 mode and index method Addressing2 syntax

Preindex immediate offset [Rn, #+/-offset_8]
Preindex register offset [Rn, +/-Rm]
Preindex writeback immediate offset [Rn, #+/-offset_8]!
Preindex writeback register offset [Rn, +/-Rm]!
Immediate postindexed [Rn], #+/-offset_8
Register postindexed [Rn], +/-Rm

Table 3.8 Variations of STRH instructions.

Instruction Result r1 + =
Preindex with STRH r0,[r1,#0x4]! mem16[r1+0x4]=r0 0x4
writeback

STRH r0,[r1,r2]! mem16[r1+r2]=r0 r2
Preindex STRH r0,[r1,#0x4] mem16[r1+0x4]=r0 not updated

STRH r0,[r1,r2] mem16[r1+r2]=r0 not updated
Postindex STRH r0,[r1],#0x4 mem16[r1]=r0 0x4

STRH r0,[r1],r2 mem16[r1]=r0 r2

3.3 Load-Store Instructions 65

Load-store multiple instructions can increase interrupt latency. ARM implementations
do not usually interrupt instructions while they are executing. For example, on an ARM7
a load multiple instruction takes 2 + Nt cycles, where N is the number of registers to load
and t is the number of cycles required for each sequential access to memory. If an interrupt
has been raised, then it has no effect until the load-store multiple instruction is complete.

Compilers, such as armcc, provide a switch to control the maximum number of registers
being transferred on a load-store, which limits the maximum interrupt latency.

Syntax: <LDM|STM>{<cond>}<addressing mode> Rn{!},<registers>{ˆ}

LDM load multiple registers {Rd}∗N <- mem32[start address + 4∗N] optional Rn updated

STM save multiple registers {Rd}∗N -> mem32[start address + 4∗N] optional Rn updated

Table 3.9 shows the different addressing modes for the load-store multiple instructions.
Here N is the number of registers in the list of registers.

Any subset of the current bank of registers can be transferred to memory or fetched
from memory. The base register Rn determines the source or destination address for a load-
store multiple instruction. This register can be optionally updated following the transfer.
This occurs when register Rn is followed by the ! character, similiar to the single-register
load-store using preindex with writeback.

Table 3.9 Addressing mode for load-store multiple instructions.

Addressing
mode Description Start address End address Rn!

IA increment after Rn Rn + 4∗N − 4 Rn + 4∗N
IB increment before Rn + 4 Rn + 4∗N Rn + 4∗N
DA decrement after Rn − 4∗N + 4 Rn Rn − 4∗N
DB decrement before Rn − 4∗N Rn − 4 Rn − 4∗N

Example

3.17
In this example, register r0 is the base register Rn and is followed by !, indicating that the
register is updated after the instruction is executed. You will notice within the load multiple
instruction that the registers are not individually listed. Instead the “-” character is used to
identify a range of registers. In this case the range is from register r1 to r3 inclusive.

Each register can also be listed, using a comma to separate each register within
“{” and “}” brackets.

PRE mem32[0x80018] = 0x03
mem32[0x80014] = 0x02

66 Chapter 3 Introduction to the ARM Instruction Set

mem32[0x80010] = 0x01
r0 = 0x00080010
r1 = 0x00000000
r2 = 0x00000000
r3 = 0x00000000

LDMIA r0!, {r1-r3}

POST r0 = 0x0008001c
r1 = 0x00000001
r2 = 0x00000002
r3 = 0x00000003

Figure 3.3 shows a graphical representation.
The base register r0 points to memory address 0x80010 in the PRE condition. Memory

addresses 0x80010, 0x80014, and 0x80018 contain the values 1, 2, and 3 respectively. After
the load multiple instruction executes registers r1, r2, and r3 contain these values as shown
in Figure 3.4. The base register r0 now points to memory address 0x8001c after the last
loaded word.

Now replace the LDMIA instruction with a load multiple and increment before LDMIB
instruction and use the same PRE conditions. The first word pointed to by register r0 is
ignored and register r1 is loaded from the next memory location as shown in Figure 3.5.

After execution, register r0 now points to the last loaded memory location. This is in
contrast with the LDMIA example, which pointed to the next memory location. ■

The decrement versions DA and DB of the load-store multiple instructions decrement the
start address and then store to ascending memory locations. This is equivalent to descending
memory but accessing the register list in reverse order. With the increment and decrement
load multiples, you can access arrays forwards or backwards. They also allow for stack push
and pull operations, illustrated later in this section.

0x80020
0x8001c
0x80018
0x80014
0x80010
0x8000c

0x00000005
0x00000004
0x00000003
0x00000002
0x00000001
0x00000000

r3 = 0x00000000
r2 = 0x00000000
r1 = 0x00000000r0 = 0x80010

Memory
addressAddress pointer Data

Figure 3.3 Pre-condition for LDMIA instruction.

3.3 Load-Store Instructions 67

0x80020
0x8001c
0x80018
0x80014
0x80010
0x8000c

0x00000005
0x00000004
0x00000003
0x00000002
0x00000001
0x00000000

r3 = 0x00000003
r2 = 0x00000002
r1 = 0x00000001

r0 = 0x8001c

Memory
addressAddress pointer Data

Figure 3.4 Post-condition for LDMIA instruction.

0x80020
0x8001c
0x80018
0x80014
0x80010
0x8000c

0x00000005
0x00000004
0x00000003
0x00000002
0x00000001
0x00000000

r3 = 0x00000004
r2 = 0x00000003
r1 = 0x00000002

r0 = 0x8001c

Memory
addressAddress pointer Data

Figure 3.5 Post-condition for LDMIB instruction.

Table 3.10 Load-store multiple pairs when base update used.

Store multiple Load multiple

STMIA LDMDB
STMIB LDMDA
STMDA LDMIB
STMDB LDMIA

Table 3.10 shows a list of load-store multiple instruction pairs. If you use a store with
base update, then the paired load instruction of the same number of registers will reload
the data and restore the base address pointer. This is useful when you need to temporarily
save a group of registers and restore them later.

68 Chapter 3 Introduction to the ARM Instruction Set

Example

3.18
This example shows an STM increment before instruction followed by an LDM decrement after
instruction.

PRE r0 = 0x00009000
r1 = 0x00000009
r2 = 0x00000008
r3 = 0x00000007

STMIB r0!, {r1-r3}

MOV r1, #1
MOV r2, #2
MOV r3, #3

PRE(2) r0 = 0x0000900c
r1 = 0x00000001
r2 = 0x00000002
r3 = 0x00000003

LDMDA r0!, {r1-r3}

POST r0 = 0x00009000
r1 = 0x00000009
r2 = 0x00000008
r3 = 0x00000007

The STMIB instruction stores the values 7, 8, 9 to memory. We then corrupt register r1 to r3.
The LDMDA reloads the original values and restores the base pointer r0. ■

Example

3.19
We illustrate the use of the load-store multiple instructions with a block memory copy
example. This example is a simple routine that copies blocks of 32 bytes from a source
address location to a destination address location.

The example has two load-store multiple instructions, which use the same increment
after addressing mode.

; r9 points to start of source data
; r10 points to start of destination data
; r11 points to end of the source

loop
; load 32 bytes from source and update r9 pointer
LDMIA r9!, {r0-r7}

3.3 Load-Store Instructions 69

; store 32 bytes to destination and update r10 pointer
STMIA r10!, {r0-r7} ; and store them

; have we reached the end
CMP r9, r11
BNE loop

This routine relies on registers r9, r10, and r11 being set up before the code is executed.
Registers r9 and r11 determine the data to be copied, and register r10 points to the desti-
nation in memory for the data. LDMIA loads the data pointed to by register r9 into registers
r0 to r7. It also updates r9 to point to the next block of data to be copied. STMIA copies the
contents of registers r0 to r7 to the destination memory address pointed to by register r10.
It also updates r10 to point to the next destination location. CMP and BNE compare pointers
r9 and r11 to check whether the end of the block copy has been reached. If the block copy
is complete, then the routine finishes; otherwise the loop repeats with the updated values
of register r9 and r10.

The BNE is the branch instruction B with a condition mnemonic NE (not equal). If the
previous compare instruction sets the condition flags to not equal, the branch instruction
is executed.

Figure 3.6 shows the memory map of the block memory copy and how the routine
moves through memory. Theoretically this loop can transfer 32 bytes (8 words) in two
instructions, for a maximum possible throughput of 46 MB/second being transferred at
33 MHz. These numbers assume a perfect memory system with fast memory. ■

High memory

Low memory

r11

r9

r10

Source

Destination

Copy
memory
location

Figure 3.6 Block memory copy in the memory map.

70 Chapter 3 Introduction to the ARM Instruction Set

3.3.3.1 Stack Operations

The ARM architecture uses the load-store multiple instructions to carry out stack
operations. The pop operation (removing data from a stack) uses a load multiple instruction;
similarly, the push operation (placing data onto the stack) uses a store multiple instruction.

When using a stack you have to decide whether the stack will grow up or down in
memory. A stack is either ascending (A) or descending (D). Ascending stacks grow towards
higher memory addresses; in contrast, descending stacks grow towards lower memory
addresses.

When you use a full stack (F), the stack pointer sp points to an address that is the last
used or full location (i.e., sp points to the last item on the stack). In contrast, if you use an
empty stack (E) the sp points to an address that is the first unused or empty location (i.e., it
points after the last item on the stack).

There are a number of load-store multiple addressing mode aliases available to support
stack operations (see Table 3.11). Next to the pop column is the actual load multiple
instruction equivalent. For example, a full ascending stack would have the notation FA
appended to the load multiple instruction—LDMFA. This would be translated into an LDMDA
instruction.

ARM has specified an ARM-Thumb Procedure Call Standard (ATPCS) that defines how
routines are called and how registers are allocated. In the ATPCS, stacks are defined as being
full descending stacks. Thus, the LDMFD and STMFD instructions provide the pop and push
functions, respectively.

Example

3.20
The STMFD instruction pushes registers onto the stack, updating the sp. Figure 3.7 shows
a push onto a full descending stack. You can see that when the stack grows the stack pointer
points to the last full entry in the stack.

PRE r1 = 0x00000002
r4 = 0x00000003
sp = 0x00080014

STMFD sp!, {r1,r4}

Table 3.11 Addressing methods for stack operations.

Addressing mode Description Pop = LDM Push = STM

FA full ascending LDMFA LDMDA STMFA STMIB
FD full descending LDMFD LDMIA STMFD STMDB
EA empty ascending LDMEA LDMDB STMEA STMIA
ED empty descending LDMED LDMIB STMED STMDA

3.3 Load-Store Instructions 71

0x80018
0x80014
0x80010
0x8000c

0x00000001
0x00000002
Empty
Empty

sp

AddressPRE Data

0x80018
0x80014
0x80010
0x8000c

0x00000001
0x00000002
0x00000003
0x00000002sp

AddressPOST Data

Figure 3.7 STMFD instruction—full stack push operation.

POST r1 = 0x00000002
r4 = 0x00000003
sp = 0x0008000c ■

Example

3.21
In contrast, Figure 3.8 shows a push operation on an empty stack using the STMED instruc-
tion. The STMED instruction pushes the registers onto the stack but updates register sp to
point to the next empty location.

PRE r1 = 0x00000002
r4 = 0x00000003
sp = 0x00080010

STMED sp!, {r1,r4}

POST r1 = 0x00000002
r4 = 0x00000003
sp = 0x00080008 ■

0x80018
0x80014
0x80010
0x8000c
0x80008

0x00000001
0x00000002
Empty
Empty
Empty

sp

AddressPRE Data

0x80018
0x80014
0x80010
0x8000c
0x80008

0x00000001
0x00000002
0x00000003
0x00000002
Emptysp

AddressPOST Data

Figure 3.8 STMED instruction—empty stack push operation.

72 Chapter 3 Introduction to the ARM Instruction Set

When handling a checked stack there are three attributes that need to be preserved: the
stack base, the stack pointer, and the stack limit. The stack base is the starting address of the
stack in memory. The stack pointer initially points to the stack base; as data is pushed onto
the stack, the stack pointer descends memory and continuously points to the top of stack.
If the stack pointer passes the stack limit, then a stack overflow error has occurred. Here is
a small piece of code that checks for stack overflow errors for a descending stack:

; check for stack overflow

SUB sp, sp, #size
CMP sp, r10
BLLO _stack_overflow ; condition

ATPCS defines register r10 as the stack limit or sl. This is optional since it is only used when
stack checking is enabled. The BLLO instruction is a branch with link instruction plus the
condition mnemonic LO. If sp is less than register r10 after the new items are pushed onto
the stack, then stack overflow error has occurred. If the stack pointer goes back past the
stack base, then a stack underflow error has occurred.

3.3.4 Swap Instruction

The swap instruction is a special case of a load-store instruction. It swaps the contents of
memory with the contents of a register. This instruction is an atomic operation—it reads
and writes a location in the same bus operation, preventing any other instruction from
reading or writing to that location until it completes.

Syntax: SWP{B}{<cond>} Rd,Rm,[Rn]

SWP swap a word between memory and a register tmp = mem32[Rn]

mem32[Rn] = Rm

Rd = tmp

SWPB swap a byte between memory and a register tmp = mem8[Rn]

mem8[Rn] = Rm

Rd = tmp

Swap cannot be interrupted by any other instruction or any other bus access. We say
the system “holds the bus” until the transaction is complete.

Example

3.22
The swap instruction loads a word from memory into register r0 and overwrites the memory
with register r1.

3.4 Software Interrupt Instruction 73

PRE mem32[0x9000] = 0x12345678
r0 = 0x00000000
r1 = 0x11112222
r2 = 0x00009000

SWP r0, r1, [r2]

POST mem32[0x9000] = 0x11112222
r0 = 0x12345678
r1 = 0x11112222
r2 = 0x00009000

This instruction is particularly useful when implementing semaphores and mutual
exclusion in an operating system. You can see from the syntax that this instruction can also
have a byte size qualifier B, so this instruction allows for both a word and a byte swap. ■

Example

3.23
This example shows a simple data guard that can be used to protect data from being written
by another task. The SWP instruction “holds the bus” until the transaction is complete.

spin
MOV r1, =semaphore
MOV r2, #1
SWP r3, r2, [r1] ; hold the bus until complete
CMP r3, #1
BEQ spin

The address pointed to by the semaphore either contains the value 0 or 1. When the
semaphore equals 1, then the service in question is being used by another process. The
routine will continue to loop around until the service is released by the other process—in
other words, when the semaphore address location contains the value 0. ■

3.4 Software Interrupt Instruction
A software interrupt instruction (SWI) causes a software interrupt exception, which provides
a mechanism for applications to call operating system routines.

Syntax: SWI{<cond>} SWI_number

SWI software interrupt lr_svc = address of instruction following the SWI
spsr_svc = cpsr

pc = vectors + 0x8
cpsr mode = SVC

cpsr I = 1 (mask IRQ interrupts)

74 Chapter 3 Introduction to the ARM Instruction Set

When the processor executes an SWI instruction, it sets the program counter pc to the
offset 0x8 in the vector table. The instruction also forces the processor mode to SVC, which
allows an operating system routine to be called in a privileged mode.

Each SWI instruction has an associated SWI number, which is used to represent
a particular function call or feature.

Example

3.24
Here we have a simple example of an SWI call with SWI number 0x123456, used by ARM
toolkits as a debugging SWI. Typically the SWI instruction is executed in user mode.

PRE cpsr = nzcVqift_USER
pc = 0x00008000
lr = 0x003fffff; lr = r14
r0 = 0x12

0x00008000 SWI 0x123456

POST cpsr = nzcVqIft_SVC
spsr = nzcVqift_USER
pc = 0x00000008
lr = 0x00008004
r0 = 0x12

Since SWI instructions are used to call operating system routines, you need some form
of parameter passing. This is achieved using registers. In this example, register r0 is used to
pass the parameter 0x12. The return values are also passed back via registers. ■

Code called the SWI handler is required to process the SWI call. The handler obtains
the SWI number using the address of the executed instruction, which is calculated from the
link register lr.

The SWI number is determined by

SWI_Number = <SWI instruction> AND NOT(0xff000000)

Here the SWI instruction is the actual 32-bit SWI instruction executed by the processor.

Example

3.25
This example shows the start of an SWI handler implementation. The code fragment deter-
mines what SWI number is being called and places that number into register r10. You can
see from this example that the load instruction first copies the complete SWI instruction
into register r10. The BIC instruction masks off the top bits of the instruction, leaving the
SWI number. We assume the SWI has been called from ARM state.

SWI_handler
;
; Store registers r0-r12 and the link register

3.5 Program Status Register Instructions 75

;
STMFD sp!, {r0-r12, lr}

; Read the SWI instruction
LDR r10, [lr, #-4]

; Mask off top 8 bits
BIC r10, r10, #0xff000000

; r10 - contains the SWI number
BL service_routine

; return from SWI handler
LDMFD sp!, {r0-r12, pc}ˆ

The number in register r10 is then used by the SWI handler to call the appropriate SWI
service routine. ■

3.5 Program Status Register Instructions
The ARM instruction set provides two instructions to directly control a program status
register (psr). The MRS instruction transfers the contents of either the cpsr or spsr into
a register; in the reverse direction, the MSR instruction transfers the contents of a register
into the cpsr or spsr. Together these instructions are used to read and write the cpsr and spsr.

In the syntax you can see a label called fields. This can be any combination of control
(c), extension (x), status (s), and flags (f). These fields relate to particular byte regions in
a psr, as shown in Figure 3.9.

Syntax: MRS{<cond>} Rd,<cpsr|spsr>
MSR{<cond>} <cpsr|spsr>_<fields>,Rm
MSR{<cond>} <cpsr|spsr>_<fields>,#immediate

Fields

Bit 31 30 29 28

N Z C V

7 6 5 4 0

I F T Mode

Flags [24:31] Status [16:23] eXtension [8:15] Control [0:7]

Figure 3.9 psr byte fields.

76 Chapter 3 Introduction to the ARM Instruction Set

MRS copy program status register to a general-purpose register Rd = psr

MSR move a general-purpose register to a program status register psr[field] = Rm

MSR move an immediate value to a program status register psr[field] = immediate

The c field controls the interrupt masks, Thumb state, and processor mode.
Example 3.26 shows how to enable IRQ interrupts by clearing the I mask. This opera-
tion involves using both the MRS and MSR instructions to read from and then write to
the cpsr.

Example

3.26
The MSR first copies the cpsr into register r1. The BIC instruction clears bit 7 of r1. Register
r1 is then copied back into the cpsr, which enables IRQ interrupts. You can see from this
example that this code preserves all the other settings in the cpsr and only modifies the I bit
in the control field.

PRE cpsr = nzcvqIFt_SVC

MRS r1, cpsr
BIC r1, r1, #0x80 ; 0b01000000
MSR cpsr_c, r1

POST cpsr = nzcvqiFt_SVC

This example is in SVC mode. In user mode you can read all cpsr bits, but you can only
update the condition flag field f. ■

3.5.1 Coprocessor Instructions

Coprocessor instructions are used to extend the instruction set. A coprocessor can either
provide additional computation capability or be used to control the memory subsystem
including caches and memory management. The coprocessor instructions include data
processing, register transfer, and memory transfer instructions. We will provide only a short
overview since these instructions are coprocessor specific. Note that these instructions are
only used by cores with a coprocessor.

Syntax: CDP{<cond>} cp, opcode1, Cd, Cn {, opcode2}
<MRC|MCR>{<cond>} cp, opcode1, Rd, Cn, Cm {, opcode2}
<LDC|STC>{<cond>} cp, Cd, addressing

3.5 Program Status Register Instructions 77

CDP coprocessor data processing—perform an operation in a coprocessor

MRC MCR coprocessor register transfer—move data to/from coprocessor registers

LDC STC coprocessor memory transfer—load and store blocks of memory to/from a coprocessor

In the syntax of the coprocessor instructions, the cp field represents the coprocessor
number between p0 and p15. The opcode fields describe the operation to take place on
the coprocessor. The Cn, Cm, and Cd fields describe registers within the coprocessor.
The coprocessor operations and registers depend on the specific coprocessor you are
using. Coprocessor 15 (CP15) is reserved for system control purposes, such as memory
management, write buffer control, cache control, and identification registers.

Example

3.27
This example shows a CP15 register being copied into a general-purpose register.

; transferring the contents of CP15 register c0 to register r10
MRC p15, 0, r10, c0, c0, 0

Here CP15 register-0 contains the processor identification number. This register is copied
into the general-purpose register r10. ■

3.5.2 Coprocessor 15 Instruction Syntax

CP15 configures the processor core and has a set of dedicated registers to store configuration
information, as shown in Example 3.27. A value written into a register sets a configuration
attribute—for example, switching on the cache.

CP15 is called the system control coprocessor. Both MRC and MCR instructions are used to
read and write to CP15, where register Rd is the core destination register, Cn is the primary
register, Cm is the secondary register, and opcode2 is a secondary register modifier. You
may occasionally hear secondary registers called “extended registers.”

As an example, here is the instruction to move the contents of CP15 control register c1
into register r1 of the processor core:

MRC p15, 0, r1, c1, c0, 0

We use a shorthand notation for CP15 reference that makes referring to configuration
registers easier to follow. The reference notation uses the following format:

CP15:cX:cY:Z

78 Chapter 3 Introduction to the ARM Instruction Set

The first term, CP15, defines it as coprocessor 15. The second term, after the separating
colon, is the primary register. The primary register X can have a value between 0 and 15.
The third term is the secondary or extended register. The secondary register Y can have
a value between 0 and 15. The last term, opcode2, is an instruction modifier and can have
a value between 0 and 7. Some operations may also use a nonzero value w of opcode1. We
write these as CP15:w:cX:cY:Z.

3.6 Loading Constants
You might have noticed that there is no ARM instruction to move a 32-bit constant into
a register. Since ARM instructions are 32 bits in size, they obviously cannot specify a general
32-bit constant.

To aid programming there are two pseudoinstructions to move a 32-bit value into
a register.

Syntax: LDR Rd, =constant
ADR Rd, label

LDR load constant pseudoinstruction Rd = 32-bit constant

ADR load address pseudoinstruction Rd = 32-bit relative address

The first pseudoinstruction writes a 32-bit constant to a register using whatever instruc-
tions are available. It defaults to a memory read if the constant cannot be encoded using
other instructions.

The second pseudoinstruction writes a relative address into a register, which will be
encoded using a pc-relative expression.

Example

3.28
This example shows an LDR instruction loading a 32-bit constant 0xff00ffff into
register r0.

LDR r0, [pc, #constant_number-8-{PC}]
:

constant_number
DCD 0xff00ffff

This example involves a memory access to load the constant, which can be expensive for
time-critical routines. ■

Example 3.29 shows an alternative method to load the same constant into register r0 by
using an MVN instruction.

3.7 ARMv5E Extensions 79

Table 3.12 LDR pseudoinstruction conversion.

Pseudoinstruction Actual instruction

LDR r0, =0xff MOV r0, #0xff
LDR r0, =0x55555555 LDR r0, [pc, #offset_12]

Example

3.29
Loading the constant 0xff00ffff using an MVN.

PRE none...

MVN r0, #0x00ff0000

POST r0 = 0xff00ffff ■

As you can see, there are alternatives to accessing memory, but they depend upon the
constant you are trying to load. Compilers and assemblers use clever techniques to avoid
loading a constant from memory. These tools have algorithms to find the optimal number
of instructions required to generate a constant in a register and make extensive use of
the barrel shifter. If the tools cannot generate the constant by these methods, then it is
loaded from memory. The LDR pseudoinstruction either inserts an MOV or MVN instruction
to generate a value (if possible) or generates an LDR instruction with a pc-relative address
to read the constant from a literal pool—a data area embedded within the code.

Table 3.12 shows two pseudocode conversions. The first conversion produces a simple
MOV instruction; the second conversion produces a pc-relative load. We recommended that
you use this pseudoinstruction to load a constant. To see how the assembler has handled
a particular load constant, you can pass the output through a disassembler, which will list
the instruction chosen by the tool to load the constant.

Another useful pseudoinstruction is the ADR instruction, or address relative. This instruc-
tion places the address of the given label into register Rd, using a pc-relative add or
subtract.

3.7 ARMv5E Extensions
The ARMv5E extensions provide many new instructions (see Table 3.13). One of the most
important additions is the signed multiply accumulate instructions that operate on 16-bit
data. These operations are single cycle on many ARMv5E implementations.

ARMv5E provides greater flexibility and efficiency when manipulating 16-bit values,
which is important for applications such as 16-bit digital audio processing.

80 Chapter 3 Introduction to the ARM Instruction Set

Table 3.13 New instructions provided by the ARMv5E extensions.

Instruction Description

CLZ {<cond>} Rd, Rm count leading zeros
QADD {<cond>} Rd, Rm, Rn signed saturated 32-bit add
QDADD{<cond>} Rd, Rm, Rn signed saturated double 32-bit add
QDSUB{<cond>} Rd, Rm, Rn signed saturated double 32-bit subtract
QSUB{<cond>} Rd, Rm, Rn signed saturated 32-bit subtract
SMLAxy{<cond>} Rd, Rm, Rs, Rn signed multiply accumulate 32-bit (1)
SMLALxy{<cond>} RdLo, RdHi, Rm, Rs signed multiply accumulate 64-bit
SMLAWy{<cond>} Rd, Rm, Rs, Rn signed multiply accumulate 32-bit (2)
SMULxy{<cond>} Rd, Rm, Rs signed multiply (1)
SMULWy{<cond>} Rd, Rm, Rs signed multiply (2)

3.7.1 Count Leading Zeros Instruction

The count leading zeros instruction counts the number of zeros between the most significant
bit and the first bit set to 1. Example 3.30 shows an example of a CLZ instruction.

Example

3.30
You can see from this example that the first bit set to 1 has 27 zeros preceding it. CLZ is
useful in routines that have to normalize numbers.

PRE r1 = 0b00000000000000000000000000010000

CLZ r0, r1

POST r0 = 27 ■

3.7.2 Saturated Arithmetic

Normal ARM arithmetic instructions wrap around when you overflow an integer value.
For example, 0x7fffffff + 1 = -0x80000000. Thus, when you design an algorithm,
you have to be careful not to exceed the maximum representable value in a 32-bit integer.

Example

3.31
This example shows what happens when the maximum value is exceeded.

PRE cpsr = nzcvqiFt_SVC
r0 = 0x00000000
r1 = 0x70000000 (positive)
r2 = 0x7fffffff (positive)

3.7 ARMv5E Extensions 81

ADDS r0, r1, r2

POST cpsr = NzcVqiFt_SVC
r0 = 0xefffffff (negative)

In the example, registers r1 and r2 contain positive numbers. Register r2 is equal to
0x7fffffff, which is the maximum positive value you can store in 32 bits. In a per-
fect world adding these numbers together would result in a large positive number. Instead
the value becomes negative and the overflow flag, V, is set. ■

In contrast, using the ARMv5E instructions you can saturate the result—once the highest
number is exceeded the results remain at the maximum value of 0x7fffffff. This avoids
the requirement for any additional code to check for possible overflows. Table 3.14 lists all
the ARMv5E saturation instructions.

Table 3.14 Saturation instructions.

Instruction Saturated calculation

QADD Rd = Rn + Rm
QDADD Rd = Rn + (Rm∗2)
QSUB Rd = Rn − Rm
QDSUB Rd = Rn − (Rm∗2)

Example

3.32
This example shows the same data being passed into the QADD instruction.

PRE cpsr = nzcvqiFt_SVC
r0 = 0x00000000
r1 = 0x70000000 (positive)
r2 = 0x7fffffff (positive)

QADD r0, r1, r2

POST cpsr = nzcvQiFt_SVC
r0 = 0x7fffffff

You will notice that the saturated number is returned in register r0. Also the Q bit (bit 27
of the cpsr) has been set, indicating saturation has occurred. The Q flag is sticky and will
remain set until explicitly cleared. ■

3.7.3 ARMv5E Multiply Instructions

Table 3.15 shows a complete list of the ARMv5E multiply instructions. In the table,
x and y select which 16 bits of a 32-bit register are used for the first and second

82 Chapter 3 Introduction to the ARM Instruction Set

Table 3.15 Signed multiply and multiply accumulate instructions.

Signed Multiply Signed Q flag
Instruction [Accumulate] result updated Calculation

SMLAxy (16-bit *16-bit)+ 32-bit 32-bit yes Rd = (Rm.x *Rs.y) + Rn
SMLALxy (16-bit *16-bit)+ 64-bit 64-bit — [RdHi, RdLo] + = Rm.x * Rs.y
SMLAWy ((32-bit *16-bit) � 16)+ 32-bit 32-bit yes Rd = ((Rm * Rs.y) � 16) + Rn
SMULxy (16-bit *16-bit) 32-bit — Rd = Rm.x * Rs.y
SMULWy ((32-bit *16-bit)� 16) 32-bit — Rd = (Rm * Rs.y) � 16

operands, respectively. These fields are set to a letter T for the top 16-bits, or the letter
B for the bottom 16 bits. For multiply accumulate operations with a 32-bit result, the Q flag
indicates if the accumulate overflowed a signed 32-bit value.

Example

3.33
This example shows how you use these operations. The example uses a signed multiply
accumulate instruction, SMLATB.

PRE r1 = 0x20000001
r2 = 0x20000001
r3 = 0x00000004

SMLATB r4, r1, r2, r3

POST r4 = 0x00002004

The instruction multiplies the top 16 bits of register r1 by the bottom 16 bits of register r2.
It adds the result to register r3 and writes it to destination register r4. ■

3.8 Conditional Execution
Most ARM instructions are conditionally executed—you can specify that the instruction
only executes if the condition code flags pass a given condition or test. By using conditional
execution instructions you can increase performance and code density.

The condition field is a two-letter mnemonic appended to the instruction mnemonic.
The default mnemonic is AL, or always execute.

Conditional execution reduces the number of branches, which also reduces the number
of pipeline flushes and thus improves the performance of the executed code. Conditional
execution depends upon two components: the condition field and condition flags. The
condition field is located in the instruction, and the condition flags are located in the cpsr.

3.8 Conditional Execution 83

Example

3.34
This example shows an ADD instruction with the EQ condition appended. This instruction
will only be executed when the zero flag in the cpsr is set to 1.

; r0 = r1 + r2 if zero flag is set
ADDEQ r0, r1, r2

Only comparison instructions and data processing instructions with the S suffix
appended to the mnemonic update the condition flags in the cpsr. ■

Example

3.35
To help illustrate the advantage of conditional execution, we will take the simple C code
fragment shown in this example and compare the assembler output using nonconditional
and conditional instructions.

while (a!=b)
{

if (a>b) a -= b; else b -= a;
}

Let register r1 represent a and register r2 represent b. The following code fragment
shows the same algorithm written in ARM assembler. This example only uses conditional
execution on the branch instructions:

; Greatest Common Divisor Algorithm
gcd

CMP r1, r2
BEQ complete
BLT lessthan
SUB r1, r1, r2
B gcd

lessthan
SUB r2, r2, r1
B gcd

complete
...

Now compare the same code with full conditional execution. As you can see, this
dramatically reduces the number of instructions:

gcd
CMP r1, r2

84 Chapter 3 Introduction to the ARM Instruction Set

SUBGT r1, r1, r2
SUBLT r2, r2, r1
BNE gcd ■

3.9 Summary
In this chapter we covered the ARM instruction set. All ARM instructions are 32 bits in
length. The arithmetic, logical, comparisons, and move instructions can all use the inline
barrel shifter, which pre-processes the second register Rm before it enters into the ALU.

The ARM instruction set has three types of load-store instructions: single-register load-
store, multiple-register load-store, and swap. The multiple load-store instructions provide
the push-pop operations on the stack. The ARM-Thumb Procedure Call Standard (ATPCS)
defines the stack as being a full descending stack.

The software interrupt instruction causes a software interrupt that forces the processor
into SVC mode; this instruction invokes privileged operating system routines. The pro-
gram status register instructions write and read to the cpsr and spsr. There are also special
pseudoinstructions that optimize the loading of 32-bit constants.

The ARMv5E extensions include count leading zeros, saturation, and improved multiply
instructions. The count leading zeros instruction counts the number of binary zeros before
the first binary one. Saturation handles arithmetic calculations that overflow a 32-bit integer
value. The improved multiply instructions provide better flexibility in multiplying 16-bit
values.

Most ARM instructions can be conditionally executed, which can dramatically reduce
the number of instructions required to perform a specific algorithm.

This Page Intentionally Left Blank

4.1 Thumb Register Usage
4.2 ARM-Thumb Interworking
4.3 Other Branch Instructions
4.4 Data Processing Instructions
4.5 Single-Register Load-Store Instructions
4.6 Multiple-Register Load-Store Instructions
4.7 Stack Instructions
4.8 Software Interrupt Instruction
4.9 Summary

C h a p t e r

Introduction
to the Thumb

Instruction Set

4

This chapter introduces the Thumb instruction set. Thumb encodes a subset of the 32-bit
ARM instructions into a 16-bit instruction set space. Since Thumb has higher performance
than ARM on a processor with a 16-bit data bus, but lower performance than ARM on
a 32-bit data bus, use Thumb for memory-constrained systems.

Thumb has higher code density—the space taken up in memory by an executable
program—than ARM. For memory-constrained embedded systems, for example, mobile
phones and PDAs, code density is very important. Cost pressures also limit memory size,
width, and speed.

On average, a Thumb implementation of the same code takes up around 30% less
memory than the equivalent ARM implementation. As an example, Figure 4.1 shows the
same divide code routine implemented in ARM and Thumb assembly code. Even though the
Thumb implementation uses more instructions, the overall memory footprint is reduced.
Code density was the main driving force for the Thumb instruction set. Because it was also
designed as a compiler target, rather than for hand-written assembly code, we recommend
that you write Thumb-targeted code in a high-level language like C or C++.

Each Thumb instruction is related to a 32-bit ARM instruction. Figure 4.2 shows
a simple Thumb ADD instruction being decoded into an equivalent ARM ADD instruction.

Table 4.1 provides a complete list of Thumb instructions available in the THUMBv2
architecture used in the ARMv5TE architecture. Only the branch relative instruction
can be conditionally executed. The limited space available in 16 bits causes the barrel
shift operations ASR, LSL, LSR, and ROR to be separate instructions in the Thumb ISA.

87

88 Chapter 4 Introduction to the Thumb Instruction Set

ARM code Thumb code
ARMDivide ThumbDivide
; IN: r0(value),r1(divisor) ; IN: r0(value),r1(divisor)
; OUT: r2(MODulus),r3(DIVide) ; OUT: r2(MODulus),r3(DIVide)

MOV r3,#0 MOV r3,#0
loop loop

SUBS r0,r0,r1 ADD r3,#1
ADDGE r3,r3,#1 SUB r0,r1
BGE loop BGE loop
ADD r2,r0,r1 SUB r3,#1

ADD r2,r0,r1

5 × 4 = 20 bytes 6 × 2 = 12 bytes

Figure 4.1 Code density.

Thumb 16-bit
instruction

ADD r0, #3

cpsr = nzcvqifT_SVC

D
E
C
O
D
E
R

ADDS r0, r0, #3

ARM 32-bit
instruction

Figure 4.2 Thumb instruction decoding.

We only describe a subset of these instructions in this chapter since most code is
compiled from a high-level language. See Appendix A for a complete list of Thumb
instructions.

This chapter covers Thumb register usage, ARM-Thumb interworking, branch instruc-
tions, data processing instructions, load-store instructions, stack operations, and software
interrupts.

4.1 Thumb Register Usage 89

Table 4.1 Thumb instruction set.

Mnemonics THUMB ISA Description

ADC v1 add two 32-bit values and carry
ADD v1 add two 32-bit values
AND v1 logical bitwise AND of two 32-bit values
ASR v1 arithmetic shift right
B v1 branch relative
BIC v1 logical bit clear (AND NOT) of two 32-bit values
BKPT v2 breakpoint instructions
BL v1 relative branch with link
BLX v2 branch with link and exchange
BX v1 branch with exchange
CMN v1 compare negative two 32-bit values
CMP v1 compare two 32-bit integers
EOR v1 logical exclusive OR of two 32-bit values
LDM v1 load multiple 32-bit words from memory to ARM registers
LDR v1 load a single value from a virtual address in memory
LSL v1 logical shift left
LSR v1 logical shift right
MOV v1 move a 32-bit value into a register
MUL v1 multiply two 32-bit values
MVN v1 move the logical NOT of 32-bit value into a register
NEG v1 negate a 32-bit value
ORR v1 logical bitwise OR of two 32-bit values
POP v1 pops multiple registers from the stack
PUSH v1 pushes multiple registers to the stack
ROR v1 rotate right a 32-bit value
SBC v1 subtract with carry a 32-bit value
STM v1 store multiple 32-bit registers to memory
STR v1 store register to a virtual address in memory
SUB v1 subtract two 32-bit values
SWI v1 software interrupt
TST v1 test bits of a 32-bit value

4.1 Thumb Register Usage
In Thumb state, you do not have direct access to all registers. Only the low registers r0
to r7 are fully accessible, as shown in Table 4.2. The higher registers r8 to r12 are only
accessible with MOV, ADD, or CMP instructions. CMP and all the data processing instructions
that operate on low registers update the condition flags in the cpsr.

90 Chapter 4 Introduction to the Thumb Instruction Set

Table 4.2 Summary of Thumb register usage.

Registers Access

r0–r7 fully accessible
r8–r12 only accessible by MOV, ADD, and CMP
r13 sp limited accessibility
r14 lr limited accessibility
r15 pc limited accessibility
cpsr only indirect access
spsr no access

You may have noticed from the Thumb instruction set list and from the Thumb register
usage table that there is no direct access to the cpsr or spsr. In other words, there are no
MSR- and MRS-equivalent Thumb instructions.

To alter the cpsr or spsr, you must switch into ARM state to use MSR and MRS. Similarly,
there are no coprocessor instructions in Thumb state. You need to be in ARM state to access
the coprocessor for configuring cache and memory management.

4.2 ARM-Thumb Interworking
ARM-Thumb interworking is the name given to the method of linking ARM and Thumb
code together for both assembly and C/C++. It handles the transition between the two
states. Extra code, called a veneer, is sometimes needed to carry out the transition. ATPCS
defines the ARM and Thumb procedure call standards.

To call a Thumb routine from an ARM routine, the core has to change state. This state
change is shown in the T bit of the cpsr. The BX and BLX branch instructions cause a switch
between ARM and Thumb state while branching to a routine. The BX lr instruction returns
from a routine, also with a state switch if necessary.

The BLX instruction was introduced in ARMv5T. On ARMv4T cores the linker uses
a veneer to switch state on a subroutine call. Instead of calling the routine directly, the
linker calls the veneer, which switches to Thumb state using the BX instruction.

There are two versions of the BX or BLX instructions: an ARM instruction and a Thumb
equivalent. The ARM BX instruction enters Thumb state only if bit 0 of the address in
Rn is set to binary 1; otherwise it enters ARM state. The Thumb BX instruction does
the same.

Syntax: BX Rm
BLX Rm | label

4.2 ARM-Thumb Interworking 91

BX Thumb version branch exchange pc = Rn & 0xfffffffe
T = Rn[0]

BLX Thumb version of the branch exchange lr = (instruction address after the BLX) + 1

with link pc = label, T = 0
pc = Rm & 0xfffffffe, T = Rm[0]

Unlike the ARM version, the Thumb BX instruction cannot be conditionally executed.

Example

4.1
This example shows a small code fragment that uses both the ARM and Thumb versions of
the BX instruction. You can see that the branch address into Thumb has the lowest bit set.
This sets the T bit in the cpsr to Thumb state.

The return address is not automatically preserved by the BX instruction. Rather the code
sets the return address explicitly using a MOV instruction prior to the branch:

; ARM code
CODE32 ; word aligned
LDR r0, =thumbCode+1 ; +1 to enter Thumb state
MOV lr, pc ; set the return address
BX r0 ; branch to Thumb code & mode
; continue here

; Thumb code
CODE16 ; halfword aligned

thumbCode
ADD r1, #1
BX lr ; return to ARM code & state

A branch exchange instruction can also be used as an absolute branch providing bit 0
isn’t used to force a state change:

; address(thumbCode) = 0x00010000

; cpsr = nzcvqIFt_SVC
; r0 = 0x00000000

0x00009000 LDR r0, =thumbCode+1

; cpsr = nzcvqIFt_SVC
; r0 = 0x00010001

0x00009008 BX r0

92 Chapter 4 Introduction to the Thumb Instruction Set

; cpsr = nzcvqIFT_SVC
; r0 = 0x00010001
; pc = 0x00010000

You can see that the least significant bit of register r0 is used to set the T bit of the cpsr. The
cpsr changes from IFt, prior to the execution of the BX, to IFT, after execution. The pc is
then set to point to the start address of the Thumb routine. ■

Example

4.2
Replacing the BX instruction with BLX simplifies the calling of a Thumb routine since it sets
the return address in the link register lr:

CODE32
LDR r0, =thumbRoutine+1 ; enter Thumb state
BLX r0 ; jump to Thumb code
; continue here

CODE16
thumbRoutine

ADD r1, #1
BX r14 ; return to ARM code and state ■

4.3 Other Branch Instructions
There are two variations of the standard branch instruction, or B. The first is similar to the
ARM version and is conditionally executed; the branch range is limited to a signed 8-bit
immediate, or −256 to +254 bytes. The second version removes the conditional part of the
instruction and expands the effective branch range to a signed 11-bit immediate, or −2048
to +2046 bytes.

The conditional branch instruction is the only conditionally executed instruction in
Thumb state.

Syntax: B<cond> label
B label
BL label

B branch pc = label

BL branch with link pc = label

lr = (instruction address after the BL) + 1

The BL instruction is not conditionally executed and has an approximate range of +/−4 MB.
This range is possible because BL (and BLX) instructions are translated into a pair of 16-bit

4.4 Data Processing Instructions 93

Thumb instructions. The first instruction in the pair holds the high part of the branch
offset, and the second the low part. These instructions must be used as a pair.

The code here shows the various instructions used to return from a BL subroutine call:

MOV pc, lr

BX lr

POP {pc}

To return, we set the pc to the value in lr. The stack instruction called POP will be discussed
in more detail in Section 4.7.

4.4 Data Processing Instructions
The data processing instructions manipulate data within registers. They include move
instructions, arithmetic instructions, shifts, logical instructions, comparison instructions,
and multiply instructions. The Thumb data processing instructions are a subset of the ARM
data processing instructions.

Syntax:
<ADC|ADD|AND|BIC|EOR|MOV|MUL|MVN|NEG|ORR|SBC|SUB> Rd, Rm
<ADD|ASR|LSL|LSR|ROR|SUB> Rd, Rn #immediate
<ADD|MOV|SUB> Rd,#immediate
<ADD|SUB> Rd,Rn,Rm
ADD Rd,pc,#immediate
ADD Rd,sp,#immediate
<ADD|SUB> sp, #immediate
<ASR|LSL|LSR|ROR> Rd,Rs
<CMN|CMP|TST> Rn,Rm
CMP Rn,#immediate
MOV Rd,Rn

ADC add two 32-bit values and carry Rd = Rd + Rm + C flag

ADD add two 32-bit values Rd = Rn + immediate

Rd = Rd + immediate

Rd = Rd + Rm

Rd = Rd + Rm

Rd = (pc & 0xfffffffc) + (immediate � 2)

Rd = sp + (immediate � 2)

sp = sp + (immediate � 2)

94 Chapter 4 Introduction to the Thumb Instruction Set

AND logical bitwise AND of two 32-bit values Rd = Rd & Rm

ASR arithmetic shift right Rd = Rm � immediate,

C flag = Rm[immediate − 1]

Rd = Rd � Rs, C flag = Rd[Rs - 1]

BIC logical bit clear (AND NOT) of two 32-bit Rd = Rd AND NOT(Rm)

values

CMN compare negative two 32-bit values Rn + Rm sets flags

CMP compare two 32-bit integers Rn − immediate sets flags

Rn − Rm sets flags

EOR logical exclusive OR of two 32-bit values Rd = Rd EOR Rm

LSL logical shift left Rd = Rm � immediate,

C flag = Rm[32 − immediate]

Rd = Rd � Rs, C flag = Rd[32 − Rs]

LSR logical shift right Rd = Rm � immediate,

C flag = Rd[immediate − 1]

Rd = Rd � Rs, C flag = Rd[Rs − 1]

MOV move a 32-bit value into a register Rd = immediate

Rd = Rn

Rd = Rm

MUL multiply two 32-bit values Rd = (Rm ∗ Rd)[31:0]

MVN move the logical NOT of a 32-bit value

into a register

Rd = NOT(Rm)

NEG negate a 32-bit value Rd = 0 − Rm

ORR logical bitwise OR of two 32-bit values Rd = Rd OR Rm

ROR rotate right a 32-bit value Rd = Rd RIGHT_ROTATE Rs,

C flag = Rd[Rs−1]

SBC subtract with carry a 32-bit value Rd = Rd − Rm − NOT(C flag)

SUB subtract two 32-bit values Rd = Rn − immediate

Rd = Rd − immediate

Rd = Rn − Rm

sp = sp − (immediate � 2)

TST test bits of a 32-bit value Rn AND Rm sets flags

4.4 Data Processing Instructions 95

These instructions follow the same style as the equivalent ARM instructions. Most
Thumb data processing instructions operate on low registers and update the cpsr. The
exceptions are

MOV Rd,Rn
ADD Rd,Rm
CMP Rn,Rm
ADD sp, #immediate
SUB sp, #immediate
ADD Rd,sp,#immediate
ADD Rd,pc,#immediate

which can operate on the higher registers r8–r14 and the pc. These instructions, except for
CMP, do not update the condition flags in the cpsr when using the higher registers. The CMP
instruction, however, always updates the cpsr.

Example

4.3
This example shows a simple Thumb ADD instruction. It takes two low registers r1 and r2
and adds them together. The result is then placed into register r0, overwriting the original
contents. The cpsr is also updated.

PRE cpsr = nzcvIFT_SVC
r1 = 0x80000000
r2 = 0x10000000

ADD r0, r1, r2

POST r0 = 0x90000000
cpsr = NzcvIFT_SVC ■

Example

4.4
Thumb deviates from the ARM style in that the barrel shift operations (ASR, LSL, LSR, and
ROR) are separate instructions. This example shows the logical left shift (LSL) instruction to
multiply register r2 by 2.

PRE r2 = 0x00000002
r4 = 0x00000001

LSL r2, r4

POST r2 = 0x00000004
r4 = 0x00000001 ■

See Appendix A for a complete list of Thumb data processing instructions.

96 Chapter 4 Introduction to the Thumb Instruction Set

4.5 Single-Register Load-Store Instructions
The Thumb instruction set supports load and storing registers, or LDR and STR. These
instructions use two preindexed addressing modes: offset by register and offset by
immediate.

Syntax: <LDR|STR>{<B|H>} Rd, [Rn,#immediate]
LDR{<H|SB|SH>} Rd,[Rn,Rm]
STR{<B|H>} Rd,[Rn,Rm]
LDR Rd,[pc,#immediate]
<LDR|STR> Rd,[sp,#immediate]

LDR load word into a register Rd <- mem32[address]

STR save word from a register Rd -> mem32[address]

LDRB load byte into a register Rd <- mem8[address]

STRB save byte from a register Rd -> mem8[address]

LDRH load halfword into a register Rd <- mem16[address]

STRH save halfword into a register Rd -> mem16[address]

LDRSB load signed byte into a register Rd <- SignExtend(mem8[address])

LDRSH load signed halfword into a register Rd <- SignExtend(mem16[address])

You can see the different addressing modes in Table 4.3. The offset by register uses
a base register Rn plus the register offset Rm. The second uses the same base register Rn
plus a 5-bit immediate or a value dependent on the data size. The 5-bit offset encoded in
the instruction is multiplied by one for byte accesses, two for 16-bit accesses, and four for
32-bit accesses.

Table 4.3 Addressing modes.

Type Syntax

Load/store register [Rn, Rm]
Base register + offset [Rn, #immediate]
Relative [pc|sp, #immediate]

Example

4.5
This example shows two Thumb instructions that use a preindex addressing mode. Both
use the same pre-condition.

4.6 Multiple-Register Load-Store Instructions 97

PRE mem32[0x90000] = 0x00000001
mem32[0x90004] = 0x00000002
mem32[0x90008] = 0x00000003
r0 = 0x00000000
r1 = 0x00090000
r4 = 0x00000004

LDR r0, [r1, r4] ; register

POST r0 = 0x00000002
r1 = 0x00090000
r4 = 0x00000004

LDR r0, [r1, #0x4] ; immediate

POST r0 = 0x00000002

Both instructions carry out the same operation. The only difference is the second LDR uses
a fixed offset, whereas the first one depends on the value in register r4. ■

4.6 Multiple-Register Load-Store Instructions
The Thumb versions of the load-store multiple instructions are reduced forms of
the ARM load-store multiple instructions. They only support the increment after (IA)
addressing mode.

Syntax : <LDM|STM>IA Rn!, {low Register list}

LDMIA load multiple registers {Rd}*N <- mem32[Rn + 4 ∗N], Rn = Rn + 4 ∗N

STMIA save multiple registers {Rd}*N -> mem32[Rn + 4 ∗N], Rn = Rn + 4 ∗N

Here N is the number of registers in the list of registers. You can see that these instruc-
tions always update the base register Rn after execution. The base register and list of registers
are limited to the low registers r0 to r7.

Example

4.6
This example saves registers r1 to r3 to memory addresses 0x9000 to 0x900c. It also updates
base register r4. Note that the update character ! is not an option, unlike with the ARM
instruction set.

PRE r1 = 0x00000001
r2 = 0x00000002

98 Chapter 4 Introduction to the Thumb Instruction Set

r3 = 0x00000003
r4 = 0x9000

STMIA r4!,{r1,r2,r3}

POST mem32[0x9000] = 0x00000001
mem32[0x9004] = 0x00000002
mem32[0x9008] = 0x00000003
r4 = 0x900c ■

4.7 Stack Instructions
The Thumb stack operations are different from the equivalent ARM instructions because
they use the more traditional POP and PUSH concept.

Syntax: POP {low_register_list{, pc}}
PUSH {low_register_list{, lr}}

POP pop registers from the stacks Rd∗N <- mem32[sp+ 4 ∗N], sp = sp+ 4 ∗N

PUSH push registers on to the stack Rd∗N -> mem32[sp+ 4 ∗N], sp = sp− 4 ∗N

The interesting point to note is that there is no stack pointer in the instruction. This is
because the stack pointer is fixed as register r13 in Thumb operations and sp is automatically
updated. The list of registers is limited to the low registers r0 to r7.

The PUSH register list also can include the link register lr; similarly the POP register
list can include the pc. This provides support for subroutine entry and exit, as shown in
Example 4.7.

The stack instructions only support full descending stack operations.

Example

4.7
In this example we use the POP and PUSH instructions. The subroutine ThumbRoutine is
called using a branch with link (BL) instruction.

; Call subroutine
BL ThumbRoutine
; continue

ThumbRoutine
PUSH {r1, lr} ; enter subroutine
MOV r0, #2
POP {r1, pc} ; return from subroutine

4.8 Software Interrupt Instruction 99

The link register lr is pushed onto the stack with register r1. Upon return, register r1 is
popped off the stack, as well as the return address being loaded into the pc. This returns
from the subroutine. ■

4.8 Software Interrupt Instruction
Similar to the ARM equivalent, the Thumb software interrupt (SWI) instruction causes
a software interrupt exception. If any interrupt or exception flag is raised in Thumb state,
the processor automatically reverts back to ARM state to handle the exception.

Syntax: SWI immediate

SWI software interrupt lr_svc = address of instruction following the SWI

spsr_svc = cpsr

pc = vectors + 0x8

cpsr mode = SVC

cpsr I = 1 (mask IRQ interrupts)

cpsr T = 0 (ARM state)

The Thumb SWI instruction has the same effect and nearly the same syntax as the ARM
equivalent. It differs in that the SWI number is limited to the range 0 to 255 and it is not
conditionally executed.

Example

4.8
This example shows the execution of a Thumb SWI instruction. Note that the processor
goes from Thumb state to ARM state after execution.

PRE cpsr = nzcVqifT_USER
pc = 0x00008000
lr = 0x003fffff ; lr = r14
r0 = 0x12

0x00008000 SWI 0x45

POST cpsr = nzcVqIft_SVC
spsr = nzcVqifT_USER
pc = 0x00000008
lr = 0x00008002
r0 = 0x12 ■

100 Chapter 4 Introduction to the Thumb Instruction Set

4.9 Summary
In this chapter we covered the Thumb instruction set. All Thumb instructions are 16 bits
in length. Thumb provides approximately 30% better code density over ARM code. Most
code written for Thumb is in a high-level language such as C and C++.

ATPCS defines how ARM and Thumb code call each other, called ARM-Thumb
interworking. Interworking uses the branch exchange (BX) instruction and branch exchange
with link (BLX) instruction to change state and jump to a specific routine.

In Thumb, only the branch instructions are conditionally executed. The barrel shift
operations (ASR, LSL, LSR, and ROR) are separate instructions.

The multiple-register load-store instructions only support the increment after (IA)
addressing mode. The Thumb instruction set includes POP and PUSH instructions as stack
operations. These instructions only support a full descending stack.

There are no Thumb instructions to access the coprocessors, cpsr, and spsr.

This Page Intentionally Left Blank

5.1 Overview of C Compilers and Optimization
5.2 Basic C Data Types

5.2.1 Local Variable Types

5.2.2 Function Argument Types

5.2.3 Signed versus Unsigned Types

5.3 C Looping Structures
5.3.1 Loops with a Fixed Number of Iterations

5.3.2 Loops Using a Variable Number of Iterations

5.3.3 Loop Unrolling

5.4 Register Allocation
5.5 Function Calls
5.6 Pointer Aliasing
5.7 Structure Arrangement
5.8 Bit-fields
5.9 Unaligned Data and Endianness
5.10 Division

5.10.1 Repeated Unsigned Division with Remainder

5.10.2 Converting Divides into Multiplies

5.10.3 Unsigned Division by a Constant

5.10.4 Signed Division by a Constant

5.11 Floating Point
5.12 Inline Functions and Inline Assembly
5.13 Portability Issues
5.14 Summary

C h a p t e r

Efficient C
Programming

5

The aim of this chapter is to help you write C code in a style that will compile efficiently
on the ARM architecture. We will look at many small examples to show how the compiler
translates C source to ARM assembler. Once you have a feel for this translation process,
you can distinguish fast C code from slow C code. The techniques apply equally to C++,
but we will stick to plain C for these examples.

We start with an overview of C compilers and optimization, which will give an idea
of the problems the C compiler faces when optimizing your code. By understanding these
problems you can write source code that will compile more efficiently in terms of increased
speed and reduced code size. The following sections are grouped by topic.

Sections 5.2 and 5.3 look at how to optimize a basic C loop. These sections use a data
packet checksum as a simple example to illustrate the ideas. Sections 5.4 and 5.5 look at
optimizing a whole C function body, including how the compiler allocates registers within
a function and how to reduce the overhead of a function call.

Sections 5.6 through 5.9 look at memory issues, including handling pointers and how to
pack data and access memory efficiently. Sections 5.10 through 5.12 look at basic operations
that are usually not supported directly by ARM instructions. You can add your own basic
operations using inline functions and assembler.

The final section summarizes problems you may face when porting C code from another
architecture to the ARM architecture.

103

104 Chapter 5 Efficient C Programming

5.1 Overview of C Compilers and Optimization
This chapter assumes that you are familiar with the C language and have some knowledge
of assembly programming. The latter is not essential, but is useful for following the
compiler output examples. See Chapter 3 or Appendix A for details of ARM assembly
syntax.

Optimizing code takes time and reduces source code readability. Usually, it’s only
worth optimizing functions that are frequently executed and important for performance.
We recommend you use a performance profiling tool, found in most ARM simulators, to
find these frequently executed functions. Document nonobvious optimizations with source
code comments to aid maintainability.

C compilers have to translate your C function literally into assembler so that it works for
all possible inputs. In practice, many of the input combinations are not possible or won’t
occur. Let’s start by looking at an example of the problems the compiler faces. The memclr
function clears N bytes of memory at address data.

void memclr(char *data, int N)
{

for (; N>0; N--)
{

*data=0;
data++;

}
}

No matter how advanced the compiler, it does not know whether N can be 0 on input or
not. Therefore the compiler needs to test for this case explicitly before the first iteration of
the loop.

The compiler doesn’t know whether the data array pointer is four-byte aligned or not.
If it is four-byte aligned, then the compiler can clear four bytes at a time using an int store
rather than a char store. Nor does it know whether N is a multiple of four or not. If N is
a multiple of four, then the compiler can repeat the loop body four times or store four bytes
at a time using an int store.

The compiler must be conservative and assume all possible values for N and all possible
alignments for data. Section 5.3 discusses these specific points in detail.

To write efficient C code, you must be aware of areas where the C compiler has to be
conservative, the limits of the processor architecture the C compiler is mapping to, and the
limits of a specific C compiler.

Most of this chapter covers the first two points above and should be applicable to any
ARM C compiler. The third point will be very dependent on the compiler vendor and
compiler revision. You will need to look at the compiler’s documentation or experiment
with the compiler yourself.

5.2 Basic C Data Types 105

To keep our examples concrete, we have tested them using the following specific C
compilers:

■ armcc from ARM Developer Suite version 1.1 (ADS1.1). You can license this compiler,
or a later version, directly from ARM.

■ arm-elf-gcc version 2.95.2. This is the ARM target for the GNU C compiler, gcc, and is
freely available.

We have used armcc from ADS1.1 to generate the example assembler output in this
book. The following short script shows you how to invoke armcc on a C file test.c. You
can use this to reproduce our examples.

armcc -Otime -c -o test.o test.c
fromelf -text/c test.o > test.txt

By default armcc has full optimizations turned on (the -O2 command line switch). The
-Otime switch optimizes for execution efficiency rather than space and mainly affects the
layout of for and while loops. If you are using the gcc compiler, then the following short
script generates a similar assembler output listing:

arm-elf-gcc -O2 -fomit-frame-pointer -c -o test.o test.c
arm-elf-objdump -d test.o > test.txt

Full optimizations are turned off by default for the GNU compiler. The -fomit-frame-
pointer switch prevents the GNU compiler from maintaining a frame pointer register.
Frame pointers assist the debug view by pointing to the local variables stored on the stack
frame. However, they are inefficient to maintain and shouldn’t be used in code critical to
performance.

5.2 Basic C Data Types
Let’s start by looking at how ARM compilers handle the basic C data types. We will see
that some of these types are more efficient to use for local variables than others. There are
also differences between the addressing modes available when loading and storing data of
each type.

ARM processors have 32-bit registers and 32-bit data processing operations. The ARM
architecture is a RISC load/store architecture. In other words you must load values from
memory into registers before acting on them. There are no arithmetic or logical instructions
that manipulate values in memory directly.

Early versions of the ARM architecture (ARMv1 to ARMv3) provided hardware
support for loading and storing unsigned 8-bit and unsigned or signed 32-bit values.

106 Chapter 5 Efficient C Programming

Table 5.1 Load and store instructions by ARM architecture.

Architecture Instruction Action

Pre-ARMv4 LDRB load an unsigned 8-bit value
STRB store a signed or unsigned 8-bit value
LDR load a signed or unsigned 32-bit value
STR store a signed or unsigned 32-bit value

ARMv4 LDRSB load a signed 8-bit value
LDRH load an unsigned 16-bit value
LDRSH load a signed 16-bit value
STRH store a signed or unsigned 16-bit value

ARMv5 LDRD load a signed or unsigned 64-bit value
STRD store a signed or unsigned 64-bit value

These architectures were used on processors prior to the ARM7TDMI. Table 5.1 shows
the load/store instruction classes available by ARM architecture.

In Table 5.1 loads that act on 8- or 16-bit values extend the value to 32 bits before writing
to an ARM register. Unsigned values are zero-extended, and signed values sign-extended.
This means that the cast of a loaded value to an int type does not cost extra instructions.
Similarly, a store of an 8- or 16-bit value selects the lowest 8 or 16 bits of the register. The
cast of an int to smaller type does not cost extra instructions on a store.

The ARMv4 architecture and above support signed 8-bit and 16-bit loads and stores
directly, through new instructions. Since these instructions are a later addition, they do
not support as many addressing modes as the pre-ARMv4 instructions. (See Section 3.3
for details of the different addressing modes.) We will see the effect of this in the example
checksum_v3 in Section 5.2.1.

Finally, ARMv5 adds instruction support for 64-bit load and stores. This is available in
ARM9E and later cores.

Prior to ARMv4, ARM processors were not good at handling signed 8-bit or any 16-bit
values. Therefore ARM C compilers define char to be an unsigned 8-bit value, rather than
a signed 8-bit value as is typical in many other compilers.

Compilers armcc and gcc use the datatype mappings in Table 5.2 for an ARM target.
The exceptional case for type char is worth noting as it can cause problems when you are
porting code from another processor architecture. A common example is using a char type
variable i as a loop counter, with loop continuation condition i ≥ 0. As i is unsigned for
the ARM compilers, the loop will never terminate. Fortunately armcc produces a warning
in this situation: unsigned comparison with 0. Compilers also provide an override switch to
make char signed. For example, the command line option -fsigned-char will make char
signed on gcc. The command line option -zc will have the same effect with armcc.

For the rest of this book we assume that you are using an ARMv4 processor or above.
This includes ARM7TDMI and all later processors.

5.2 Basic C Data Types 107

Table 5.2 C compiler datatype mappings.

C Data Type Implementation

char unsigned 8-bit byte
short signed 16-bit halfword
int signed 32-bit word
long signed 32-bit word
long long signed 64-bit double word

5.2.1 Local Variable Types

ARMv4-based processors can efficiently load and store 8-, 16-, and 32-bit data. However,
most ARM data processing operations are 32-bit only. For this reason, you should use
a 32-bit datatype, int or long, for local variables wherever possible. Avoid using char and
short as local variable types, even if you are manipulating an 8- or 16-bit value. The one
exception is when you want wrap-around to occur. If you require modulo arithmetic of the
form 255 + 1 = 0, then use the char type.

To see the effect of local variable types, let’s consider a simple example. We’ll look in
detail at a checksum function that sums the values in a data packet. Most communication
protocols (such as TCP/IP) have a checksum or cyclic redundancy check (CRC) routine to
check for errors in a data packet.

The following code checksums a data packet containing 64 words. It shows why you
should avoid using char for local variables.

int checksum_v1(int *data)
{
char i;
int sum = 0;

for (i = 0; i < 64; i++)
{

sum += data[i];
}
return sum;

}

At first sight it looks as though declaring i as a char is efficient. You may be thinking
that a char uses less register space or less space on the ARM stack than an int. On the
ARM, both these assumptions are wrong. All ARM registers are 32-bit and all stack entries
are at least 32-bit. Furthermore, to implement the i++ exactly, the compiler must account
for the case when i = 255. Any attempt to increment 255 should produce the answer 0.

108 Chapter 5 Efficient C Programming

Consider the compiler output for this function. We’ve added labels and comments to
make the assembly clear.

checksum_v1
MOV r2,r0 ; r2 = data
MOV r0,#0 ; sum = 0
MOV r1,#0 ; i = 0

checksum_v1_loop
LDR r3,[r2,r1,LSL #2] ; r3 = data[i]
ADD r1,r1,#1 ; r1 = i+1
AND r1,r1,#0xff ; i = (char)r1
CMP r1,#0x40 ; compare i, 64
ADD r0,r3,r0 ; sum += r3
BCC checksum_v1_loop ; if (i<64) loop
MOV pc,r14 ; return sum

Now compare this to the compiler output where instead we declare i as an unsigned int.

checksum_v2
MOV r2,r0 ; r2 = data
MOV r0,#0 ; sum = 0
MOV r1,#0 ; i = 0

checksum_v2_loop
LDR r3,[r2,r1,LSL #2] ; r3 = data[i]
ADD r1,r1,#1 ; r1++
CMP r1,#0x40 ; compare i, 64
ADD r0,r3,r0 ; sum += r3
BCC checksum_v2_loop ; if (i<64) goto loop
MOV pc,r14 ; return sum

In the first case, the compiler inserts an extra AND instruction to reduce i to the range 0 to
255 before the comparison with 64. This instruction disappears in the second case.

Next, suppose the data packet contains 16-bit values and we need a 16-bit checksum. It
is tempting to write the following C code:

short checksum_v3(short *data)
{
unsigned int i;
short sum = 0;

for (i = 0; i < 64; i++)
{

sum = (short)(sum + data[i]);

5.2 Basic C Data Types 109

}
return sum;

}

You may wonder why the for loop body doesn’t contain the code

sum += data[i];

With armcc this code will produce a warning if you enable implicit narrowing cast warnings
using the compiler switch -W + n. The expression sum + data[i] is an integer and so can
only be assigned to a short using an (implicit or explicit) narrowing cast. As you can see
in the following assembly output, the compiler must insert extra instructions to implement
the narrowing cast:

checksum_v3
MOV r2,r0 ; r2 = data
MOV r0,#0 ; sum = 0
MOV r1,#0 ; i = 0

checksum_v3_loop
ADD r3,r2,r1,LSL #1 ; r3 = &data[i]
LDRH r3,[r3,#0] ; r3 = data[i]
ADD r1,r1,#1 ; i++
CMP r1,#0x40 ; compare i, 64
ADD r0,r3,r0 ; r0 = sum + r3
MOV r0,r0,LSL #16
MOV r0,r0,ASR #16 ; sum = (short)r0
BCC checksum_v3_loop ; if (i<64) goto loop
MOV pc,r14 ; return sum

The loop is now three instructions longer than the loop for example checksum_v2
earlier! There are two reasons for the extra instructions:

■ The LDRH instruction does not allow for a shifted address offset as the LDR instruction
did in checksum_v2. Therefore the first ADD in the loop calculates the address of item i
in the array. The LDRH loads from an address with no offset. LDRH has fewer addressing
modes than LDR as it was a later addition to the ARM instruction set. (See Table 5.1.)

■ The cast reducing total + array[i] to a short requires two MOV instructions. The
compiler shifts left by 16 and then right by 16 to implement a 16-bit sign extend.
The shift right is a sign-extending shift so it replicates the sign bit to fill the upper
16 bits.

We can avoid the second problem by using an int type variable to hold the partial sum.
We only reduce the sum to a short type at the function exit.

110 Chapter 5 Efficient C Programming

However, the first problem is a new issue. We can solve it by accessing the array by
incrementing the pointer data rather than using an index as in data[i]. This is efficient
regardless of array type size or element size. All ARM load and store instructions have
a postincrement addressing mode.

Example

5.1
The checksum_v4 code fixes all the problems we have discussed in this section. It uses int
type local variables to avoid unnecessary casts. It increments the pointer data instead of
using an index offset data[i].

short checksum_v4(short *data)
{
unsigned int i;
int sum=0;

for (i=0; i<64; i++)
{

sum += *(data++);
}
return (short)sum;

}

The *(data++) operation translates to a single ARM instruction that loads the data and
increments the data pointer. Of course you could write sum += *data; data++; or even
*data++ instead if you prefer. The compiler produces the following output. Three instruc-
tions have been removed from the inside loop, saving three cycles per loop compared to
checksum_v3.

checksum_v4
MOV r2,#0 ; sum = 0
MOV r1,#0 ; i = 0

checksum_v4_loop
LDRSH r3,[r0],#2 ; r3 = *(data++)
ADD r1,r1,#1 ; i++
CMP r1,#0x40 ; compare i, 64
ADD r2,r3,r2 ; sum += r3
BCC checksum_v4_loop ; if (sum<64) goto loop
MOV r0,r2,LSL #16
MOV r0,r0,ASR #16 ; r0 = (short)sum
MOV pc,r14 ; return r0

The compiler is still performing one cast to a 16-bit range, on the function return. You
could remove this also by returning an int result as discussed in Section 5.2.2. ■

5.2 Basic C Data Types 111

5.2.2 Function Argument Types

We saw in Section 5.2.1 that converting local variables from types char or short to type
int increases performance and reduces code size. The same holds for function arguments.
Consider the following simple function, which adds two 16-bit values, halving the second,
and returns a 16-bit sum:

short add_v1(short a, short b)
{
return a + (b >> 1);

}

This function is a little artificial, but it is a useful test case to illustrate the problems
faced by the compiler. The input values a, b, and the return value will be passed in 32-bit
ARM registers. Should the compiler assume that these 32-bit values are in the range of
a short type, that is, −32,768 to +32,767? Or should the compiler force values to be in
this range by sign-extending the lowest 16 bits to fill the 32-bit register? The compiler must
make compatible decisions for the function caller and callee. Either the caller or callee must
perform the cast to a short type.

We say that function arguments are passed wide if they are not reduced to the range
of the type and narrow if they are. You can tell which decision the compiler has made by
looking at the assembly output for add_v1. If the compiler passes arguments wide, then
the callee must reduce function arguments to the correct range. If the compiler passes
arguments narrow, then the caller must reduce the range. If the compiler returns values
wide, then the caller must reduce the return value to the correct range. If the compiler
returns values narrow, then the callee must reduce the range before returning the value.

For armcc in ADS, function arguments are passed narrow and values returned narrow.
In other words, the caller casts argument values and the callee casts return values. The
compiler uses the ANSI prototype of the function to determine the datatypes of the function
arguments.

The armcc output for add_v1 shows that the compiler casts the return value to a short
type, but does not cast the input values. It assumes that the caller has already ensured that
the 32-bit values r0 and r1 are in the range of the short type. This shows narrow passing
of arguments and return value.

add_v1
ADD r0,r0,r1,ASR #1 ; r0 = (int)a + ((int)b >> 1)
MOV r0,r0,LSL #16
MOV r0,r0,ASR #16 ; r0 = (short)r0
MOV pc,r14 ; return r0

The gcc compiler we used is more cautious and makes no assumptions about the range
of argument value. This version of the compiler reduces the input arguments to the range

112 Chapter 5 Efficient C Programming

of a short in both the caller and the callee. It also casts the return value to a short type.
Here is the compiled code for add_v1:

add_v1_gcc
MOV r0, r0, LSL #16
MOV r1, r1, LSL #16
MOV r1, r1, ASR #17 ; r1 = (int)b >> 1
ADD r1, r1, r0, ASR #16 ; r1 += (int)a
MOV r1, r1, LSL #16
MOV r0, r1, ASR #16 ; r0 = (short)r1
MOV pc, lr ; return r0

Whatever the merits of different narrow and wide calling protocols, you can see that
char or short type function arguments and return values introduce extra casts. These
increase code size and decrease performance. It is more efficient to use the int type for
function arguments and return values, even if you are only passing an 8-bit value.

5.2.3 Signed versus Unsigned Types

The previous sections demonstrate the advantages of using int rather than a char or short
type for local variables and function arguments. This section compares the efficiencies of
signed int and unsigned int.

If your code uses addition, subtraction, and multiplication, then there is no performance
difference between signed and unsigned operations. However, there is a difference when it
comes to division. Consider the following short example that averages two integers:

int average_v1(int a, int b)
{
return (a+b)/2;

}

This compiles to

average_v1
ADD r0,r0,r1 ; r0 = a + b
ADD r0,r0,r0,LSR #31 ; if (r0<0) r0++
MOV r0,r0,ASR #1 ; r0 = r0 >> 1
MOV pc,r14 ; return r0

Notice that the compiler adds one to the sum before shifting by right if the sum is
negative. In other words it replaces x/2 by the statement:

(x<0) ? ((x+1) >> 1): (x >> 1)

5.3 C Looping Structures 113

It must do this because x is signed. In C on an ARM target, a divide by two is not a right
shift if x is negative. For example, −3 � 1 = −2 but −3/2 = −1. Division rounds towards
zero, but arithmetic right shift rounds towards −∞.

It is more efficient to use unsigned types for divisions. The compiler converts unsigned
power of two divisions directly to right shifts. For general divisions, the divide routine in the
C library is faster for unsigned types. See Section 5.10 for discussion on avoiding divisions
completely.

Summary The Efficient Use of C Types

■ For local variables held in registers, don’t use a char or short type unless 8-bit or
16-bit modular arithmetic is necessary. Use the signed or unsigned int types instead.
Unsigned types are faster when you use divisions.

■ For array entries and global variables held in main memory, use the type with the
smallest size possible to hold the required data. This saves memory footprint. The
ARMv4 architecture is efficient at loading and storing all data widths provided you
traverse arrays by incrementing the array pointer. Avoid using offsets from the base of
the array with short type arrays, as LDRH does not support this.

■ Use explicit casts when reading array entries or global variables into local variables, or
writing local variables out to array entries. The casts make it clear that for fast operation
you are taking a narrow width type stored in memory and expanding it to a wider type
in the registers. Switch on implicit narrowing cast warnings in the compiler to detect
implicit casts.

■ Avoid implicit or explicit narrowing casts in expressions because they usually cost extra
cycles. Casts on loads or stores are usually free because the load or store instruction
performs the cast for you.

■ Avoid char and short types for function arguments or return values. Instead use the
int type even if the range of the parameter is smaller. This prevents the compiler
performing unnecessary casts.

5.3 C Looping Structures
This section looks at the most efficient ways to code for and while loops on the ARM. We
start by looking at loops with a fixed number of iterations and then move on to loops with
a variable number of iterations. Finally we look at loop unrolling.

5.3.1 Loops with a Fixed Number of Iterations

What is the most efficient way to write a for loop on the ARM? Let’s return to our checksum
example and look at the looping structure.

114 Chapter 5 Efficient C Programming

Here is the last version of the 64-word packet checksum routine we studied in
Section 5.2. This shows how the compiler treats a loop with incrementing count i++.

int checksum_v5(int *data)
{
unsigned int i;
int sum=0;

for (i=0; i<64; i++)
{

sum += *(data++);
}
return sum;

}

This compiles to

checksum_v5
MOV r2,r0 ; r2 = data
MOV r0,#0 ; sum = 0
MOV r1,#0 ; i = 0

checksum_v5_loop
LDR r3,[r2],#4 ; r3 = *(data++)
ADD r1,r1,#1 ; i++
CMP r1,#0x40 ; compare i, 64
ADD r0,r3,r0 ; sum += r3
BCC checksum_v5_loop ; if (i<64) goto loop
MOV pc,r14 ; return sum

It takes three instructions to implement the for loop structure:

■ An ADD to increment i
■ A compare to check if i is less than 64

■ A conditional branch to continue the loop if i < 64

This is not efficient. On the ARM, a loop should only use two instructions:

■ A subtract to decrement the loop counter, which also sets the condition code flags on
the result

■ A conditional branch instruction

The key point is that the loop counter should count down to zero rather than counting
up to some arbitrary limit. Then the comparison with zero is free since the result is stored

5.3 C Looping Structures 115

in the condition flags. Since we are no longer using i as an array index, there is no problem
in counting down rather than up.

Example

5.2
This example shows the improvement if we switch to a decrementing loop rather than an
incrementing loop.

int checksum_v6(int *data)
{
unsigned int i;
int sum=0;

for (i=64; i!=0; i--)
{

sum += *(data++);
}
return sum;

}

This compiles to

checksum_v6
MOV r2,r0 ; r2 = data
MOV r0,#0 ; sum = 0
MOV r1,#0x40 ; i = 64

checksum_v6_loop
LDR r3,[r2],#4 ; r3 = *(data++)
SUBS r1,r1,#1 ; i-- and set flags
ADD r0,r3,r0 ; sum += r3
BNE checksum_v6_loop ; if (i!=0) goto loop
MOV pc,r14 ; return sum

The SUBS and BNE instructions implement the loop. Our checksum example now has
the minimum number of four instructions per loop. This is much better than six for
checksum_v1 and eight for checksum_v3. ■

For an unsigned loop counter i we can use either of the loop continuation conditions
i!=0 or i>0. As i can’t be negative, they are the same condition. For a signed loop counter,
it is tempting to use the condition i>0 to continue the loop. You might expect the compiler
to generate the following two instructions to implement the loop:

SUBS r1,r1,#1 ; compare i with 1, i=i-1
BGT loop ; if (i+1>1) goto loop

116 Chapter 5 Efficient C Programming

In fact, the compiler will generate

SUB r1,r1,#1 ; i--
CMP r1,#0 ; compare i with 0
BGT loop ; if (i>0) goto loop

The compiler is not being inefficient. It must be careful about the case when
i = -0x80000000 because the two sections of code generate different answers in this case.
For the first piece of code the SUBS instruction compares i with 1 and then decrements i.
Since -0x80000000 < 1, the loop terminates. For the second piece of code, we decrement
i and then compare with 0. Modulo arithmetic means that i now has the value
+0x7fffffff, which is greater than zero. Thus the loop continues for many iterations.

Of course, in practice, i rarely takes the value -0x80000000. The compiler can’t usu-
ally determine this, especially if the loop starts with a variable number of iterations (see
Section 5.3.2).

Therefore you should use the termination condition i!=0 for signed or unsigned loop
counters. It saves one instruction over the condition i>0 for signed i.

5.3.2 Loops Using a Variable Number of Iterations

Now suppose we want our checksum routine to handle packets of arbitrary size. We pass
in a variable N giving the number of words in the data packet. Using the lessons from the
last section we count down until N = 0 and don’t require an extra loop counter i.

The checksum_v7 example shows how the compiler handles a for loop with a variable
number of iterations N.

int checksum_v7(int *data, unsigned int N)
{
int sum=0;

for (; N!=0; N--)
{

sum += *(data++);
}
return sum;

}

This compiles to

checksum_v7
MOV r2,#0 ; sum = 0
CMP r1,#0 ; compare N, 0
BEQ checksum_v7_end ; if (N==0) goto end

5.3 C Looping Structures 117

checksum_v7_loop
LDR r3,[r0],#4 ; r3 = *(data++)
SUBS r1,r1,#1 ; N-- and set flags
ADD r2,r3,r2 ; sum += r3
BNE checksum_v7_loop ; if (N!=0) goto loop

checksum_v7_end
MOV r0,r2 ; r0 = sum
MOV pc,r14 ; return r0

Notice that the compiler checks that N is nonzero on entry to the function. Often this
check is unnecessary since you know that the array won’t be empty. In this case a do-while
loop gives better performance and code density than a for loop.

Example

5.3
This example shows how to use a do-while loop to remove the test for N being zero that
occurs in a for loop.

int checksum_v8(int *data, unsigned int N)
{
int sum=0;

do
{

sum += *(data++);
} while (--N!=0);
return sum;

}

The compiler output is now

checksum_v8
MOV r2,#0 ; sum = 0

checksum_v8_loop
LDR r3,[r0],#4 ; r3 = *(data++)
SUBS r1,r1,#1 ; N-- and set flags
ADD r2,r3,r2 ; sum += r3
BNE checksum_v8_loop ; if (N!=0) goto loop
MOV r0,r2 ; r0 = sum
MOV pc,r14 ; return r0

Compare this with the output for checksum_v7 to see the two-cycle saving. ■

5.3.3 Loop Unrolling

We saw in Section 5.3.1 that each loop iteration costs two instructions in addition to
the body of the loop: a subtract to decrement the loop count and a conditional branch.

118 Chapter 5 Efficient C Programming

We call these instructions the loop overhead. On ARM7 or ARM9 processors the
subtract takes one cycle and the branch three cycles, giving an overhead of four cycles
per loop.

You can save some of these cycles by unrolling a loop—repeating the loop body several
times, and reducing the number of loop iterations by the same proportion. For example,
let’s unroll our packet checksum example four times.

Example

5.4
The following code unrolls our packet checksum loop by four times. We assume that the
number of words in the packet N is a multiple of four.

int checksum_v9(int *data, unsigned int N)
{
int sum=0;

do
{

sum += *(data++);
sum += *(data++);
sum += *(data++);
sum += *(data++);
N -= 4;

} while (N!=0);
return sum;

}

This compiles to

checksum_v9
MOV r2,#0 ; sum = 0

checksum_v9_loop
LDR r3,[r0],#4 ; r3 = *(data++)
SUBS r1,r1,#4 ; N -= 4 & set flags
ADD r2,r3,r2 ; sum += r3
LDR r3,[r0],#4 ; r3 = *(data++)
ADD r2,r3,r2 ; sum += r3
LDR r3,[r0],#4 ; r3 = *(data++)
ADD r2,r3,r2 ; sum += r3
LDR r3,[r0],#4 ; r3 = *(data++)
ADD r2,r3,r2 ; sum += r3
BNE checksum_v9_loop ; if (N!=0) goto loop
MOV r0,r2 ; r0 = sum
MOV pc,r14 ; return r0

5.3 C Looping Structures 119

We have reduced the loop overhead from 4N cycles to (4N)/4 =N cycles. On the ARM7TDMI,
this accelerates the loop from 8 cycles per accumulate to 20/4 = 5 cycles per accumulate,
nearly doubling the speed! For the ARM9TDMI, which has a faster load instruction, the
benefit is even higher. ■

There are two questions you need to ask when unrolling a loop:

■ How many times should I unroll the loop?

■ What if the number of loop iterations is not a multiple of the unroll amount? For
example, what if N is not a multiple of four in checksum_v9?

To start with the first question, only unroll loops that are important for the overall
performance of the application. Otherwise unrolling will increase the code size with little
performance benefit. Unrolling may even reduce performance by evicting more important
code from the cache.

Suppose the loop is important, for example, 30% of the entire application. Suppose you
unroll the loop until it is 0.5 KB in code size (128 instructions). Then the loop overhead
is at most 4 cycles compared to a loop body of around 128 cycles. The loop overhead cost
is 3/128, roughly 3%. Recalling that the loop is 30% of the entire application, overall the
loop overhead is only 1%. Unrolling the code further gains little extra performance, but has
a significant impact on the cache contents. It is usually not worth unrolling further when
the gain is less than 1%.

For the second question, try to arrange it so that array sizes are multiples of your unroll
amount. If this isn’t possible, then you must add extra code to take care of the leftover cases.
This increases the code size a little but keeps the performance high.

Example

5.5
This example handles the checksum of any size of data packet using a loop that has been
unrolled four times.

int checksum_v10(int *data, unsigned int N)
{
unsigned int i;
int sum=0;

for (i=N/4; i!=0; i--)
{

sum += *(data++);
sum += *(data++);
sum += *(data++);
sum += *(data++);

}
for (i=N&3; i!=0; i--)
{

120 Chapter 5 Efficient C Programming

sum += *(data++);
}
return sum;

}

The second for loop handles the remaining cases when N is not a multiple of four. Note
that both N/4 and N&3 can be zero, so we can’t use do-while loops. ■

Summary Writing Loops Efficiently

■ Use loops that count down to zero. Then the compiler does not need to allocate
a register to hold the termination value, and the comparison with zero is free.

■ Use unsigned loop counters by default and the continuation condition i!=0 rather than
i>0. This will ensure that the loop overhead is only two instructions.

■ Use do-while loops rather than for loops when you know the loop will iterate at least
once. This saves the compiler checking to see if the loop count is zero.

■ Unroll important loops to reduce the loop overhead. Do not overunroll. If the loop
overhead is small as a proportion of the total, then unrolling will increase code size and
hurt the performance of the cache.

■ Try to arrange that the number of elements in arrays are multiples of four or eight. You
can then unroll loops easily by two, four, or eight times without worrying about the
leftover array elements.

5.4 Register Allocation
The compiler attempts to allocate a processor register to each local variable you use in
a C function. It will try to use the same register for different local variables if the use of the
variables do not overlap. When there are more local variables than available registers, the
compiler stores the excess variables on the processor stack. These variables are called spilled
or swapped out variables since they are written out to memory (in a similar way virtual
memory is swapped out to disk). Spilled variables are slow to access compared to variables
allocated to registers.

To implement a function efficiently, you need to

■ minimize the number of spilled variables

■ ensure that the most important and frequently accessed variables are stored in registers

First let’s look at the number of processor registers the ARM C compilers have avail-
able for allocating variables. Table 5.3 shows the standard register names and usage when
following the ARM-Thumb procedure call standard (ATPCS), which is used in code
generated by C compilers.

5.4 Register Allocation 121

Table 5.3 C compiler register usage.

Alternate
Register register
number names ATPCS register usage

r0
r1
r2
r3

a1
a2
a3
a4

Argument registers. These hold the first four function
arguments on a function call and the return value on a
function return. A function may corrupt these registers and
use them as general scratch registers within the function.

r4
r5
r6
r7
r8

v1
v2
v3
v4
v5

General variable registers. The function must preserve the callee
values of these registers.

r9 v6 sb General variable register. The function must preserve the callee
value of this register except when compiling for read-write
position independence (RWPI). Then r9 holds the static base
address. This is the address of the read-write data.

r10 v7 sl General variable register. The function must preserve the callee
value of this register except when compiling with stack limit
checking. Then r10 holds the stack limit address.

r11 v8 fp General variable register. The function must preserve the callee
value of this register except when compiling using a frame
pointer. Only old versions of armcc use a frame pointer.

r12 ip A general scratch register that the function can corrupt. It is
useful as a scratch register for function veneers or other
intraprocedure call requirements.

r13 sp The stack pointer, pointing to the full descending stack.
r14 lr The link register. On a function call this holds the return

address.
r15 pc The program counter.

Provided the compiler is not using software stack checking or a frame pointer, then
the C compiler can use registers r0 to r12 and r14 to hold variables. It must save the callee
values of r4 to r11 and r14 on the stack if using these registers.

In theory, the C compiler can assign 14 variables to registers without spillage. In practice,
some compilers use a fixed register such as r12 for intermediate scratch working and do not
assign variables to this register. Also, complex expressions require intermediate working
registers to evaluate. Therefore, to ensure good assignment to registers, you should try to
limit the internal loop of functions to using at most 12 local variables.

122 Chapter 5 Efficient C Programming

If the compiler does need to swap out variables, then it chooses which variables to swap
out based on frequency of use. A variable used inside a loop counts multiple times. You can
guide the compiler as to which variables are important by ensuring these variables are used
within the innermost loop.

The register keyword in C hints that a compiler should allocate the given variable to
a register. However, different compilers treat this keyword in different ways, and different
architectures have a different number of available registers (for example, Thumb and ARM).
Therefore we recommend that you avoid using register and rely on the compiler’s normal
register allocation routine.

Summary Efficient Register Allocation

■ Try to limit the number of local variables in the internal loop of functions to 12. The
compiler should be able to allocate these to ARM registers.

■ You can guide the compiler as to which variables are important by ensuring these
variables are used within the innermost loop.

5.5 Function Calls
The ARM Procedure Call Standard (APCS) defines how to pass function arguments and
return values in ARM registers. The more recent ARM-Thumb Procedure Call Standard
(ATPCS) covers ARM and Thumb interworking as well.

The first four integer arguments are passed in the first four ARM registers: r0, r1, r2,
and r3. Subsequent integer arguments are placed on the full descending stack, ascending in
memory as in Figure 5.1. Function return integer values are passed in r0.

This description covers only integer or pointer arguments. Two-word arguments such as
long long or double are passed in a pair of consecutive argument registers and returned in
r0, r1. The compiler may pass structures in registers or by reference according to command
line compiler options.

The first point to note about the procedure call standard is the four-register rule.
Functions with four or fewer arguments are far more efficient to call than functions with
five or more arguments. For functions with four or fewer arguments, the compiler can
pass all the arguments in registers. For functions with more arguments, both the caller
and callee must access the stack for some arguments. Note that for C++ the first argument
to an object method is the this pointer. This argument is implicit and additional to the
explicit arguments.

If your C function needs more than four arguments, or your C++ method more
than three explicit arguments, then it is almost always more efficient to use structures.
Group related arguments into structures, and pass a structure pointer rather than mul-
tiple arguments. Which arguments are related will depend on the structure of your
software.

5.5 Function Calls 123

Argument 8

……

Argument 7

Argument 6

Argument 5

Argument 4

sp + 16

sp + 12

sp + 8

sp + 4

sp

Argument 3

Argument 2

Argument 1

Argument 0 Return value

r3

r2

r1

r0

Figure 5.1 ATPCS argument passing.

The next example illustrates the benefits of using a structure pointer. First we show a
typical routine to insertNbytes from arraydata into a queue. We implement the queue using
a cyclic buffer with start address Q_start (inclusive) and end address Q_end (exclusive).

char *queue_bytes_v1(
char *Q_start, /* Queue buffer start address */
char *Q_end, /* Queue buffer end address */
char *Q_ptr, /* Current queue pointer position */
char *data, /* Data to insert into the queue */
unsigned int N) /* Number of bytes to insert */

{
do
{

*(Q_ptr++) = *(data++);

if (Q_ptr == Q_end)
{

Q_ptr = Q_start;
}

} while (--N);
return Q_ptr;

}

124 Chapter 5 Efficient C Programming

This compiles to

queue_bytes_v1
STR r14,[r13,#-4]! ; save lr on the stack
LDR r12,[r13,#4] ; r12 = N

queue_v1_loop
LDRB r14,[r3],#1 ; r14 = *(data++)
STRB r14,[r2],#1 ; *(Q_ptr++) = r14
CMP r2,r1 ; if (Q_ptr == Q_end)
MOVEQ r2,r0 ; {Q_ptr = Q_start;}
SUBS r12,r12,#1 ; --N and set flags
BNE queue_v1_loop ; if (N!=0) goto loop
MOV r0,r2 ; r0 = Q_ptr
LDR pc,[r13],#4 ; return r0

Compare this with a more structured approach using three function arguments.

Example

5.6
The following code creates a Queue structure and passes this to the function to reduce the
number of function arguments.

typedef struct {
char *Q_start; /* Queue buffer start address */
char *Q_end; /* Queue buffer end address */
char *Q_ptr; /* Current queue pointer position */

} Queue;

void queue_bytes_v2(Queue *queue, char *data, unsigned int N)
{

char *Q_ptr = queue->Q_ptr;
char *Q_end = queue->Q_end;

do
{

*(Q_ptr++) = *(data++);

if (Q_ptr == Q_end)
{

Q_ptr = queue->Q_start;
}

} while (--N);
queue->Q_ptr = Q_ptr;

}

5.5 Function Calls 125

This compiles to

queue_bytes_v2
STR r14,[r13,#-4]! ; save lr on the stack
LDR r3,[r0,#8] ; r3 = queue->Q_ptr
LDR r14,[r0,#4] ; r14 = queue->Q_end

queue_v2_loop
LDRB r12,[r1],#1 ; r12 = *(data++)
STRB r12,[r3],#1 ; *(Q_ptr++) = r12
CMP r3,r14 ; if (Q_ptr == Q_end)
LDREQ r3,[r0,#0] ; Q_ptr = queue->Q_start
SUBS r2,r2,#1 ; --N and set flags
BNE queue_v2_loop ; if (N!=0) goto loop
STR r3,[r0,#8] ; queue->Q_ptr = r3
LDR pc,[r13],#4 ; return ■

The queue_bytes_v2 is one instruction longer than queue_bytes_v1, but it is in fact
more efficient overall. The second version has only three function arguments rather than
five. Each call to the function requires only three register setups. This compares with four
register setups, a stack push, and a stack pull for the first version. There is a net saving
of two instructions in function call overhead. There are likely further savings in the callee
function, as it only needs to assign a single register to the Queue structure pointer, rather
than three registers in the nonstructured case.

There are other ways of reducing function call overhead if your function is very small
and corrupts few registers (uses few local variables). Put the C function in the same C file as
the functions that will call it. The C compiler then knows the code generated for the callee
function and can make optimizations in the caller function:

■ The caller function need not preserve registers that it can see the callee doesn’t corrupt.
Therefore the caller function need not save all the ATPCS corruptible registers.

■ If the callee function is very small, then the compiler can inline the code in the caller
function. This removes the function call overhead completely.

Example

5.7
The function uint_to_hex converts a 32-bit unsigned integer into an array of eight hexa-
decimal digits. It uses a helper function nybble_to_hex, which converts a digit d in the
range 0 to 15 to a hexadecimal digit.

unsigned int nybble_to_hex(unsigned int d)
{
if (d<10)
{

return d + ’0’;

126 Chapter 5 Efficient C Programming

}
return d - 10 + ’A’;

}

void uint_to_hex(char *out, unsigned int in)
{
unsigned int i;

for (i=8; i!=0; i--)
{

in = (in << 4) | (in >> 28); /* rotate in left by 4 bits */
*(out++) = (char)nybble_to_hex(in & 15);

}
}

When we compile this, we see that uint_to_hex doesn’t call nybble_to_hex at all!
In the following compiled code, the compiler has inlined the uint_to_hex code. This is
more efficient than generating a function call.

uint_to_hex
MOV r3,#8 ; i = 8

uint_to_hex_loop
MOV r1,r1,ROR #28 ; in = (in << 4)|(in >> 28)
AND r2,r1,#0xf ; r2 = in & 15
CMP r2,#0xa ; if (r2>=10)
ADDCS r2,r2,#0x37 ; r2 +=’A’-10
ADDCC r2,r2,#0x30 ; else r2 +=’0’
STRB r2,[r0],#1 ; *(out++) = r2
SUBS r3,r3,#1 ; i-- and set flags
BNE uint_to_hex_loop ; if (i!=0) goto loop
MOV pc,r14 ; return ■

The compiler will only inline small functions. You can ask the compiler to inline
a function using the __inline keyword, although this keyword is only a hint and the
compiler may ignore it (see Section 5.12 for more on inline functions). Inlining large
functions can lead to big increases in code size without much performance improvement.

Summary Calling Functions Efficiently

■ Try to restrict functions to four arguments. This will make them more efficient to
call. Use structures to group related arguments and pass structure pointers instead of
multiple arguments.

5.6 Pointer Aliasing 127

■ Define small functions in the same source file and before the functions that call them.
The compiler can then optimize the function call or inline the small function.

■ Critical functions can be inlined using the __inline keyword.

5.6 Pointer Aliasing
Two pointers are said to alias when they point to the same address. If you write to one
pointer, it will affect the value you read from the other pointer. In a function, the compiler
often doesn’t know which pointers can alias and which pointers can’t. The compiler must
be very pessimistic and assume that any write to a pointer may affect the value read from
any other pointer, which can significantly reduce code efficiency.

Let’s start with a very simple example. The following function increments two timer
values by a step amount:

void timers_v1(int *timer1, int *timer2, int *step)
{
*timer1 += *step;
*timer2 += *step;

}

This compiles to

timers_v1
LDR r3,[r0,#0] ; r3 = *timer1
LDR r12,[r2,#0] ; r12 = *step
ADD r3,r3,r12 ; r3 += r12
STR r3,[r0,#0] ; *timer1 = r3
LDR r0,[r1,#0] ; r0 = *timer2
LDR r2,[r2,#0] ; r2 = *step
ADD r0,r0,r2 ; r0 += r2
STR r0,[r1,#0] ; *timer2 = t0
MOV pc,r14 ; return

Note that the compiler loads from step twice. Usually a compiler optimization called
common subexpression elimination would kick in so that *step was only evaluated once,
and the value reused for the second occurrence. However, the compiler can’t use this
optimization here. The pointers timer1 and step might alias one another. In other words,
the compiler cannot be sure that the write to timer1 doesn’t affect the read from step.

128 Chapter 5 Efficient C Programming

In this case the second value of *step is different from the first and has the value *timer1.
This forces the compiler to insert an extra load instruction.

The same problem occurs if you use structure accesses rather than direct pointer access.
The following code also compiles inefficiently:

typedef struct {int step;} State;
typedef struct {int timer1, timer2;} Timers;

void timers_v2(State *state, Timers *timers)
{
timers->timer1 += state->step;
timers->timer2 += state->step;

}

The compiler evaluates state->step twice in case state->step and timers->timer1 are
at the same memory address. The fix is easy: Create a new local variable to hold the value
of state->step so the compiler only performs a single load.

Example

5.8
In the code for timers_v3 we use a local variable step to hold the value of state->step.
Now the compiler does not need to worry that state may alias with timers.

void timers_v3(State *state, Timers *timers)
{

int step = state->step;

timers->timer1 += step;
timers->timer2 += step;

} ■

You must also be careful of other, less obvious situations where aliasing may occur.
When you call another function, this function may alter the state of memory and so change
the values of any expressions involving memory reads. The compiler will evaluate the
expressions again. For example suppose you read state->step, call a function and then
read state->step again. The compiler must assume that the function could change the
value of state->step in memory. Therefore it will perform two reads, rather than reusing
the first value it read for state->step.

Another pitfall is to take the address of a local variable. Once you do this, the variable is
referenced by a pointer and so aliasing can occur with other pointers. The compiler is likely
to keep reading the variable from the stack in case aliasing occurs. Consider the following
example, which reads and then checksums a data packet:

int checksum_next_packet(void)
{
int *data;
int N, sum=0;

5.6 Pointer Aliasing 129

data = get_next_packet(&N);

do
{

sum += *(data++);
} while (--N);

return sum;
}

Here get_next_packet is a function returning the address and size of the next data packet.
The previous code compiles to

checksum_next_packet
STMFD r13!,{r4,r14} ; save r4, lr on the stack
SUB r13,r13,#8 ; create two stacked variables
ADD r0,r13,#4 ; r0 = &N, N stacked
MOV r4,#0 ; sum = 0
BL get_next_packet ; r0 = data

checksum_loop
LDR r1,[r0],#4 ; r1 = *(data++)
ADD r4,r1,r4 ; sum += r1
LDR r1,[r13,#4] ; r1 = N (read from stack)
SUBS r1,r1,#1 ; r1-- & set flags
STR r1,[r13,#4] ; N = r1 (write to stack)
BNE checksum_loop ; if (N!=0) goto loop
MOV r0,r4 ; r0 = sum
ADD r13,r13,#8 ; delete stacked variables
LDMFD r13!,{r4,pc} ; return r0

Note how the compiler reads and writes N from the stack for every N--. Once you
take the address of N and pass it to get_next_packet, the compiler needs to worry about
aliasing because the pointers data and &N may alias. To avoid this, don’t take the address
of local variables. If you must do this, then copy the value into another local variable
before use.

You may wonder why the compiler makes room for two stacked variables when it only
uses one. This is to keep the stack eight-byte aligned, which is required for LDRD instructions
available in ARMv5TE. The example above doesn’t actually use an LDRD, but the compiler
does not know whether get_next_packet will use this instruction.

130 Chapter 5 Efficient C Programming

Summary Avoiding Pointer Aliasing

■ Do not rely on the compiler to eliminate common subexpressions involving memory
accesses. Instead create new local variables to hold the expression. This ensures the
expression is evaluated only once.

■ Avoid taking the address of local variables. The variable may be inefficient to access
from then on.

5.7 Structure Arrangement
The way you lay out a frequently used structure can have a significant impact on its perfor-
mance and code density. There are two issues concerning structures on the ARM: alignment
of the structure entries and the overall size of the structure.

For architectures up to and including ARMv5TE, load and store instructions are only
guaranteed to load and store values with address aligned to the size of the access width.
Table 5.4 summarizes these restrictions.

For this reason, ARM compilers will automatically align the start address of a structure
to a multiple of the largest access width used within the structure (usually four or eight
bytes) and align entries within structures to their access width by inserting padding.

For example, consider the structure

struct {
char a;
int b;
char c;
short d;

}

For a little-endian memory system the compiler will lay this out adding padding to ensure
that the next object is aligned to the size of that object:

Address +3 +2 +1 +0

+0 pad pad pad a
+4 b[31,24] b[23,16] b[15,8] b[7,0]
+8 d[15,8] d[7,0] pad c

Table 5.4 Load and store alignment restrictions for ARMv5TE.

Transfer size Instruction Byte address

1 byte LDRB, LDRSB, STRB any byte address alignment
2 bytes LDRH, LDRSH, STRH multiple of 2 bytes
4 bytes LDR, STR multiple of 4 bytes
8 bytes LDRD, STRD multiple of 8 bytes

5.7 Structure Arrangement 131

To improve the memory usage, you should reorder the elements

struct {
char a;
char c;
short d;
int b;

}

This reduces the structure size from 12 bytes to 8 bytes, with the following new layout:

Address +3 +2 +1 +0

+0 d[15,8] d[7,0] c a
+4 b[31,24] b[23,16] b[15,8] b[7,0]

Therefore, it is a good idea to group structure elements of the same size, so that the
structure layout doesn’t contain unnecessary padding. The armcc compiler does include
a keyword __packed that removes all padding. For example, the structure

__packed struct {
char a;
int b;
char c;
short d;

}

will be laid out in memory as

Address +3 +2 +1 +0

+0 b[23,16] b[15,8] b[7,0] a
+4 d[15,8] d[7,0] c b[31,24]

However, packed structures are slow and inefficient to access. The compiler emulates
unaligned load and store operations by using several aligned accesses with data operations
to merge the results. Only use the __packed keyword where space is far more important
than speed and you can’t reduce padding by rearragement. Also use it for porting code that
assumes a certain structure layout in memory.

The exact layout of a structure in memory may depend on the compiler vendor and
compiler version you use. In API (Application Programmer Interface) definitions it is often

132 Chapter 5 Efficient C Programming

a good idea to insert any padding that you cannot get rid of into the structure manually.
This way the structure layout is not ambiguous. It is easier to link code between compiler
versions and compiler vendors if you stick to unambiguous structures.

Another point of ambiguity is enum. Different compilers use different sizes for an enu-
merated type, depending on the range of the enumeration. For example, consider the type

typedef enum {
FALSE,
TRUE

} Bool;

The armcc in ADS1.1 will treat Bool as a one-byte type as it only uses the values 0 and 1.
Bool will only take up 8 bits of space in a structure. However, gcc will treat Bool as a word
and take up 32 bits of space in a structure. To avoid ambiguity it is best to avoid using enum
types in structures used in the API to your code.

Another consideration is the size of the structure and the offsets of elements within the
structure. This problem is most acute when you are compiling for the Thumb instruction
set. Thumb instructions are only 16 bits wide and so only allow for small element offsets
from a structure base pointer. Table 5.5 shows the load and store base register offsets
available in Thumb.

Therefore the compiler can only access an 8-bit structure element with a single instruc-
tion if it appears within the first 32 bytes of the structure. Similarly, single instructions can
only access 16-bit values in the first 64 bytes and 32-bit values in the first 128 bytes. Once
you exceed these limits, structure accesses become inefficient.

The following rules generate a structure with the elements packed for maximum
efficiency:

■ Place all 8-bit elements at the start of the structure.

■ Place all 16-bit elements next, then 32-bit, then 64-bit.

■ Place all arrays and larger elements at the end of the structure.

■ If the structure is too big for a single instruction to access all the elements, then group
the elements into substructures. The compiler can maintain pointers to the individual
substructures.

Table 5.5 Thumb load and store offsets.

Instructions Offset available from the base register

LDRB, LDRSB, STRB 0 to 31 bytes
LDRH, LDRSH, STRH 0 to 31 halfwords (0 to 62 bytes)
LDR, STR 0 to 31 words (0 to 124 bytes)

5.8 Bit-fields 133

Summary Efficient Structure Arrangement

■ Lay structures out in order of increasing element size. Start the structure with the
smallest elements and finish with the largest.

■ Avoid very large structures. Instead use a hierarchy of smaller structures.

■ For portability, manually add padding (that would appear implicitly) into API
structures so that the layout of the structure does not depend on the compiler.

■ Beware of using enum types in API structures. The size of an enum type is compiler
dependent.

5.8 Bit-fields
Bit-fields are probably the least standardized part of the ANSI C specification. The compiler
can choose how bits are allocated within the bit-field container. For this reason alone, avoid
using bit-fields inside a union or in an API structure definition. Different compilers can
assign the same bit-field different bit positions in the container.

It is also a good idea to avoid bit-fields for efficiency. Bit-fields are structure ele-
ments and usually accessed using structure pointers; consequently, they suffer from the
pointer aliasing problems described in Section 5.6. Every bit-field access is really a memory
access. Possible pointer aliasing often forces the compiler to reload the bit-field several
times.

The following example, dostages_v1, illustrates this problem. It also shows that
compilers do not tend to optimize bit-field testing very well.

void dostageA(void);
void dostageB(void);
void dostageC(void);

typedef struct {
unsigned int stageA : 1;
unsigned int stageB : 1;
unsigned int stageC : 1;

} Stages_v1;

void dostages_v1(Stages_v1 *stages)
{
if (stages->stageA)
{

dostageA();
}

134 Chapter 5 Efficient C Programming

if (stages->stageB)
{

dostageB();
}
if (stages->stageC)
{

dostageC();
}

}

Here, we use three bit-field flags to enable three possible stages of processing. The example
compiles to

dostages_v1
STMFD r13!,{r4,r14} ; stack r4, lr
MOV r4,r0 ; move stages to r4
LDR r0,[r0,#0] ; r0 = stages bitfield
TST r0,#1 ; if (stages->stageA)
BLNE dostageA ; {dostageA();}
LDR r0,[r4,#0] ; r0 = stages bitfield
MOV r0,r0,LSL #30 ; shift bit 1 to bit 31
CMP r0,#0 ; if (bit31)
BLLT dostageB ; {dostageB();}
LDR r0,[r4,#0] ; r0 = stages bitfield
MOV r0,r0,LSL #29 ; shift bit 2 to bit 31
CMP r0,#0 ; if (!bit31)
LDMLTFD r13!,{r4,r14} ; return
BLT dostageC ; dostageC();
LDMFD r13!,{r4,pc} ; return

Note that the compiler accesses the memory location containing the bit-field three times.
Because the bit-field is stored in memory, the dostage functions could change the value.
Also, the compiler uses two instructions to test bit 1 and bit 2 of the bit-field, rather than
a single instruction.

You can generate far more efficient code by using an integer rather than a bit-field. Use
enum or #define masks to divide the integer type into different fields.

Example

5.9
The following code implements the dostages function using logical operations rather than
bit-fields:

typedef unsigned long Stages_v2;

#define STAGEA (1ul << 0)

5.8 Bit-fields 135

#define STAGEB (1ul << 1)
#define STAGEC (1ul << 2)

void dostages_v2(Stages_v2 *stages_v2)
{
Stages_v2 stages = *stages_v2;

if (stages & STAGEA)
{

dostageA();
}
if (stages & STAGEB)
{

dostageB();
}
if (stages & STAGEC)
{

dostageC();
}

}

Now that a single unsigned long type contains all the bit-fields, we can keep a copy of
their values in a single local variable stages, which removes the memory aliasing problem
discussed in Section 5.6. In other words, the compiler must assume that the dostageX
(where X is A, B, or C) functions could change the value of *stages_v2.

The compiler generates the following code giving a saving of 33% over the previous
version using ANSI bit-fields:

dostages_v2
STMFD r13!,{r4,r14} ; stack r4, lr
LDR r4,[r0,#0] ; stages = *stages_v2
TST r4,#1 ; if (stage & STAGEA)
BLNE dostageA ; {dostageA();}
TST r4,#2 ; if (stage & STAGEB)
BLNE dostageB ; {dostageB();}
TST r4,#4 ; if (!(stage & STAGEC))
LDMNEFD r13!,{r4,r14} ; return;
BNE dostageC ; dostageC();
LDMFD r13!,{r4,pc} ; return ■

You can also use the masks to set and clear the bit-fields, just as easily as for testing
them. The following code shows how to set, clear, or toggle bits using the STAGE masks:

stages |= STAGEA; /* enable stage A */

136 Chapter 5 Efficient C Programming

stages &= ∼STAGEB; /* disable stage B */
stages ∧= STAGEC; /* toggle stage C */

These bit set, clear, and toggle operations take only one ARM instruction each, using ORR,
BIC, and EOR instructions, respectively. Another advantage is that you can now manipulate
several bit-fields at the same time, using one instruction. For example:

stages |= (STAGEA | STAGEB); /* enable stages A and B */
stages &= ∼(STAGEA | STAGEC); /* disable stages A and C */

Summary Bit-fields

■ Avoid using bit-fields. Instead use #define or enum to define mask values.

■ Test, toggle, and set bit-fields using integer logical AND, OR, and exclusive OR oper-
ations with the mask values. These operations compile efficiently, and you can test,
toggle, or set multiple fields at the same time.

5.9 Unaligned Data and Endianness
Unaligned data and endianness are two issues that can complicate memory accesses and
portability. Is the array pointer aligned? Is the ARM configured for a big-endian or little-
endian memory system?

The ARM load and store instructions assume that the address is a multiple of the type
you are loading or storing. If you load or store to an address that is not aligned to its type,
then the behavior depends on the particular implementation. The core may generate a data
abort or load a rotated value. For well-written, portable code you should avoid unaligned
accesses.

C compilers assume that a pointer is aligned unless you say otherwise. If a pointer isn’t
aligned, then the program may give unexpected results. This is sometimes an issue when you
are porting code to the ARM from processors that do allow unaligned accesses. For armcc,
the __packed directive tells the compiler that a data item can be positioned at any byte
alignment. This is useful for porting code, but using __packed will impact performance.

To illustrate this, look at the following simple routine, readint. It returns the integer at
the address pointed to by data. We’ve used __packed to tell the compiler that the integer
may possibly not be aligned.

int readint(__packed int *data)
{
return *data;

}

5.9 Unaligned Data and Endianness 137

This compiles to

readint
BIC r3,r0,#3 ; r3 = data & 0xFFFFFFFC
AND r0,r0,#3 ; r0 = data & 0x00000003
MOV r0,r0,LSL #3 ; r0 = bit offset of data word
LDMIA r3,{r3,r12} ; r3, r12 = 8 bytes read from r3
MOV r3,r3,LSR r0 ; These three instructions
RSB r0,r0,#0x20 ; shift the 64 bit value r12.r3
ORR r0,r3,r12,LSL r0 ; right by r0 bits
MOV pc,r14 ; return r0

Notice how large and complex the code is. The compiler emulates the unaligned access
using two aligned accesses and data processing operations, which is very costly and shows
why you should avoid _packed. Instead use the type char * to point to data that can
appear at any alignment. We will look at more efficient ways to read 32-bit words from
a char * later.

You are likely to meet alignment problems when reading data packets or files used to
transfer information between computers. Network packets and compressed image files are
good examples. Two- or four-byte integers may appear at arbitrary offsets in these files.
Data has been squeezed as much as possible, to the detriment of alignment.

Endianness (or byte order) is also a big issue when reading data packets or compressed
files. The ARM core can be configured to work in little-endian (least significant byte at
lowest address) or big-endian (most significant byte at lowest address) modes. Little-endian
mode is usually the default.

The endianness of an ARM is usually set at power-up and remains fixed thereafter.
Tables 5.6 and 5.7 illustrate how the ARM’s 8-bit, 16-bit, and 32-bit load and store instruc-
tions work for different endian configurations. We assume that byte address A is aligned to

Table 5.6 Little-endian configuration.

Instruction Width (bits) b31..b24 b23..b16 b15..b8 b7..b0

LDRB 8 0 0 0 B(A)
LDRSB 8 S(A) S(A) S(A) B(A)
STRB 8 X X X B(A)
LDRH 16 0 0 B(A+1) B(A)
LDRSH 16 S(A+1) S(A+1) B(A+1) B(A)
STRH 16 X X B(A+1) B(A)
LDR/STR 32 B(A+3) B(A+2) B(A+1) B(A)

138 Chapter 5 Efficient C Programming

Table 5.7 Big-endian configuration.

Instruction Width (bits) b31..b24 b23..b16 b15..b8 b7..b0

LDRB 8 0 0 0 B(A)
LDRSB 8 S(A) S(A) S(A) B(A)
STRB 8 X X X B(A)
LDRH 16 0 0 B(A) B(A+1)
LDRSH 16 S(A) S(A) B(A) B(A+1)
STRH 16 X X B(A) B(A+1)
LDR/STR 32 B(A) B(A+1) B(A+2) B(A+3)

Notes:

B(A): The byte at address A.

S(A): 0xFF if bit 7 of B(A) is set, otherwise 0x00.

X: These bits are ignored on a write.

the size of the memory transfer. The tables show how the byte addresses in memory map
into the 32-bit register that the instruction loads or stores.

What is the best way to deal with endian and alignment problems? If speed is not critical,
then use functions like readint_little and readint_big in Example 5.10, which read
a four-byte integer from a possibly unaligned address in memory. The address alignment
is not known at compile time, only at run time. If you’ve loaded a file containing big-
endian data such as a JPEG image, then use readint_big. For a bytestream containing
little-endian data, use readint_little. Both routines will work correctly regardless of the
memory endianness ARM is configured for.

Example

5.10
These functions read a 32-bit integer from a bytestream pointed to by data. The bytestream
contains little- or big-endian data, respectively. These functions are independent of the
ARM memory system byte order since they only use byte accesses.

int readint_little(char *data)
{
int a0,a1,a2,a3;

a0 = *(data++);
a1 = *(data++);
a2 = *(data++);
a3 = *(data++);
return a0 | (a1 << 8) | (a2 << 16) | (a3 << 24);

}

int readint_big(char *data)

5.9 Unaligned Data and Endianness 139

{
int a0,a1,a2,a3;

a0 = *(data++);
a1 = *(data++);
a2 = *(data++);
a3 = *(data++);
return (((((a0 << 8) | a1) << 8) | a2) << 8) | a3;

} ■

If speed is critical, then the fastest approach is to write several variants of the critical
routine. For each possible alignment and ARM endianness configuration, you call a separate
routine optimized for that situation.

Example

5.11
The read_samples routine takes an array of N 16-bit sound samples at address in. The
sound samples are little-endian (for example from a.wav file) and can be at any byte
alignment. The routine copies the samples to an aligned array of short type values pointed
to by out. The samples will be stored according to the configured ARM memory endianness.

The routine handles all cases in an efficient manner, regardless of input alignment and
of ARM endianness configuration.

void read_samples(short *out, char *in, unsigned int N)
{
unsigned short *data; /* aligned input pointer */
unsigned int sample, next;

switch ((unsigned int)in & 1)
{

case 0: /* the input pointer is aligned */
data = (unsigned short *)in;
do
{

sample = *(data++);
#ifdef __BIG_ENDIAN

sample = (sample >> 8) | (sample << 8);
#endif

*(out++) = (short)sample;
} while (--N);
break;

case 1: /* the input pointer is not aligned */
data = (unsigned short *)(in-1);
sample = *(data++);

140 Chapter 5 Efficient C Programming

#ifdef __BIG_ENDIAN
sample = sample & 0xFF; /* get first byte of sample */

#else
sample = sample >> 8; /* get first byte of sample */

#endif
do
{
next = *(data++);
/* complete one sample and start the next */

#ifdef __BIG_ENDIAN
*out++ = (short)((next & 0xFF00) | sample);
sample = next & 0xFF;

#else
*out++ = (short)((next << 8) | sample);
sample = next >> 8;

#endif
} while (--N);
break;

}
}

The routine works by having different code for each endianness and alignment.
Endianness is dealt with at compile time using the __BIG_ENDIAN compiler flag. Alignment
must be dealt with at run time using the switch statement.

You can make the routine even more efficient by using 32-bit reads and writes rather
than 16-bit reads and writes, which leads to four elements in the switch statement, one for
each possible address alignment modulo four. ■

Summary Endianness and Alignment

■ Avoid using unaligned data if you can.

■ Use the type char * for data that can be at any byte alignment. Access the data by
reading bytes and combining with logical operations. Then the code won’t depend on
alignment or ARM endianness configuration.

■ For fast access to unaligned structures, write different variants according to pointer
alignment and processor endianness.

5.10 Division
The ARM does not have a divide instruction in hardware. Instead the compiler implements
divisions by calling software routines in the C library. There are many different types of

5.10 Division 141

division routine that you can tailor to a specific range of numerator and denominator
values. We look at assembly division routines in detail in Chapter 7. The standard integer
division routine provided in the C library can take between 20 and 100 cycles, depending
on implementation, early termination, and the ranges of the input operands.

Division and modulus (/ and %) are such slow operations that you should avoid them
as much as possible. However, division by a constant and repeated division by the same
denominator can be handled efficiently. This section describes how to replace certain
divisions by multiplications and how to minimize the number of division calls.

Circular buffers are one area where programmers often use division, but you can avoid
these divisions completely. Suppose you have a circular buffer of size buffer_size bytes
and a position indicated by a buffer offset. To advance the offset by increment bytes you
could write

offset = (offset + increment) % buffer_size;

Instead it is far more efficient to write

offset += increment;
if (offset>=buffer_size)
{

offset -= buffer_size;
}

The first version may take 50 cycles; the second will take 3 cycles because it does not involve
a division. We’ve assumed that increment < buffer_size; you can always arrange this
in practice.

If you can’t avoid a division, then try to arrange that the numerator and denominator
are unsigned integers. Signed division routines are slower since they take the absolute values
of the numerator and denominator and then call the unsigned division routine. They fix
the sign of the result afterwards.

Many C library division routines return the quotient and remainder from the division.
In other words a free remainder operation is available to you with each division operation
and vice versa. For example, to find the (x, y) position of a location at offset bytes into
a screen buffer, it is tempting to write

typedef struct {
int x;
int y;

} point;

point getxy_v1(unsigned int offset, unsigned int bytes_per_line)
{
point p;

142 Chapter 5 Efficient C Programming

p.y = offset / bytes_per_line;
p.x = offset - p.y * bytes_per_line;
return p;

}

It appears that we have saved a division by using a subtract and multiply to calculate p.x,
but in fact, it is often more efficient to write the function with the modulus or remainder
operation.

Example

5.12
In getxy_v2, the quotient and remainder operation only require a single call to a division
routine:

point getxy_v2(unsigned int offset, unsigned int bytes_per_line)
{
point p;

p.x = offset % bytes_per_line;
p.y = offset / bytes_per_line;
return p;

}

There is only one division call here, as you can see in the following compiler output. In
fact, this version is four instructions shorter than getxy_v1. Note that this may not be the
case for all compilers and C libraries.

getxy_v2
STMFD r13!,{r4, r14} ; stack r4, lr
MOV r4,r0 ; move p to r4
MOV r0,r2 ; r0 = bytes_per_line
BL __rt_udiv ; (r0,r1) = (r1/r0, r1%r0)
STR r0,[r4,#4] ; p.y = offset / bytes_per_line
STR r1,[r4,#0] ; p.x = offset % bytes_per_line
LDMFD r13!,{r4,pc} ; return ■

5.10.1 Repeated Unsigned Division with Remainder

Often the same denominator occurs several times in code. In the previous example,
bytes_per_line will probably be fixed throughout the program. If we project from three
to two cartesian coordinates, then we use the denominator twice:

(x , y , z) → (x/z , y/z)

5.10 Division 143

In these situations it is more efficient to cache the value of 1/z in some way and use a mul-
tiplication by 1/z instead of a division. We will show how to do this in the next subsection.
We also want to stick to integer arithmetic and avoid floating point (see Section 5.11).

The next description is rather mathematical and covers the theory behind this con-
version of repeated divisions into multiplications. If you are not interested in the theory,
then don’t worry. You can jump directly to Example 5.13, which follows.

5.10.2 Converting Divides into Multiplies

We’ll use the following notation to distinguish exact mathematical divides from integer
divides:

■ n/d = the integer part of n divided by d, rounding towards zero (as in C)

■ n%d = the remainder of n divided by d which is n − d(n / d)

■
n

d
= nd−1 = the true mathematical divide of n by d

The obvious way to estimate d−1, while sticking to integer arithmetic, is to calculate
232/d. Then we can estimate n/d (

n(232/d)
)

/232 (5.1)

We need to perform the multiplication by n to 64-bit accuracy. There are a couple of
problems with this approach:

■ To calculate 232/d, the compiler needs to use 64-bit long long type arithmetic
because 232 does not fit into an unsigned int type. We must specify the division as
(1ull � 32)/d. This 64-bit division is much slower than the 32-bit division we wanted
to perform originally!

■ If d happens to be 1, then 232/d will not fit into an unsigned int type.

It turns out that a slightly cruder estimate works well and fixes both these problems.
Instead of 232/d , we look at (232 − 1)/d . Let

s = 0xFFFFFFFFul / d; /* s = (2∧32-1)/d */

We can calculate s using a single unsigned int type division. We know that

232 − 1 = sd + t for some 0 ≤ t < d (5.2)

Therefore

s = 232

d
− e1, where 0 < e1 = 1 + t

d
≤ 1 (5.3)

144 Chapter 5 Efficient C Programming

Next, calculate an estimate q to n/d:

q = (unsigned int)(((unsigned long long)n * s) >> 32);

Mathematically, the shift right by 32 introduces an error e2:

q = ns2−32 − e2 for some 0 ≤ e2 < 1 (5.4)

Substituting the value of s:

q = n

d
− ne12−32 − e2 (5.5)

So, q is an underestimate to n/d. Now

0 ≤ ne12−32 + e2 < e1 + e2 < 2 (5.6)

Therefore

n/d − 2 < q ≤ n/d (5.7)

So q = n/d or q = (n/d) − 1. We can find out which quite easily, by calculating the remainder
r = n − qd , which must be in the range 0 ≤ r < 2d . The following code corrects the result:

r = n - q * d; /* the remainder in the range 0 <= r < 2 * d */
if (r >= d) /* if correction is required */
{

r -= d; /* correct the remainder to the range 0 <= r < d */
q++; /* correct the quotient */

}
/* now q = n / d and r = n % d */

Example

5.13
The following routine, scale, shows how to convert divisions to multiplications in practice.
It divides an array of N elements by denominator d. We first calculate the value of s as above.
Then we replace each divide by d with a multiplication by s. The 64-bit multiply is cheap
because the ARM has an instruction UMULL, which multiplies two 32-bit values, giving
a 64-bit result.

void scale(
unsigned int *dest, /* destination for the scale data */
unsigned int *src, /* source unscaled data */
unsigned int d, /* denominator to divide by */
unsigned int N) /* data length */

{
unsigned int s = 0xFFFFFFFFu / d;

5.10 Division 145

do
{

unsigned int n, q, r;

n = *(src++);
q = (unsigned int)(((unsigned long long)n * s) >> 32);
r = n - q * d;
if (r >= d)
{

q++;
}
*(dest++) = q;

} while (--N);
}

Here we have assumed that the numerator and denominator are 32-bit unsigned integers.
Of course, the algorithm works equally well for 16-bit unsigned integers using a 32-bit
multiply, or for 64-bit integers using a 128-bit multiply. You should choose the narrowest
width for your data. If your data is 16-bit, then set s = (216 − 1)/d and estimate q using
a standard integer C multiply. ■

5.10.3 Unsigned Division by a Constant

To divide by a constant c, you could use the algorithm of Example 5.13, precalculating
s = (232 − 1)/c . However, there is an even more efficient method. The ADS1.2 compiler
uses this method to synthesize divisions by a constant.

The idea is to use an approximation to d−1 that is sufficiently accurate so that
multiplying by the approximation gives the exact value of n/d . We use the following
mathematical results:1

If 2N+k ≤ ds ≤ 2N+k + 2k , then n/d = (ns) � (N + k) for 0 ≤ n < 2N . (5.8)

If 2N+k − 2k ≤ ds < 2N+k , then n/d = (ns + s) � (N + k) for 0 ≤ n < 2N . (5.9)

1. For the first result see a paper by Torbjorn Granlund and Peter L. Montgomery, “Division by
Invariant Integers Using Multiplication,” in proceedings of the SIG-PLAN PLDI’94 Conference,
June 1994.

146 Chapter 5 Efficient C Programming

Since n = (n/d)d + r for 0 ≤ r ≤ d − 1, the results follow from the equations

ns − (n/d)2N+k = ns − n − r

d
2N+k = n

ds − 2N+k

d
+ r2N+k

d
(5.10)

(n + 1)s − (n/d)2N+k = (n + 1)
ds − 2N+k

d
+ (r + 1)2N+k

d
(5.11)

For both equations the right-hand side is in the range 0 ≤ x < 2N+k . For a 32-bit unsigned
integer n, we take N = 32, choose k such that 2k < d ≤ 2k+1, and set s = (2N+k + 2k)/d .
If ds ≥ 2N+k , then n/d = (ns) � (N + k); otherwise, n/d = (ns + s) � (N + k). As an
extra optimization, if d is a power of two, we can replace the division with a shift.

Example

5.14
The udiv_by_const function tests the algorithm described above. In practice d will be
a fixed constant rather than a variable. You can precalculate s and k in advance and only
include the calculations relevant for your particular value of d.

unsigned int udiv_by_const(unsigned int n, unsigned int d)
{
unsigned int s,k,q;

/* We assume d!=0 */

/* first find k such that (1 << k) <= d < (1 << (k+1)) */
for (k=0; d/2>=(1u << k); k++);

if (d==1u << k)
{

/* we can implement the divide with a shift */
return n >> k;

}

/* d is in the range (1 << k) < d < (1 << (k+1)) */
s = (unsigned int)(((1ull << (32+k))+(1ull << k))/d);

if ((unsigned long long)s*d >= (1ull << (32+k)))
{

/* n/d = (n*s) >> (32+k) */
q = (unsigned int)(((unsigned long long)n*s) >> 32);
return q >> k;

}

/* n/d = (n*s+s) >> (32+k) */

5.10 Division 147

q = (unsigned int)(((unsigned long long)n*s + s) >> 32);
return q >> k;

}

If you know that 0 ≤ n < 231, as for a positive signed integer, then you don’t need to
bother with the different cases. You can increase k by one without having to worry about s
overflowing. Take N = 31, choose k such that 2k−1 < d ≤ 2k , and set s = (sN+k+2k−1)/d .
Then n/d = (ns) � (N + k). ■

5.10.4 Signed Division by a Constant

We can use ideas and algorithms similar to those in Section 5.10.3 to handle signed
constants as well. If d < 0, then we can divide by |d| and correct the sign later, so for now
we assume that d > 0. The first mathematical result of Section 5.10.3 extends to signed n.
If d > 0 and 2N+k < ds ≤ 2N+k + 2k , then

n/d = (ns) � (N + k) for all 0 ≤ n < 2N (5.12)

n/d = ((ns) � (N + k)) + 1 for all − 2N ≤ n < 0 (5.13)

For 32-bit signed n, we take N = 31 and choose k ≤ 31 such that 2k−1 < d ≤ 2k . This
ensures that we can find a 32-bit unsigned s = (2N+k + 2k)/d satisfying the preceding
relations. We need to take special care multiplying the 32-bit signed n with the 32-bit
unsigned s. We achieve this using a signed long long type multiply with a correction if the
top bit of s is set.

Example

5.15
The following routine, sdiv_by_const, shows how to divide by a signed constant d. In
practice you will precalculate k and s at compile time. Only the operations involving n for
your particular value of d need be executed at run time.

int sdiv_by_const(int n, int d)
{
int s,k,q;
unsigned int D;

/* set D to be the absolute value of d, we assume d!=0 */
if (d>0)
{

D=(unsigned int)d; /* 1 <= D <= 0x7FFFFFFF */
}
else

148 Chapter 5 Efficient C Programming

{
D=(unsigned int) - d; /* 1 <= D <= 0x80000000 */

}

/* first find k such that (1 << k) <= D < (1 << (k+1)) */
for (k=0; D/2>=(1u << k); k++);

if (D==1u << k)
{

/* we can implement the divide with a shift */
q = n >> 31; /* 0 if n>0, -1 if n<0 */
q = n + ((unsigned)q >> (32-k)); /* insert rounding */
q = q >> k; /* divide */
if (d < 0)
{
q = -q; /* correct sign */

}
return q;

}

/* Next find s in the range 0<=s<=0xFFFFFFFF */
/* Note that k here is one smaller than the k in the equation */
s = (int)(((1ull << (31+(k+1)))+(1ull << (k+1)))/D);

if (s>=0)
{

q = (int)(((signed long long)n*s) >> 32);
}
else
{

/* (unsigned)s = (signed)s + (1 << 32) */
q = n + (int)(((signed long long)n*s) >> 32);

}
q = q >> k;

/* if n<0 then the formula requires us to add one */
q += (unsigned)n >> 31;

/* if d was negative we must correct the sign */
if (d<0)
{

q = -q;
}

5.12 Inline Functions and Inline Assembly 149

return q;
} ■

Section 7.3 shows how to implement divides efficiently in assembler.

Summary Division

■ Avoid divisions as much as possible. Do not use them for circular buffer handling.

■ If you can’t avoid a division, then try to take advantage of the fact that divide routines
often generate the quotient n/d and modulus n%d together.

■ To repeatedly divide by the same denominator d, calculate s = (2k − 1)/d in advance.
You can replace the divide of a k-bit unsigned integer by d with a 2k-bit multiply by s.

■ To divide unsigned n < 2N by an unsigned constant d, you can find a 32-bit unsigned s
and shift k such that n/d is either (ns) � (N + k) or (ns + s) � (N + k). The choice
depends only on d. There is a similar result for signed divisions.

5.11 Floating Point
The majority of ARM processor implementations do not provide hardware floating-point
support, which saves on power and area when using ARM in a price-sensitive, embedded
application. With the exceptions of the Floating Point Accelerator (FPA) used on the
ARM7500FE and the Vector Floating Point accelerator (VFP) hardware, the C compiler
must provide support for floating point in software.

In practice, this means that the C compiler converts every floating-point operation
into a subroutine call. The C library contains subroutines to simulate floating-point
behavior using integer arithmetic. This code is written in highly optimized assembly.
Even so, floating-point algorithms will execute far more slowly than corresponding integer
algorithms.

If you need fast execution and fractional values, you should use fixed-point or block-
floating algorithms. Fractional values are most often used when processing digital signals
such as audio and video. This is a large and important area of programming, so we have
dedicated a whole chapter, Chapter 8, to the area of digital signal processing on the ARM.
For best performance you need to code the algorithms in assembly (see the examples of
Chapter 8).

5.12 Inline Functions and Inline Assembly
Section 5.5 looked at how to call functions efficiently. You can remove the function call
overhead completely by inlining functions. Additionally many compilers allow you to

150 Chapter 5 Efficient C Programming

include inline assembly in your C source code. Using inline functions that contain assembly
you can get the compiler to support ARM instructions and optimizations that aren’t usually
available. For the examples of this section we will use the inline assembler in armcc.

Don’t confuse the inline assembler with the main assembler armasm or gas. The inline
assembler is part of the C compiler. The C compiler still performs register allocation,
function entry, and exit. The compiler also attempts to optimize the inline assembly you
write, or deoptimize it for debug mode. Although the compiler output will be functionally
equivalent to your inline assembly, it may not be identical.

The main benefit of inline functions and inline assembly is to make accessible in C
operations that are not usually available as part of the C language. It is better to use inline
functions rather than #define macros because the latter doesn’t check the types of the
function arguments and return value.

Let’s consider as an example the saturating multiply double accumulate primitive used
by many speech processing algorithms. This operation calculates a + 2xy for 16-bit signed
operands x and y and 32-bit accumulator a. Additionally, all operations saturate to the
nearest possible value if they exceed a 32-bit range. We say x and y are Q15 fixed-point
integers because they represent the values x2−15 and y2−15, respectively. Similarly, a is a
Q31 fixed-point integer because it represents the value a2−31.

We can define this new operation using an inline function qmac:

__inline int qmac(int a, int x, int y)
{
int i;

i = x*y; /* this multiplication cannot saturate */
if (i>=0)
{

/* x*y is positive */
i = 2*i;
if (i<0)
{

/* the doubling saturated */
i = 0x7FFFFFFF;

}
if (a + i < a)
{

/* the addition saturated */
return 0x7FFFFFFF;

}
return a + i;

}
/* x*y is negative so the doubling can’t saturate */

5.12 Inline Functions and Inline Assembly 151

if (a + 2*i > a)
{

/* the accumulate saturated */
return - 0x80000000;

}
return a + 2*i;

}

We can now use this new operation to calculate a saturating correlation. In other words,
we calculate a = 2x0y0 + · · · 2xN−1yN−1 with saturation.

int sat_correlate(short *x, short *y, unsigned int N)
{
int a=0;

do
{

a = qmac(a, *(x++), *(y++));
} while (--N);
return a;

}

The compiler replaces each qmac function call with inline code. In other words it inserts the
code for qmac instead of calling qmac. Our C implementation of qmac isn’t very efficient,
requiring several if statements. We can write it much more efficiently using assembly. The
inline assembler in the C compiler allows us to use assembly in our inline C function.

Example

5.16
This example shows an efficient implementation ofqmacusing inline assembly. The example
supports both armcc and gcc inline assembly formats, which are quite different. In the gcc
format the "cc" informs the compiler that the instruction reads or writes the condition
code flags. See the armcc or gcc manuals for further information.

__inline int qmac(int a, int x, int y)
{
int i;
const int mask = 0x80000000;

i = x*y;
#ifdef __ARMCC_VERSION /* check for the armcc compiler */
__asm
{

ADDS i, i, i /* double */
EORVS i, mask, i, ASR 31 /* saturate the double */

152 Chapter 5 Efficient C Programming

ADDS a, a, i /* accumulate */
EORVS a, mask, a, ASR 31 /* saturate the accumulate */

}
#endif
#ifdef __GNUC__ /* check for the gcc compiler */
asm("ADDS % 0, % 1, % 2 ":"=r" (i):"r" (i) ,"r" (i):"cc");
asm("EORVS % 0, % 1, % 2,ASR#31":"=r" (i):"r" (mask),"r" (i):"cc");
asm("ADDS % 0, % 1, % 2 ":"=r" (a):"r" (a) ,"r" (i):"cc");
asm("EORVS % 0, % 1, % 2,ASR#31":"=r" (a):"r" (mask),"r" (a):"cc");

#endif

return a;
}

This inlined code reduces the main loop of sat_correlate from 19 instructions to
9 instructions. ■

Example

5.17
Now suppose that we are using an ARM9E processor with the ARMv5E extensions. We can
rewrite qmac again so that the compiler uses the new ARMv5E instructions:

__inline int qmac(int a, int x, int y)
{
int i;

__asm
{

SMULBB i, x, y /* multiply */
QDADD a, a, i /* double + saturate + accumulate + saturate */

}
return a;

}

This time the main loop compiles to just six instructions:

sat_correlate_v3
STR r14,[r13,#-4]! ; stack lr
MOV r12,#0 ; a = 0

sat_v3_loop
LDRSH r3,[r0],#2 ; r3 = *(x++)
LDRSH r14,[r1],#2 ; r14 = *(y++)
SUBS r2,r2,#1 ; N-- and set flags

5.13 Portability Issues 153

SMULBB r3,r3,r14 ; r3 = r3 * r14

QDADD r12,r12,r3 ; a = sat(a+sat(2*r3))

BNE sat_v3_loop ; if (N!=0) goto loop

MOV r0,r12 ; r0 = a

LDR pc,[r13],#4 ; return r0 ■

Other instructions that are not usually available from C include coprocessor
instructions. Example 5.18 shows how to access these.

Example

5.18
This example writes to coprocessor 15 to flush the instruction cache. You can use similar
code to access other coprocessor numbers.

void flush_Icache(void)

{

#ifdef __ARMCC_VERSION /* armcc */

__asm {MCR p15, 0, 0, c7, c5, 0}

#endif

#ifdef __GNUC__ /* gcc */

asm ("MCR p15, 0, r0, c7, c5, 0");

#endif

} ■

Summary Inline Functions and Assembly

■ Use inline functions to declare new operations or primitives not supported by the
C compiler.

■ Use inline assembly to access ARM instructions not supported by the C compiler.
Examples are coprocessor instructions or ARMv5E extensions.

5.13 Portability Issues
Here is a summary of the issues you may encounter when porting C code to the ARM.

■ The char type. On the ARM, char is unsigned rather than signed as for many other
processors. A common problem concerns loops that use a char loop counter i and
the continuation condition i ≥ 0, they become infinite loops. In this situation, armcc

154 Chapter 5 Efficient C Programming

produces a warning of unsigned comparison with zero. You should either use a compiler
option to make char signed or change loop counters to type int.

■ The int type. Some older architectures use a 16-bit int, which may cause problems
when moving to ARM’s 32-bit int type although this is rare nowadays. Note that
expressions are promoted to an int type before evaluation. Therefore if i = -0x1000,
the expression i == 0xF000 is true on a 16-bit machine but false on a 32- bit machine.

■ Unaligned data pointers. Some processors support the loading of short and int typed
values from unaligned addresses. A C program may manipulate pointers directly so
that they become unaligned, for example, by casting a char * to an int *. ARM
architectures up to ARMv5TE do not support unaligned pointers. To detect them,
run the program on an ARM with an alignment checking trap. For example, you can
configure the ARM720T to data abort on an unaligned access.

■ Endian assumptions. C code may make assumptions about the endianness of a memory
system, for example, by casting a char * to an int *. If you configure the ARM for
the same endianness the code is expecting, then there is no issue. Otherwise, you must
remove endian-dependent code sequences and replace them by endian-independent
ones. See Section 5.9 for more details.

■ Function prototyping. The armcc compiler passes arguments narrow, that is, reduced
to the range of the argument type. If functions are not prototyped correctly, then the
function may return the wrong answer. Other compilers that pass arguments wide may
give the correct answer even if the function prototype is incorrect. Always use ANSI
prototypes.

■ Use of bit-fields. The layout of bits within a bit-field is implementation and endian
dependent. If C code assumes that bits are laid out in a certain order, then the code is
not portable.

■ Use of enumerations. Although enum is portable, different compilers allocate different
numbers of bytes to an enum. The gcc compiler will always allocate four bytes to an enum
type. The armcc compiler will only allocate one byte if the enum takes only eight-bit
values. Therefore you can’t cross-link code and libraries between different compilers if
you use enums in an API structure.

■ Inline assembly. Using inline assembly in C code reduces portability between
architectures. You should separate any inline assembly into small inlined functions
that can easily be replaced. It is also useful to supply reference, plain C implementations
of these functions that can be used on other architectures, where this is possible.

■ The volatile keyword. Use the volatile keyword on the type definitions of ARM
memory-mapped peripheral locations. This keyword prevents the compiler from opti-
mizing away the memory access. It also ensures that the compiler generates a data access
of the correct type. For example, if you define a memory location as a volatile short
type, then the compiler will access it using 16-bit load and store instructions LDRSH
and STRH.

5.14 Summary 155

5.14 Summary
By writing C routines in a certain style, you can help the C compiler to generate faster
ARM code. Performance-critical applications often contain a few routines that dominate
the performance profile; concentrate on rewriting these routines using the guidelines of
this chapter.

Here are the key performance points we covered:

■ Use the signed and unsigned int types for local variables, function arguments, and
return values. This avoids casts and uses the ARM’s native 32-bit data processing
instructions efficiently.

■ The most efficient form of loop is a do-while loop that counts down to zero.

■ Unroll important loops to reduce the loop overhead.

■ Do not rely on the compiler to optimize away repeated memory accesses. Pointer
aliasing often prevents this.

■ Try to limit functions to four arguments. Functions are faster to call if their arguments
are held in registers.

■ Lay structures out in increasing order of element size, especially when compiling for
Thumb.

■ Don’t use bit-fields. Use masks and logical operations instead.

■ Avoid divisions. Use multiplications by reciprocals instead.

■ Avoid unaligned data. Use the char * pointer type if the data could be unaligned.

■ Use the inline assembler in the C compiler to access instructions or optimizations that
the C compiler does not support.

6.1 Writing Assembly Code
6.2 Profiling and Cycle Counting
6.3 Instruction Scheduling

6.3.1 Scheduling of Load Instructions

6.4 Register Allocation
6.4.1 Allocating Variables to Register Numbers

6.4.2 Using More than 14 Local Variables

6.4.3 Making the Most of Available Registers

6.5 Conditional Execution
6.6 Looping Constructs

6.6.1 Decremented Counted Loops

6.6.2 Unrolled Counted Loops

6.6.3 Multiple Nested Loops

6.6.4 Other Counted Loops

6.7 Bit Manipulation
6.7.1 Fixed-Width Bit-Field Packing and Unpacking

6.7.2 Variable-Width Bitstream Packing

6.7.3 Variable-Width Bitstream Unpacking

6.8 Efficient Switches
6.8.1 Switches on the Range 0 ≤ x < N

6.8.2 Switches on a General Value x

6.9 Handling Unaligned Data
6.10 Summary

C h a p t e r

Writing and
Optimizing ARM
Assembly Code

6

Embedded software projects often contain a few key subroutines that dominate system
performance. By optimizing these routines you can reduce the system power consumption
and reduce the clock speed needed for real-time operation. Optimization can turn an
infeasible system into a feasible one, or an uncompetitive system into a competitive one.

If you write your C code carefully using the rules given in Chapter 5, you will have
a relatively efficient implementation. For maximum performance, you can optimize critical
routines using hand-written assembly. Writing assembly by hand gives you direct control
of three optimization tools that you cannot explicitly use by writing C source:

■ Instruction scheduling: Reordering the instructions in a code sequence to avoid processor
stalls. Since ARM implementations are pipelined, the timing of an instruction can be
affected by neighboring instructions. We will look at this in Section 6.3.

■ Register allocation: Deciding how variables should be allocated to ARM registers or stack
locations for maximum performance. Our goal is to minimize the number of memory
accesses. See Section 6.4.

■ Conditional execution: Accessing the full range of ARM condition codes and conditional
instructions. See Section 6.5.

It takes additional effort to optimize assembly routines so don’t bother to optimize
noncritical ones. When you take the time to optimize a routine, it has the side benefit of
giving you a better understanding of the algorithm, its bottlenecks, and dataflow.

157

158 Chapter 6 Writing and Optimizing ARM Assembly Code

Section 6.1 starts with an introduction to assembly programming on the ARM. It shows
you how to replace a C function by an assembly function that you can then optimize for
performance.

We describe common optimization techniques, specific to writing ARM assembly.
Thumb assembly is not covered specifically since ARM assembly will always give better
performance when a 32-bit bus is available. Thumb is most useful for reducing the com-
piled size of C code that is not critical to performance and for efficient execution on a 16-bit
data bus. Many of the principles covered here apply equally well to Thumb and ARM.

The best optimization of a routine can vary according to the ARM core used in your
target hardware, especially for signal processing (covered in detail in Chapter 8). However,
you can often code a routine that is reasonably efficient for all ARM implementations. To be
consistent this chapter uses ARM9TDMI optimizations and cycle counts in the examples.
However, the examples will run efficiently on all ARM cores from ARM7TDMI to ARM10E.

6.1 Writing Assembly Code
This section gives examples showing how to write basic assembly code. We assume you are
familiar with the ARM instructions covered in Chapter 3; a complete instruction reference
is available in Appendix A. We also assume that you are familiar with the ARM and Thumb
procedure call standard covered in Section 5.4.

As with the rest of the book, this chapter uses the ARM macro assembler armasm for
examples (see Section A.4 in Appendix A for armasm syntax and reference). You can also
use the GNU assembler gas (see Section A.5 for details of the GNU assembler syntax).

Example

6.1
This example shows how to convert a C function to an assembly function—usually the
first stage of assembly optimization. Consider the simple C program main.c following that
prints the squares of the integers from 0 to 9:

#include <stdio.h>

int square(int i);

int main(void)
{
int i;

for (i=0; i<10; i++)
{

printf("Square of %d is %d\n", i, square(i));
}

}

int square(int i)

6.1 Writing Assembly Code 159

{
return i*i;

}

Let’s see how to replace square by an assembly function that performs the same action.
Remove the C definition of square, but not the declaration (the second line) to produce
a new C file main1.c. Next add an armasm assembler file square.s with the following
contents:

AREA |.text|, CODE, READONLY

EXPORT square

; int square(int i)
square

MUL r1, r0, r0 ; r1 = r0 * r0
MOV r0, r1 ; r0 = r1
MOV pc, lr ; return r0
END

The AREA directive names the area or code section that the code lives in. If you use
nonalphanumeric characters in a symbol or area name, then enclose the name in vertical
bars. Many nonalphanumeric characters have special meanings otherwise. In the previous
code we define a read-only code area called .text.

The EXPORT directive makes the symbol square available for external linking. At line
six we define the symbol square as a code label. Note that armasm treats nonindented text
as a label definition.

When square is called, the parameter passing is defined by the ATPCS (see Section 5.4).
The input argument is passed in register r0, and the return value is returned in register r0.
The multiply instruction has a restriction that the destination register must not be the same
as the first argument register. Therefore we place the multiply result into r1 and move this
to r0.

The END directive marks the end of the assembly file. Comments follow a semicolon.
The following script illustrates how to build this example using command line tools.

armcc -c main1.c
armasm square.s
armlink -o main1.axf main1.o square.o ■

Example 6.1 only works if you are compiling your C as ARM code. If you compile your
C as Thumb code, then the assembly routine must return using a BX instruction.

Example

6.2
When calling ARM code from C compiled as Thumb, the only change required to the
assembly in Example 6.1 is to change the return instruction to a BX. BX will return to ARM

160 Chapter 6 Writing and Optimizing ARM Assembly Code

or Thumb state according to bit 0 of lr. Therefore this routine can be called from ARM or
Thumb. Use BX lr instead of MOV pc, lr whenever your processor supports BX (ARMv4T
and above). Create a new assembly file square2.s as follows:

AREA |.text|, CODE, READONLY

EXPORT square

; int square(int i)
square

MUL r1, r0, r0 ; r1 = r0 * r0
MOV r0, r1 ; r0 = r1
BX lr ; return r0

END

With this example we build the C file using the Thumb C compiler tcc. We assemble
the assembly file with the interworking flag enabled so that the linker will allow the Thumb
C code to call the ARM assembly code. You can use the following commands to build this
example:

tcc -c main1.c
armasm -apcs /interwork square2.s
armlink -o main2.axf main1.o square2.o ■

Example

6.3
This example shows how to call a subroutine from an assembly routine. We will take
Example 6.1 and convert the whole program (including main) into assembly. We will call
the C library routine printf as a subroutine. Create a new assembly file main3.s with the
following contents:

AREA |.text|, CODE, READONLY

EXPORT main

IMPORT |Lib$$Request$$armlib|, WEAK
IMPORT __main ; C library entry
IMPORT printf ; prints to stdout

i RN 4

; int main(void)

main
STMFD sp!, {i, lr}
MOV i, #0

6.1 Writing Assembly Code 161

loop
ADR r0, print_string
MOV r1, i
MUL r2, i, i
BL printf
ADD i, i, #1
CMP i, #10
BLT loop
LDMFD sp!, {i, pc}

print_string
DCB "Square of %d is %d\n", 0

END

We have used a new directive, IMPORT, to declare symbols that are defined in other files.
The imported symbol Lib$$Request$$armlib makes a request that the linker links with
the standard ARM C library. The WEAK specifier prevents the linker from giving an error
if the symbol is not found at link time. If the symbol is not found, it will take the value
zero. The second imported symbol ___main is the start of the C library initialization code.
You only need to import these symbols if you are defining your own main; a main defined
in C code will import these automatically for you. Importing printf allows us to call that
C library function.

The RN directive allows us to use names for registers. In this case we define i as
an alternate name for register r4. Using register names makes the code more readable.
It is also easier to change the allocation of variables to registers at a later date.

Recall that ATPCS states that a function must preserve registers r4 to r11 and sp. We
corrupt i(r4), and calling printf will corrupt lr. Therefore we stack these two registers
at the start of the function using an STMFD instruction. The LDMFD instruction pulls these
registers from the stack and returns by writing the return address to pc.

The DCB directive defines byte data described as a string or a comma-separated list of
bytes.

To build this example you can use the following command line script:

armasm main3.s
armlink -o main3.axf main3.o ■

Note that Example 6.3 also assumes that the code is called from ARM code. If the code
can be called from Thumb code as in Example 6.2 then we must be capable of returning to
Thumb code. For architectures before ARMv5 we must use a BX to return. Change the last
instruction to the two instructions:

LDMFD sp!, {i, lr}
BX lr

162 Chapter 6 Writing and Optimizing ARM Assembly Code

Finally, let’s look at an example where we pass more than four parameters. Recall that
ATPCS places the first four arguments in registers r0 to r3. Subsequent arguments are placed
on the stack.

Example

6.4
This example defines a function sumof that can sum any number of integers. The arguments
are the number of integers to sum followed by a list of the integers. The sumof function is
written in assembly and can accept any number of arguments. Put the C part of the example
in a file main4.c:

#include <stdio.h>

/* N is the number of values to sum in list ... */
int sumof(int N, ...);

int main(void)
{

printf("Empty sum=%d\n", sumof(0));
printf("1=%d\n", sumof(1,1));
printf("1+2=%d\n", sumof(2,1,2));
printf("1+2+3=%d\n", sumof(3,1,2,3));
printf("1+2+3+4=%d\n", sumof(4,1,2,3,4));
printf("1+2+3+4+5=%d\n", sumof(5,1,2,3,4,5));
printf("1+2+3+4+5+6=%d\n", sumof(6,1,2,3,4,5,6));

}

Next define the sumof function in an assembly file sumof.s:

AREA |.text|, CODE, READONLY

EXPORT sumof

N RN 0 ; number of elements to sum
sum RN 1 ; current sum

; int sumof(int N, ...)
sumof

SUBS N, N, #1 ; do we have one element
MOVLT sum, #0 ; no elements to sum!
SUBS N, N, #1 ; do we have two elements
ADDGE sum, sum, r2
SUBS N, N, #1 ; do we have three elements
ADDGE sum, sum, r3
MOV r2, sp ; top of stack

loop
SUBS N, N, #1 ; do we have another element
LDMGEFD r2!, {r3} ; load from the stack

6.3 Instruction Scheduling 163

ADDGE sum, sum, r3
BGE loop
MOV r0, sum
MOV pc, lr ; return r0

END

The code keeps count of the number of remaining values to sum, N. The first three
values are in registers r1, r2, r3. The remaining values are on the stack. You can build this
example using the commands

armcc -c main4.c
armasm sumof.s
armlink -o main4.axf main4.o sumof.o ■

6.2 Profiling and Cycle Counting
The first stage of any optimization process is to identify the critical routines and measure
their current performance. A profiler is a tool that measures the proportion of time or
processing cycles spent in each subroutine. You use a profiler to identify the most critical
routines. A cycle counter measures the number of cycles taken by a specific routine. You can
measure your success by using a cycle counter to benchmark a given subroutine before and
after an optimization.

The ARM simulator used by the ADS1.1 debugger is called the ARMulator and pro-
vides profiling and cycle counting features. The ARMulator profiler works by sampling the
program counter pc at regular intervals. The profiler identifies the function the pc points to
and updates a hit counter for each function it encounters. Another approach is to use the
trace output of a simulator as a source for analysis.

Be sure that you know how the profiler you are using works and the limits of its accuracy.
A pc-sampled profiler can produce meaningless results if it records too few samples. You can
even implement your own pc-sampled profiler in a hardware system using timer interrupts
to collect the pc data points. Note that the timing interrupts will slow down the system you
are trying to measure!

ARM implementations do not normally contain cycle-counting hardware, so to easily
measure cycle counts you should use an ARM debugger with ARM simulator. You can
configure the ARMulator to simulate a range of different ARM cores and obtain cycle
count benchmarks for a number of platforms.

6.3 Instruction Scheduling
The time taken to execute instructions depends on the implementation pipeline. For this
chapter, we assume ARM9TDMI pipeline timings. You can find these in Section D.3 of

164 Chapter 6 Writing and Optimizing ARM Assembly Code

Appendix D. The following rules summarize the cycle timings for common instruction
classes on the ARM9TDMI.

Instructions that are conditional on the value of the ARM condition codes in the cpsr
take one cycle if the condition is not met. If the condition is met, then the following rules
apply:

■ ALU operations such as addition, subtraction, and logical operations take one cycle.
This includes a shift by an immediate value. If you use a register-specified shift, then
add one cycle. If the instruction writes to the pc, then add two cycles.

■ Load instructions that load N 32-bit words of memory such as LDR and LDM take N cycles
to issue, but the result of the last word loaded is not available on the following cycle.
The updated load address is available on the next cycle. This assumes zero-wait-state
memory for an uncached system, or a cache hit for a cached system. An LDM of a single
value is exceptional, taking two cycles. If the instruction loads pc, then add two cycles.

■ Load instructions that load 16-bit or 8-bit data such asLDRB, LDRSB, LDRH, and LDRSH
take one cycle to issue. The load result is not available on the following two cycles.
The updated load address is available on the next cycle. This assumes zero-wait-state
memory for an uncached system, or a cache hit for a cached system.

■ Branch instructions take three cycles.

■ Store instructions that store N values take N cycles. This assumes zero-wait-state
memory for an uncached system, or a cache hit or a write buffer with N free entries for
a cached system. An STM of a single value is exceptional, taking two cycles.

■ Multiply instructions take a varying number of cycles depending on the value of the
second operand in the product (see Table D.6 in Section D.3).

To understand how to schedule code efficiently on the ARM, we need to understand
the ARM pipeline and dependencies. The ARM9TDMI processor performs five operations
in parallel:

■ Fetch: Fetch from memory the instruction at address pc. The instruction is loaded into
the core and then processes down the core pipeline.

■ Decode: Decode the instruction that was fetched in the previous cycle. The processor
also reads the input operands from the register bank if they are not available via one of
the forwarding paths.

■ ALU: Executes the instruction that was decoded in the previous cycle. Note this instruc-
tion was originally fetched from address pc − 8 (ARM state) or pc − 4 (Thumb state).
Normally this involves calculating the answer for a data processing operation, or the
address for a load, store, or branch operation. Some instructions may spend several
cycles in this stage. For example, multiply and register-controlled shift operations take
several ALU cycles.

6.3 Instruction Scheduling 165

Fetch Decode ALU LS1 LS2
Instruction address
Action

pc pc_4 pc_8 pc_12 pc_16

Figure 6.1 ARM9TDMI pipeline executing in ARM state.

■ LS1: Load or store the data specified by a load or store instruction. If the instruction is
not a load or store, then this stage has no effect.

■ LS2: Extract and zero- or sign-extend the data loaded by a byte or halfword load
instruction. If the instruction is not a load of an 8-bit byte or 16-bit halfword item,
then this stage has no effect.

Figure 6.1 shows a simplified functional view of the five-stage ARM9TDMI pipeline.
Note that multiply and register shift operations are not shown in the figure.

After an instruction has completed the five stages of the pipeline, the core writes the
result to the register file. Note that pc points to the address of the instruction being fetched.
The ALU is executing the instruction that was originally fetched from address pc − 8 in
parallel with fetching the instruction at address pc.

How does the pipeline affect the timing of instructions? Consider the following
examples. These examples show how the cycle timings change because an earlier instruc-
tion must complete a stage before the current instruction can progress down the pipeline.
To work out how many cycles a block of code will take, use the tables in Appendix D that
summarize the cycle timings and interlock cycles for a range of ARM cores.

If an instruction requires the result of a previous instruction that is not available, then
the processor stalls. This is called a pipeline hazard or pipeline interlock.

Example

6.5
This example shows the case where there is no interlock.

ADD r0, r0, r1
ADD r0, r0, r2

This instruction pair takes two cycles. The ALU calculates r0 + r1 in one cycle. Therefore
this result is available for the ALU to calculate r0 + r2 in the second cycle. ■

Example

6.6
This example shows a one-cycle interlock caused by load use.

LDR r1, [r2, #4]
ADD r0, r0, r1

This instruction pair takes three cycles. The ALU calculates the address r2 + 4 in the first
cycle while decoding the ADD instruction in parallel. However, the ADD cannot proceed on

166 Chapter 6 Writing and Optimizing ARM Assembly Code

Fetch
...

Decode
ADD
...
...

ALU
LDR
ADD
ADD

LS1
...
LDR
—

LS2

...
LDR

Pipeline
Cycle 1
Cycle 2
Cycle 3

Figure 6.2 One-cycle interlock caused by load use.

the second cycle because the load instruction has not yet loaded the value of r1. Therefore the
pipeline stalls for one cycle while the load instruction completes the LS1 stage. Now that r1
is ready, the processor executes the ADD in the ALU on the third cycle.

Figure 6.2 illustrates how this interlock affects the pipeline. The processor stalls the
ADD instruction for one cycle in the ALU stage of the pipeline while the load instruction
completes the LS1 stage. We’ve denoted this stall by an italic ADD. Since the LDR instruction
proceeds down the pipeline, but the ADD instruction is stalled, a gap opens up between them.
This gap is sometimes called a pipeline bubble. We’ve marked the bubble with a dash. ■

Example

6.7
This example shows a one-cycle interlock caused by delayed load use.

LDRB r1, [r2, #1]
ADD r0, r0, r2
EOR r0, r0, r1

This instruction triplet takes four cycles. Although the ADD proceeds on the cycle following
the load byte, the EOR instruction cannot start on the third cycle. The r1 value is not ready
until the load instruction completes the LS2 stage of the pipeline. The processor stalls the
EOR instruction for one cycle.

Note that the ADD instruction does not affect the timing at all. The sequence takes four
cycles whether it is there or not! Figure 6.3 shows how this sequence progresses through the
processor pipeline. The ADD doesn’t cause any stalls since the ADD does not use r1, the result
of the load. ■

Fetch
EOR
...

Decode
ADD
EOR
...
...

ALU
LDRB
ADD
EOR
EOR

LS1
...
LDRB
ADD
—

LS2

...
LDRB
ADD

Pipeline
Cycle 1
Cycle 2
Cycle 3
Cycle 4

Figure 6.3 One-cycle interlock caused by delayed load use.

6.3 Instruction Scheduling 167

Fetch
AND
EOR
SUB
...

Decode
B
AND
—
SUB
...

ALU
MOV
B
—
—
SUB

LS1
...
MOV
B
—
—

LS2

...
MOV
B
—

Pipeline
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5

Figure 6.4 Pipeline flush caused by a branch.

Example

6.8
This example shows why a branch instruction takes three cycles. The processor must flush
the pipeline when jumping to a new address.

MOV r1, #1
B case1
AND r0, r0, r1
EOR r2, r2, r3
...

case1
SUB r0, r0, r1

The three executed instructions take a total of five cycles. The MOV instruction executes on
the first cycle. On the second cycle, the branch instruction calculates the destination address.
This causes the core to flush the pipeline and refill it using this new pc value. The refill takes
two cycles. Finally, the SUB instruction executes normally. Figure 6.4 illustrates the pipeline
state on each cycle. The pipeline drops the two instructions following the branch when the
branch takes place. ■

6.3.1 Scheduling of load instructions

Load instructions occur frequently in compiled code, accounting for approximately one-
third of all instructions. Careful scheduling of load instructions so that pipeline stalls don’t
occur can improve performance. The compiler attempts to schedule the code as best it
can, but the aliasing problems of C that we looked at in Section 5.6 limits the available
optimizations. The compiler cannot move a load instruction before a store instruction
unless it is certain that the two pointers used do not point to the same address.

Let’s consider an example of a memory-intensive task. The following function,
str_tolower, copies a zero-terminated string of characters from in to out. It converts
the string to lowercase in the process.

168 Chapter 6 Writing and Optimizing ARM Assembly Code

void str_tolower(char *out, char *in)
{
unsigned int c;

do
{

c = *(in++);
if (c>=’A’ && c<=’Z’)
{

c = c + (’a’ -’A’);
}
*(out++) = (char)c;

} while (c);
}

The ADS1.1 compiler generates the following compiled output. Notice that the compiler
optimizes the condition (c>=‘A’ && c<=‘Z’) to the check that 0<=c-‘A’<=‘Z’-‘A’.
The compiler can perform this check using a single unsigned comparison.

str_tolower
LDRB r2,[r1],#1 ; c = *(in++)
SUB r3,r2,#0x41 ; r3 = c -‘A’
CMP r3,#0x19 ; if (c <=‘Z’-‘A’)
ADDLS r2,r2,#0x20 ; c +=‘a’-‘A’
STRB r2,[r0],#1 ; *(out++) = (char)c
CMP r2,#0 ; if (c!=0)
BNE str_tolower ; goto str_tolower
MOV pc,r14 ; return

Unfortunately, the SUB instruction uses the value of c directly after the LDRB instruction
that loads c. Consequently, the ARM9TDMI pipeline will stall for two cycles. The compiler
can’t do any better since everything following the load of c depends on its value. However,
there are two ways you can alter the structure of the algorithm to avoid the cycles by using
assembly. We call these methods load scheduling by preloading and unrolling.

6.3.1.1 Load Scheduling by Preloading

In this method of load scheduling, we load the data required for the loop at the end of
the previous loop, rather than at the beginning of the current loop. To get performance
improvement with little increase in code size, we don’t unroll the loop.

Example

6.9
This assembly applies the preload method to the str_tolower function.

out RN 0 ; pointer to output string
in RN 1 ; pointer to input string

6.3 Instruction Scheduling 169

c RN 2 ; character loaded
t RN 3 ; scratch register

; void str_tolower_preload(char *out, char *in)
str_tolower_preload
LDRB c, [in], #1 ; c = *(in++)

loop
SUB t, c, #’A’ ; t = c-’A’
CMP t, #’Z’-’A’ ; if (t <= ’Z’-’A’)
ADDLS c, c, #’a’-’A’ ; c += ’a’-’A’;
STRB c, [out], #1 ; *(out++) = (char)c;
TEQ c, #0 ; test if c==0
LDRNEB c, [in], #1 ; if (c!=0) { c=*in++;
BNE loop ; goto loop; }
MOV pc, lr ; return

The scheduled version is one instruction longer than the C version, but we save two
cycles for each inner loop iteration. This reduces the loop from 11 cycles per character to
9 cycles per character on an ARM9TDMI, giving a 1.22 times speed improvement. ■

The ARM architecture is particularly well suited to this type of preloading because
instructions can be executed conditionally. Since loop i is loading the data for loop i + 1
there is always a problem with the first and last loops. For the first loop, we can preload data
by inserting extra load instructions before the loop starts. For the last loop it is essential that
the loop does not read any data, or it will read beyond the end of the array. This could cause
a data abort! With ARM, we can easily solve this problem by making the load instruction
conditional. In Example 6.9, the preload of the next character only takes place if the loop
will iterate once more. No byte load occurs on the last loop.

6.3.1.2 Load Scheduling by Unrolling

This method of load scheduling works by unrolling and then interleaving the body of the
loop. For example, we can perform loop iterations i, i + 1, i + 2 interleaved. When the result
of an operation from loop i is not ready, we can perform an operation from loop i + 1 that
avoids waiting for the loop i result.

Example

6.10
The assembly applies load scheduling by unrolling to the str_tolower function.

out RN 0 ; pointer to output string
in RN 1 ; pointer to input string
ca0 RN 2 ; character 0
t RN 3 ; scratch register

170 Chapter 6 Writing and Optimizing ARM Assembly Code

ca1 RN 12 ; character 1
ca2 RN 14 ; character 2

; void str_tolower_unrolled(char *out, char *in)
str_tolower_unrolled
STMFD sp!, {lr} ; function entry

loop_next3
LDRB ca0, [in], #1 ; ca0 = *in++;
LDRB ca1, [in], #1 ; ca1 = *in++;
LDRB ca2, [in], #1 ; ca2 = *in++;
SUB t, ca0, #’A’ ; convert ca0 to lower case
CMP t, #’Z’-’A’
ADDLS ca0, ca0, #’a’-’A’
SUB t, ca1, #’A’ ; convert ca1 to lower case
CMP t, #’Z’-’A’
ADDLS ca1, ca1, #’a’-’A’
SUB t, ca2, #’A’ ; convert ca2 to lower case
CMP t, #’Z’-’A’
ADDLS ca2, ca2, #’a’-’A’
STRB ca0, [out], #1 ; *out++ = ca0;
TEQ ca0, #0 ; if (ca0!=0)
STRNEB ca1, [out], #1 ; *out++ = ca1;
TEQNE ca1, #0 ; if (ca0!=0 && ca1!=0)
STRNEB ca2, [out], #1 ; *out++ = ca2;
TEQNE ca2, #0 ; if (ca0!=0 && ca1!=0 && ca2!=0)
BNE loop_next3 ; goto loop_next3;
LDMFD sp!, {pc} ; return;

This loop is the most efficient implementation we’ve looked at so far. The implemen-
tation requires seven cycles per character on ARM9TDMI. This gives a 1.57 times speed
increase over the original str_tolower. Again it is the conditional nature of the ARM
instructions that makes this possible. We use conditional instructions to avoid storing
characters that are past the end of the string. ■

However, the improvement in Example 6.10 does have some costs. The routine is
more than double the code size of the original implementation. We have assumed that
you can read up to two characters beyond the end of the input string, which may not
be true if the string is right at the end of available RAM, where reading off the end
will cause a data abort. Also, performance can be slower for very short strings because
(1) stacking lr causes additional function call overhead and (2) the routine may process
up to two characters pointlessly, before discovering that they lie beyond the end of the
string.

You should use this form of scheduling by unrolling for time-critical parts of an appli-
cation where you know the data size is large. If you also know the size of the data at compile
time, you can remove the problem of reading beyond the end of the array.

6.4 Register Allocation 171

Summary Instruction Scheduling

■ ARM cores have a pipeline architecture. The pipeline may delay the results of certain
instructions for several cycles. If you use these results as source operands in a following
instruction, the processor will insert stall cycles until the value is ready.

■ Load and multiply instructions have delayed results in many implementations. See
Appendix D for the cycle timings and delay for your specific ARM processor core.

■ You have two software methods available to remove interlocks following load instruc-
tions: You can preload so that loop i loads the data for loop i + 1, or you can unroll the
loop and interleave the code for loops i and i + 1.

6.4 Register Allocation
You can use 14 of the 16 visible ARM registers to hold general-purpose data. The other two
registers are the stack pointer r13 and the program counter r15. For a function to be ATPCS
compliant it must preserve the callee values of registers r4 to r11. ATPCS also specifies that
the stack should be eight-byte aligned; therefore you must preserve this alignment if calling
subroutines. Use the following template for optimized assembly routines requiring many
registers:

routine_name
STMFD sp!, {r4-r12, lr} ; stack saved registers

; body of routine
; the fourteen registers r0-r12 and lr are available

LDMFD sp!, {r4-r12, pc} ; restore registers and return

Our only purpose in stacking r12 is to keep the stack eight-byte aligned. You need not stack
r12 if your routine doesn’t call other ATPCS routines. For ARMv5 and above you can use
the preceding template even when being called from Thumb code. If your routine may be
called from Thumb code on an ARMv4T processor, then modify the template as follows:

routine_name
STMFD sp!, {r4-r12, lr} ; stack saved registers

; body of routine
; registers r0-r12 and lr available

LDMFD sp!, {r4-r12, lr} ; restore registers
BX lr ; return, with mode switch

In this section we look at how best to allocate variables to register numbers for register-
intensive tasks, how to use more than 14 local variables, and how to make the best use of
the 14 available registers.

172 Chapter 6 Writing and Optimizing ARM Assembly Code

6.4.1 Allocating Variables to Register Numbers

When you write an assembly routine, it is best to start by using names for the variables,
rather than explicit register numbers. This allows you to change the allocation of variables
to register numbers easily. You can even use different register names for the same physical
register number when their use doesn’t overlap. Register names increase the clarity and
readability of optimized code.

For the most part ARM operations are orthogonal with respect to register number. In
other words, specific register numbers do not have specific roles. If you swap all occurrences
of two registers Ra and Rb in a routine, the function of the routine does not change.
However, there are several cases where the physical number of the register is important:

■ Argument registers. The ATPCS convention defines that the first four arguments to
a function are placed in registers r0 to r3. Further arguments are placed on the stack.
The return value must be placed in r0.

■ Registers used in a load or store multiple. Load and store multiple instructions LDM and
STM operate on a list of registers in order of ascending register number. If r0 and r1
appear in the register list, then the processor will always load or store r0 using a lower
address than r1 and so on.

■ Load and store double word. The LDRD and STRD instructions introduced in ARMv5E
operate on a pair of registers with sequential register numbers, Rd and Rd + 1.
Furthermore, Rd must be an even register number.

For an example of how to allocate registers when writing assembly, suppose we want
to shift an array of N bits upwards in memory by k bits. For simplicity assume that N is
large and a multiple of 256. Also assume that 0 ≤ k < 32 and that the input and output
pointers are word aligned. This type of operation is common in dealing with the arithmetic
of multiple precision numbers where we want to multiply by 2k . It is also useful to block
copy from one bit or byte alignment to a different bit or byte alignment. For example, the
C library function memcpy can use the routine to copy an array of bytes using only word
accesses.

The C routine shift_bits implements the simple k-bit shift of N bits of data. It returns
the k bits remaining following the shift.

unsigned int shift_bits(unsigned int *out, unsigned int *in,
unsigned int N, unsigned int k)

{
unsigned int carry=0, x;

do
{

x = *in++;
*out++ = (x << k) | carry;

6.4 Register Allocation 173

carry = x >> (32-k);
N -= 32;

} while (N);

return carry;
}

The obvious way to improve efficiency is to unroll the loop to process eight words of
256 bits at a time so that we can use load and store multiple operations to load and store
eight words at a time for maximum efficiency. Before thinking about register numbers, we
write the following assembly code:

shift_bits
STMFD sp!, {r4-r11, lr} ; save registers
RSB kr, k, #32 ; kr = 32-k;
MOV carry, #0

loop
LDMIA in!, {x_0-x_7} ; load 8 words
ORR y_0, carry, x_0, LSL k ; shift the 8 words
MOV carry, x_0, LSR kr
ORR y_1, carry, x_1, LSL k
MOV carry, x_1, LSR kr
ORR y_2, carry, x_2, LSL k
MOV carry, x_2, LSR kr
ORR y_3, carry, x_3, LSL k
MOV carry, x_3, LSR kr
ORR y_4, carry, x_4, LSL k
MOV carry, x_4, LSR kr
ORR y_5, carry, x_5, LSL k
MOV carry, x_5, LSR kr
ORR y_6, carry, x_6, LSL k
MOV carry, x_6, LSR kr
ORR y_7, carry, x_7, LSL k
MOV carry, x_7, LSR kr
STMIA out!, {y_0-y_7} ; store 8 words
SUBS N, N, #256 ; N -= (8 words * 32 bits)
BNE loop ; if (N!=0) goto loop;
MOV r0, carry ; return carry;
LDMFD sp!, {r4-r11, pc}

Now to the register allocation. So that the input arguments do not have to move registers,
we can immediately assign

out RN 0
in RN 1

174 Chapter 6 Writing and Optimizing ARM Assembly Code

N RN 2
k RN 3

For the load multiple to work correctly, we must assign x0 through x7 to sequentially
increasing register numbers, and similarly for y0 through y7. Notice that we finish with x0

before starting with y1. In general, we can assign xn to the same register as yn+1. Therefore,
assign

x_0 RN 5
x_1 RN 6
x_2 RN 7
x_3 RN 8
x_4 RN 9
x_5 RN 10
x_6 RN 11
x_7 RN 12
y_0 RN 4
y_1 RN x_0
y_2 RN x_1
y_3 RN x_2
y_4 RN x_3
y_5 RN x_4
y_6 RN x_5
y_7 RN x_6

We are nearly finished, but there is a problem. There are two remaining variables carry
and kr, but only one remaining free register lr. There are several possible ways we can
proceed when we run out of registers:

■ Reduce the number of registers we require by performing fewer operations in each
loop. In this case we could load four words in each load multiple rather than eight.

■ Use the stack to store the least-used values to free up more registers. In this case we
could store the loop counter N on the stack. (See Section 6.4.2 for more details on
swapping registers to the stack.)

■ Alter the code implementation to free up more registers. This is the solution we consider
in the following text. (For more examples, see Section 6.4.3.)

We often iterate the process of implementation followed by register allocation several
times until the algorithm fits into the 14 available registers. In this case we notice that the
carry value need not stay in the same register at all! We can start off with the carry value
in y0 and then move it to y1 when x0 is no longer required, and so on. We complete the
routine by allocating kr to lr and recoding so that carry is not required.

6.4 Register Allocation 175

Example

6.11
This assembly shows our final shift_bits routine. It uses all 14 available ARM registers.

kr RN lr

shift_bits
STMFD sp!, {r4-r11, lr} ; save registers
RSB kr, k, #32 ; kr = 32-k;
MOV y_0, #0 ; initial carry

loop
LDMIA in!, {x_0-x_7} ; load 8 words
ORR y_0, y_0, x_0, LSL k ; shift the 8 words
MOV y_1, x_0, LSR kr ; recall x_0 = y_1
ORR y_1, y_1, x_1, LSL k
MOV y_2, x_1, LSR kr
ORR y_2, y_2, x_2, LSL k
MOV y_3, x_2, LSR kr
ORR y_3, y_3, x_3, LSL k
MOV y_4, x_3, LSR kr
ORR y_4, y_4, x_4, LSL k
MOV y_5, x_4, LSR kr
ORR y_5, y_5, x_5, LSL k
MOV y_6, x_5, LSR kr
ORR y_6, y_6, x_6, LSL k
MOV y_7, x_6, LSR kr
ORR y_7, y_7, x_7, LSL k
STMIA out!, {y_0-y_7} ; store 8 words
MOV y_0, x_7, LSR kr
SUBS N, N, #256 ; N -= (8 words * 32 bits)
BNE loop ; if (N!=0) goto loop;
MOV r0, y_0 ; return carry;
LDMFD sp!, {r4-r11, pc} ■

6.4.2 Using More than 14 Local Variables

If you need more than 14 local 32-bit variables in a routine, then you must store some
variables on the stack. The standard procedure is to work outwards from the inner-
most loop of the algorithm, since the innermost loop has the greatest performance
impact.

Example

6.12
This example shows three nested loops, each loop requiring state information inherited
from the loop surrounding it. (See Section 6.6 for further ideas and examples of looping
constructs.)

176 Chapter 6 Writing and Optimizing ARM Assembly Code

nested_loops
STMFD sp!, {r4-r11, lr}
; set up loop 1

loop1
STMFD sp!, {loop1 registers}
; set up loop 2

loop2
STMFD sp!, {loop2 registers}
; set up loop 3

loop3
; body of loop 3
B{cond} loop3
LDMFD sp!, {loop2 registers}
; body of loop 2
B{cond} loop2
LDMFD sp!, {loop1 registers}
; body of loop 1
B{cond} loop1
LDMFD sp!, {r4-r11, pc} ■

You may find that there are insufficient registers for the innermost loop even using the
construction in Example 6.12. Then you need to swap inner loop variables out to the stack.
Since assembly code is very hard to maintain and debug if you use numbers as stack address
offsets, the assembler provides an automated procedure for allocating variables to the
stack.

Example

6.13
This example shows how you can use the ARM assembler directives MAP (alias ∧) and FIELD
(alias #) to define and allocate space for variables and arrays on the processor stack. The
directives perform a similar function to the struct operator in C.

MAP 0 ; map symbols to offsets starting at offset 0
a FIELD 4 ; a is 4 byte integer (at offset 0)
b FIELD 2 ; b is 2 byte integer (at offset 4)
c FIELD 2 ; c is 2 byte integer (at offset 6)
d FIELD 64 ; d is an array of 64 characters (at offset 8)
length FIELD 0 ; length records the current offset reached

example
STMFD sp!, {r4-r11, lr} ; save callee registers
SUB sp, sp, #length ; create stack frame
; ...
STR r0, [sp, #a] ; a = r0;
LDRSH r1, [sp, #b] ; r1 = b;

6.4 Register Allocation 177

ADD r2, sp, #d ; r2 = &d[0]
; ...
ADD sp, sp, #length ; restore the stack pointer
LDMFD sp!, {r4-r11, pc} ; return ■

6.4.3 Making the Most of Available Registers

On a load-store architecture such as the ARM, it is more efficient to access values held in
registers than values held in memory. There are several tricks you can use to fit several
sub-32-bit length variables into a single 32-bit register and thus can reduce code size and
increase performance. This section presents three examples showing how you can pack
multiple variables into a single ARM register.

Example

6.14
Suppose we want to step through an array by a programmable increment. A common
example is to step through a sound sample at various rates to produce different pitched
notes. We can express this in C code as

sample = table[index];
index += increment;

Commonly index and increment are small enough to be held as 16-bit values. We can
pack these two variables into a single 32-bit variable indinc:

indinc = (index<<16) + increment = index increment

Bit 31 16 15 0

The C code translates into assembly code using a single register to hold indinc:

LDRB sample, [table, indinc, LSR#16] ; table[index]
ADD indinc, indinc, indinc, LSL#16 ; index+=increment

Note that if index and increment are 16-bit values, then putting index in the top
16 bits of indinc correctly implements 16-bit-wrap-around. In other words, index =
(short)(index + increment). This can be useful if you are using a buffer where you want
to wrap from the end back to the beginning (often known as a circular buffer). ■

Example

6.15
When you shift by a register amount, the ARM uses bits 0 to 7 as the shift amount. The
ARM ignores bits 8 to 31 of the register. Therefore you can use bits 8 to 31 to hold a second
variable distinct from the shift amount.

178 Chapter 6 Writing and Optimizing ARM Assembly Code

This example shows how to combine a register-specified shift shift and loop counter
count to shift an array of 40 entries right by shift bits. We define a new variable cntshf
that combines count and shift:

cntshf = (count<<8) + shift = count shift

Bit 31 8 7 0

out RN 0 ; address of the output array
in RN 1 ; address of the input array
cntshf RN 2 ; count and shift right amount
x RN 3 ; scratch variable

; void shift_right(int *out, int *in, unsigned shift);
shift_right

ADD cntshf, cntshf, #39 << 8 ; count = 39
shift_loop

LDR x, [in], #4
SUBS cntshf, cntshf, #1 << 8 ; decrement count
MOV x, x, ASR cntshf ; shift by shift
STR x, [out], #4
BGE shift_loop ; continue if count>=0
MOV pc, lr ■

Example

6.16
If you are dealing with arrays of 8-bit or 16-bit values, it is sometimes possible to manipulate
multiple values at a time by packing several values into a single 32-bit register. This is called
single issue multiple data (SIMD) processing.

ARM architecture versions up to ARMv5 do not support SIMD operations explicitly.
However, there are still areas where you can achieve SIMD type compactness. Section 6.6
shows how you can store multiple loop values in a single register. Here we look at a graphics
example of how to process multiple 8-bit pixels in an image using normal ADD and MUL
instructions to achieve some SIMD operations.

Suppose we want to merge two images X and Y to produce a new image Z. Let xn , yn ,
and zn denote the nth 8-bit pixel in these images, respectively. Let 0 ≤ a ≤ 256 be a scaling
factor. To merge the images, we set

zn = (axn + (256 − a)yn)/256 (6.1)

In other words image Z is image X scaled in intensity by a/256 added to image Y scaled by
1 − (a/256). Note that

zn = wn/256, where wn = a(xn − yn) + 256yn (6.2)

Therefore each pixel requires a subtract, a multiply, a shifted add, and a right
shift. To process multiple pixels at a time, we load four pixels at once using a

6.4 Register Allocation 179

word load. We use a bracketed notation to denote several values packed into the
same word:

[x3, x2, x1, x0] = x3224 + x2216 + x128 + x0 = x3 x2 x1 x0

Bit 24 16 8 0

We then unpack the 8-bit data and promote it to 16-bit data using an AND with a mask
register. We use the notation

[x2, x0] = x2216 + x0 = x2 x0

Bit 31 16 15 0

Note that even for signed values [a, b] + [c , d] = [a + b, c + d] if we interpret [a, b] using
the mathematical equation a216 + b. Therefore we can perform SIMD operations on these
values using normal arithmetic instructions.

The following code shows how you can process four pixels at a time using only two
multiplies. The code assumes a 176 × 144 sized quarter CIF image.

IMAGE_WIDTH EQU 176 ; QCIF width
IMAGE_HEIGHT EQU 144 ; QCIF height

pz RN 0 ; pointer to destination image (word aligned)
px RN 1 ; pointer to first source image (word aligned)
py RN 2 ; pointer to second source image (word aligned)
a RN 3 ; 8-bit scaling factor (0-256)

xx RN 4 ; holds four x pixels [x3, x2, x1, x0]
yy RN 5 ; holds four y pixels [y3, y2, y1, y0]
x RN 6 ; holds two expanded x pixels [x2, x0]
y RN 7 ; holds two expanded y pixels [y2, y0]
z RN 8 ; holds four z pixels [z3, z2, z1, z0]
count RN 12 ; number of pixels remaining
mask RN 14 ; constant mask with value 0x00ff00ff

; void merge_images(char *pz, char *px, char *py, int a)
merge_images

STMFD sp!, {r4-r8, lr}
MOV count, #IMAGE_WIDTH*IMAGE_HEIGHT
LDR mask, =0x00FF00FF ; [0, 0xFF, 0, 0xFF]

merge_loop
LDR xx, [px], #4 ; [x3, x2, x1, x0]
LDR yy, [py], #4 ; [y3, y2, y1, y0]
AND x, mask, xx ; [0, x2, 0, x0]
AND y, mask, yy ; [0, y2, 0, y0]
SUB x, x, y ; [(x2-y2), (x0-y0)]

180 Chapter 6 Writing and Optimizing ARM Assembly Code

MUL x, a, x ; [a*(x2-y2), a*(x0-y0)]
ADD x, x, y, LSL#8 ; [w2, w0]
AND z, mask, x, LSR#8 ; [0, z2, 0, z0]
AND x, mask, xx, LSR#8 ; [0, x3, 0, x1]
AND y, mask, yy, LSR#8 ; [0, y3, 0, y1]
SUB x, x, y ; [(x3-y3), (x1-y1)]
MUL x, a, x ; [a*(x3-y3), a*(x1-y1)]
ADD x, x, y, LSL#8 ; [w3, w1]
AND x, mask, x, LSR#8 ; [0, z3, 0, z1]
ORR z, z, x, LSL#8 ; [z3, z2, z1, z0]
STR z, [pz], #4 ; store four z pixels
SUBS count, count, #4
BGT merge_loop
LDMFD sp!, {r4-r8, pc}

The code works since

0 ≤ wn ≤ 255a + 255(256 − a) = 256 × 255 = 0xFF00 (6.3)

Therefore it is easy to separate the value [w2, w0] into w2 and w0 by taking the most signif-
icant and least significant 16-bit portions, respectively. We have succeeded in processing
four 8-bit pixels using 32-bit load, stores, and data operations to perform operations in
parallel. ■

Summary Register Allocation

■ ARM has 14 available registers for general-purpose use: r0 to r12 and r14. The
stack pointer r13 and program counter r15 cannot be used for general-purpose data.
Operating system interrupts often assume that the user mode r13 points to a valid stack,
so don’t be tempted to reuse r13.

■ If you need more than 14 local variables, swap the variables out to the stack, working
outwards from the innermost loop.

■ Use register names rather than physical register numbers when writing assembly
routines. This makes it easier to reallocate registers and to maintain the code.

■ To ease register pressure you can sometimes store multiple values in the same register.
For example, you can store a loop counter and a shift in one register. You can also store
multiple pixels in one register.

6.5 Conditional Execution
The processor core can conditionally execute most ARM instructions. This conditional
execution is based on one of 15 condition codes. If you don’t specify a condition, the

6.5 Conditional Execution 181

assembler defaults to the execute always condition (AL). The other 14 conditions split into
seven pairs of complements. The conditions depend on the four condition code flags N, Z,
C, V stored in the cpsr register. See Table A.2 in Appendix A for the list of possible ARM
conditions. Also see Sections 2.2.6 and 3.8 for an introduction to conditional execution.

By default, ARM instructions do not update the N, Z, C, V flags in the ARM cpsr. For
most instructions, to update these flags you append an S suffix to the instruction mnemonic.
Exceptions to this are comparison instructions that do not write to a destination register.
Their sole purpose is to update the flags and so they don’t require the S suffix.

By combining conditional execution and conditional setting of the flags, you can imple-
ment simple if statements without any need for branches. This improves efficiency since
branches can take many cycles and also reduces code size.

Example

6.17
The following C code converts an unsigned integer 0 ≤ i ≤ 15 to a hexadecimal character c:

if (i<10)
{
c = i + ‘0’;

}
else
{
c = i + ‘A’-10;

}

We can write this in assembly using conditional execution rather than conditional
branches:

CMP i, #10
ADDLO c, i, #‘0’
ADDHS c, i, #‘A’-10

The sequence works since the first ADD does not change the condition codes. The second
ADD is still conditional on the result of the compare. Section 6.3.1 shows a similar use of
conditional execution to convert to lowercase. ■

Conditional execution is even more powerful for cascading conditions.

Example

6.18
The following C code identifies if c is a vowel:

if (c==‘a’ || c==‘e’ || c==‘i’ || c==‘o’ || c==‘u’)
{

vowel++;
}

182 Chapter 6 Writing and Optimizing ARM Assembly Code

In assembly you can write this using conditional comparisons:

TEQ c, #‘a’
TEQNE c, #‘e’
TEQNE c, #‘i’
TEQNE c, #‘o’
TEQNE c, #‘u’
ADDEQ vowel, vowel, #1

As soon as one of the TEQ comparisons detects a match, the Z flag is set in the cpsr. The
following TEQNE instructions have no effect as they are conditional on Z = 0.

The next instruction to have effect is the ADDEQ that increments vowel. You can use this
method whenever all the comparisons in the if statement are of the same type. ■

Example

6.19
Consider the following code that detects if c is a letter:

if ((c>=‘A’ && c<=‘Z’) || (c>=‘a’ && c<=‘z’))
{

letter++;
}

To implement this efficiently, we can use an addition or subtraction to move each range
to the form 0 ≤ c ≤ limit . Then we use unsigned comparisons to detect this range and
conditional comparisons to chain together ranges. The following assembly implements this
efficiently:

SUB temp, c, #‘A’
CMP temp, #‘Z’-‘A’
SUBHI temp, c, #‘a’
CMPHI temp, #‘z’-‘a’
ADDLS letter, letter, #1

For more complicated decisions involving switches, see Section 6.8. ■

Note that the logical operations AND and OR are related by the standard logical relations
as shown in Table 6.1. You can invert logical expressions involving OR to get an expression
involving AND, which can often be useful in simplifying or rearranging logical expressions.

Summary Conditional Execution

■ You can implement most if statements with conditional execution. This is more
efficient than using a conditional branch.

6.6 Looping Constructs 183

Table 6.1 Inverted logical relations

Inverted expression Equivalent

!(a && b) (!a) || (!b)
!(a || b) (!a) && (!b)

■ You can implement if statements with the logical AND or OR of several similar
conditions using compare instructions that are themselves conditional.

6.6 Looping Constructs
Most routines critical to performance will contain a loop. We saw in Section 5.3 that on the
ARM loops are fastest when they count down towards zero. This section describes how to
implement these loops efficiently in assembly. We also look at examples of how to unroll
loops for maximum performance.

6.6.1 Decremented Counted Loops

For a decrementing loop of N iterations, the loop counter i counts down from N to 1
inclusive. The loop terminates with i = 0. An efficient implementation is

MOV i, N
loop

; loop body goes here and i=N,N-1,...,1
SUBS i, i, #1
BGT loop

The loop overhead consists of a subtraction setting the condition codes followed by
a conditional branch. On ARM7 and ARM9 this overhead costs four cycles per loop. If i
is an array index, then you may want to count down from N − 1 to 0 inclusive instead so
that you can access array element zero. You can implement this in the same way by using
a different conditional branch:

SUBS i, N, #1
loop

; loop body goes here and i=N-1,N-2,...,0
SUBS i, i, #1
BGE loop

184 Chapter 6 Writing and Optimizing ARM Assembly Code

In this arrangement the Z flag is set on the last iteration of the loop and cleared for other
iterations. If there is anything different about the last loop, then we can achieve this using
the EQ and NE conditions. For example, if you preload data for the next loop (as discussed
in Section 6.3.1.1), then you want to avoid the preload on the last loop. You can make all
preload operations conditional on NE as in Section 6.3.1.1.

There is no reason why we must decrement by one on each loop. Suppose we require
N/3 loops. Rather than attempting to divide N by three, it is far more efficient to subtract
three from the loop counter on each iteration:

MOV i, N
loop

; loop body goes here and iterates (round up)(N/3) times
SUBS i, i, #3
BGT loop

6.6.2 Unrolled Counted Loops

This brings us to the subject of loop unrolling. Loop unrolling reduces the loop overhead by
executing the loop body multiple times. However, there are problems to overcome. What
if the loop count is not a multiple of the unroll amount? What if the loop count is smaller
than the unroll amount? We looked at these questions for C code in Section 5.3. In this
section we look at how you can handle these issues in assembly.

We’ll take the C library function memset as a case study. This function sets N bytes of
memory at address s to the byte value c. The function needs to be efficient, so we will look
at how to unroll the loop without placing extra restrictions on the input operands. Our
version of memset will have the following C prototype:

void my_memset(char *s, int c, unsigned int N);

To be efficient for large N, we need to write multiple bytes at a time using STR or STM
instructions. Therefore our first task is to align the array pointer s. However, it is only
worth us doing this if N is sufficiently large. We aren’t sure yet what “sufficiently large”
means, but let’s assume we can choose a threshold value T1 and only bother to align the array
when N ≥ T1. Clearly T1 ≥ 3 as there is no point in aligning if we don’t have four bytes to
write!

Now suppose we have aligned the array s. We can use store multiples to set memory
efficiently. For example, we can use a loop of four store multiples of eight words each to set
128 bytes on each loop. However, it will only be worth doing this if N ≥ T2 ≥ 128, where
T2 is another threshold to be determined later on.

Finally, we are left with N < T2 bytes to set. We can write bytes in blocks of four using
STR until N < 4. Then we can finish by writing bytes singly with STRB to the end of the
array.

6.6 Looping Constructs 185

Example

6.20
This example shows the unrolled memset routine. We’ve separated the three sections corre-
sponding to the preceding paragraphs with rows of dashes. The routine isn’t finished until
we’ve decided the best values for T1 and T2.

s RN 0 ; current string pointer
c RN 1 ; the character to fill with
N RN 2 ; the number of bytes to fill
c_1 RN 3 ; copies of c
c_2 RN 4
c_3 RN 5
c_4 RN 6
c_5 RN 7
c_6 RN 8
c_7 RN 12

; void my_memset(char *s, unsigned int c, unsigned int N)
my_memset

;---
; First section aligns the array
CMP N, #T_1 ; We know that T_1>=3
BCC memset_1ByteBlk ; if (N<T_1) goto memset_1ByteBlk
ANDS c_1, s, #3 ; find the byte alignment of s
BEQ aligned ; branch if already aligned
RSB c_1, c_1, #4 ; number of bytes until alignment
SUB N, N, c_1 ; number of bytes after alignment
CMP c_1, #2
STRB c, [s], #1
STRGEB c, [s], #1 ; if (c_1>=2) then output byte
STRGTB c, [s], #1 ; if (c_1>=3) then output byte

aligned ;the s array is now aligned
ORR c, c, c, LSL#8 ; duplicate the character
ORR c, c, c, LSL#16 ; to fill all four bytes of c
;---
; Second section writes blocks of 128 bytes
CMP N, #T_2 ; We know that T_2 >= 128
BCC memset_4ByteBlk ; if (N<T_2) goto memset_4ByteBlk
STMFD sp!, {c_2-c_6} ; stack scratch registers
MOV c_1, c
MOV c_2, c
MOV c_3, c
MOV c_4, c
MOV c_5, c
MOV c_6, c

186 Chapter 6 Writing and Optimizing ARM Assembly Code

MOV c_7, c
SUB N, N, #128 ; bytes left after next block

loop128 ; write 32 words = 128 bytes
STMIA s!, {c, c_1-c_6, c_7} ; write 8 words
STMIA s!, {c, c_1-c_6, c_7} ; write 8 words
STMIA s!, {c, c_1-c_6, c_7} ; write 8 words
STMIA s!, {c, c_1-c_6, c_7} ; write 8 words
SUBS N, N, #128 ; bytes left after next block
BGE loop128
ADD N, N, #128 ; number of bytes left
LDMFD sp!, {c_2-c_6} ; restore corrupted registers
;--
; Third section deals with left over bytes

memset_4ByteBlk
SUBS N, N, #4 ; try doing 4 bytes

loop4 ; write 4 bytes
STRGE c, [s], #4
SUBGES N, N, #4
BGE loop4
ADD N, N, #4 ; number of bytes left

memset_1ByteBlk
SUBS N, N, #1

loop1 ; write 1 byte
STRGEB c, [s], #1
SUBGES N, N, #1
BGE loop1
MOV pc, lr ; finished so return

It remains to find the best values for the thresholds T1 and T2. To determine these we
need to analyze the cycle counts for different ranges of N. Since the algorithm operates on
blocks of size 128 bytes, 4 bytes, and 1 byte, respectively, we start by decomposing N with
respect to these block sizes:

N = 128Nh + 4Nm + Nl , where 0 ≤ Nm < 32 and 0 ≤ Nl < 4

We now partition into three cases. To follow the details of these cycle counts, you will
need to refer to the instruction cycle timings in Appendix D.

■ Case 0 ≤ N < T1: The routine takes 5N + 6 cycles on an ARM9TDMI including the
return.

■ Case T1 ≤ N < T2: The first algorithm block takes 6 cycles if the s array is word aligned
and 10 cycles otherwise. Assuming each alignment is equally likely, this averages to
(6 + 10 + 10 + 10)/4 = 9 cycles. The second algorithm block takes 6 cycles. The final

6.6 Looping Constructs 187

Table 6.2 Cycles taken for each range of N values.

N range Cycles taken

0 ≤ N < T1 640Nh + 20Nm + 5Nl + 6
T1 ≤ N < T2 160Nh + 5Nm + 5Nl + 17 + 5Zl

T2 ≤ N 36Nh + 5Nm + 5Nl + 32 + 5Zl + 5Zm

block takes 5(32Nh + Nm) + 5(Nl + Zl) + 2 cycles, where Zl is 1 if Nl = 0, and 0
otherwise. The total cycles for this case is 5(32Nh + Nm + Nl + Zl) + 17.

■ Case N ≥ T2: As in the previous case, the first algorithm block averages 9 cycles.
The second algorithm block takes 36Nh + 21 cycles. The final algorithm block takes
5(Nm + Zm + Nl + Zl) + 2 cycles, where Zm is 1 if Nm is 0, and 0 otherwise. The total
cycles for this case is 36Nh + 5(Nm + Zm + Nl + Zl) + 32.

Table 6.2 summarizes these results. Comparing the three table rows it is clear that the
second row wins over the first row as soon as Nm ≥ 1, unless Nm = 1 and Nl = 0. We set
T1 = 5 to choose the best cycle counts from rows one and two. The third row wins over
the second row as soon as Nh ≥ 1. Therefore take T2 = 128.

This detailed example shows you how to unroll any important loop using threshold
values and provide good performance over a range of possible input values. ■

6.6.3 Multiple Nested Loops

How many loop counters does it take to maintain multiple nested loops? Actually, one will
suffice—or more accurately, one provided the sum of the bits needed for each loop count
does not exceed 32. We can combine the loop counts within a single register, placing the
innermost loop count at the highest bit positions. This section gives an example showing
how to do this. We will ensure the loops count down from max − 1 to 0 inclusive so that
the loop terminates by producing a negative result.

Example

6.21
This example shows how to merge three loop counts into a single loop count. Suppose we
wish to multiply matrix B by matrix C to produce matrix A, where A, B, C have the
following constant dimensions. We assume that R, S, T are relatively large but less
than 256.

Matrix A: R rows × T columns

Matrix B: R rows × S columns

Matrix C: S rows × T columns

188 Chapter 6 Writing and Optimizing ARM Assembly Code

We represent each matrix by a lowercase pointer of the same name, pointing to an array
of words organized by row. For example, the element at row i, column j, A[i, j], is at the
byte address

&A[i,j] = a + 4*(i*T+j)

A simple C implementation of the matrix multiply uses three nested loops i, j, and k:

#define R 40
#define S 40
#define T 40

void ref_matrix_mul(int *a, int *b, int *c)
{
unsigned int i,j,k;
int sum;

for (i=0; i<R; i++)
{

for (j=0; j<T; j++)
{

/* calculate a[i,j] */
sum = 0;
for (k=0; k<S; k++)
{
/* add b[i,k]*c[k,j] */
sum += b[i*S+k]*c[k*T+j];

}
a[i*T+j] = sum;

}
}

}

There are many ways to improve the efficiency here, starting by removing the address
indexing calculations, but we will concentrate on the looping structure. We allocate
a register counter count containing all three loop counters i, j, k:

count = 0 S−1−k T−1−j R−1−i

Bit 31 24 23 16 15 8 7 0

Note that S − 1 − k counts from S − 1 down to 0 rather than counting from 0 to S − 1 as k
does. The following assembly implements the matrix multiply using this single counter in
register count:

R EQU 40
S EQU 40

6.6 Looping Constructs 189

T EQU 40

a RN 0 ; points to an R rows × T columns matrix
b RN 1 ; points to an R rows × S columns matrix
c RN 2 ; points to an S rows × T columns matrix
sum RN 3
bval RN 4
cval RN 12
count RN 14

; void matrix_mul(int *a, int *b, int *c)
matrix_mul

STMFD sp!, {r4, lr}
MOV count, #(R-1) ; i=0

loop_i
ADD count, count, #(T-1) << 8 ; j=0

loop_j
ADD count, count, #(S-1) << 16 ; k=0
MOV sum, #0

loop_k
LDR bval, [b], #4 ; bval = B[i,k], b=&B[i,k+1]
LDR cval, [c], #4*T ; cval = C[k,j], c=&C[k+1,j]
SUBS count, count, #1 << 16 ; k++
MLA sum, bval, cval, sum ; sum += bval*cval
BPL loop_k ; branch if k<=S-1
STR sum, [a], #4 ; A[i,j] = sum, a=&A[i,j+1]
SUB c, c, #4*S*T ; c = &C[0,j]
ADD c, c, #4 ; c = &C[0,j+1]
ADDS count, count, #(1 << 16)-(1 << 8) ; zero (S-1-k), j++
SUBPL b, b, #4*S ; b = &B[i,0]
BPL loop_j ; branch if j<=T-1
SUB c, c, #4*T ; c = &C[0,0]
ADDS count, count, #(1 >> 8)-1 ; zero (T-1-j), i++
BPL loop_i ; branch if i<=R-1
LDMFD sp!, {r4, pc}

The preceding structure saves two registers over a naive implementation. First, we
decrement the count at bits 16 to 23 until the result is negative. This implements the k loop,
counting down from S − 1 to 0 inclusive. Once the result is negative, the code adds 216

to clear bits 16 to 31. Then we subtract 28 to decrement the count stored at bits 8 to 15,
implementing the j loop. We can encode the constant 216 − 28 = 0xFF00 efficiently using
a single ARM instruction. Bits 8 to 15 now count down from T − 1 to 0. When the result

190 Chapter 6 Writing and Optimizing ARM Assembly Code

of the combined add and subtract is negative, then we have finished the j loop. We repeat
the same process for the i loop. ARM’s ability to handle a wide range of rotated constants
in addition and subtraction instructions makes this scheme very efficient. ■

6.6.4 Other Counted Loops

You may want to use the value of a loop counter as an input to calculations in the loop. It’s
not always desirable to count down from N to 1 or N − 1 to 0. For example, you may want
to select bits out of a data register one at a time; in this case you may want a power-of-two
mask that doubles on each iteration.

The following subsections show useful looping structures that count in different
patterns. They use only a single instruction combined with a branch to implement
the loop.

6.6.4.1 Negative Indexing

This loop structure counts from −N to 0 (inclusive or exclusive) in steps of size STEP.

RSB i, N, #0 ; i=-N
loop

; loop body goes here and i=-N,-N+STEP,...,
ADDS i, i, #STEP
BLT loop ; use BLT or BLE to exclude 0 or not

6.6.4.2 Logarithmic Indexing

This loop structure counts down from 2N to 1 in powers of two. For example, if N = 4,
then it counts 16, 8, 4, 2, 1.

MOV i, #1
MOV i, i, LSL N

loop
; loop body
MOVS i, i, LSR#1
BNE loop

The following loop structure counts down from an N-bit mask to a one-bit mask. For
example, if N = 4, then it counts 15, 7, 3, 1.

MOV i, #1
RSB i, i, i, LSL N ; i=(1 << N)-1

6.7 Bit Manipulation 191

loop
; loop body
MOVS i, i, LSR#1
BNE loop

Summary Looping Constructs

■ ARM requires two instructions to implement a counted loop: a subtract that sets flags
and a conditional branch.

■ Unroll loops to improve loop performance. Do not overunroll because this will hurt
cache performance. Unrolled loops may be inefficient for a small number of iterations.
You can test for this case and only call the unrolled loop if the number of iterations is
large.

■ Nested loops only require a single loop counter register, which can improve efficiency
by freeing up registers for other uses.

■ ARM can implement negative and logarithmic indexed loops efficiently.

6.7 Bit Manipulation
Compressed file formats pack items at a bit granularity to maximize the data density.
The items may be of a fixed width, such as a length field or version field, or they may be of
a variable width, such as a Huffman coded symbol. Huffman codes are used in compression
to associate with each symbol a code of bits. The code is shorter for common symbols and
longer for rarer symbols.

In this section we look at methods to handle a bitstream efficiently. First we look at
fixed-width codes, then variable width codes. See Section 7.6 for common bit manipulation
routines such as endianness and bit reversal.

6.7.1 Fixed-Width Bit-Field Packing and Unpacking

You can extract an unsigned bit-field from an arbitrary position in an ARM register in
one cycle provided that you set up a mask in advance; otherwise you require two cycles.
A signed bit-field always requires two cycles to unpack unless the bit-field lies at the top of
a word (most significant bit of the bit-field is the most significant bit of the register). On
the ARM we use logical operations and the barrel shifter to pack and unpack codes, as in
the following examples.

Example

6.22
The assembly code shows how to unpack bits 4 to 15 of register r0, placing the result in r1.

; unsigned unpack with mask set up in advance
; mask=0x00000FFF

192 Chapter 6 Writing and Optimizing ARM Assembly Code

AND r1, mask, r0, LSR#4

; unsigned unpack with no mask
MOV r1, r0, LSL#16 ; discard bits 16-31
MOV r1, r1, LSR#20 ; discard bits 0-3 and zero extend

; signed unpack
MOV r1, r0, LSL#16 ; discard bits 16-31
MOV r1, r1, ASR#20 ; discard bits 0-3 and sign extend ■

Example

6.23
Packing the value r1 into the bit-packed register r0 requires one cycle if r1 is already
restricted to the correct range and the corresponding field of r0 is clear. In this example, r1
is a 12-bit number to be inserted at bit 4 of r0.

; pack r1 into r0
ORR r0, r0, r1, LSL #4

Otherwise you need a mask register set up:

; pack r1 into r0
; mask=0x00000FFF set up in advance
AND r1, r1, mask ; restrict the r1 range
BIC r0, r0, mask, LSL#4 ; clear the destination bits
ORR r0, r0, r1, LSL#4 ; pack in the new data ■

6.7.2 Variable-Width Bitstream Packing

Our task here is to pack a series of variable-length codes to create a bitstream. Typically
we are compressing a datastream and the variable-length codes represent Huffman or
arithmetic coding symbols. However, we don’t need to make any assumptions about what
the codes represent to pack them efficiently.

We do need to be careful about the packing endianness. Many compressed file formats
use a big-endian bit-packing order where the first code is placed at the most significant bits
of the first byte. For this reason we will use a big-endian bit-packing order for our examples.
This is sometimes known as network order. Figure 6.5 shows how we form a bytestream out
of variable-length bitcodes using a big-endian packing order. High and low represent the
most and least significant bit ends of the byte.

To implement packing efficiently on the ARM we use a 32-bit register as a buffer to
hold four bytes, in big-endian order. In other words we place byte 0 of the bytestream in
the most significant 8 bits of the register. Then we can insert codes into the register one at
a time, starting from the most significant bit and working down to the least significant bit.

6.7 Bit Manipulation 193

Byte 0

Code 0 Code 1 Code 2 Code 3 Code 4

High Low

Byte 1

High Low

Byte 2

High Low

Byte 3

High Low High Low

...

...

Figure 6.5 Big-endian bitcodes packed into a bytestream.

Code bitsbitbuffer =

31 bitsfree 0

0

Figure 6.6 Format of bitbuffer.

Once the register is full we can store 32 bits to memory. For a big-endian memory system
we can store the word without modification. For a little-endian memory system we need to
reverse the byte order in the word before storing.

We call the 32-bit register we insert codes into bitbuffer. We need a second register
bitsfree to record the number of bits that we haven’t used in bitbuffer. In other words,
bitbuffer contains 32 − bitsfree code bits, and bitsfree zero bits, as in Figure 6.6. To insert a
code of k bits into bitbuffer, we subtract k from bitsfree and then insert the code with a left
shift of bitsfree.

We also need to be careful about alignment. A bytestream need not be word aligned, and
so we can’t use word accesses to write it. To allow word accesses we will start by backing up
to the last word-aligned address. Then we fill the 32-bit register bitbuffer with the backed-up
data. From then on we can use word (32-bit) read and writes.

Example

6.24
This example provides three functionsbitstream_write_start, bitstream_write_code,
and bitstream_write_flush. These are not ATPCS-compliant functions because they
assume registers such as bitbuffer are preserved between calls. In practice you will inline this
code for efficiency, and so this is not a problem.

The bitstream_write_start function aligns the bitstream pointer bitstream and
initializes the 32-bit buffer bitbuffer. Each call to bitstream_write_code inserts a value
code of bit-length codebits. Finally, the bitstream_write_flush function writes any
remaining bytes to the bitstream to terminate the stream.

bitstream RN 0 ; current byte address in the output bitstream
code RN 4 ; current code

194 Chapter 6 Writing and Optimizing ARM Assembly Code

codebits RN 5 ; length in bits of current code
bitbuffer RN 6 ; 32-bit output big-endian bitbuffer
bitsfree RN 7 ; number of bits free in the bitbuffer
tmp RN 8 ; scratch register
mask RN 12 ; endian reversal mask 0xFFFF00FF

bitstream_write_start
MOV bitbuffer, #0
MOV bitsfree, #32

align_loop
TST bitstream, #3
LDRNEB code, [bitstream, #-1]!
SUBNE bitsfree, bitsfree, #8
ORRNE bitbuffer, code, bitbuffer, ROR #8
BNE align_loop
MOV bitbuffer, bitbuffer, ROR #8
MOV pc, lr

bitstream_write_code
SUBS bitsfree, bitsfree, codebits
BLE full_buffer
ORR bitbuffer, bitbuffer, code, LSL bitsfree
MOV pc, lr

full_buffer
RSB bitsfree, bitsfree, #0
ORR bitbuffer, bitbuffer, code, LSR bitsfree
IF {ENDIAN}="little"

; byte reverse the bit buffer prior to storing
EOR tmp, bitbuffer, bitbuffer, ROR #16
AND tmp, mask, tmp, LSR #8
EOR bitbuffer, tmp, bitbuffer, ROR #8

ENDIF
STR bitbuffer, [bitstream], #4
RSB bitsfree, bitsfree, #32
MOV bitbuffer, code, LSL bitsfree
MOV pc, lr

bitstream_write_flush
RSBS bitsfree, bitsfree, #32

flush_loop
MOVGT bitbuffer, bitbuffer, ROR #24
STRGTB bitbuffer, [bitstream], #1
SUBGTS bitsfree, bitsfree, #8
BGT flush_loop
MOV pc, lr ■

6.7 Bit Manipulation 195

6.7.3 Variable-Width Bitstream Unpacking

It is much harder to unpack a bitstream of variable-width codes than to pack it. The
problem is that we usually don’t know the width of the codes we are unpacking! For
Huffman-encoded bitstreams you must derive the length of each code by looking at the
next sequence of bits and working out which code it can be.

Here we will use a lookup table to speed up the unpacking process. The idea is to take
the next N bits of the bitstream and perform a lookup in two tables, look_codebits[] and
look_code[], each of size 2N entries. If the next N bits are sufficient to determine the code,
then the tables tell us the code length and the code value, respectively. If the next N bits
are insufficient to determine the code, then the look_codebits table will return an escape
value of 0xFF. An escape value is just a flag to indicate that this case is exceptional.

In a sequence of Huffman codes, common codes are short and rare codes are long. So,
we expect to decode most common codes quickly, using the lookup tables. In the following
example we assume that N = 8 and use 256-entry lookup tables.

Example

6.25
This example provides three functions to unpack a big-endian bitstream stored in a
bytestream. As with Example 6.24, these functions are not ATPCS compliant and will
normally be inlined. The function bitstream_read_start initializes the process, start-
ing to decode a bitstream at byte address bitstream. Each call to bitstream_read_code
returns the next code in register code. The function only handles short codes that can
be read from the lookup table. Long codes are trapped at the label long_code, but the
implementation of this function depends on the codes you are decoding.

The code uses a register bitbuffer that contains N + bitsleft code bits starting at the
most significant bit (see Figure 6.7).

bitstream RN 0 ; current byte address in the input bitstream
look_code RN 2 ; lookup table to convert next N bits to a code
look_codebits RN 3 ; lookup table to convert next N bits to a code length
code RN 4 ; code read
codebits RN 5 ; length of code read
bitbuffer RN 6 ; 32-bit input buffer (big endian)
bitsleft RN 7 ; number of valid bits in the buffer - N

N bitsbitbuffer =

31

bitsleft bits

0

0

Figure 6.7 Format of bitbuffer.

196 Chapter 6 Writing and Optimizing ARM Assembly Code

tmp RN 8 ; scratch
tmp2 RN 9 ; scratch
mask RN 12 ; N-bit extraction mask (1 << N)-1

N EQU 8 ; use a lookup table on 8 bits (N must be <= 9)

bitstream_read_start
MOV bitsleft, #32

read_fill_loop
LDRB tmp, [bitstream], #1
ORR bitbuffer, tmp, bitbuffer, LSL#8
SUBS bitsleft, bitsleft, #8
BGT read_fill_loop
MOV bitsleft, #(32-N)
MOV mask, #(1 << N)-1
MOV pc, lr

bitstream_read_code
LDRB codebits, [look_codebits, bitbuffer, LSR# (32-N)]
AND code, mask, bitbuffer, LSR#(32-N)
LDR code, [look_code, code, LSL#2]
SUBS bitsleft, bitsleft, codebits
BMI empty_buffer_or_long_code
MOV bitbuffer, bitbuffer, LSL codebits
MOV pc, lr

empty_buffer_or_long_code
TEQ codebits, #0xFF
BEQ long_code
; empty buffer - fill up with 3 bytes
; as N <= 9, we can fill 3 bytes without overflow
LDRB tmp, [bitstream], #1
LDRB tmp2, [bitstream], #1
MOV bitbuffer, bitbuffer, LSL codebits
LDRB codebits, [bitstream], #1
ORR tmp, tmp2, tmp, LSL#8
RSB bitsleft, bitsleft, #(8-N)
ORR tmp, codebits, tmp, LSL#8
ORR bitbuffer, bitbuffer, tmp, LSL bitsleft
RSB bitsleft, bitsleft, #(32-N)
MOV pc, lr

long_code
; handle the long code case depending on the application
; here we just return a code of -1
MOV code, #-1
MOV pc, lr

6.8 Efficient Switches 197

The counter bitsleft actually counts the number of bits remaining in the buffer
bitbuffer less the N bits required for the next lookup. Therefore we can perform the
next table lookup as long as bitsleft ≥ 0. As soon as bitsleft < 0 there are two
possibilities. One possibility is that we found a valid code but then have insufficient bits to
look up the next code. Alternatively, codebits contains the escape value 0xFF to indicate
that the code was longer than N bits. We can trap both these cases at once using a call to
empty_buffer_or_long_code. If the buffer is empty, then we fill it with 24 bits. If we have
detected a long code, then we branch to the long_code trap.

The example has a best-case performance of seven cycles per code unpack on an
ARM9TDMI. You can obtain faster results if you know the sizes of the packed bitfields
in advance. ■

Summary Bit Manipulation

■ The ARM can pack and unpack bits efficiently using logical operations and the barrel
shifter.

■ To access bitstreams efficiently use a 32-bit register as a bitbuffer. Use a second register
to keep track of the number of valid bits in the bitbuffer.

■ To decode bitstreams efficiently, use a lookup table to scan the next N bits of the
bitstream. The lookup table can return codes of length at most N bits directly, or return
an escape character for longer codes.

6.8 Efficient Switches
A switch or multiway branch selects between a number of different actions. In this section
we assume the action depends on a variable x. For different values of x we need to per-
form different actions. This section looks at assembly to implement a switch efficiently for
different types of x.

6.8.1 Switches on the Range 0 ≤ x < N

The example C function ref_switch performs different actions according to the value
of x. We are only interested in x values in the range 0 ≤ x < 8.

int ref_switch(int x)
{

switch (x)
{

case 0: return method_0();

198 Chapter 6 Writing and Optimizing ARM Assembly Code

case 1: return method_1();
case 2: return method_2();
case 3: return method_3();
case 4: return method_4();
case 5: return method_5();
case 6: return method_6();
case 7: return method_7();
default: return method_d();

}
}

There are two ways to implement this structure efficiently in ARM assembly. The first
method uses a table of function addresses. We load pc from the table indexed by x.

Example

6.26
The switch_absolute code performs a switch using an inlined table of function pointers:

x RN 0

; int switch_absolute(int x)
switch_absolute

CMP x, #8
LDRLT pc, [pc, x, LSL#2]
B method_d
DCD method_0
DCD method_1
DCD method_2
DCD method_3
DCD method_4
DCD method_5
DCD method_6
DCD method_7

The code works because the pc register is pipelined. The pc points to the method_0 word
when the ARM executes the LDR instruction. ■

The method above is very fast, but has one drawback: The code is not position
independent since it stores absolute addresses to the method functions in memory. Position-
independent code is often used in modules that are installed into a system at run time. The
next example shows how to solve this problem.

Example

6.27
The code switch_relative is slightly slower compared to switch_absolute, but it is
position independent:

; int switch_relative(int x)
switch_relative

6.8 Efficient Switches 199

CMP x, #8
ADDLT pc, pc, x, LSL#2
B method_d
B method_0
B method_1
B method_2
B method_3
B method_4
B method_5
B method_6
B method_7 ■

There is one final optimization you can make. If the method functions are short, then
you can inline the instructions in place of the branch instructions.

Example

6.28
Suppose each nondefault method has a four-instruction implementation. Then you can
use code of the form

CMP x, #8
ADDLT pc, pc, x, LSL#4 ; each method is 16 bytes long
B method_d

method_0
; the four instructions for method_0 go here

method_1
; the four instructions for method_1 go here
; ... continue in this way ... ■

6.8.2 Switches on a General Value x

Now suppose that x does not lie in some convenient range 0 ≤ x < N for N small enough
to apply the methods of Section 6.8.1. How do we perform the switch efficiently, without
having to test x against each possible value in turn?

A very useful technique in these situations is to use a hashing function. A hashing function
is any function y = f (x) that maps the values we are interested in into a continuous range
of the form 0 ≤ y < N . Instead of a switch on x, we can use a switch on y = f (x). There is
a problem if we have a collision, that is, if two x values map to the same y value. In this case
we need further code to test all the possible x values that could have led to the y value. For
our purposes a good hashing function is easy to compute and does not suffer from many
collisions.

To perform the switch we apply the hashing function and then use the optimized switch
code of Section 6.8.1 on the hash value y. Where two x values can map to the same hash,
we need to perform an explicit test, but this should be rare for a good hash function.

200 Chapter 6 Writing and Optimizing ARM Assembly Code

Example

6.29
Suppose we want to call method_k when x = 2k for eight possible methods. In other words
we want to switch on the values 1, 2, 4, 8, 16, 32, 64, 128. For all other values of x we need to
call the default method method_d. We look for a hash function formed out of multiplying
by powers of two minus one (this is an efficient operation on the ARM). By trying different
multipliers we find that 15 × 31 × x has a different value in bits 9 to 11 for each of the eight
switch values. This means we can use bits 9 to 11 of this product as our hash function.

The following switch_hash assembly uses this hash function to perform the switch.
Note that other values that are not powers of two will have the same hashes as the values
we want to detect. The switch has narrowed the case down to a single power of two that we
can test for explicitly. If x is not a power of two, then we fall through to the default case of
calling method_d.

x RN 0
hash RN 1

; int switch_hash(int x)
switch_hash

RSB hash, x, x, LSL#4 ; hash=x*15
RSB hash, hash, hash, LSL#5 ; hash=x*15*31
AND hash, hash, #7 << 9 ; mask out the hash value
ADD pc, pc, hash, LSR#6
NOP
TEQ x, #0x01
BEQ method_0
TEQ x, #0x02
BEQ method_1
TEQ x, #0x40
BEQ method_6
TEQ x, #0x04
BEQ method_2
TEQ x, #0x80
BEQ method_7
TEQ x, #0x20
BEQ method_5
TEQ x, #0x10
BEQ method_4
TEQ x, #0x08
BEQ method_3
B method_d ■

Summary Efficient Switches

■ Make sure the switch value is in the range 0 ≤ x < N for some small N. To do this you
may have to use a hashing function.

6.9 Handling Unaligned Data 201

■ Use the switch value to index a table of function pointers or to branch to short
sections of code at regular intervals. The second technique is position independent;
the first isn’t.

6.9 Handling Unaligned Data
Recall that a load or store is unaligned if it uses an address that is not a multiple of the data
transfer width. For code to be portable across ARM architectures and implementations,
you must avoid unaligned access. Section 5.9 introduced unaligned accesses and ways of
handling them in C. In this section we look at how to handle unaligned accesses in assembly
code.

The simplest method is to use byte loads and stores to access one byte at a time. This
is the recommended method for any accesses that are not speed critical. The following
example shows how to access word values in this way.

Example

6.30
This example shows how to read or write a 32-bit word using the unaligned address p. We
use three scratch registers t0, t1, t2 to avoid interlocks. All unaligned word operations
take seven cycles on an ARM9TDMI. Note that we need separate functions for 32-bit words
stored in big- or little-endian format.

p RN 0
x RN 1
t0 RN 2
t1 RN 3
t2 RN 12

; int load_32_little(char *p)
load_32_little

LDRB x, [p]
LDRB t0, [p, #1]
LDRB t1, [p, #2]
LDRB t2, [p, #3]
ORR x, x, t0, LSL#8
ORR x, x, t1, LSL#16
ORR r0, x, t2, LSL#24
MOV pc, lr

; int load_32_big(char *p)
load_32_big

LDRB x, [p]
LDRB t0, [p, #1]
LDRB t1, [p, #2]

202 Chapter 6 Writing and Optimizing ARM Assembly Code

LDRB t2, [p, #3]
ORR x, t0, x, LSL#8
ORR x, t1, x, LSL#8
ORR r0, t2, x, LSL#8
MOV pc, lr

; void store_32_little(char *p, int x)
store_32_little

STRB x, [p]
MOV t0, x, LSR#8
STRB t0, [p, #1]
MOV t0, x, LSR#16
STRB t0, [p, #2]
MOV t0, x, LSR#24
STRB t0, [p, #3]
MOV pc, lr

; void store_32_big(char *p, int x)
store_32_big

MOV t0, x, LSR#24
STRB t0, [p]
MOV t0, x, LSR#16
STRB t0, [p, #1]
MOV t0, x, LSR#8
STRB t0, [p, #2]
STRB x, [p, #3]
MOV pc, lr ■

If you require better performance than seven cycles per access, then you can write
several variants of the routine, with each variant handling a different address alignment.
This reduces the cost of the unaligned access to three cycles: the word load and the two
arithmetic instructions required to join values together.

Example

6.31
This example shows how to generate a checksum of N words starting at a possibly unaligned
address data. The code is written for a little-endian memory system. Notice how we can
use the assembler MACRO directive to generate the four routines checksum_0, checksum_1,
checksum_2, and checksum_3. Routine checksum_a handles the case where data is an
address of the form 4q + a.

Using a macro saves programming effort. We need only write a single macro and
instantiate it four times to implement our four checksum routines.

sum RN 0 ; current checksum
N RN 1 ; number of words left to sum

6.9 Handling Unaligned Data 203

data RN 2 ; word aligned input data pointer
w RN 3 ; data word

; int checksum_32_little(char *data, unsigned int N)
checksum_32_little

BIC data, r0, #3 ; aligned data pointer
AND w, r0, #3 ; byte alignment offset
MOV sum, #0 ; initial checksum
LDR pc, [pc, w, LSL#2] ; switch on alignment
NOP ; padding
DCD checksum_0
DCD checksum_1
DCD checksum_2
DCD checksum_3

MACRO
CHECKSUM $alignment

checksum_$alignment
LDR w, [data], #4 ; preload first value

10 ; loop
IF $alignment<>0

ADD sum, sum, w, LSR#8*$alignment
LDR w, [data], #4
SUBS N, N, #1
ADD sum, sum, w, LSL#32-8*$alignment

ELSE
ADD sum, sum, w
LDR w, [data], #4
SUBS N, N, #1

ENDIF
BGT %BT10
MOV pc, lr
MEND

; generate four checksum routines
; one for each possible byte alignment
CHECKSUM 0
CHECKSUM 1
CHECKSUM 2
CHECKSUM 3

You can now unroll and optimize the routines as in Section 6.6.2 to achieve the fastest
speed. Due to the additional code size, only use the preceding technique for time-critical
routines. ■

204 Chapter 6 Writing and Optimizing ARM Assembly Code

Summary Handling Unaligned Data

■ If performance is not an issue, access unaligned data using multiple byte loads and
stores. This approach accesses data of a given endianness regardless of the pointer
alignment and the configured endianness of the memory system.

■ If performance is an issue, then use multiple routines, with a different routine optimized
for each possible array alignment. You can use the assembler MACRO directive to generate
these routines automatically.

6.10 Summary
For the best performance in an application you will need to write optimized assembly
routines. It is only worth optimizing the key routines that the performance depends on.
You can find these using a profiling or cycle counting tool, such as the ARMulator simulator
from ARM.

This chapter covered examples and useful techniques for optimizing ARM assembly.
Here are the key ideas:

■ Schedule code so that you do not incur processor interlocks or stalls. Use Appendix D
to see how quickly an instruction result is available. Concentrate particularly on load
and multiply instructions, which often take a long time to produce results.

■ Hold as much data in the 14 available general-purpose registers as you can. Sometimes
it is possible to pack several data items in a single register. Avoid stacking data in the
innermost loop.

■ For small if statements, use conditional data processing operations rather than
conditional branches.

■ Use unrolled loops that count down to zero for the maximum loop performance.

■ For packing and unpacking bit-packed data, use 32-bit register buffers to increase
efficiency and reduce memory data bandwidth.

■ Use branch tables and hash functions to implement efficient switch statements.

■ To handle unaligned data efficiently, use multiple routines. Optimize each routine for
a particular alignment of the input and output arrays. Select between the routines at
run time.

This Page Intentionally Left Blank

7.1 Double-Precision Integer Multiplication
7.1.1 long long Multiplication

7.1.2 Unsigned 64-Bit by 64-Bit Multiply with 128-Bit Result

7.1.3 Signed 64-Bit by 64-Bit Multiply with 128-Bit Result

7.2 Integer Normalization and Count Leading Zeros
7.2.1 Normalization on ARMv5 and Above

7.2.2 Normalization on ARMv4

7.2.3 Counting Trailing Zeros

7.3 Division
7.3.1 Unsigned Division by Trial Subtraction

7.3.2 Unsigned Integer Newton-Raphson Division

7.3.3 Unsigned Fractional Newton-Raphson Division

7.3.4 Signed Division

7.4 Square Roots
7.4.1 Square Root by Trial Subtraction

7.4.2 Square Root by Newton-Raphson Iteration

7.5 Transcendental Functions: log, exp, sin, cos
7.5.1 The Base-Two Logarithm

7.5.2 Base-Two Exponentiation

7.5.3 Trigonometric Operations

7.6 Endian Reversal and Bit Operations
7.6.1 Endian Reversal

7.6.2 Bit Permutations

7.6.3 Bit Population Count

7.7 Saturated and Rounded Arithmetic
7.7.1 Saturating 32 Bits to 16 Bits

7.7.2 Saturated Left Shift

7.7.3 Rounded Right Shift

7.7.4 Saturated 32-Bit Addition and Subtraction

7.7.5 Saturated Absolute

7.8 Random Number Generation
7.9 Summary

C h a p t e r

Optimized
Primitives

7

A primitive is a basic operation that can be used in a wide variety of different algorithms and
programs. For example, addition, multiplication, division, and random number generation
are all primitives. Some primitives are supported directly by the ARM instruction set,
including 32-bit addition and multiplication. However, many primitives are not supported
directly by instructions, and we must write routines to implement them (for example,
division and random number generation).

This chapter provides optimized reference implementations of common primitives. The
first three sections look at multiplication and division. Section 7.1 looks at primitives to
implement extended-precision multiplication. Section 7.2 looks at normalization, which is
useful for the division algorithms in Section 7.3.

The next two sections look at more complicated mathematical operations. Section 7.4
covers square root. Section 7.5 looks at the transcendental functions log, exp, sin, and cos.
Section 7.6 looks at operations involving bit manipulation, and Section 7.7 at operations
involving saturation and rounding. Finally, Section 7.8 looks at random number generation.

You can use this chapter in two ways. First, it is useful as a straight reference. If you need
a division routine, go to the index and find the routine, or find the section on division. You
can copy the assembly from the book’s Web site. Second, this chapter provides the theory to
explain why each implementation works, which is useful if you need to change or generalize
the routine. For example, you may have different requirements about the precision or the
format of the input and output operands. For this reason, the text necessarily contains
many mathematical formulae and some tedious proofs. Please skip these as you see fit!

We have designed the code examples so that they are complete functions that you can
lift directly from the Web site. They should assemble immediately using the toolkit supplied
by ARM. For constancy we use the ARM toolkit ADS1.1 for all the examples of this chapter.

207

208 Chapter 7 Optimized Primitives

See Section A.4 in Appendix for help on the assembler format. You could equally well use
the GNU assembler gas. See Section A.5 for help on the gas assembler format.

You will also notice that we use the C keyword__value_in_regs. On the ARM compiler
armcc this indicates that a function argument, or return value, should be passed in registers
rather than by reference. In practical applications this is not an issue because you will inline
the operations for efficiency.

We use the notation Qk throughout this chapter to denote a fixed-point representation
with binary point between bits k − 1 and k. For example, 0.75 represented at Q15 is the
integer value 0x6000. See Section 8.1 for more details of the Qk representation and fixed-
point arithmetic. We say “d < 0. 5 at Q15” to mean that d represents the value d2−15 and
that this is less than one half.

7.1 Double-Precision Integer Multiplication
You can multiply integers up to 32 bits wide using the UMULL and SMULL instructions.
The following routines multiply 64-bit signed or unsigned integers, giving a 64-bit or
128-bit result. They can be extended, using the same ideas, to multiply any lengths of
integer. Longer multiplication is useful for handling the long long C type, emulating
double-precision fixed- or floating-point operations, and in the long arithmetic required
by public-key cryptography.

We use a little-endian notation for multiword values. If a 128-bit integer is stored in four
registers a3, a2, a1, a0, then these store bits [127:96], [95:64], [63:32], [31:0], respectively
(see Figure 7.1).

7.1.1 long long Multiplication

Use the following three-instruction sequence to multiply two 64-bit values (signed or
unsigned) b and c to give a new 64-bit long long value a. Excluding the ARM Thumb
Procedure Call Standard (ATPCS) wrapper and with worst-case inputs, this operation
takes 24 cycles on ARM7TDMI and 25 cycles on ARM9TDMI. On ARM9E the operation
takes 8 cycles. One of these cycles is a pipeline interlock between the first UMULL and MLA,
which you could remove by interleaving with other code.

a3

127 96

a2

95 64

a1

63 32

a0

31 0

Figure 7.1 Representation of a 128-bit value as four 32-bit values.

7.1 Double-Precision Integer Multiplication 209

b_0 RN 0 ; b bits [31:00] (b low)
b_1 RN 1 ; b bits [63:32] (b high)
c_0 RN 2 ; c bits [31:00] (c low)
c_1 RN 3 ; c bits [63:32] (c high)
a_0 RN 4 ; a bits [31:00] (a low-low)
a_1 RN 5 ; a bits [63:32] (a low-high)
a_2 RN 12 ; a bits [95:64] (a high-low)
a_3 RN lr ; a bits [127:96] (a high-high)

; long long mul_64to64 (long long b, long long c)
mul_64to64

STMFD sp!, {r4,r5,lr}
; 64-bit a = 64-bit b * 64-bit c
UMULL a_0, a_1, b_0, c_0 ; low*low
MLA a_1, b_0, c_1, a_1 ; low*high
MLA a_1, b_1, c_0, a_1 ; high*low
; return wrapper
MOV r0, a_0
MOV r1, a_1
LDMFD sp!, {r4,r5,pc}

7.1.2 Unsigned 64-Bit by 64-Bit Multiply
with 128-Bit Result

There are two slightly different implementations for an unsigned 64- by 64-bit multiply
with 128-bit result. The first is faster on an ARM7M. Here multiply accumulate instruc-
tions take an extra cycle compared to the nonaccumulating version. The ARM7M version
requires four long multiplies and six adds, a worst-case performance of 30 cycles.

; __value_in_regs struct { unsigned a0,a1,a2,a3; }
; umul_64to128_arm7m(unsigned long long b,
; unsigned long long c)

umul_64to128_arm7m
STMFD sp!, {r4,r5,lr}
; unsigned 128-bit a = 64-bit b * 64-bit c
UMULL a_0, a_1, b_0, c_0 ; low*low
UMULL a_2, a_3, b_0, c_1 ; low*high
UMULL c_1, b_0, b_1, c_1 ; high*high
ADDS a_1, a_1, a_2
ADCS a_2, a_3, c_1
ADC a_3, b_0, #0
UMULL c_0, b_0, b_1, c_0 ; high*low

210 Chapter 7 Optimized Primitives

ADDS a_1, a_1, c_0
ADCS a_2, a_2, b_0
ADC a_3, a_3, #0
; return wrapper
MOV r0, a_0
MOV r1, a_1
MOV r2, a_2
MOV r3, a_3
LDMFD sp!, {r4,r5,pc}

The second method works better on the ARM9TDMI and ARM9E. Here multiply
accumulates are as fast as multiplies. We schedule the multiply instructions to avoid
result-use interlocks on the ARM9E (see Section 6.2 for a description of pipelines and
interlocks).

; __value_in_regs struct { unsigned a0,a1,a2,a3; }
; umul_64to128_arm9e(unsigned long long b,
; unsigned long long c)

umul_64to128_arm9e
STMFD sp!, {r4,r5,lr}
; unsigned 128-bit a = 64-bit b * 64-bit c
UMULL a_0, a_1, b_0, c_0 ; low*low
MOV a_2, #0
UMLAL a_1, a_2, b_0, c_1 ; low*high
MOV a_3, #0
UMLAL a_1, a_3, b_1, c_0 ; high*low
MOV b_0, #0
ADDS a_2, a_2, a_3
ADC a_3, b_0, #0
UMLAL a_2, a_3, b_1, c_1 ; high*high
; return wrapper
MOV r0, a_0
MOV r1, a_1
MOV r2, a_2
MOV r3, a_3
LDMFD sp!, {r4,r5,pc}

Excluding the function call and return wrapper, this implementation requires 33 cycles
on ARM9TDMI and 17 cycles on ARM9E. The idea is that the operation ab + c + d cannot
overflow an unsigned 64-bit integer if a, b, c , and d are unsigned 32-bit integers. Therefore
you can achieve long multiplications with the normal schoolbook method of using the
operation ab + c + d , where c and d are the horizontal and vertical carries.

7.1 Double-Precision Integer Multiplication 211

7.1.3 Signed 64-Bit by 64-Bit Multiply
with 128-Bit Result

A signed 64-bit integer breaks down into a signed high 32 bits and an unsigned low 32 bits.
To multiply the high part of b by the low part of c requires a signed by unsigned multiply
instruction. Although the ARM does not have such an instruction, we can synthesize one
using macros.

The following macro USMLAL provides an unsigned-by-signed multiply accumulate
operation. To multiply unsigned b by signed c, it first calculates the product bc consid-
ering both values as signed. If the top bit of b is set, then this signed multiply multiplied
by the value b − 232. In this case it corrects the result by adding c232. Similarly, SUMLAL
performs a signed-by-unsigned multiply accumulate.

MACRO
USMLAL $al, $ah, $b, $c
; signed $ah.$al += unsigned $b * signed $c
SMLAL $al, $ah, $b, $c ; a = (signed)b * c;
TST $b, #1 << 31 ; if ((signed)b<0)
ADDNE $ah, $ah, $c ; a += (c << 32);
MEND
MACRO
SUMLAL $al, $ah, $b, $c
; signed $ah.$al += signed $b * unsigned $c
SMLAL $al, $ah, $b, $c ; a = b * (signed)c;
TST $c, #1 << 31 ; if ((signed)c<0)
ADDNE $ah, $ah, $b ; a += (b << 32);
MEND

Using these macros it is relatively simple to convert the 64-bit multiply of Section 7.1.2 to
a signed multiply. This signed version is four cycles longer than the corresponding unsigned
version due to the signed-by-unsigned fix-up instructions.

; __value_in_regs struct { unsigned a0,a1,a2; signed a3; }
; smul_64to128(long long b, long long c)

smul_64to128
STMFD sp!, {r4,r5,lr}
; signed 128-bit a = 64-bit b * 64-bit c
UMULL a_0, a_1, b_0, c_0 ; low*low
MOV a_2, #0
USMLAL a_1, a_2, b_0, c_1 ; low*high
MOV a_3, #0
SUMLAL a_1, a_3, b_1, c_0 ; high*low

212 Chapter 7 Optimized Primitives

MOV b_0, a_2, ASR#31
ADDS a_2, a_2, a_3
ADC a_3, b_0, a_3, ASR#31
SMLAL a_2, a_3, b_1, c_1 ; high*high
; return wrapper
MOV r0, a_0
MOV r1, a_1
MOV r2, a_2
MOV r3, a_3
LDMFD sp!, {r4,r5,pc}

7.2 Integer Normalization and Count
Leading Zeros

An integer is normalized when the leading one, or most significant bit, of the integer is at
a known bit position. We will need normalization to implement Newton-Raphson division
(see Section 7.3.2) or to convert to a floating-point format. Normalization is also useful
for calculating logarithms (see Section 7.5.1) and priority decoders used by some dispatch
routines. In these applications, we need to know both the normalized value and the shift
required to reach this value.

This operation is so important that an instruction is available from ARM architecture
ARMv5E onwards to accelerate normalization. The CLZ instruction counts the number of
leading zeros before the first significant one. It returns 32 if there is no one bit at all. The
CLZ value is the left shift you need to apply to normalize the integer so that the leading one
is at bit position 31.

7.2.1 Normalization on ARMv5 and Above

On an ARMv5 architecture, use the following code to perform unsigned and signed nor-
malization, respectively. Unsigned normalization shifts left until the leading one is at bit 31.
Signed normalization shifts left until there is one sign bit at bit 31 and the leading bit is at
bit 30. Both functions return a structure in registers of two values, the normalized integer
and the left shift to normalize.

x RN 0 ; input, output integer
shift RN 1 ; shift to normalize

; __value_in_regs struct { unsigned x; int shift; }
; unorm_arm9e(unsigned x)

unorm_arm9e

7.2 Integer Normalization and Count Leading Zeros 213

CLZ shift, x ; left shift to normalize
MOV x, x, LSL shift ; normalize
MOV pc, lr

; __value_in_regs struct { signed x; int shift; }
; unorm_arm9e(signed x)

snorm_arm9e ; [s s s 1-s x x ...]
EOR shift, x, x, LSL#1 ; [0 0 1 x x x ...]
CLZ shift, shift ; left shift to normalize
MOV x, x, LSL shift ; normalize
MOV pc, lr

Note that we reduce the signed norm to an unsigned norm using a logical exclusive OR.
If x is signed, then x∧(x� 1) has the leading one in the position of the first sign bit in x.

7.2.2 Normalization on ARMv4

If you are using an ARMv4 architecture processor such as ARM7TDMI or ARM9TDMI,
then there is no CLZ instruction available. Instead we can synthesize the same functionality.
The simple divide-and-conquer method in unorm_arm7m gives a good trade-off between
performance and code size. We successively test to see if we can shift x left by 16, 8, 4, 2,
and 1 places in turn.

; __value_in_regs struct { unsigned x; int shift; }
; unorm_arm7m(unsigned x)

unorm_arm7m
MOV shift, #0 ; shift=0;
CMP x, #1 << 16 ; if (x < (1 << 16))
MOVCC x, x, LSL#16 ; { x = x << 16;
ADDCC shift, shift, #16 ; shift+=16; }
TST x, #0xFF000000 ; if (x < (1 << 24))
MOVEQ x, x, LSL#8 ; { x = x << 8;
ADDEQ shift, shift, #8 ; shift+=8; }
TST x, #0xF0000000 ; if (x < (1 << 28))
MOVEQ x, x, LSL#4 ; { x = x << 4;
ADDEQ shift, shift, #4 ; shift+=4; }
TST x, #0xC0000000 ; if (x < (1 << 30))
MOVEQ x, x, LSL#2 ; { x = x << 2;
ADDEQ shift, shift, #2 ; shift+=2; }
TST x, #0x80000000 ; if (x < (1 << 31))
ADDEQ shift, shift, #1 ; { shift+=1;
MOVEQS x, x, LSL#1 ; x << =1;

214 Chapter 7 Optimized Primitives

MOVEQ shift, #32 ; if (x==0) shift=32; }
MOV pc, lr

The final MOVEQ sets shift to 32 when x is zero and can often be omitted. The imple-
mentation requires 17 cycles on ARM7TDMI or ARM9TDMI and is sufficient for most
purposes. However, it is not the fastest way to normalize on these processors. For maximum
speed you can use a hash-based method.

The hash-based method first reduces the input operand to one of 33 different pos-
sibilities, without changing the CLZ value. We do this by iterating x = x | (x�s) for shifts
s = 1, 2, 4, 8. This replicates the leading one 16 positions to the right. Then we calculate
x = x &∼(x�16). This clears the 16 bits to the right of the 16 replicated ones. Table 7.1
illustrates the combined effect of these operations. For each possible input binary pattern
we show the 32-bit code produced by these operations. Note that the CLZ value of the input
pattern is the same as the CLZ value of the code.

Now our aim is to get from the code value to the CLZ value using a hashing function
followed by table lookup. See Section 6.8.2 for more details on hashing functions.

For the hashing function, we multiply by a large value and extract the top six bits of the
result. Values of the form 2a + 1 and 2a − 1 are easy to multiply by on the ARM using the
barrel shifter. In fact, multiplying by (29 − 1)(211 − 1)(214 − 1) gives a different hash value
for each distinct CLZ value. The authors found this multiplier using a computer search.

You can use the code here to implement a fast hash-based normalization on ARMv4
processors. The implementation requires 13 cycles on an ARM7TDMI excluding setting up
the table pointer.

table RN 2 ; address of hash lookup table

;__value_in_regs struct { unsigned x; int shift; }
; unorm_arm7m_hash(unsigned x)

Table 7.1 Code and CLZ values for different inputs.

Input (in binary, x is a wildcard bit) 32-bit code CLZ value

1xxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 0xFFFF0000 0
01xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 0x7FFF8000 1
001xxxxx xxxxxxxx xxxxxxxx xxxxxxxx 0x3FFFC000 2
… … …
00000000 00000000 00000000 000001xx 0x00000007 29
00000000 00000000 00000000 0000001x 0x00000003 30
00000000 00000000 00000000 00000001 0x00000001 31
00000000 00000000 00000000 00000000 0x00000000 32

7.2 Integer Normalization and Count Leading Zeros 215

unorm_arm7m_hash
ORR shift, x, x, LSR#1
ORR shift, shift, shift, LSR#2
ORR shift, shift, shift, LSR#4
ORR shift, shift, shift, LSR#8
BIC shift, shift, shift, LSR#16
RSB shift, shift, shift, LSL#9 ; *(2∧9-1)
RSB shift, shift, shift, LSL#11 ; *(2∧11-1)
RSB shift, shift, shift, LSL#14 ; *(2∧14-1)
ADR table, unorm_arm7m_hash_table
LDRB shift, [table, shift, LSR#26]
MOV x, x, LSL shift
MOV pc, lr

unorm_arm7m_hash_table
DCB 0x20, 0x14, 0x13, 0xff, 0xff, 0x12, 0xff, 0x07
DCB 0x0a, 0x11, 0xff, 0xff, 0x0e, 0xff, 0x06, 0xff
DCB 0xff, 0x09, 0xff, 0x10, 0xff, 0xff, 0x01, 0x1a
DCB 0xff, 0x0d, 0xff, 0xff, 0x18, 0x05, 0xff, 0xff
DCB 0xff, 0x15, 0xff, 0x08, 0x0b, 0xff, 0x0f, 0xff
DCB 0xff, 0xff, 0xff, 0x02, 0x1b, 0x00, 0x19, 0xff
DCB 0x16, 0xff, 0x0c, 0xff, 0xff, 0x03, 0x1c, 0xff
DCB 0x17, 0xff, 0x04, 0x1d, 0xff, 0xff, 0x1e, 0x1f

7.2.3 Counting Trailing Zeros

Count trailing zeros is a related operation to count leading zeros. It counts the number of
zeros below the least significant set bit in an integer. Equivalently, this detects the highest
power of two that divides the integer. Therefore you can count trailing zeros to express an
integer as a product of a power of two and an odd integer. If the integer is zero, then there
is no lowest bit so the count trailing zeros returns 32.

There is a trick to finding the highest power of two dividing an integer n, for nonzero n.
The trick is to see that the expression (n & (−n)) has a single bit set in position of the lowest
bit set in n. Figure 7.2 shows how this works. The x represents wildcard bits.

n = xxxxxxxxxxxxxxxxxx10000000000000
−n = yyyyyyyyyyyyyyyyyyy10000000000000 where y = 1 − x

n & (−n) = 0000000000000000010000000000000

Figure 7.2 Identifying the least significant bit.

216 Chapter 7 Optimized Primitives

Using this trick, we can convert a count trailing zeros to a count leading zeros. The
following code implements count trailing zeros on an ARM9E. We handle the zero-input
case without extra overhead by using conditional instructions.

; unsigned ctz_arm9e(unsigned x)
ctz_arm9e

RSBS shift, x, #0 ; shift=-x
AND shift, shift, x ; isolate trailing 1 of x
CLZCC shift, shift ; number of zeros above last 1
RSC r0, shift, #32 ; number of zeros below last 1
MOV pc, lr

For processors without the CLZ instruction, a hashing method similar to that of
Section 7.2.2 gives good performance:

; unsigned ctz_arm7m(unsigned x)
ctz_arm7m

RSB shift, x, #0
AND shift, shift, x ; isolate lowest bit
ADD shift, shift, shift, LSL#4 ; *(2∧4+1)
ADD shift, shift, shift, LSL#6 ; *(2∧6+1)
RSB shift, shift, shift, LSL#16 ; *(2∧16-1)
ADR table, ctz_arm7m_hash_table
LDRB r0, [table, shift, LSR#26]
MOV pc, lr

ctz_arm7m_hash_table
DCB 0x20, 0x00, 0x01, 0x0c, 0x02, 0x06, 0xff, 0x0d
DCB 0x03, 0xff, 0x07, 0xff, 0xff, 0xff, 0xff, 0x0e
DCB 0x0a, 0x04, 0xff, 0xff, 0x08, 0xff, 0xff, 0x19
DCB 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x1b, 0x0f
DCB 0x1f, 0x0b, 0x05, 0xff, 0xff, 0xff, 0xff, 0xff
DCB 0x09, 0xff, 0xff, 0x18, 0xff, 0xff, 0x14, 0x1a
DCB 0x1e, 0xff, 0xff, 0xff, 0xff, 0x17, 0xff, 0x13
DCB 0x1d, 0xff, 0x16, 0x12, 0x1c, 0x11, 0x10

7.3 Division
ARM cores don’t have hardware support for division. To divide two numbers you must
call a software routine that calculates the result using standard arithmetic operations. If
you can’t avoid a division (see Section 5.10 for how to avoid divisions and fast division by

7.3 Division 217

a repeated denominator), then you need access to very optimized division routines. This
section provides some of these useful optimized routines.

With aggressive optimization the Newton-Raphson division routines on an ARM9E run
as fast as one bit per cycle hardware division implementations. Therefore ARM does not
need the complexity of a hardware division implementation.

This section describes the fastest division implementations that we know of. The sec-
tion is unavoidably long as there are many different division techniques and precisions to
consider. We will also prove that the routines actually work for all possible inputs. This is
essential since we can’t try all possible input arguments for a 32-bit by 32-bit division! If
you are not interested in the theoretical details, skip the proof and just lift the code from
the text.

Section 7.3.1 gives division implementations using trial subtraction, or binary search.
Trial subtraction is useful when early termination is likely due to a small quotient, or on
a processor core without a fast multiply instruction. Sections 7.3.2 and 7.3.3 give implemen-
tations using Newton-Raphson iteration to converge to the answer. Use Newton-Raphson
iteration when the worst-case performance is important, or fast multiply instructions are
available. The Newton-Raphson implementations use the ARMv5TE extensions. Finally
Section 7.3.4 looks at signed rather than unsigned division.

We will need to distinguish between integer division and true mathematical division.
Let’s fix the following notation:

■ n/d = the integer part of the result rounding towards zero (as in C)

■ n%d = the integer remainder n − d(n/d) (as in C)

■ n//d = nd−1 =
n

d
= the true mathematical result of n divided by d

7.3.1 Unsigned Division by Trial Subtraction

Suppose we need to calculate the quotient q = n/d and remainder r = n % d for unsigned
integers n and d. Suppose also that we know the quotient q fits into N bits so that n/d < 2N ,
or equivalently n < (d � N). The trial subtraction algorithm calculates the N bits of q
by trying to set each bit in turn, starting at the most significant bit, bit N − 1. This is
equivalent to a binary search for the result. We can set bit k if we can subtract (d � k) from
the current remainder without giving a negative result. The example udiv_simple gives
a simple C implementation of this algorithm:

unsigned udiv_simple(unsigned d, unsigned n, unsigned N)
{
unsigned q=0, r=n;

do
{ /* calculate next quotient bit */

218 Chapter 7 Optimized Primitives

N--; /* move to next bit */
if ((r >> N) >= d) /* if r>=d*(1 << N) */
{

r -= (d << N); /* update remainder */
q += (1 << N); /* update quotient */

}
} while (N);

return q;
}

Proof

7.1
To prove that the answer is correct, note that before we decrement N, the invariants of
Equation (7.1) hold:

n = qd + r and 0 ≤ r < d2N (7.1)

At the start q = 0 and r = n, so the invariants hold by our assumption that the quotient
fits into N bits. Assume now that the invariants hold for some N. If r < d2N−1, then we
need do nothing for the invariants to hold for N − 1. If r ≥ d2N−1, then we maintain the
invariants by subtracting d2N−1 from r and adding 2N−1 to q. ■

The preceding implementation is called a restoring trial subtraction implementation. In
a nonrestoring implementation, the subtraction always takes place. However, if r becomes
negative, then we use an addition of (d � N) on the next round, rather than a subtraction,
to give the same result. Nonrestoring division is slower on the ARM so we won’t go into
the details. The following subsections give you assembly implementations of the trial sub-
traction method for different numerator and denominator sizes. They run on any ARM
processor.

7.3.1.1 Unsigned 32-Bit/32-Bit Divide by Trial Subtraction

This is the operation required by C compilers. It is called when the expression n/d or n%d
occurs in C and d is not a power of 2. The routine returns a two-element structure consisting
of the quotient and remainder.

d RN 0 ; input denominator d, output quotient
r RN 1 ; input numerator n, output remainder
t RN 2 ; scratch register
q RN 3 ; current quotient

; __value_in_regs struct { unsigned q, r; }
; udiv_32by32_arm7m(unsigned d, unsigned n)

udiv_32by32_arm7m

7.3 Division 219

MOV q, #0 ; zero quotient
RSBS t, d, r, LSR#3 ; if ((r >> 3)>=d) C=1; else C=0;
BCC div_3bits ; quotient fits in 3 bits
RSBS t, d, r, LSR#8 ; if ((r >> 8)>=d) C=1; else C=0;
BCC div_8bits ; quotient fits in 8 bits
MOV d, d, LSL#8 ; d = d*256
ORR q, q, #0xFF000000 ; make div_loop iterate twice
RSBS t, d, r, LSR#4 ; if ((r >> 4)>=d) C=1; else C=0;
BCC div_4bits ; quotient fits in 12 bits
RSBS t, d, r, LSR#8 ; if ((r >> 8)>=d) C=1; else C=0;
BCC div_8bits ; quotient fits in 16 bits
MOV d, d, LSL#8 ; d = d*256
ORR q, q, #0x00FF0000 ; make div_loop iterate 3 times
RSBS t, d, r, LSR#8 ; if ((r >> 8)>=d)
MOVCS d, d, LSL#8 ; { d = d*256;
ORRCS q, q, #0x0000FF00 ; make div_loop iterate 4 times}
RSBS t, d, r, LSR#4 ; if ((r >> 4)<d)
BCC div_4bits ; r/d quotient fits in 4 bits
RSBS t, d, #0 ; if (0 >= d)
BCS div_by_0 ; goto divide by zero trap
; fall through to the loop with C=0

div_loop
MOVCS d, d, LSR#8 ; if (next loop) d = d/256

div_8bits ; calculate 8 quotient bits
RSBS t, d, r, LSR#7 ; if ((r >> 7)>=d) C=1; else C=0;
SUBCS r, r, d, LSL#7 ; if (C) r -= d << 7;
ADC q, q, q ; q=(q << 1)+C;
RSBS t, d, r, LSR#6 ; if ((r >> 6)>=d) C=1; else C=0;
SUBCS r, r, d, LSL#6 ; if (C) r -= d << 6;
ADC q, q, q ; q=(q << 1)+C;
RSBS t, d, r, LSR#5 ; if ((r >> 5)>=d) C=1; else C=0;
SUBCS r, r, d, LSL#5 ; if (C) r -= d << 5;
ADC q, q, q ; q=(q << 1)+C;
RSBS t, d, r, LSR#4 ; if ((r >> 4)>=d) C=1; else C=0;
SUBCS r, r, d, LSL#4 ; if (C) r -= d << 4;
ADC q, q, q ; q=(q << 1)+C;

div_4bits ; calculate 4 quotient bits
RSBS t, d, r, LSR#3 ; if ((r >> 3)>=d) C=1; else C=0;
SUBCS r, r, d, LSL#3 ; if (C) r -= d << 3;
ADC q, q, q ; q=(q << 1)+C;

div_3bits ; calculate 3 quotient bits
RSBS t, d, r, LSR#2 ; if ((r >> 2)>=d) C=1; else C=0;
SUBCS r, r, d, LSL#2 ; if (C) r -= d << 2;

220 Chapter 7 Optimized Primitives

ADC q, q, q ; q=(q << 1)+C;
RSBS t, d, r, LSR#1 ; if ((r >> 1)>=d) C=1; else C=0;
SUBCS r, r, d, LSL#1 ; if (C) r -= d << 1;
ADC q, q, q ; q=(q << 1)+C;
RSBS t, d, r ; if (r>=d) C=1; else C=0;
SUBCS r, r, d ; if (C) r -= d;
ADCS q, q, q ; q=(q << 1)+C; C=old q bit 31;

div_next
BCS div_loop ; loop if more quotient bits
MOV r0, q ; r0 = quotient; r1=remainder;
MOV pc, lr ; return { r0, r1 } structure;

div_by_0
MOV r0, #-1
MOV r1, #-1
MOV pc, lr ; return { -1, -1 } structure;

To see how this routine works, first look at the code between the labels div_8bits and
div_next. This calculates the 8-bit quotient r/d , leaving the remainder in r and inserting
the 8 bits of the quotient into the lower bits of q. The code works by using a trial subtraction
algorithm. It attempts to subtract 128d , 64d , 32d , 16d , 8d , 4d , 2d , and d in turn from r. For
each subtract it sets carry to one if the subtract is possible and zero otherwise. This carry
forms the next bit of the result to insert into q.

Next note that we can jump into this code at div_4bits or div_3bits if we only want
to perform a 4-bit or 3-bit divide, respectively.

Now look at the beginning of the routine. We want to calculate r/d , leaving the remain-
der in r and writing the quotient to q. We first check to see if the quotient q will fit into 3 or
8 bits. If so, we can jump directly to div_3bits or div_8bits, respectively to calculate the
answer. This early termination is useful in C where quotients are often small. If the quotient
requires more than 8 bits, then we multiply d by 256 until r/d fits into 8 bits. We record
how many times we have multiplied d by 256 using the high bits of q, setting 8 bits for each
multiply. This means that after we have calculated the 8-bit r/d , we loop back to div_loop
and divide d by 256 for each multiply we performed earlier. In this way we reduce the divide
to a series of 8-bit divides.

7.3.1.2 Unsigned 32/15-Bit Divide by Trial Subtraction

In the 32/32 divide of Section 7.3.1.1, each trial subtraction takes three cycles per bit of
quotient. However, if we restrict the denominator and quotient to 15 bits, we can do a trial
subtraction in only two cycles per bit of quotient. You will find this operation useful for
16-bit DSP, where the division of two positive Q15 numbers requires a 30/15-bit integer
division (see Section 8.1.5).

7.3 Division 221

In the following code, the numerator n is a 32-bit unsigned integer. The denominator d
is a 15-bit unsigned integer. The routine returns a structure containing the 15-bit quotient
q and remainder r. If n ≥ (d � 15), then the result overflows and we return the maximum
possible quotient of 0x7fff.

m RN 0 ; input denominator d then (-d << 14)
r RN 1 ; input numerator n then remainder

; __value_in_regs struct { unsigned q, r; }
; udiv_32by16_arm7m(unsigned d, unsigned n)

udiv_32by16_arm7m
RSBS m, m, r, LSR#15 ; m = (n >> 15) - d
BCS overflow_15 ; overflow if (n >> 15)>=d
SUB m, m, r, LSR#15 ; m = -d
MOV m, m, LSL#14 ; m = -d << 14
; 15 trial division steps follow
ADDS r, m, r ; r=r-(d << 14); C=(r>=0);
SUBCC r, r, m ; if (C==0) r+=(d << 14)
ADCS r, m, r, LSL #1 ; r=(2*r+C)-(d << 14); C=(r>=0);
SUBCC r, r, m ; if (C==0) r+=(d << 14)
ADCS r, m, r, LSL #1 ; ... and repeat ...
SUBCC r, r, m
ADCS r, m, r, LSL #1
SUBCC r, r, m
ADCS r, m, r, LSL #1
SUBCC r, r, m
ADCS r, m, r, LSL #1
SUBCC r, r, m
ADCS r, m, r, LSL #1
SUBCC r, r, m
ADCS r, m, r, LSL #1
SUBCC r, r, m
ADCS r, m, r, LSL #1
SUBCC r, r, m
ADCS r, m, r, LSL #1
SUBCC r, r, m
ADCS r, m, r, LSL #1
SUBCC r, r, m
ADCS r, m, r, LSL #1
SUBCC r, r, m
ADCS r, m, r, LSL #1
SUBCC r, r, m
ADCS r, m, r, LSL #1

222 Chapter 7 Optimized Primitives

SUBCC r, r, m
ADCS r, m, r, LSL #1
SUBCC r, r, m
; extract answer and remainder (if required)
ADC r0, r, r ; insert final answer bit
MOV r, r0, LSR #15 ; extract remainder
BIC r0, r0, r, LSL #15 ; extract quotient
MOV pc, lr ; return { r0, r }

overflow_15 ; quotient oveflows 15 bits
LDR r0, =0x7fff ; maximum quotient
MOV r1, r0 ; maximum remainder
MOV pc, lr ; return { 0x7fff, 0x7fff }

We start by setting m = −d214. Instead of subtracting a shifted version of the denomin-
ator from the remainder, we add the negated denominator to the shifted remainder. After
the kth trial subtraction step, the bottom k bits of r hold the k top bits of the quotient.
The upper 32 − k bits of r hold the remainder. Each ADC instruction performs three
functions:

■ It shifts the remainder left by one.

■ It inserts the next quotient bit from the last trial subtraction.

■ It subtracts d � 14 from the remainder.

After 15 steps the bottom 15 bits of r contain the quotient and the top 17 bits contain
the remainder. We separate these into r0 and r1, respectively. Excluding the return, the
division takes 35 cycles on ARM7TDMI.

7.3.1.3 Unsigned 64/31-Bit Divide by Trial Subtraction

This operation is useful when you need to divide Q31 fixed-point integers (see Section 8.1.5).
It doubles the precision of the division in Section 7.3.1.2. The numerator n is an unsigned
64-bit integer. The denominator d is an unsigned 31-bit integer. The following routine
returns a structure containing the 32-bit quotient q and remainder r. The result overflows
if n ≥ d232. In this case we return the maximum possible quotient of 0xffffffff. The
routines takes 99 cycles on ARM7TDMI using a three-bit-per-cycle trial subtraction. In the
code comments we use the notation [r, q] to mean a 64-bit value with upper 32 bits r and
lower 32 bits q.

m RN 0 ; input denominator d, -d
r RN 1 ; input numerator (low), remainder (high)
t RN 2 ; input numerator (high)
q RN 3 ; result quotient and remainder (low)

7.3 Division 223

; __value_in_regs struct { unsigned q, r; }

; udiv_64by32_arm7m(unsigned d, unsigned long long n)

udiv_64by32_arm7m
CMP t, m ; if (n >= (d << 32))
BCS overflow_32 ; goto overflow_32;
RSB m, m, #0 ; m = -d
ADDS q, r, r ; { [r,q] = 2*[r,q]-[d,0];
ADCS r, m, t, LSL#1 ; C = ([r,q]>=0); }
SUBCC r, r, m ; if (C==0) [r,q] += [d,0]
GBLA k ; the next 32 steps are the same

k SETA 1 ; so we generate them using an
WHILE k<32 ; assembler while loop

ADCS q, q, q ; { [r,q] = 2*[r,q]+C - [d,0];
ADCS r, m, r, LSL#1 ; C = ([r,q]>=0); }
SUBCC r, r, m ; if (C==0) [r,q] += [d,0]

k SETA k+1
WEND
ADCS r0, q, q ; insert final answer bit
MOV pc, lr ; return { r0, r1 }

overflow_32
MOV r0, #-1
MOV r1, #-1
MOV pc, lr ; return { -1, -1 }

The idea is similar to the 32/15-bit division. After the kth trial subtraction the 64-bit
value [r, q] contains the remainder in the top 64 − k bits. The bottom k bits contain the
top k quotient bits. After 32 trial subtractions, r holds the remainder and q the quotient.
The two ADC instructions shift [r, q] left by one, inserting the last answer bit in the bottom
and subtracting the denominator from the upper 32 bits. If the subtraction overflows, we
correct r by adding back the denominator.

7.3.2 Unsigned Integer Newton-Raphson Division

Newton-Raphson iteration is a powerful technique for solving equations numerically. Once
we have a good approximation of a solution to an equation, the iteration converges very
rapidly on that solution. In fact, convergence is usually quadratic with the number of valid
fractional bits roughly doubling with each iteration. Newton-Raphson is widely used for
calculating high-precision reciprocals and square roots. We will use the Newton-Raphson
method to implement 16- and 32-bit integer and fractional divides, although the ideas we
will look at generalize to any size of division.

224 Chapter 7 Optimized Primitives

The Newton-Raphson technique applies to any equation of the form f (x) = 0, where
f (x) is a differentiable function with derivative f ′(x). We start with an approximation xn

to a solution x of the equation. Then we apply the following iteration, to give us a better
approximation xn+1

xn+1 = xn − f (xn)

f ′(xn)
(7.2)

Figure 7.3 illustrates the Newton-Raphson iteration to solve f (x) = 0. 8 − x−1 = 0,
taking x0 = 1 as our initial approximation. The first two steps are x1 = 1. 2 and x2 = 1. 248,
converging rapidly to the solution 1.25.

For many functions f, the iteration converges rapidly to the solution x. Graphically, we
place the estimate xn+1 where the tangent to the curve at estimate xn meets the x-axis.

We will use Newton-Raphson iteration to calculate 2N d−1 using only integer multipli-
cation operations. We allow the factor of 2N because this is useful when trying to estimate
232/d as used in Sections 7.3.2.1 and 5.10.2. Consider the following function:

f (x) = d − 2N

x
(7.3)

0.1

0.05

0

−0.05

−0.1

−0.15

−0.2

−0.25
0.95 1 1.05

x0 = 1 x1 = 1.2 x2=1.248

x = 1.25

f(x) = 0.8 − 1/x

1.1 1.15 1.2 1.25 1.3

Figure 7.3 Newton-Raphson iteration for f (x) = 0. 8 − 1/x .

7.3 Division 225

The equation f (x) = 0 has a solution at x = 2N d−1 and derivative f ′(x) = 2N x−2.
By substitution, the Newton-Raphson iteration is given by

xn+1 = xn − d − 2N x−1
n

2N x−2
n

= 2xn − dx2
n

2N
(7.4)

In one sense the iteration has turned our division upside-down. Instead of multiplying
by 2N and dividing by d, we are now multiplying by d and dividing by 2N . There are two
cases that are particularly useful:

■ N = 32 and d is an integer. In this case we can approximate 232d−1 quickly and use
this approximation to calculate n/d, the ratio of two unsigned 32-bit numbers. See
Section 7.3.2.1 for iterations using N = 32.

■ N = 0 and d is a fraction represented in fixed-point format with 0. 5 ≤ d < 1. In
this case we can calculate d−1 using the iteration, which is useful to calculate nd−1 for
a range of fixed-point values n. See Section 7.3.3 for iterations using N = 0.

7.3.2.1 Unsigned 32/32-Bit Divide by Newton-Raphson

This section gives you an alterative to the routine of Section 7.3.1.1. The following routine
has very good worst-case performance and makes use of the faster multiplier on ARM9E.
We use Newton-Raphson iteration with N = 32 and integral d to approximate the integer
232/d . We then multiply this approximation by n and divide by 232 to get an estimate of the
quotient q = n/d . Finally, we calculate the remainder r = n − qd and correct quotient and
remainder for any rounding error.

q RN 0 ; input denominator d, output quotient q
r RN 1 ; input numerator n, output remainder r
s RN 2 ; scratch register
m RN 3 ; scratch register
a RN 12 ; scratch register

; __value_in_regs struct { unsigned q, r; }
; udiv_32by32_arm9e(unsigned d, unsigned n)

udiv_32by32_arm9e ; instruction number : comment
CLZ s, q ; 01 : find normalizing shift
MOVS a, q, LSL s ; 02 : perform a lookup on the
ADD a, pc, a, LSR#25 ; 03 : most significant 7 bits
LDRNEB a, [a, #t32-b32-64] ; 04 : of divisor

b32 SUBS s, s, #7 ; 05 : correct shift
RSB m, q, #0 ; 06 : m = -d
MOVPL q, a, LSL s ; 07 : q approx (1 << 32)/d
; 1st Newton iteration follows
MULPL a, q, m ; 08 : a = -q*d

226 Chapter 7 Optimized Primitives

BMI udiv_by_large_d ; 09 : large d trap
SMLAWT q, q, a, q ; 10 : q approx q-(q*q*d >> 32)
TEQ m, m, ASR#1 ; 11 : check for d=0 or d=1
; 2nd Newton iteration follows
MULNE a, q, m ; 12 : a = -q*d
MOVNE s, #0 ; 13 : s = 0
SMLALNE s, q, a, q ; 14 : q = q-(q*q*d >> 32)
BEQ udiv_by_0_or_1 ; 15 : trap d=0 or d=1
; q now accurate enough for a remainder r, 0<=r<3*d
UMULL s, q, r, q ; 16 : q = (r*q) >> 32
ADD r, r, m ; 17 : r = n-d
MLA r, q, m, r ; 18 : r = n-(q+1)*d
; since 0 <= n-q*d < 3*d, thus -d <= r < 2*d
CMN r, m ; 19 : t = r-d
SUBCS r, r, m ; 20 : if (t<-d || t>=0) r=r+d
ADDCC q, q, #1 ; 21 : if (-d<=t && t<0) q=q+1
ADDPL r, r, m, LSL#1 ; 22 : if (t>=0) { r=r-2*d
ADDPL q, q, #2 ; 23 : q=q+2 }
BX lr ; 24 : return {q, r}

udiv_by_large_d
; at this point we know d >= 2∧(31-6)=2∧25
SUB a, a, #4 ; 25 : set q to be an
RSB s, s, #0 ; 26 : underestimate of
MOV q, a, LSR s ; 27 : (1 << 32)/d
UMULL s, q, r, q ; 28 : q = (n*q) >> 32
MLA r, q, m, r ; 29 : r = n-q*d
; q now accurate enough for a remainder r, 0<=r<4*d
CMN m, r, LSR#1 ; 30 : if (r/2 >= d)
ADDCS r, r, m, LSL#1 ; 31 : { r=r-2*d;
ADDCS q, q, #2 ; 32 : q=q+2; }
CMN m, r ; 33 : if (r >= d)
ADDCS r, r, m ; 34 : { r=r-d;
ADDCS q, q, #1 ; 35 : q=q+1; }
BX lr ; 36 : return {q, r}

udiv_by_0_or_1
; carry set if d=1, carry clear if d=0
MOVCS q, r ; 37 : if (d==1) { q=n;
MOVCS r, #0 ; 38 : r=0; }
MOVCC q, #-1 ; 39 : if (d==0) { q=-1;
MOVCC r, #-1 ; 40 : r=-1; }
BX lr ; 41 : return {q,r}

; table for 32 by 32 bit Newton Raphson divisions

7.3 Division 227

; table[0] = 255
; table[i] = (1 << 14)/(64+i) for i=1,2,3,...,63

t32 DCB 0xff, 0xfc, 0xf8, 0xf4, 0xf0, 0xed, 0xea, 0xe6
DCB 0xe3, 0xe0, 0xdd, 0xda, 0xd7, 0xd4, 0xd2, 0xcf
DCB 0xcc, 0xca, 0xc7, 0xc5, 0xc3, 0xc0, 0xbe, 0xbc
DCB 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac
DCB 0xaa, 0xa8, 0xa7, 0xa5, 0xa3, 0xa2, 0xa0, 0x9f
DCB 0x9d, 0x9c, 0x9a, 0x99, 0x97, 0x96, 0x94, 0x93
DCB 0x92, 0x90, 0x8f, 0x8e, 0x8d, 0x8c, 0x8a, 0x89
DCB 0x88, 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81

Proof

7.2
The proof that the code works is rather involved. To make the proof and explanation
simpler, we comment each line with a line number for the instruction. Note that some
of the instructions are conditional, and the comments only apply when the instruction is
executed.

Execution follows several different paths through the code depending on the size of the
denominator d. We treat these cases separately. We’ll use Ik as shorthand notation for the
instruction numbered k in the preceding code.

Case 1 d = 0: 27 cycles on ARM9E, including return

We check for this case explicitly. We avoid the table lookup at I04 by making the load
conditional on q �= 0. This ensures we don’t read off the start of the table. Since I01 sets
s = 32, there is no branch at I09. I06 sets m = 0, and so I11 sets the Z flag and clears the
carry flag. We branch at I15 to special case code.

Case 2 d = 1: 27 cycles on ARM9E, including return

This case is similar to the d = 0 case. The table lookup at I05 does occur, but we ignore the
result. I06 sets m = −1, and so I11 sets the Z and carry flags. The special code at I37 returns
the trivial result of q = n, r = 0.

Case 3 2 ≤ d < 225: 36 cycles on ARM9E, including return

This is the hardest case. First we use a table lookup on the leading bits of d to generate an
estimate for 232/d . I01 finds a shift s such that 231 ≤ d2s < 232. I02 sets a = d2s . I03 and
I04 perform a table lookup on the top seven bits of a, which we will call i0. i0 is an index
between 64 and 127. Truncating d to seven bits introduces an error f0:

i0 = 2s−25d − f0, where 0 ≤ f0 < 1 (7.5)

We set a to the lookup value a0 = table[i0 − 64] = 214i−1
0 − g0, where 0 ≤ g0 ≤ 1 is

the table truncation error. Then,

a0 = 214

i0
− g0 = 214

i0

(
1 − g0i0

214

)
= 214

i0 + f0

(
1 + f0

i0
− g0

i0 + f0
214

)
(7.6)

228 Chapter 7 Optimized Primitives

Noting that i0 + f0 = 2s−25d from Equation 7.5 and collecting the error terms into e0:

a0 = 239−s

d
(1 − e0) , where e0 = g0

i0 + f0
214

− f0
i0

(7.7)

Since 64 ≤ i0 ≤ i0 + f0 < 128 by the choice of s it follows that −f02−6 ≤ e0 ≤ g02−7.
As d < 225, we know s ≥ 7. I05 and I07 calculate the following value in register q:

q0 = 2s−7a0 = 232

d
(1 − e0) (7.8)

This is a good initial approximation for 232d−1, and we now iterate Newton-Raphson
twice to increase the accuracy of the approximation. I08 and I10 update the values of
registers a and q to a1 and q1 according to Equation (7.9). I08 calculates a1 using m = −d .
Since d ≥ 2, it follows that q0 < 231 for when d = 2, then f0 = 0, i0 = 64, g0 = 1,
e0 = 2−8. Therefore we can use the signed multiply accumulate instruction SMLAWT at I10
to calculate q1.

a1 = 232 − dq0 = 232e0 and q1 = q0 + (((a1 � 16)q0) � 16) (7.9)

The right shifts introduce truncation errors 0 ≤ f1 < 1 and 0 ≤ g1 < 1, respectively:

q1 = q0 + (a12−16 − f1)q02−16 − g1 = 232

d
(1 − e2

0 − f1(1 − e0)2−16) − g1 (7.10)

q1 = 232

d
(1 − e1), where e1 = e2

0 + f1(1 − e0)2−16 + g1d2−32 (7.11)

The new estimate q1 is more accurate with error e1 ≈ e2
0 . I12, I13, and I14 implement

the second Newton-Raphson iteration, updating registers a and q to the values a2 and q2:

a2 = 232 − dq1 = 232e1 and q2 = q1 + ((a2q1) � 32) (7.12)

Again the shift introduces a truncation error 0 ≤ g2 < 1:

q2 = q1 + a2q12−32 − g2 = 232

d
(1 − e2), where

e2 = e2
1 + g2d2−32 < e2

1 + d2−32 (7.13)

Our estimate of 232d−1 is now sufficiently accurate. I16 estimates n/d by setting q to the
value q3 in Equation (7.14). The shift introduces a rounding error 0 ≤ g3 < 1.

q3 = (nq2) � 32 = nq22−32 − g3 = n

d
− e3, where

e3 = n

d
e2 + g3 <

n

d
e2

1 + 2 (7.14)

7.3 Division 229

The error e3 is certainly positive and small, but how small? We will show that 0 ≤ e3 < 3,
by showing that e2

1 < d2−32. We split into subcases:

Case 3.1 2 ≤ d ≤ 16

Then f0 = f1 = g1 = 0 as the respective truncations do not drop any bits. So e1 = e2
0 and

e0 = i0g02−14. We calculate i0 and g0 explicitly in Table 7.2.

Case 3.2 16 < d ≤ 256

Then f0 ≤ 0. 5 implies |e0| ≤ 2−7. As f1 = g1 = 0, it follows that e2
1 ≤ 2−28 < d2−32.

Case 3.3 256 < d < 512

Then f0 ≤ 1 implies |e0| ≤ 2−6. As f1 = g1 = 0, it follows that e2
1 ≤ 2−24 < d2−32.

Case 3.4 512 ≤ d < 225

Then f0 ≤ 1 implies |e0| ≤ 2−6. Therefore, e1 < 2−12 + 2−15 + d2−32. Let D = √
d2−32.

Then 2−11.5 ≤ D < 2−3.5. So, e1 < D(2−0.5 + 2−3.5 + 2−3.5) < D, the required result.
Now we know that e3 < 3, I16 to I23 calculate which of the three possible results

q3, q3 + 1, q3 + 2, is the correct value for n/d . The instructions calculate the remainder
r = n − dq3, and subtract d from the remainder, incrementing q, until 0 ≤ r < d .

Case 4 225 ≤ d: 32 cycles on ARM9E including return

This case starts in the same way as Case 3. We have the same equation for i0 and a0.
However, then we branch to I25, where we subtract four from a0 and apply a right shift of
7 − s. This gives the estimate q0 in Equation (7.15). The subtraction of four forces q0 to be
an underestimate of 232d−1. For some truncation error 0 ≤ g0 < 1:

q0 =
(

214

i0
− 4

)
� (7 − s) = 2s+7

i0
− 2s−5 − g0 (7.15)

Table 7.2 Error values for small d.

d i0 g0 e0 232e2
1

2, 4, 8, 16 64 1 2−8 1
3, 6, 12 96 2//3 2−8 1
5, 10 80 4//5 2−8 1
7, 14 112 2//7 2−9 <1
9 72 5//9 5 * 2−11 <1
11 88 2//11 2−10 <1
13 104 7//13 7 * 2−11 <1
15 120 8//15 2−8 <1

230 Chapter 7 Optimized Primitives

q0 = 232

d
− e0, where e0 = 2s−5 + g0 − 232

d

f0
i0

(7.16)

Since (232d−1)(f0i−1
0) ≤ 2s+12−6 = 2s−5, it follows that 0 ≤ e0 < 3. I28 sets q to the

approximated quotient g1. For some truncation error 0 ≤ g1 < 1:

q1 = (nq0) � 32 = nq0

232
− g1 = n

d
− n

232
e0 − g1 (7.17)

Therefore q1 is an underestimate to n/d with error less than four. The final steps I28 to
I35 use a two-step binary search to fix the exact answer. We have finished! ■

7.3.3 Unsigned Fractional Newton-Raphson Division

This section looks at Newton-Raphson techniques you can use to divide fractional
values. Fractional values are represented using fixed-point arithmetic and are useful for
DSP applications.

For a fractional division, we first scale the denominator to the range 0. 5 ≤ d < 1. 0. Then
we use a table lookup to provide an estimate x0 to d−1. Finally we perform Newton-Raphson
iterations with N = 0. From Section 7.3.2, the iteration is

xi+1 = 2xi − dx2
i (7.18)

As i increases, xi becomes more accurate. For fastest implementation, we use low-precision
multiplications when i is small, increasing the precision with each iteration.

The result is a short and fast routine. Section 7.3.3.3 gives a routine for 15-bit fractional
division, and Section 7.3.3.4 a routine for 31-bit fractional division. Again, the hard part
is to prove that we get the correct result for all possible inputs. For a 31-bit division we
cannot test every combination of numerator and denominator. We must have a proof that
the code works. Sections 7.3.3.1 and 7.3.3.2 cover the mathematical theory we require for
the proofs in Sections 7.3.3.3 and 7.3.3.4. If you are not interested in this theory, then skip
to Section 7.3.3.3.

Throughout the analysis, we stick to the following notation:

■ d is a fractional value scaled so that 0. 5 ≤ d < 1.

■ i is the stage number of the iteration.

■ ki is the number of bits of precision used for xi . We ensure that ki+1 > ki ≥ 3.

■ xi is a ki-bit estimate to d−1 in the range 0 ≤ xi ≤ 2 − 22−ki .

■ xi is a multiple of 21−ki .

■ ei = 1

d
− xi is the error in the approximation xi . We ensure |ei | ≤ 0. 5.

With each iteration, we increase ki and reduce the error ei . First let’s see how to calculate
a good initial estimate x0.

7.3 Division 231

7.3.3.1 Theory: The Initial Estimate for Newton-Raphson Division

If you are not interested in Newton-Raphson theory, then skip the next two sections and
jump to Section 7.3.3.3.

We use a lookup table on the most significant bits of d to determine the initial estimate
x0 to d−1. For a good trade-off between table size and estimate accuracy, we index by the
leading eight fractional bits of d , returning a nine-bit estimate x0. Since the leading bits of
d and x0 are both one, we only need a lookup table consisting of 128 eight-bit entries.

Let a be the integer formed by the seven bits following the leading one of d. Then d is in
the range (128 + a)2−8 ≤ d < (129 + a)2−8. Choosing c = (128. 5 + a)2−8, the midpoint,
we define the lookup table by

table[a] = round(256.0/c) - 256;

This is a floating-point formula, where round rounds to the nearest integer. We can reduce
this to an integer formula that is easier to calculate if you don’t have floating-point support:

table[a] = (511*(128-a))/(257+2*a);

Clearly, all the table entries are in the range 0 to 255. To start the Newton-Raphson
iteration we set x0 = 1 + table[a]2−8 and k0 = 9. Now we cheat slightly by looking ahead
to Section 7.3.3.3. We will be interested in the value of the following error term:

E = d2e2
0 + d2−16 (7.19)

First let’s look at d|e0|. If e0 ≤ 0, then

d|e0| = x0d − 1 < x0(129 + a)2−8 − 1 (7.20)

d|e0| <
(
(256 + table[a])(129 + a) − 2−16) 2−16 (7.21)

If e0 ≥ 0, then

d|e0| = 1 − x0d ≤ 1 − x0(128 + a)2−8 (7.22)

d|e0| ≤ (
216 − (256 + table[a])(128 + a)

)
2−16 (7.23)

Running through the possible values of a, we find that d|e0| < 299 × 2−16. This is the best
possible bound. Take d = (133 − e)2−16, and the smaller e > 0, the closer to the bound
you will get! The same trick works for finding a sharp bound on E:

E232 <
(
(256 + table[a])(129 + a) − 216)2 + (129 + a)28 if e0 ≤ 0 (7.24)

E232 <
(
216 − (256 + table[a])(128 + a)

)2 + (129 + a)28 if e0 ≥ 0 (7.25)

Running over the possible values of a gives us the sharp bound E < 2−15. Finally we need
to check that x0 ≤ 2 − 2−7. This follows as the largest table entry is 254.

232 Chapter 7 Optimized Primitives

7.3.3.2 Theory: Accuracy of the Newton-Raphson Fraction Iteration

This section analyzes the error introduced by each fractional Newton-Raphson iteration:

xi+1 = 2xi − dx2
i (7.26)

It is often slow to calculate this iteration exactly. As xi is only accurate to at most ki of
precision, there is not much point in performing the calculation to more than 2ki bits
of precision. The following steps give a practical method of calculating the iteration. The
iterations preserve the limits for xi and ei that we defined in Section 7.3.3.

1. Calculate x2
i exactly:

x2
i =

(
1

d
− ei

)2

and lies in the range 0 ≤ x2
i ≤ 4 − 24−ki + 24−2ki (7.27)

2. Calculate an underestimate di to d, usually d to around 2ki bits. We only actually
require that

0. 5 ≤ di = d − fi and 0 ≤ fi ≤ 2−4 (7.28)

3. Calculate, yi , a ki+1 + 1 bit estimate to dix2
i in the range 0 ≤ yi < 4. Make yi as accurate

as possible. However, we only require that the error gi satisfy

yi = dix
2
i − gi and − 2−2 ≤ gi ≤ 23−2ki − 22−ki+1 (7.29)

4. Calculate the new estimate xi+1 = 2xi − yi using an exact subtraction. We will prove
that 0 ≤ xi+1 < 2 and so the result fits in ki+1 bits.

We must show that the new ki+1–bit estimate xi+1 satisfies the properties mentioned
prior to Section 7.3.3.1 and calculate a formula for the new error ei+1. First, we check the
range of xi+1:

xi+1 = 2xi − dix
2
i + gi ≤ 2xi − 0. 5x2

i + gi (7.30)

The latter polynomial in xi has positive gradient for xi ≤ 2 and so reaches its maximum
value when xi is maximum. Therefore, using our bound on gi ,

xi+1 ≤ 2
(

2 − 22−ki

)
− 0. 5

(
4 − 24−ki + 24−2ki

)
+ gi ≤ 2 − 22−ki+1 (7.31)

On the other hand, since |ei | ≤ 0. 5 and gi ≥ −0. 25, it follows that

xi+1 ≥ 2xi − 1. 5xi + gi ≥ 0 (7.32)

Finally, we calculate the new error:

ei+1 = 1

d
− xi+1 = 1

d
− 2xi + (d − fi)x2

i − gi = de2
i − fix

2
i − gi (7.33)

It is easy to check that |ei+1| ≤ 0. 5.

7.3 Division 233

7.3.3.3 Q15 Fixed-Point Division by Newton-Raphson

We calculate a Q15 representation of the ratio nd−1, where n and d are 16-bit positive
integers in the range 0 ≤ n < d < 215. In other words, we calculate

q = (n << 15)/d;

You can use the routine udiv_32by16_arm7m in Section 7.3.1.2 to do this by trial
subtraction. However, the following routine calculates exactly the same result but uses
fewer cycles on an ARMv5E core. If you only need an estimate of the result, then you can
remove instructions I15 to I18, which correct the error of the initial estimate.

The routine veers perilously close to being inaccurate in many places, so it is followed by
a proof that it is correct. The proof uses the theory of Section 7.3.3.2. The proof is a useful
reference if the code requires adaptation or optimizing for another ARM core. The routine
takes 24 cycles on an ARM9E including the return instruction. If d ≤ n < 215, then we
return the saturated value 0x7fff.

q RN 0 ; input denominator d, quotient estimate q
r RN 1 ; input numerator n, remainder r
s RN 2 ; normalisation shift, scratch
d RN 3 ; Q15 normalised denominator 2∧14<=d<2∧15

; unsigned udiv_q15_arm9e(unsigned d, unsigned q)
udiv_q15_arm9e ; instruction number : comment

CLZ s, q ; 01 : choose a shift s to
SUB s, s, #17 ; 02 : normalize d to the
MOVS d, q, LSL s ; 03 : range 0.5<=d<1 at Q15
ADD q, pc, d, LSR#7 ; 04 : look up q, a Q8
LDRNEB q, [q, #t15-b15-128] ; 05 : approximation to 1//d

b15 MOV r, r, LSL s ; 06 : normalize numerator
ADD q, q, #256 ; 07 : part of table lookup
; q is now a Q8, 9-bit estimate to 1//d
SMULBB s, q, q ; 08 : s = q*q at Q16
CMP r, d ; 09 : check for overflow
MUL s, d, s ; 10 : s = q*q*d at Q31
MOV q, q, LSL#9 ; 11 : change q to Q17
SBC q, q, s, LSR#15 ; 12 : q = 2*q-q*q*d at Q16
; q is now a Q16, 17-bit estimate to 1//d
SMULWB q, q, r ; 13 : q approx n//d at Q15
BCS overflow_15 ; 14 : trap overflow case
SMULBB s, q, d ; 15 : s = q*d at Q30
RSB r, d, r, LSL#15 ; 16 : r = n-d at Q30
CMP r, s ; 17 : if (r>=s)

234 Chapter 7 Optimized Primitives

ADDPL q, q, #1 ; 18 : q++
BX lr ; 19 : return q

overflow_15
LDR q, =0x7FFF ; 20 : q = 0x7FFF
BX lr ; 21 : return q

; table for fractional Newton-Raphson division
; table[a] = (int)((511*(128-a))/(257+2*a)) 0<=a<128

t15 DCB 0xfe, 0xfa, 0xf6, 0xf2, 0xef, 0xeb, 0xe7, 0xe4
DCB 0xe0, 0xdd, 0xd9, 0xd6, 0xd2, 0xcf, 0xcc, 0xc9
DCB 0xc6, 0xc2, 0xbf, 0xbc, 0xb9, 0xb6, 0xb3, 0xb1
DCB 0xae, 0xab, 0xa8, 0xa5, 0xa3, 0xa0, 0x9d, 0x9b
DCB 0x98, 0x96, 0x93, 0x91, 0x8e, 0x8c, 0x8a, 0x87
DCB 0x85, 0x83, 0x80, 0x7e, 0x7c, 0x7a, 0x78, 0x75
DCB 0x73, 0x71, 0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65
DCB 0x63, 0x61, 0x5f, 0x5e, 0x5c, 0x5a, 0x58, 0x56
DCB 0x54, 0x53, 0x51, 0x4f, 0x4e, 0x4c, 0x4a, 0x49
DCB 0x47, 0x45, 0x44, 0x42, 0x40, 0x3f, 0x3d, 0x3c
DCB 0x3a, 0x39, 0x37, 0x36, 0x34, 0x33, 0x32, 0x30
DCB 0x2f, 0x2d, 0x2c, 0x2b, 0x29, 0x28, 0x27, 0x25
DCB 0x24, 0x23, 0x21, 0x20, 0x1f, 0x1e, 0x1c, 0x1b
DCB 0x1a, 0x19, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12
DCB 0x10, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09
DCB 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01

Proof

7.3
The routine starts by normalizing d and n so that 214 ≤ d < 215 in instructions I01, I02, I03,
I06. This doesn’t affect the result since we shift the numerator and denominator left by the
same number of places. Considering d as a Q15 format fixed-point fraction, 0. 5 ≤ d < 1.
I09 and I14 are overflow traps that catch the case that n ≥ d . This includes the case d = 0.
Assuming from now on that there is no overflow, I04, I05, I07 set q to the 9-bit Q8 initial
estimate x0 to d−1 as described in Section 7.3.1.1. Since d is in the range 0. 5 ≤ d < 1, we
subtract 128 on the table lookup so that 0.5 corresponds to the first entry of the table.

Next we perform one Newton-Raphson iteration. I08 sets a to the exact Q16 square of
x0, and I10 sets a to the exact Q31 value of dx2

0 . There is a subtlety here. We need to check
that this value will not overflow an unsigned Q31 representation. In fact:

dx2
0 = x2

0

x0 + e0
=

(
1 + x0 − e0

x0 + e0

)
(7.34)

This term reaches its maximum value when x0 is as large as possible and e0 as negative
as possible, which occurs when d = 0. 5 + 2−8 − 2−15, where x0 = 2 − 2−7 and dx2

0 <
2 − 2−13 < 2.

7.3 Division 235

Finally I11 and I12 set q to a new Q16 estimate x1. Since the carry flag is clear from I09,
the SBC underestimates the reciprocal.

x1 = 2x0 − dx2
0 + g0 for some − 2−16 ≤ g0 < 0 (7.35)

Using Equation (7.33) for the new error:

0 ≤ e1 = de2
0 − g0 ≤ de2

0 + 2−16 (7.36)

I13 calculates a Q15 estimate q1 to the quotient nd−1:

q1 = nx1 − h1 = n

d
− e2 (7.37)

where 0 ≤ h1 < 2−15 is the truncation error and

e2 = ne1 + h1 < de1 + h1 < E + h1 < 2−14 (7.38)

The bound on E is from Section 7.3.3.1. So, q1 is an underestimate to nd−1 of error less
than 2−14. Finally I15, I16, I17, and I18 calculate the remainder n − qd and correct the
estimate to Q15 precision. ■

7.3.3.4 Q31 Fixed-Point Division by Newton-Raphson

We calculate a Q31 representation of the ratio nd−1, where n and d are 32-bit positive
integers in the range 0 ≤ n < d < 231. In other words we calculate

q = (unsigned int)(((unsigned long long)n << 31)/d);

You can use the routine udiv_64by32_arm7m in Section 7.3.1.3 to do this by trial
subtraction. However, the following routine calculates exactly the same result but uses
fewer cycles on an ARM9E. If you only need an estimate of the result, then you can remove
the nine instructions I21 to I29, which correct the error of the initial estimate.

As with the previous section, we show the assembly code followed by a proof of accuracy.
The routine uses 46 cycles, including return, on an ARM9E. The routine uses the same
lookup table as for the Q15 routine in Section 7.3.3.3.

q RN 0 ; input denominator d, quotient estimate q
r RN 1 ; input numerator n, remainder high r
s RN 2 ; normalization shift, scratch register
d RN 3 ; Q31 normalized denominator 2∧30<=d<2∧31
a RN 12 ; scratch

; unsigned udiv_q31_arm9e(unsigned d, unsigned q)
udiv_q31_arm9e ; instruction number : comment

236 Chapter 7 Optimized Primitives

CLZ s, q ; 01 : choose a shift s to
CMP r, q ; 02 : normalize d to the
MOVCC d, q, LSL s ; 03 : range 0.5<=d<1 at Q32
ADDCC q, pc, d, LSR#24 ; 04 : look up q, a Q8
LDRCCB q, [q, #t15-b31-128] ; 05 : approximation to 1//d

b31 MOVCC r, r, LSL s ; 06 : normalize numerator
ADDCC q, q, #256 ; 07 : part of table lookup
; q is now a Q8, 9-bit estimate to 1//d
SMULBBCC a, q, q ; 08 : a = q*q at Q16
MOVCS q, #0x7FFFFFFF ; 09 : overflow case
UMULLCC s, a, d, a ; 10 : a = q*q*d at Q16
BXCS lr ; 11 : exit on overflow
RSB q, a, q, LSL#9 ; 12 : q = 2*q-q*q*d at Q16
; q is now a Q16, 17-bit estimate to 1//d
UMULL a, s, q, q ; 13 : [s,a] = q*q at Q32
MOVS a, a, LSR#1 ; 14 : now halve [s,a] and
ADC a, a, s, LSL#31 ; 15 : round so [N,a]=q*q at
MOVS s, s, LSL#30 ; 16 : Q31, C=0
UMULL s, a, d, a ; 17 : a = a*d at Q31
ADDMI a, a, d ; 18 : if (N) a+=2*d at Q31
RSC q, a, q, LSL#16 ; 19 : q = 2*q-q*q*d at Q31
; q is now a Q31 estimate to 1/d
UMULL s, q, r, q ; 20 : q approx n//d at Q31
; q is now a Q31 estimate to num/den, remainder<3*d
UMULL s, a, d, q ; 21 : [a,s] = d*q at Q62
RSBS s, s, #0 ; 22 : [r,s] = n-d*q
RSC r, a, r, LSR#1 ; 23 : at Q62
; [r,s]=(r << 32)+s is now the positive remainder<3*d
SUBS s, s, d ; 24 : [r,s] = n-(d+1)*q
SBCS r, r, #0 ; 25 : at Q62
ADDPL q, q, #1 ; 26 : if ([r,s]>=0) q++
SUBS s, s, d ; 27 : [r,s] = [r,s]-d
SBCS r, r, #0 ; 28 : at Q62
ADDPL q, q, #1 ; 29 : if ([r,s]>=0) q++
BX lr ; 30 : return q

Proof

7.4
We first check that n < d . If not, then a sequence of conditional instructions occur that
return the saturated value 0x7fffffff at I11. Otherwise d and n are normalized to Q31
representations, 230 ≤ d < 231. I07 sets q to a Q8 representation of x0, the initial
approximation, as in Section 7.3.3.3.

I08, I10, and I12 implement the first Newton-Raphson iteration. I08 sets a to the Q16
representation of x2

0 . I10 sets a to the Q16 representation of dx2
0 − g0, where the rounding

7.3 Division 237

error satisfies 0 ≤ g0 < 2−16. I12 sets x to the Q16 representation of x1, the new estimate
to d−1. Equation (7.33) tells us that the error in this estimate is e1 = de2

0 − g0.
I13 to I19 implement the second Newton-Raphson iteration. I13 to I15 set a to the Q31

representation of a1 = x2
1 + b1 for some error b1. As we use the ADC instruction at I15, the

calculation rounds up and so 0 ≤ b1 ≤ 2−32. The ADC instruction cannot overflow since
233 − 1 and 234 − 1 are not squares. However, a1 can overflow a Q31 representation. I16
clears the carry flag and records in the N flag if the overflow takes place so that a1 ≥ 2. I17
and I18 set a to the Q31 representation of y1 = da1 − c1 for a rounding error 0 ≤ c1 < 2−31.
As the carry flag is clear, I19 sets q to a Q31 representation of the new underestimate:

x2 = 2x1 − d(x2
1 + b1) + c1 − 2−31 = 1

d
− e2, where (7.39)

e2 = de2
1 − c1 + 2−31 + db1 < de2

1 + d2−32 + 2−31 (7.40)

I20 sets q to a Q31 representation of the quotient q2 = nx2 − b2 for some rounding
error 0 ≤ b2 < 2−31. So:

q2 = n

d
− e3, where e3 = ne2 + b2 < d2e2

1 + d22−32 + d2−31 + 2−31 (7.41)

If e1 ≥ 0, then d2e2
1 ≤ d4e2

0 < (2−15 − d2−16)2, using the bound on E of Section 7.3.3.1.

e3 < 2−30 − d2−31 + d22−32 + 2−31 < 3 × 2−31 (7.42)

If e1 < 0, then d2e2
1 ≤ d2g 2

0 < 2−32. Again, e3 < 3 × 2−31. In either case, q is an
underestimate to the quotient of error less than 3×2−31. I21 to I23 calculate the remainder,
and I24 to I29 perform two conditional subtracts to correct the Q31 result q. ■

7.3.4 Signed Division

So far we have only looked at unsigned division implementations. If you need to divide
signed values, then reduce them to unsigned divides and add the sign back into the result.
The quotient is negative if and only if the numerator and denominator have opposite sign.
The sign of the remainder is the sign of the numerator. The following example shows how
to reduce a signed integer division to an unsigned division and how to calculate the sign of
the quotient and remainder.

d RN 0 ; input denominator, output quotient
r RN 1 ; input numerator , output remainder
sign RN 12

; __value_in_regs struct { signed q, r; }
; udiv_32by32_arm7m(signed d, signed n)

sdiv_32by32_arm7m

238 Chapter 7 Optimized Primitives

STMFD sp!, {lr}
ANDS sign, d, #1 << 31 ; sign=(d<0 ? 1 << 31 : 0);
RSBMI d, d, #0 ; if (d<0) d=-d;
EORS sign, sign, r, ASR#32 ; if (r<0) sign=∼sign;
RSBCS r, r, #0 ; if (r<0) r=-r;
BL udiv_32by32_arm7m ; (d,r)=(r/d,r%d)
MOVS sign, sign, LSL#1 ; C=sign[31], N=sign[30]
RSBCS d, d, #0 ; if (sign[31]) d=-d;
RSBMI r, r, #0 ; if (sign[30]) r=-r;
LDMFD sp!, {pc}

We use r12 to hold the signs of the quotient and remainder as udiv_32by32_arm7m
preserves r12 (see Section 7.3.1.1).

7.4 Square Roots

Square roots can be handled by the same techniques we used for division. You have a choice
between trial subtraction and Newton-Raphson iteration based implementations. Use trial
subtraction for a low-precision result less than 16 bits, but switch to Newton-Raphson
for higher-precision results. Sections 7.4.1 and 7.4.2 cover trial subtraction and Newton-
Raphson, respectively.

7.4.1 Square Root by Trial Subtraction

We calculate the square root of a 32-bit unsigned integer d. The answer is a 16-bit unsigned
integer q and a 17-bit unsigned remainder r such that

d = q2 + r and 0 ≤ r ≤ 2q. (7.43)

We start by setting q = 0 and r = d . Next we try and set each bit of q in turn, counting
down from the highest possible bit, bit 15. We can set the bit if the new remainder is
positive. Specifically if we set bit n by adding 2n to q, then the new remainder is

rnew = d − (q + 2n)2 = (d − q2) − 2n+1q − 22n = rold − 2n(2q + 2n) (7.44)

So, to calculate the new remainder we try to subtract the value 2n(2q + 2n). If the
subtraction succeeds with a nonnegative result, then we set bit n of q. The follow-
ing C code illustrates the algorithm, calculating the N-bit square root q of a 2N -bit
input d:

unsigned usqr_simple(unsigned d, unsigned N)
{

7.4 Square Roots 239

unsigned t, q=0, r=d;

do
{ /* calculate next quotient bit */

N--; /* move down to next bit */
t = 2*q+(1 << N); /* new r = old r - (t << N) */
if ((r >> N) >= t) /* if (r >= (t << N)) */
{

r -= (t << N); /* update remainder */
q += (1 << N); /* update root */

}
} while (N);

return q;
}

Use the following optimized assembly to implement the preceding algorithm in
only 50 cycles including the return. The trick is that register q holds the value
(1 << 30)|(q >> (N + 1)) before calculating bit N of the answer. If we rotate this value
left by 2N + 2 places, or equivalently right by 30 − 2N places, then we have the value
t � N , used earlier for the trial subtraction.

q RN 0 ; input value, current square root estimate
r RN 1 ; the current remainder
c RN 2 ; scratch register

usqr_32 ; unsigned usqr_32(unsigned q)
SUBS r, q, #1 << 30 ; is q>=(1 << 15)∧2?
ADDCC r, r, #1 << 30 ; if not restore
MOV c, #3 << 30 ; c is a constant
ADC q, c, #1 << 31 ; set bit 15 of answer
; calculate bits 14..0 of the answer
GBLA N

N SETA 14
WHILE N< >-1

CMP r, q, ROR #(30-2*N) ; is r >= t << N ?
SUBCS r, r, q, ROR #(30-2*N) ; if yes then r -= t << N;
ADC q, c, q, LSL#1 ; insert next bit of answer

N SETA (N-1)
WEND
BIC q, q, #3 << 30 ; extract answer
MOV pc, lr

240 Chapter 7 Optimized Primitives

7.4.2 Square Root by Newton-Raphson Iteration

The Newton-Raphson iteration for a square root actually calculates the value of d−0.5. You
may find this is a more useful result than the square root itself. For example, to normalize
a vector (x, y) you will multiply by

1√
x2 + y2

(7.45)

If you do require
√

d , then simply multiply d−0.5 by d. The equation f (x) = d−x−2 = 0
has positive solution x = d−0.5. The Newton-Raphson iteration to solve this equation is
(see Section 7.3.2)

xn+1 = 0. 5xn(3 − dx2
n) (7.46)

To implement this you can use the same methods we looked at in Section 7.3.2. First
normalize d to the range 0. 25 ≤ d < 1. Then generate an initial estimate x0 using a table
lookup on the leading digits of d. Iterate the above formula until you’ve achieved the
precision required for your application. Each iteration will roughly double the number of
significant answer bits.

The following code calculates a Q31 representation of the value d−0.5 for an input
integer d. It uses a table lookup followed by two Newton-Raphson iterations and is accurate
to a maximum error of 2−29. On an ARM9E the code takes 34 cycles including the return.

q RN 0 ; input value, estimated reciprocal root
b RN 1 ; scratch register
s RN 2 ; normalization shift
d RN 3 ; normalized input value
a RN 12 ; scratch register/accumulator

rsqr_32 ; unsigned rsqr_32(unsigned q)
CLZ s, q ; choose shift s which is
BIC s, s, #1 ; even such that d=(q << s)
MOVS d, q, LSL s ; is 0.25<=d<1 at Q32
ADDNE q, pc, d, LSR#25 ; table lookup on top 7 bits
LDRNEB q, [q, #tab-base-32] ; of d in range 32 to 127

base BEQ div_by_zero ; divide by zero trap
ADD q, q, #0x100 ; table stores only bottom 8 bits
; q is now a Q8, 9-bit estimate to 1/sqrt(d)
SMULBB a, q, q ; a = q*q at Q16
MOV b, d, LSR #17 ; b = d at Q15
SMULWB a, a, b ; a = d*q*q at Q15
MOV b, q, LSL #7 ; b = q at Q15
RSB a, a, #3 << 15 ; a = (3-d*q*q) at Q15

7.5 Transcendental Functions: log, exp, sin, cos 241

MUL q, a, b ; q = q*(3-d*q*q)/2 at Q31
; q is now a Q31 estimate to 1/sqrt(d)
UMULL b, a, d, q ; a = d*q at Q31
MOV s, s, LSR #1 ; square root halves the shift
UMULL b, a, q, a ; a = d*q*q at Q30
RSB s, s, #15 ; reciprocal inverts the shift
RSB a, a, #3 << 30 ; a = (3-d*q*q) at Q30
UMULL b, q, a, q ; q = q*(3-d*q*q)/2 at Q31
; q is now a good Q31 estimate to 1/sqrt(d)
MOV q, q, LSR s ; undo the normalization shift
BX lr ; return q

div_by_zero
MOV q, #0x7FFFFFFF ; maximum positive answer
BX lr ; return q

tab ; tab[k] = round(256.0/sqrt((k+32.3)/128.0)) - 256
DCB 0xfe, 0xf6, 0xef, 0xe7, 0xe1, 0xda, 0xd4, 0xce
DCB 0xc8, 0xc3, 0xbd, 0xb8, 0xb3, 0xae, 0xaa, 0xa5
DCB 0xa1, 0x9c, 0x98, 0x94, 0x90, 0x8d, 0x89, 0x85
DCB 0x82, 0x7f, 0x7b, 0x78, 0x75, 0x72, 0x6f, 0x6c
DCB 0x69, 0x66, 0x64, 0x61, 0x5e, 0x5c, 0x59, 0x57
DCB 0x55, 0x52, 0x50, 0x4e, 0x4c, 0x49, 0x47, 0x45
DCB 0x43, 0x41, 0x3f, 0x3d, 0x3b, 0x3a, 0x38, 0x36
DCB 0x34, 0x32, 0x31, 0x2f, 0x2d, 0x2c, 0x2a, 0x29
DCB 0x27, 0x26, 0x24, 0x23, 0x21, 0x20, 0x1e, 0x1d
DCB 0x1c, 0x1a, 0x19, 0x18, 0x16, 0x15, 0x14, 0x13
DCB 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a, 0x09
DCB 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01

Similarly, to calculate d
−1
k you can use the Newton-Raphson iteration for the equation

f (x) = d − x−k = 0.

7.5 Transcendental Functions:
log, exp, sin, cos

You can implement transcendental functions by using a combination of table lookup and
series expansion. We examine how this works for the most common four transcendental
operations: log, exp, sin, and cos. DSP applications use logarithm and exponentiation
functions to convert between linear and logarithmic formats. The trigonometric functions
sine and cosine are useful in 2D and 3D graphics and mapping calculations.

242 Chapter 7 Optimized Primitives

All the example routines of this section produce an answer accurate to 32 bits, which
is excessive for many applications. You can accelerate performance by curtailing the series
expansions with some loss in accuracy.

7.5.1 The Base-Two Logarithm

Suppose we have a 32-bit integer n, and we want to find the base-two logarithm s = log2(n)
such that n = 2s . Since s is in the range 0 ≤ s < 32, we will actually find a Q26 representation
q of the logarithm so that q = s226. We can easily calculate the integer part of s using CLZ
or the alternatives of Section 7.2. This reduces us to a number in the range 1 ≤ n < 2. First
we perform a table lookup on an approximation a to n to find log2(a) and a−1. Since

log2(n) = log2(a) + log2

(n

a

)
(7.47)

we’ve reduced the problem to finding log2(na−1). As na−1 is close to one, we can use the
series expansion of log2(1 + x) to improve the result accuracy:

log2(1 + x) = ln(1 + x)

ln(2)
= 1

ln(2)

(
x − x2

2
+ x3

3
− · · ·

)
(7.48)

where ln is the natural logarithm to base e. To summarize, we calculate the logarithm in
three stages as illustrated in Figure 7.4:

■ We use CLZ to find bits [31:26] of the result.

■ We use a table lookup of the first five fractional bits to find an estimate.

■ We use series expansion to calculate the estimate error more accurately.

You can use the following code to implement this on an ARM9E processor using 31 cycles
excluding the return. The answer is accurate to an error of 2−25.

n RN 0 ; Q0 input, Q26 log2 estimate
d RN 1 ; normalize input Q32
r RN 2

CLZresult =

31 26

Lookup

25

Series

0

Figure 7.4 The three stages of the logarithm calculation.

7.5 Transcendental Functions: log, exp, sin, cos 243

q RN 3
t RN 12

; int ulog2_32(unsigned n)
ulog2_32

CLZ r, n
MOV d, n, LSL#1
MOV d, d, LSL r ; 1<=d<2 at Q32
RSB n, r, #31 ; integer part of the log
MOV r, d, LSR#27 ; estimate e=1+(r/32)+(1/64)
ADR t, ulog2_table
LDR r, [t, r, LSL#3]! ; r=log2(e) at Q26
LDR q, [t, #4] ; q=1/e at Q32
MOV t, #0
UMLAL t, r, d, r ; r=(d/e)-1 at Q32
LDR t, =0x55555555 ; round(2∧32/3)
ADD n, q, n, LSL#26 ; n+log2(e) at Q26
SMULL t, q, r, t ; q = r/3 at Q32
LDR d, =0x05c551d9 ; round(2∧26/ln(2))
SMULL t, q, r, q ; q = r∧2/3 at Q32
MOV t, #0
SUB q, q, r, ASR#1 ; q = -r/2+r∧2/3 at Q32
SMLAL t, r, q, r ; r - r∧2/2 + r∧3/3 at Q32
MOV t, #0
SMLAL t, n, d, r ; n += r/log(2) at Q26
MOV pc, lr

ulog2_table
; table[2*i] =round(2∧32/a) where a=1+(i+0.5)/32
; table[2*i+1]=round(2∧26*log2(a)) and 0<=i<32
DCD 0xfc0fc0fc, 0x0016e797, 0xf4898d60, 0x0043ace2
DCD 0xed7303b6, 0x006f2109, 0xe6c2b448, 0x0099574f
DCD 0xe070381c, 0x00c2615f, 0xda740da7, 0x00ea4f72
DCD 0xd4c77b03, 0x0111307e, 0xcf6474a9, 0x0137124d
DCD 0xca4587e7, 0x015c01a4, 0xc565c87b, 0x01800a56
DCD 0xc0c0c0c1, 0x01a33761, 0xbc52640c, 0x01c592fb
DCD 0xb81702e0, 0x01e726aa, 0xb40b40b4, 0x0207fb51
DCD 0xb02c0b03, 0x0228193f, 0xac769184, 0x0247883b
DCD 0xa8e83f57, 0x02664f8d, 0xa57eb503, 0x02847610
DCD 0xa237c32b, 0x02a20231, 0x9f1165e7, 0x02bef9ff
DCD 0x9c09c09c, 0x02db632d, 0x991f1a51, 0x02f7431f
DCD 0x964fda6c, 0x03129ee9, 0x939a85c4, 0x032d7b5a
DCD 0x90fdbc09, 0x0347dcfe, 0x8e78356d, 0x0361c825

244 Chapter 7 Optimized Primitives

DCD 0x8c08c08c, 0x037b40e4, 0x89ae408a, 0x03944b1c
DCD 0x8767ab5f, 0x03acea7c, 0x85340853, 0x03c52286
DCD 0x83126e98, 0x03dcf68e, 0x81020408, 0x03f469c2

7.5.2 Base-Two Exponentiation

This is the inverse of the operation of Section 7.5.1. Given a Q26 representation of
0 ≤ x < 32, we calculate the base-two exponent 2x . We start by splitting x into an
integer part, n, and fractional part, d. Then 2x = 2d × 2n . To calculate 2d , first find an
approximation a to d and look up 2a . Now,

2d = 2a × exp((d − a) ln 2) (7.49)

Calculate x = (d − a) ln 2 and use the series expansion for exp(x) to improve the estimate:

exp(x) = 1 + x + x2

2
+ x3

6
+ · · · (7.50)

You can use the following assembly code to implement the preceding algorithm. The
answer has a maximum error of 4 in the result. The routine takes 31 cycles on an ARM9E
excluding the return.

n RN 0 ; input, integer part
d RN 1 ; fractional part
r RN 2
q RN 3
t RN 12

; unsigned uexp2_32(int n)
uexp2_32

MOV d, n, LSL#6 ; d = fractional part at Q32
MOV q, d, LSR#27 ; estimate a=(q+0.5)/32
LDR r, =0xb17217f8 ; round(2∧32*log(2))
BIC d, d, q, LSL#27 ; d = d - (q/32) at Q32
UMULL t, d, r, d ; d = d*log(2) at Q32
LDR t, =0x55555555 ; round(2∧32/3)
SUB d, d, r, LSR#6 ; d = d - log(2)/64 at Q32
SMULL t, r, d, t ; r = d/3 at Q32
MOVS n, n, ASR#26 ; n = integer part of exponent
SMULL t, r, d, r ; r = d∧2/3 at Q32
BMI negative ; catch negative exponent
ADD r, r, d ; r = d+d∧2/3
SMULL t, r, d, r ; r = d∧2+d∧3/3
ADR t, uexp2_table

7.5 Transcendental Functions: log, exp, sin, cos 245

LDR q, [t, q, LSL#2] ; q = exp2(a) at Q31
ADDS r, d, r, ASR#1 ; r = d+d∧2/2+d∧3/6 at Q32
UMULL t, r, q, r ; r = exp2(a)*r at Q31 if r<0
RSB n, n, #31 ; 31-(integer part of exponent)
ADDPL r, r, q ; correct if r>0
MOV n, r, LSR n ; result at Q0
MOV pc, lr

negative
MOV r0, #0 ; 2∧(-ve)=0
MOV pc, lr

uexp2_table
; table[i]=round(2∧31*exp2(a)) where a=(i+0.5)/32
DCD 0x8164d1f4, 0x843a28c4, 0x871f6197, 0x8a14d575
DCD 0x8d1adf5b, 0x9031dc43, 0x935a2b2f, 0x96942d37
DCD 0x99e04593, 0x9d3ed9a7, 0xa0b05110, 0xa43515ae
DCD 0xa7cd93b5, 0xab7a39b6, 0xaf3b78ad, 0xb311c413
DCD 0xb6fd91e3, 0xbaff5ab2, 0xbf1799b6, 0xc346ccda
DCD 0xc78d74c9, 0xcbec14ff, 0xd06333db, 0xd4f35aac
DCD 0xd99d15c2, 0xde60f482, 0xe33f8973, 0xe8396a50
DCD 0xed4f301f, 0xf281773c, 0xf7d0df73, 0xfd3e0c0d

7.5.3 Trigonometric Operations

If you need low-precision trigonometric operations (typically the case when generating sine
waves and other audio signals, or for graphics processing), use a lookup table. For high-
precision graphics or global positioning, greater precision may be required. The routines
we look at here generate sine and cosine accurate to 32 bits.

The standard C library functions sin and cos specify the angle in radians. Radians are
an awkward choice of units when dealing with optimized fixed-point functions. First, on
any angle addition you need to perform arithmetic modulo 2π . Second, it requires range
checking involving π to find out which quadrant of the circle an angle lies in. Rather than
operate modulo 2π , we will operate modulo 232, a very easy operation on any processor.

Let’s define new base-two trigonometric functions s and c, where the angle is specified
on a scale such that 232 is one revolution (2π radians or 360 degrees). To add these angles
we use standard modular integer addition:

s(x) = sin(2πx2−32) = sin(πx2−31) and c(x) = cos(πx2−31) (7.51)

In this form, x is the Q32 representation of the proportion of a revolution represented
by the angle. The top two bits of x tell us which quadrant of the circle the angle lies in.
First we use the top three bits of x to reduce s(x) or c(x) to the sine or cosine of an angle
between zero and one eighth of a revolution. Then we choose an approximation a to x and

246 Chapter 7 Optimized Primitives

use a table to look up s(a) and c(a). The addition formula for sine and cosine reduces the
problem to finding the sine and cosine of a small angle:

s(x) = s(a) cos
(
π(x − a)2−31) + c(a) sin

(
π(x − a)2−31) (7.52)

c(x) = c(a) cos
(
π(x − a)2−31) − s(a) sin

(
π(x − a)2−31) (7.53)

Next, we calculate the small angle n = π(x − a)2−31 in radians and use the following
series expansions to improve accuracy further:

sin(x) = x − x3

6
+ · · · and cos(x) = 1 − x2

2
+ · · · (7.54)

You can use the following assembly to implement the preceding algorithm for sine and
cosine. The answer is returned at Q30 and has a maximum error of 4 × 2−30. The routine
takes 31 cycles on an ARM9E excluding the return.

n RN 0 ; the input angle in revolutions at Q32, result Q30
s RN 1 ; the output sign
r RN 2
q RN 3
t RN 12

cos_32 ; int cos_32(int n)
EOR s, n, n, LSL#1 ; cos is -ve in quadrants 1,2
MOVS n, n, LSL#1 ; angle in revolutions at Q33
RSBMI n, n, #0 ; in range 0-1/4 of a revolution
CMP n, #1 << 30 ; if angle < 1/8 of a revolution
BCC cos_core ; take cosine
SUBEQ n, n, #1 ; otherwise take sine of
RSBHI n, n, #1 << 31 ; (1/4 revolution)-(angle)

sin_core ; take sine of Q33 angle n
MOV q, n, LSR#25 ; approximation a=(q+0.5)/32
SUB n, n, q, LSL#25 ; n = n-(q/32) at Q33
SUB n, n, #1 << 24 ; n = n-(1/64) at Q33
LDR t, =0x6487ed51 ; round(2*PI*2∧28)
MOV r, n, LSL#3 ; r = n at Q36
SMULL t, n, r, t ; n = (x-a)*PI/2∧31 at Q32
ADR t, cossin_tab
LDR q, [t, q, LSL#3]! ; c(a) at Q30
LDR t, [t, #4] ; s(a) at Q30
EOR q, q, s, ASR#31 ; correct c(a) sign
EOR s, t, s, ASR#31 ; correct s(a) sign
SMULL t, r, n, n ; n∧2 at Q32
SMULL t, q, n, q ; n*c(a) at Q30

7.5 Transcendental Functions: log, exp, sin, cos 247

SMULL t, n, r, s ; n∧2*s(a) at Q30
LDR t, =0xd5555556 ; round(-2∧32/6)
SUB n, s, n, ASR#1 ; n = s(a)*(1-n∧2/2) at Q30
SMULL t, s, r, t ; s=-n∧2/6 at Q32
ADD n, n, q ; n += c(a)*n at Q30
MOV t, #0
SMLAL t, n, q, s ; n += -c(a)*n∧3/6 at Q30
MOV pc, lr ; return n

sin_32;int sin_32(int n)
AND s, n, #1 << 31 ; sin is -ve in quadrants 2,3
MOVS n, n, LSL#1 ; angle in revolutions at Q33
RSBMI n, n, #0 ; in range 0-1/4 of a revolution
CMP n, #1 << 30 ; if angle < 1/8 revolution
BCC sin_core ; take sine
SUBEQ n, n, #1 ; otherwise take cosine of
RSBHI n, n, #1 << 31 ; (1/4 revolution)-(angle)

cos_core ; take cosine of Q33 angle n
MOV q, n, LSR#25 ; approximation a=(q+0.5)/32
SUB n, n, q, LSL#25 ; n = n-(q/32) at Q33
SUB n, n, #1 << 24 ; n = n-(1/64) at Q33
LDR t, =0x6487ed51 ; round(2*PI*2∧28)
MOV r, n, LSL#3 ; r = n at Q26
SMULL t, n, r, t ; n = (x-a)*PI/2∧31 at Q32
ADR t, cossin_tab
LDR q, [t, q, LSL#3]! ; c(a) at Q30
LDR t, [t, #4] ; s(a) at Q30
EOR q, q, s, ASR#31 ; correct c(a) sign
EOR s, t, s, ASR#31 ; correct s(a) sign
SMULL t, r, n, n ; n∧2 at Q32
SMULL t, s, n, s ; n*s(a) at Q30
SMULL t, n, r, q ; n∧2*c(a) at Q30
LDR t, =0x2aaaaaab ; round(+2∧23/6)
SUB n, q, n, ASR#1 ; n = c(a)*(1-n∧2/2) at Q30
SMULL t, q, r, t ; n∧2/6 at Q32
SUB n, n, s ; n += -sin*n at Q30
MOV t, #0
SMLAL t, n, s, q ; n += sin*n∧3/6 at Q30
MOV pc, lr ; return n

cossin_tab
; table[2*i] =round(2∧30*cos(a)) where a=(PI/4)*(i+0.5)/32
; table[2*i+1]=round(2∧30*sin(a)) and 0 <= i < 32

248 Chapter 7 Optimized Primitives

DCD 0x3ffec42d, 0x00c90e90, 0x3ff4e5e0, 0x025b0caf
DCD 0x3fe12acb, 0x03ecadcf, 0x3fc395f9, 0x057db403
DCD 0x3f9c2bfb, 0x070de172, 0x3f6af2e3, 0x089cf867
DCD 0x3f2ff24a, 0x0a2abb59, 0x3eeb3347, 0x0bb6ecef
DCD 0x3e9cc076, 0x0d415013, 0x3e44a5ef, 0x0ec9a7f3
DCD 0x3de2f148, 0x104fb80e, 0x3d77b192, 0x11d3443f
DCD 0x3d02f757, 0x135410c3, 0x3c84d496, 0x14d1e242
DCD 0x3bfd5cc4, 0x164c7ddd, 0x3b6ca4c4, 0x17c3a931
DCD 0x3ad2c2e8, 0x19372a64, 0x3a2fcee8, 0x1aa6c82b
DCD 0x3983e1e8, 0x1c1249d8, 0x38cf1669, 0x1d79775c
DCD 0x3811884d, 0x1edc1953, 0x374b54ce, 0x2039f90f
DCD 0x367c9a7e, 0x2192e09b, 0x35a5793c, 0x22e69ac8
DCD 0x34c61236, 0x2434f332, 0x33de87de, 0x257db64c
DCD 0x32eefdea, 0x26c0b162, 0x31f79948, 0x27fdb2a7
DCD 0x30f8801f, 0x29348937, 0x2ff1d9c7, 0x2a650525
DCD 0x2ee3cebe, 0x2b8ef77d, 0x2dce88aa, 0x2cb2324c

7.6 Endian Reversal and Bit Operations
This section presents optimized algorithms for manipulating the bits within a register.
Section 7.6.1 looks at endian reversal, a useful operation when you are reading data from
a big-endian file on a little-endian memory system. Section 7.6.2 looks at permuting bits
within a word, for example, reversing the bits. We show how to support a wide variety of bit
permutations. See also Section 6.7 for a discussion on packing and unpacking bitstreams.

7.6.1 Endian Reversal

To use the ARM core’s 32-bit data bus to maximum efficiency, you will want to load and
store 8- and 16-bit arrays four bytes at a time. However, if you load multiple bytes at once,
then the processor endianness affects the order they will appear in the register. If this does
not match the order you want, then you will need to reverse the byte order.

You can use the following code sequences to reverse the order of the bytes within a word.
The first sequence uses two temporary registers and takes three cycles per word reversed
after a constant setup cycle. The second code sequence only uses one temporary register
and is useful for reversing a single word.

n RN 0 ; input, output words
t RN 1 ; scratch 1
m RN 2 ; scratch 2

byte_reverse ; n = [a , b , c , d]

7.6 Endian Reversal and Bit Operations 249

MVN m, #0x0000FF00 ; m = [0xFF,0xFF,0x00,0xFF]
EOR t, n, n, ROR #16 ; t = [a∧c, b∧d, a∧c, b∧d]
AND t, m, t, LSR#8 ; t = [0 , a∧c, 0 , a∧c]
EOR n, t, n, ROR #8 ; n = [d , c , b , a]
MOV pc, lr

byte_reverse_2reg ; n = [a , b , c, d]
EOR t, n, n, ROR#16 ; t = [a∧c, b∧d, a∧c, b∧d]
MOV t, t, LSR#8 ; t = [0 , a∧c, b∧d, a∧c]
BIC t, t, #0xFF00 ; t = [0 , a∧c, 0 , a∧c]
EOR n, t, n, ROR #8 ; n = [d , c , b , a]
MOV pc, lr

Halfword reversing within a word is provided free by the ARM barrel shifter since it is
the same as a rotate right by 16 places.

7.6.2 Bit Permutations

The byte reversal of Section 7.6.1 is a special case of a bit permutation. There are many
other important bit permutations that you might come across (see Table 7.3):

■ Bit reversal. Exchanging the value of bits k and 31 − k.

■ Bit spreading. Spacing out the bits so that bit k moves to bit 2k for k < 16 and bit 2k −31
for k ≥ 16.

■ DES initial permutation. DES stands for the Data Encryption Standard, a common
algorithm for bulk data encryption. The algorithm applies a 64-bit permutation to the
data before and after the encryption rounds.

Writing optimized code to implement such permutations is simple when you have at
hand a toolbox of bit permutation primitives like the ones we will develop in this section
(see Table 7.4). They are much faster than a loop that examines each bit in turn, since they
process 32 bits at a time.

Table 7.3 Table of common permutations.

Permutation name Permutation action

Byte reversal [b4, b3,b2, b1, b0] → [1 − b4, 1 − b3, b2, b1, b0]
Bit reversal [b4, b3,b2, b1, b0] → [1 − b4, 1 − b3, 1 − b2, 1 − b1, 1 − b0]
Bit spread [b4, b3,b2, b1, b0] → [b3, b2, b1, b0, b4]
DES permutation [b5, b4, b3,b2, b1, b0] → [1 − b0, b2, b1, 1 − b5, 1 − b4, 1 − b3]

250 Chapter 7 Optimized Primitives

Table 7.4 Permutation primitives.

Primitive name Permutation action

A (bit index complement) [. . . , bk , . . .] → [. . . , 1 − bk , . . .]
B (bit index swap) [. . . , bj , . . . , bk , . . .] → [. . . , bk , . . . , bj , . . .]
C (bit index complement+swap) [. . . , bj , . . . , bk , . . .] → [. . . , 1 − bk , . . . , 1 − bj , . . .]

Let’s start with some notation. Suppose we are dealing with a 2k -bit value n and we want
to permute the bits of n. Then we can refer to each bit position in n using a k-bit index
bk−12k−1 + · · · + b12 + b0. So, for permuting the bits within 32-bit values, we take k = 5.
We will look at permutations that move the bit at position bk−12k−1 + · · · + b12 + b0 to
position ck−12k−1 + · · · + c12 + c0, where each ci is either a bj or a 1 − bj . We will denote
this permutation by

[bk−1, . . . , b1, b0] → [ck−1, . . . , c1, c0] (7.55)

For example, Table 7.3 shows the notation and action for the permutations we’ve talked
about so far.

What’s the point of this? Well, we can achieve any of these permutations using a series
of the three basic permutations in Table 7.4. In fact, we only need the first two since C is B
followed by A twice. However, we can implement C directly for a faster result.

7.6.2.1 Bit Permutation Macros

The following macros implement the three permutation primitives for a 32-bit word n.
They need only four cycles per permutation if the constant values are already set up in
registers. For larger or smaller width permutations, the same ideas apply.

mask0 EQU 0x55555555 ; set bit positions with b0=0
mask1 EQU 0x33333333 ; set bit positions with b1=0
mask2 EQU 0x0F0F0F0F ; set bit positions with b2=0
mask3 EQU 0x00FF00FF ; set bit positions with b3=0
mask4 EQU 0x0000FFFF ; set bit positions with b4=0

MACRO
PERMUTE_A $k
; [... b_k ...]->[... 1-b_k ...]
IF $k=4
MOV n, n, ROR#16

ELSE
LDR m, =mask$k

7.6 Endian Reversal and Bit Operations 251

AND t, m, n, LSR#(1 << $k) ; get bits with index b_k=1
AND n, n, m ; get bits with index b_k=0
ORR n, t, n, LSL#(1 << $k) ; swap them over

ENDIF
MEND

MACRO
PERMUTE_B $j, $k
; [.. b_j .. b_k ..] -> [.. b_k .. b_j ..] and j>k
LDR m, =(mask$j:AND::NOT:mask$k) ; set when b_j=0 b_k=1
EOR t, n, n, LSR#(1 << $j)-(1 << $k)
AND t, t, m ; get bits where b_j!=b_k
EOR n, n, t, LSL#(1 << $j)-(1 << $k) ; change if bj=1 bk=0
EOR n, n, t ; change when b_j=0 b_k=1
MEND

MACRO
PERMUTE_C $j, $k
; [.. b_j .. b_k ..] -> [.. 1-b_k .. 1-b_j ..] and j>k
LDR m, =(mask$j:AND:mask$k) ; set when b_j=0 b_k=0
EOR t, n, n, LSR#(1 << $j)+(1 << $k)
AND t, t, m ; get bits where b_j==b_k
EOR n, n, t, LSL#(1 << $j)+(1 << $k) ; change if bj=1 bk=1
EOR n, n, t ; change when b_j=0 b_k=0
MEND

7.6.2.2 Bit Permutation Examples

Now, let’s see how these macros will help us in practice. Bit reverse moves the bit at
position b to position 31 − b; in other words, it inverts each bit of the five-bit position
index b. We can use five type A transforms to implement bit reversal, logically inverting
each bit index position in turn.

bit_reverse ; n= [b4 b3 b2 b1 b0]
PERMUTE_A 0 ; -> [b4 b3 b2 b1 1-b0]
PERMUTE_A 1 ; -> [b4 b3 b2 1-b1 1-b0]
PERMUTE_A 2 ; -> [b4 b3 1-b2 1-b1 1-b0]
PERMUTE_A 3 ; -> [b4 1-b3 1-b2 1-b1 1-b0]
PERMUTE_A 4 ; -> [1-b4 1-b3 1-b2 1-b1 1-b0]
MOV pc, lr

252 Chapter 7 Optimized Primitives

We can implement the more difficult bit spreading permutation using four type B
transforms. This is only 16 cycles ignoring the constant setups—much faster than any loop
testing each bit one at a time.

bit_spread ; n= [b4 b3 b2 b1 b0]
PERMUTE_B 4,3 ; -> [b3 b4 b2 b1 b0]
PERMUTE_B 3,2 ; -> [b3 b2 b4 b1 b0]
PERMUTE_B 2,1 ; -> [b3 b2 b1 b4 b0]
PERMUTE_B 1,0 ; -> [b3 b2 b1 b0 b4]
MOV pc, lr

Finally, type C permutations allow us to perform bit reversal and bit spreading at the
same time and with the same number of cycles.

bit_rev_spread ; n= [b4 b3 b2 b1 b0]
PERMUTE_C 4,3 ; -> [1-b3 1-b4 b2 b1 b0]
PERMUTE_C 3,2 ; -> [1-b3 1-b2 b4 b1 b0]
PERMUTE_C 2,1 ; -> [1-b3 1-b2 1-b1 1-b4 b0]
PERMUTE_C 1,0 ; -> [1-b3 1-b2 1-b1 1-b0 b4]
MOV pc, lr

7.6.3 Bit Population Count

A bit population count finds the number of bits set within a word. For example, this is
useful if you need to find the number of interrupts set in an interrupt mask. A loop testing
each bit is slow, since ADD instructions can be used to sum bits in parallel provided that the
sums do not interfere with each other. The idea of the divide by three and conquer method
is to split the 32-bit word into bit triplets. The sum of each bit triplet is a 2-bit number in
the range 0 to 3. We calculate these in parallel and then sum them in a logarithmic fashion.

Use the following code for bit population counts of a single word. The operation is
10 cycles plus 2 cycles for setup of constants.

bit_count ; input n = xyzxyzxyzxyzxyzxyzxyzxyzxyzxyzxy
LDR m, =0x49249249 ; 01001001001001001001001001001001
AND t, n, m, LSL #1 ; x00x00x00x00x00x00x00x00x00x00x0
SUB n, n, t, LSR #1 ; uuzuuzuuzuuzuuzuuzuuzuuzuuzuuzuu
AND t, n, m, LSR #1 ; 00z00z00z00z00z00z00z00z00z00z00
ADD n, n, t ; vv0vv0vv0vv0vv0vv0vv0vv0vv0vv0vv
; triplets summed, uu=x+y, vv=x+y+z
LDR m, =0xC71C71C7 ; 11000111000111000111000111000111
ADD n, n, n, LSR #3 ; ww0vvwww0vvwww0vvwww0vvwww0vvwww
AND n, n, m ; ww000www000www000www000www000www

7.7 Saturated and Rounded Arithmetic 253

; each www is the sum of six adjacent bits
ADD n, n, n, LSR #6 ; sum the w’s
ADD n, n, n, LSR #12
ADD n, n, n, LSR #24
AND n, n, #63 ; mask out irrelevant bits
MOV pc, lr

7.7 Saturated and Rounded Arithmetic
Saturation clips a result to a fixed range to prevent overflow. You are most likely to need
16- and 32-bit saturation, defined by the following operations:

■ saturate16(x) = x clipped to the range −0x00008000 to +0x00007fff inclusive

■ saturate32(x) = x clipped to the range −0x80000000 to +0x7fffffff inclusive

We’ll concentrate on these operations although you can easily convert the 16-bit satura-
tion examples to 8-bit saturation or any other length. The following sections give standard
implementations of basic saturating and rounding operations you may need. They use a
standard trick: for a 32-bit signed integer x,

x � 31 = sign(x) = −1 if x < 0 and 0 if x ≥ 0

7.7.1 Saturating 32 Bits to 16 Bits

This operation crops up frequently in DSP applications. For example, sound samples are
often saturated to 16 bits before storing to memory. This operation takes three cycles,
provided a constant m is set up beforehand in a register.

; b=saturate16(b)
LDR m, =0x00007FFF ; m = 0x7FFF maximum +ve
MOV a, b, ASR#15 ; a = (b >> 15)
TEQ a, b, ASR#31 ; if (a!=sign(b))
EORNE b, m, b, ASR#31 ; b = 0x7FFF ∧ sign(b)

7.7.2 Saturated Left Shift

In signal processing left shifts that could overflow need to saturate the result. This operation
requires three cycles for a constant shift or five cycles for a variable shift c.

; a=saturate32(b << c)
MOV m, #0x7FFFFFFF ; m = 0x7FFFFFFF max +ve
MOV a, b, LSL c ; a = b << c

254 Chapter 7 Optimized Primitives

TEQ b, a, ASR c ; if (b != (a >> c))
EORNE a, m, b, ASR#31 ; a = 0x7FFFFFFF∧sign(b)

7.7.3 Rounded Right Shift

A rounded shift right requires two cycles for a constant shift or three cycles for a nonzero
variable shift. Note that a zero variable shift will only work properly if carry is clear.

; a=round(b >> c)
MOVS a, b, ASR c ; a = b >> c, carry=b bit c-1
ADC a, a, #0 ; if (carry) a++ to round

7.7.4 Saturated 32-Bit Addition and Subtraction

On ARMv5TE cores, new instructions QADD and QSUB provide saturated addition and
subtraction. If you have an ARMv4T or earlier core, then use the following code sequences
instead. The code requires two cycles and a register held constant.

; a = saturate32(b+c)
MOV m, #0x80000000 ; m = 0x80000000 max -ve
ADDS a, b, c ; a = b+c, V records overflow
EORVS a, m, a, ASR#31 ; if (V) a=0x80000000∧sign(a)

; a = saturate32(b-c)
MOV m, #0x80000000 ; m = 0x80000000 max -ve
SUBS a, b, c ; a = b-c, V records overflow
EORVS a, m, a, ASR#31 ; if (V) a=0x80000000∧sign(a)

7.7.5 Saturated Absolute

The absolute function overflows if the input argument is −0x80000000. The following
two-cycle code sequence handles this case:

; a = saturate32(abs(b))
SUB a, b, b, LSR #31 ; a = b - (b<0)
EOR a, a, a, ASR #31 ; a = a ∧ sign(a)

On a similar theme, an accumulated, unsaturated absolute also takes two cycles:

; a = b+abs(c)
EORS a, c, c, ASR#32 ; a = c∧sign(c) = abs(c)-(c<0)
ADC a, b, a ; a = b + a + (c<0)

7.8 Random Number Generation 255

7.8 Random Number Generation
To generate truly random numbers requires special hardware to act as a source of random
noise. However, for many computer applications, such as games and modeling, speed
of generation is more important than statistical purity. These applications usually use
pseudorandom numbers.

Pseudorandom numbers aren’t actually random at all; a repeating sequence generates
the numbers. However, the sequence is so long, and so scattered, that the numbers appear
to be random. Typically we obtain Rk , the kth element of a pseudorandom sequence, by
iterating a simple function of Rk−1:

Rk = f (Rk−1) (7.56)

For a fast pseudorandom number generator we need to pick a function f (x) that is easy
to compute and gives random-looking output. The sequence must also be very long before
it repeats. For a sequence of 32-bit numbers the longest length achievable is clearly 232.

A linear congruence generator uses a function of the following form.

f(x) = (a*x+c) % m;

These functions are studied in detail in Knuth, Seminumerical Algorithms, Sections 3.2.1
and 3.6. For fast computation, we would like to take m = 232. The theory in Knuth assures
us that if a % 8 = 5 and c = a, then the sequence generated has maximum length of 232 and
is likely to appear random. For example, suppose that a = 0x91e6d6a5. Then the following
iteration generates a pseudorandom sequence:

MLA r, a, r, a ; r_k = (a*r_(k-1) + a) mod 2∧32

Since m is a power of two, the low-order bits of the sequence are not very random. Use
the high-order bits to derive pseudorandom numbers of a smaller range. For example, set
s = r � 28 to generate a four-bit random number s in the range 0–15. More generally, the
following code generates a pseudorandom number between 0 and n:

; r is the current random seed
; a is the multiplier (eg 0x91E6D6A5)
; n is the random number range (0...n-1)
; t is a scratch register
MLA r, a, r, a ; iterate random number generator
UMULL t, s, r, n ; s = (r*n)/2∧32
; r is the new random seed
; s is the random result in range 0 ... n-1

256 Chapter 7 Optimized Primitives

7.9 Summary
ARM instructions only implement simple primitives such as addition, subtraction, and
multiplication. To perform more complex operations such as division, square root, and
trigonometric functions, you need to use software routines. There are many useful tricks
and algorithms to improve the performance of these complex operations. This chapter
covered the algorithms and code examples for a number of standard operations.

Standard tricks include

■ using binary search or trial subtraction to calculate small quotients

■ using Newton-Raphson iteration for fast calculation of reciprocals and extraction of
roots

■ using a combination of table lookup followed by series expansion to calculate
transcendental functions such as exp, log, sin, and cos

■ using logical operations with barrel shift to perform bit permutations, rather than
testing bits individually

■ using multiply accumulate instructions to generate pseudorandom numbers

This Page Intentionally Left Blank

8.1 Representing a Digital Signal
8.1.1 Choosing a Representation

8.1.2 Operating on Values Stored in Fixed-Point Format

8.1.3 Addition and Subtraction of Fixed-Point Signals

8.1.4 Multiplication of Fixed-Point Signals

8.1.5 Division of Fixed-Point Signals

8.1.6 Square Root of a Fixed-Point Signal

8.1.7 Summary: How to Represent a Digital Signal

8.2 Introduction to DSP on the ARM
8.2.1 DSP on the ARM7TDMI

8.2.2 DSP on the ARM9TDMI

8.2.3 DSP on the StrongARM

8.2.4 DSP on the ARM9E

8.2.5 DSP on the ARM10E

8.2.6 DSP on the Intel XScale

8.3 FIR filters
8.3.1 Block FIR filters

8.4 IIR Filters
8.5 The Discrete Fourier Transform

8.5.1 The Fast Fourier Transform

8.6 Summary

C h a p t e r

Digital Signal
Processing

8

Microprocessors now wield enough computational power to process real-time digitized
signals. You are probably familiar with mp3 audio players, digital cameras, and digital
mobile/cellular telephones. Processing digitized signals requires high memory bandwidths
and fast multiply accumulate operations. In this chapter we will look at ways you can
maximize the performance of the ARM for digital signal processing (DSP) applications.

Traditionally an embedded or portable device would contain two types of processor:
A microcontroller would handle the user interface, and a separate DSP processor would
manipulate digitized signals such as audio. However, now you can often use a single
microprocessor to perform both tasks because of the higher performance and clock fre-
quencies available on microprocessors today. A single-core design can reduce cost and
power consumption over a two-core solution.

Additions to the ARM architecture mean that ARM is well suited for many DSP
applications. The ARMv5TE extensions available in the ARM9E and later cores provide
efficient multiply accumulate operations. With careful coding, the ARM9E processor will
perform decently on the DSP parts of an application while outperforming a DSP on the
control parts of the application.

DSP applications are typically multiply and load-store intensive. A basic operation
is a multiply accumulate multiplying two 16-bit signed numbers and accumulating onto
a 32-bit signed accumulator. Table 8.1 shows the increase in performance available on
different generations of the ARM core. The second column gives cycles for a signed 16-bit
by 16-bit multiply with 32-bit accumulate; the third column, cycles for a signed 32-bit by
32-bit multiply with a 64-bit accumulate. The latter is especially useful for high-quality
audio algorithms such as mp3.

Table 8.1 assumes that you use the most efficient instruction for the task and that you
can avoid any postmultiply interlocks. We cover this in detail in Section 8.2.

259

260 Chapter 8 Digital Signal Processing

Table 8.1 Multiply accumulate timings by processor.

16- × 16-bit multiply with 32- × 32-bit multiply with
Processor (architecture) 32-bit accumulate (cycles) 64-bit accumulate (cycles)

ARM7 (ARMv3) ∼12 ∼44
ARM7TDMI (ARMv4T) 4 7
ARM9TDMI (ARMv4T) 4 7
StrongARM (ARMv4) 2 or 3 4 or 5
ARM9E (ARMv5TE) 1 3
XScale (ARMv5TE) 1 2–4
ARM1136 (ARMv6) 0.5 2 (result top half)

Due to their high data bandwidth and performance requirements, you will often need to
code DSP algorithms in hand-written assembly. You need fine control of register allocation
and instruction scheduling to achieve the best performance. We cannot cover implemen-
tations of all DSP algorithms in this chapter, so we will concentrate on common examples
and general rules that can be applied to a whole range of DSP algorithms.

Section 8.1 looks at the basic problem of how to represent a signal on the ARM so that
we can process it. Section 8.2 looks at general rules on writing DSP algorithms for the ARM.

Filtering is probably the most commonly used signal processing operation. It can be
used to remove noise, to analyze signals, or in signal compression. We look at audio
filtering in detail in Sections 8.3 and 8.4. Another very common algorithm is the Discrete
Fourier Transform (DFT), which converts a signal from a time representation to a frequency
representation or vice versa. We look at the DFT in Section 8.5.

8.1 Representing a Digital Signal
Before you can process a digital signal, you need to choose a representation of the signal.
How can you describe a signal using only the integer types available on ARM processors?
This is an important problem that will affect the design of the DSP software. Throughout
this chapter we will use the notations xt and x[t] to denote the value of a signal x at time t.
The first notation is often clearer in equations and formulae. The second notation is used
in programming examples as it is closer to the C style of array notation.

8.1.1 Choosing a Representation

In an analogue signal x[t], the index t and the value x are both continuous real variables.
To convert an analogue signal to a digital signal, we must choose a finite number of
sampling points ti and a digital representation for the sample values x[ti].

8.1 Representing a Digital Signal 261

1

0.5

0

−0.5

−1

0 2

x[t] = sin(2πt/8)

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10]

4 6 8 10

Figure 8.1 Digitizing an analogue signal.

Figure 8.1 shows a sine wave signal digitized at the sampling points 0, 1, 2, 3, and so on.
Signals like this are typical in audio processing, where x[t] represents the tth audio sample.

For example, in a CD player, the sampling rate is 44,100 Hz (that is, 44,100 samples
per second). Therefore t represents the time in units of a sample period of 1/44,100 Hz =
22.7 microseconds. In this application x[t] represents the signed voltage applied to the
loudspeaker at time t.

There are two things to worry about when choosing a representation of x[t]:

1. The dynamic range of the signal—the maximum fluctuation in the signal defined by
Equation (8.1). For a signed signal we are interested in the maximum absolute value M
possible. For this example, let’s take M = 1 volt.

M = max|x[t]| over all t = 0, 1, 2, 3 . . . (8.1)

2. The accuracy required in the representation, sometimes given as a proportion of the
maximum range. For example, an accuracy of 100 parts per million means that each
x[t] needs to be represented within an error of

E = M × 0. 0001 = 0. 0001 volts (8.2)

Let’s work out the best way of storing x[t] subject to the given dynamic range and accuracy
constraints.

262 Chapter 8 Digital Signal Processing

We could use a floating-point representation for x[t]. This would certainly meet our
dynamic range and accuracy constraints, and it would also be easy to manipulate using the
C type float. However, most ARM cores do not support floating point in hardware, and
so a floating-point representation would be very slow.

A better choice for fast code is a fixed-point representation. A fixed-point representation
uses an integer to represent a fractional value by scaling the fraction. For example, for
a maximum error of 0.0001 volts, we only require a step of 0.0002 volts between each
representable value. This suggests that we represent x[t] by the integer X [t] defined as

X [t] = round_to_nearest _integer(5000 × x[t]) (8.3)

In practice we would rather scale by a power of two. Then we can implement multipli-
cation and division by the scale using shifts. In this case, the smallest power of two greater
than 5000 is 213 = 8192. We say that X [t] is a Qk fixed-point representation of x[t] if

X [t] = round_to_nearest _integer(2k x[t]) (8.4)

In our example we can use a Q13 representation to meet the accuracy required. Since
x[t] ranges between −1 and +1 volt, X [t] will range between the integers −8192 and +8192.
This range will fit in a 16-bit C variable of type short. Signals that vary between −1 and +1
are often stored as Q15 values because this scales them to the maximum range of a short
type integer: −32,768 to +32,767. Note that +1 does not have an exact representation, and
we approximate it by +32,767 representing 1 − 2−15. However, we will see in Section 8.1.2
that scaling up to the maximum range is not always a good idea. It increases the probability
of overflow when manipulating the fixed-point representations.

In a fixed-point representation we represent each signal value by an integer and use the
same scaling for the whole signal. This differs from a floating-point representation, where
each signal value x[t] has its own scaling called the exponent dependent upon t.

A common error is to think that floating point is more accurate than fixed point. This is
false! For the same number of bits, a fixed-point representation gives greater accuracy. The
floating-point representation gives higher dynamic range at the expense of lower absolute
accuracy. For example, if you use a 32-bit integer to hold a fixed-point value scaled to
full range, then the maximum error in a representation is 2−32. However, single-precision
32-bit floating-point values give a relative error of 2−24. The single-precision floating-point
mantissa is 24 bits. The leading 1 of the mantissa is not stored, so 23 bits of storage are
actually used. For values near the maximum, the fixed-point representation is 232−24 =
256 times more accurate! The 8-bit floating-point exponent is of little use when you are
interested in maximum error rather than relative accuracy.

To summarize, a fixed-point representation is best when there is a clear bound to the
strength of the signal and when maximum error is important. When there is no clear bound
and you require a large dynamic range, then floating point is better. You can also use the
other following representations, which give more dynamic range than fixed point while still
being more efficient to implement than floating point.

8.1 Representing a Digital Signal 263

8.1.1.1 Saturating Fixed-Point Representation

Suppose the maximum value of the signal is not known, but there is a clear range in which
the vast majority of samples lie. In this case you can use a fixed-point representation based
on the common range. You then saturate or clip any out-of-range samples to the closest
available sample in the normal range. This approach gives greater accuracy at the expense
of some distortion of very loud signals. See Section 7.7 for hints on efficient saturation.

8.1.1.2 Block-Floating Representation

When small sample values are close to large sample values, they are usually less important.
In this case, you can divide the signal into blocks or frames of samples. You can use
a different fixed-point scaling on each block or frame according to the strength of the signal
in that block or frame.

This is similar to floating point except that we associate a single exponent with a whole
frame rather than a single sample. You can use efficient fixed-point operations to operate
on the samples within the frame, and you only need costly, exponent-related operations
when comparing values among frames.

8.1.1.3 Logarithmic Representation

Suppose your signal x[t] has a large dynamic range. Suppose also that multiplication
operations are far more frequent than addition. Then you can use a base-two logarithmic
representation. For this representation we consider the related signal y[t]:

y[t] = log2(x[t]) (8.5)

Represent y[t] using a fixed-point format. Replace operations of the form

x[a] = x[b] × x[c] by y[a] = y[b] + y[c] (8.6)

and operations of the form

x[a] = x[b] + x[c] by y[a] = y[b] + log2

(
1 + 2y[c]−y[b]) (8.7)

In the second case we arrange that y[c] ≤ y[b]. Calculate the function f (x) = log2(1 + 2x)
by using lookup tables and/or interpolation. See Section 7.5 for efficient implementations
of log2(x) and 2x .

264 Chapter 8 Digital Signal Processing

8.1.2 Operating on Values Stored in Fixed-Point Format

Suppose now that we have chosen a Qk fixed-point representation for the signal x[t].
In other words, we have an array of integers X [t] such that

X [t] = the closet integer to
(

2k x[t]
)

(8.8)

Equivalently, if we write the integer X [t] in binary notation, and insert a binary point
between bits k and k − 1, then we have the value of x[t]. For example, in Figure 8.2, the
fixed-point value 0x6000 at Q15 represents 0.11 in binary, or 3/4 = 0.75 in decimal.

The following subsections cover the basic operations of addition, subtraction, multipli-
cation, division, and square root as applied to fixed-point signals. There are several concepts
that apply to all fixed-point operations:

■ Rounding on right shift. When you perform a right shift to divide by a power of two,
the shift rounds towards −∞ rather than rounding to the nearest integer. For a more
accurate answer use the operation y = (x + (1 � (shift − 1))) � shift instead. This
will round to the nearest integer with 0.5 rounded up. To implement this efficiently,
see Section 7.7.3.

■ Rounding on divide. For an unsigned divide, calculate y = (x + (d � 1))/d rather than
y = x/d . This gives a rounded result.

■ Headroom. The headroom of a fixed point representation is the ratio of the maximum
magnitude that can be stored in the integer to the maximum magnitude that will occur.
For example, suppose you use a 16-bit integer to store a Q13 representation of an audio
signal that can range between −1 and +1. Then there is a headroom of four times or
two bits. You can double a sample value twice without risk of overflowing the 16-bit
container integer.

■ Conversion of Q representation. If X [t] is a Qn representation of x[t], then

X [t] � k is a Q(n + k) representation of x[t] (8.9)

X [t] � k is a Q(n − k) representation of x[t] (8.10)

For the following sections we fix signals x[t], c[t], and y[t]. Let X [t], C[t], Y [t] denote
their Qn, Qm, Qd fixed-point representations, respectively.

Bit
0x6000 =

15
0.

14
1

13
1

12
0

11
0

10
0

9
0

8
0

7
0

6
0

5
0

4
0

3
0

2
0

1
0

0
0

Figure 8.2 Representation of 3/4 in Q15 fixed-point arithmetic.

8.1 Representing a Digital Signal 265

8.1.3 Addition and Subtraction of Fixed-Point Signals

The general case is to convert the signal equation

y[t] = x[t] + c[t] (8.11)

into fixed-point format; that is, approximately:

Y [t] = 2d y[t] = 2d (x[t] + c[t]) = 2d−nX [t] + 2d−mC[t] (8.12)

or in integer C:

Y[t] = (X[t] << (d-n)) + (C[t] << (d-m));

Here we use the convention that you should interpret a negative left shift value as a rounded
right shift. In other words, we first convert x[t] and c[t] to Qd representations, then add to
give Y [t].

We know the values of d, n, and m, at compile time, and so there is no prob-
lem in determining the shift direction, or whether there is a shift at all! In practice we
usually arrange that n = m = d. Therefore normal integer addition gives a fixed-point
addition:

Y[t] = X[t] + C[t];

Provided d = m or d = n, we can perform the operation in a single cycle using the ARM
barrel shifter:

Y[t] = X[t] + (C[t] << (d-m)); /* d==n case */
Y[t] = C[t] + (X[t] << (d-n)); /* d==m case */

We must be careful though. The preceding equations are only meaningful if the shifted
values and the result do not overflow. For example, if Y [t] = X [t] + C[t], then the
dynamic range of Y [t] is the sum of the dynamic ranges of X [t] and C[t]. This is liable to
overflow the integer container.

There are four common ways you can prevent overflow:

1. Ensure that the X [t] and C[t] representations have one bit of spare headroom each; in
other words, each use up only half the range of their integer container. Then there can
be no overflow on the addition.

2. Use a larger container type for Y than for X and C. For example, if X [t] and C[t] are
stored as 16-bit integers, use a 32-bit integer for Y [t]. This will ensure that there can be
no overflow. In fact, Y [t] then has 15 bits of headroom, so you can add many 16-bit
values to Y [t] without the possibility of overflow.

266 Chapter 8 Digital Signal Processing

3. Use a smaller Q representation for y[t]. For example, if d = n − 1 = m − 1, then the
operation becomes

Y[t] = (X[t] + X[t-1]) >> 1;

This operation takes two cycles rather than one since the shift follows the add. However,
the operation result cannot overflow.

4. Use saturation. If the value of X[t] + C[t] is outside the range of the integer storing
Y[t], then clip it to the nearest possible value that is in range. Section 7.7 shows how to
implement saturating arithmetic efficiently.

8.1.4 Multiplication of Fixed-Point Signals

The general case is to convert the signal equation

y[t] = x[t]c[t] (8.13)

into fixed point format; that is, approximately:

Y [t] = 2d y[t] = 2d x[t]c[t] = 2d−n−mX [t]C[t] (8.14)

or in integer C:

Y[t] = (X[t]*C[t]) >> (n+m-d);

You should interpret a negative right shift as a left shift. The product X[t]C[t] is a Q(n + m)
representation of Y[t] and the shift converts representation. There are two common uses:

1. We want to accumulate a whole series of products. In this case we set d = n + m, using
a wider integer to store Y[t] than X[t] and C[t]. The multiply and multiply accumulate
operations are then just

Y[t] = X[t] ∗ C[t]; /* multiply */

Y[t] += X[t] ∗ C[t]; /* multiply accumulate */

2. The signal Y[t] is the signal X[t] with pointwise multiplication by some scaling
coefficients. In this case, use d = n so that the operation is

Y[t] = (X[t] ∗ C[t]) >> m;

For audio DSP applications, a 16-bit × 16-bit multiply is usually used. Common values
for n and m are 14 and 15. As with addition and subtraction it is important to check each
operation to make sure that it cannot overflow.

8.1 Representing a Digital Signal 267

Example

8.1
Suppose X[t] is a 16-bit signed representation for an audio signal x[t]. Suppose we need to
reduce the power of the signal by a half. To do this we must scale each sample by 1/(

√
2),

so c[t] = 2−0.5 = 0. 70710678
Since we are using a 16-bit representation for X[t], a 16-bit multiply will suffice. The

largest power of two that we can multiply c[t] by and have it remain a 16-bit integer is 15.
So take n = d, m = 15, and C[t] = 215/(

√
2) = 23, 710 = 0x5A82. Therefore we can scale

using the integer operation

X[t] = (X[t] ∗ 0x5A82) >> 15; ■

8.1.5 Division of Fixed-Point Signals

The general case is to convert the signal equation

y[t] = x[t]
c[t] (8.15)

into fixed point format; that is, approximately:

Y [t] = 2d y[t] = 2d x[t]
c[t] = 2d−n+m X [t]

C[t] (8.16)

or in integer C:

Y[t] = (X[t] << (d-n+m)) / C[t];

Again a negative left shift indicates a right shift. You must take care that the left shift does
not cause an overflow. In typical applications, n = m. Then the preceding operation gives
a Qd result accurate to d places of binary fraction:

Y[t] = (X[t] << d) / C[t];

See Section 7.3.3 for efficient implementations of fixed-point division.

8.1.6 Square Root of a Fixed-Point Signal

The general case is to convert the signal equation

y[t] = √
x[t] (8.17)

into fixed point format; that is, approximately:

Y [t] = 2d y[t] = 2d
√

x[t] =
√

22d−nX [t] (8.18)

268 Chapter 8 Digital Signal Processing

or in integer C:

Y[t] = isqrt(X[t] << (2*d-n));

The function isqrtfinds the nearest integer to the square root of the integer. See Section 7.4
for efficient implementation of square root operations.

8.1.7 Summary: How to Represent a Digital Signal

To choose a representation for a signal value, use the following criteria:

■ Use a floating-point representation for prototyping algorithms. Do not use floating
point in applications where speed is critical. Most ARM implementations do not include
hardware floating-point support.

■ Use a fixed-point representation for DSP applications where speed is critical with mod-
erate dynamic range. The ARM cores provide good support for 8-, 16- and 32-bit
fixed-point DSP.

■ For applications requiring speed and high dynamic range, use a block-floating or
logarithmic representation.

Table 8.2 summarizes how you can implement standard operations in fixed-point
arithmetic. It assumes there are three signals x[t], c[t], y[t], that have Qn, Qm, Qd
representations X[t], C[t], Y[t], respectively. In other words:

X [t] = 2nx[t], C[t] = 2mc[t], Y [t] = 2d y[t] (8.19)

to the nearest integer.
To make the table more concise, we use <<< as shorthand for an operation that is either

a left or right shift according to the sign of the shift amount. Formally:

x <<< s :=
x << s if s>=0

Table 8.2 Summary of standard fixed-point operations.

Signal operation Integer fixed-point equivalent

y[t]=x[t] Y[t]=X[t] <<< (d-n);
y[t]=x[t]+c[t] Y[t]=(X[t] <<< (d-n))+(C[t] <<< (d-m));
y[t]=x[t]-c[t] Y[t]=(X[t] <<< (d-n))-(C[t] <<< (d-m));
y[t]=x[t]*c[t] Y[t]=(X[t]*C[t]) <<< (d-n-m);
y[t]=x[t]/c[t] Y[t]=(X[t] <<< (d-n+m))/C[t];
y[t]=sqrt(x[t]) Y[t]=isqrt(X[t] <<< (2*d-n));

8.2 Introduction to DSP on the ARM 269

x >> (-s) if s<0 and rounding is not required
(x+round) >> (-s) if s<0 and rounding is required

round := (1 << (-1-s)) if 0.5 should round up
(1 << (-1-s))-1 if 0.5 should round down

You must always check the precision and dynamic range of the intermediate and
output values. Ensure that there are no overflows or unacceptable losses of precision.
These considerations determine the representations and size to use for the container
integers.

These equations are the most general form. In practice, for addition and subtraction we
usually take d = n = m. For multiplication we usually take d = n + m or d = n. Since you
know d, n, and m, at compile time, you can eliminate shifts by zero.

8.2 Introduction to DSP on the ARM
This section begins by looking at the features of the ARM architecture that are useful
for writing DSP applications. We look at each common ARM implementation in turn,
highlighting its strengths and weaknesses for DSP.

The ARM core is not a dedicated DSP. There is no single instruction that issues
a multiply accumulate and data fetch in parallel. However, by reusing loaded data you can
achieve a respectable DSP performance. The key idea is to use block algorithms that calcu-
late several results at once, and thus require less memory bandwidth, increase performance,
and decrease power consumption compared with calculating single results.

The ARM also differs from a standard DSP when it comes to precision and saturation. In
general, ARM does not provide operations that saturate automatically. Saturating versions
of operations usually cost additional cycles. Section 7.7 covered saturating operations on
the ARM. On the other hand, ARM supports extended-precision 32-bit multiplied by 32-bit
to 64-bit operations very well. These operations are particularly important for CD-quality
audio applications, which require intermediate precision at greater than 16 bits.

From ARM9 onwards, ARM implementations use a multistage execute pipeline for loads
and multiplies, which introduces potential processor interlocks. If you load a value and then
use it in either of the following two instructions, the processor may stall for a number of
cycles waiting for the loaded value to arrive. Similarly if you use the result of a multiply in
the following instruction, this may cause stall cycles. It is particularly important to schedule
code to avoid these stalls. See the discussion in Section 6.3 on instruction scheduling.

Summary Guidelines for Writing DSP Code for ARM

■ Design the DSP algorithm so that saturation is not required because saturation will
cost extra cycles. Use extended-precision arithmetic or additional scaling rather than
saturation.

270 Chapter 8 Digital Signal Processing

■ Design the DSP algorithm to minimize loads and stores. Once you load a data item,
then perform as many operations that use the datum as possible. You can often do
this by calculating several output results at once. Another way of increasing reuse is
to concatenate several operations. For example, you could perform a dot product and
signal scale at the same time, while only loading the data once.

■ Write ARM assembly to avoid processor interlocks. The results of load and multiply
instructions are often not available to the next instruction without adding stall cycles.
Sometimes the results will not be available for several cycles. Refer to Appendix D for
details of instruction cycle timings.

■ There are 14 registers available for general use on the ARM, r0 to r12 and r14. Design
the DSP algorithm so that the inner loop will require 14 registers or fewer.

In the following sections we look at each of the standard ARM cores in turn. We implement
a dot-product example for each core. A dot-product is one of the simplest DSP operations
and highlights the difference among different ARM implementations. A dot-product
combines N samples from two signals xt and ct to produce a correlation value a:

a =
N−1∑
i=0

cixi (8.20)

The C interface to the dot-product function is

int dot_product(sample *x, coefficient *c, unsigned int N);

where

■ sample is the type to hold a 16-bit audio sample, usually a short
■ coefficient is the type to hold a 16-bit coefficient, usually a short
■ x[i] and c[i] are two arrays of length N (the data and coefficients)

■ the function returns the accumulated 32-bit integer dot product a

8.2.1 DSP on the ARM7TDMI

The ARM7TDMI has a 32-bit by 8-bit per cycle multiply array with early termination. It
takes four cycles for a 16-bit by 16-bit to 32-bit multiply accumulate. Load instructions
take three cycles and store instructions two cycles for zero-wait-state memory or cache. See
Section D.2 in Appendix D for details of cycle timings for ARM7TDMI instructions.

Summary Guidelines for Writing DSP Code for the ARM7TDMI

■ Load instructions are slow, taking three cycles to load a single value. To access mem-
ory efficiently use load and store multiple instructions LDM and STM. Load and store

8.2 Introduction to DSP on the ARM 271

multiples only require a single cycle for each additional word transferred after the first
word. This often means it is more efficient to store 16-bit data values in 32-bit words.

■ The multiply instructions use early termination based on the second operand in the
product Rs. For predictable performance use the second operand to specify constant
coefficients or multiples.

■ Multiply is one cycle faster than multiply accumulate. It is sometimes useful to split an
MLA instruction into separate MUL and ADD instructions. You can then use a barrel shift
with the ADD to perform a scaled accumulate.

■ You can often multiply by fixed coefficients faster using arithmetic instructions with
shifts. For example, 240x = (x � 8) − (x � 4). For any fixed coefficient of the form
±2a ± 2b ± 2c , ADD and SUB with shift give a faster multiply accumulate than MLA.

Example

8.2
This example shows a 16-bit dot-product optimized for the ARM7TDMI. Each MLA takes
a worst case of four cycles. We store the 16-bit input samples in 32-bit words so that we
can use the LDM instruction to load them efficiently.

x RN 0 ; input array x[]
c RN 1 ; input array c[]
N RN 2 ; number of samples (a multiple of 5)
acc RN 3 ; accumulator
x_0 RN 4 ; elements from array x[]
x_1 RN 5
x_2 RN 6
x_3 RN 7
x_4 RN 8
c_0 RN 9 ; elements from array c[]
c_1 RN 10
c_2 RN 11
c_3 RN 12
c_4 RN 14

; int dot_16by16_arm7m(int *x, int *c, unsigned N)
dot_16by16_arm7m

STMFD sp!, {r4-r11, lr}
MOV acc, #0

loop_7m ; accumulate 5 products
LDMIA x!, {x_0, x_1, x_2, x_3, x_4}
LDMIA c!, {c_0, c_1, c_2, c_3, c_4}
MLA acc, x_0, c_0, acc
MLA acc, x_1, c_1, acc
MLA acc, x_2, c_2, acc
MLA acc, x_3, c_3, acc

272 Chapter 8 Digital Signal Processing

MLA acc, x_4, c_4, acc
SUBS N, N, #5
BGT loop_7m
MOV r0, acc
LDMFD sp!, {r4-r11, pc}

This code assumes that the number of samples N is a multiple of five. Therefore we
can use a five-word load multiple to increase data bandwidth. The cost per load is 7/4 =
1.4 cycles compared to 3 cycles per load if we had used LDR or LDRSH. The inner loop requires
a worst case of 7 + 7 + 5 ∗ 4 + 1 + 3 = 38 cycles to process each block of 5 products from
the sum. This gives the ARM7TDMI a DSP rating of 38/5 = 7.6 cycles per tap for a 16-bit
dot-product. The block filter algorithm of Section 8.3 gives a much better performance per
tap if you are calculating multiple products. ■

8.2.2 DSP on the ARM9TDMI

The ARM9TDMI has the same 32-bit by 8-bit per cycle multiplier array with early termina-
tion as the ARM7TDMI. However, load and store operations are much faster compared to
the ARM7TDMI. They take one cycle provided that you do not attempt to use the loaded
value for two cycles after the load instruction. See Section D.3 in Appendix D for cycle
timings of ARM9TDMI instructions.

Summary Writing DSP Code for the ARM9TDMI

■ Load instructions are fast as long as you schedule the code to avoid using the loaded
value for two cycles. There is no advantage to using load multiples. Therefore you
should store 16-bit data in 16-bit short type arrays. Use the LDRSH instruction to load
the data.

■ The multiply instructions use early termination based on the second operand in the
product Rs. For predictable performance use the second operand to specify constant
coefficients or multiples.

■ Multiply is the same speed as multiply accumulate. Try to use the MLA instruction rather
than a separate multiply and add.

■ You can often multiply by fixed coefficients faster using arithmetic instructions with
shifts. For example, 240x = (x � 8) − (x � 4). For any fixed coefficient of the form
±2a ±2b ±2c , ADD and SUB with shift give a faster multiply accumulate than using MLA.

Example

8.3
This example shows a 16-bit dot-product optimized for the ARM9TDMI. Each MLA takes
a worst case of four cycles. We store the 16-bit input samples in 16-bit short integers, since
there is no advantage in using LDM rather than LDRSH, and using LDRSH reduces the memory
size of the data.

8.2 Introduction to DSP on the ARM 273

x RN 0 ; input array x[]
c RN 1 ; input array c[]
N RN 2 ; number of samples (a multiple of 4)
acc RN 3 ; accumulator
x_0 RN 4 ; elements from array x[]
x_1 RN 5
c_0 RN 9 ; elements from array c[]
c_1 RN 10

; int dot_16by16_arm9m(short *x, short *c, unsigned N)
dot_16by16_arm9m

STMFD sp!, {r4-r5, r9-r10, lr}
MOV acc, #0
LDRSH x_0, [x], #2
LDRSH c_0, [c], #2

loop_9m ; accumulate 4 products
SUBS N, N, #4
LDRSH x_1, [x], #2
LDRSH c_1, [c], #2
MLA acc, x_0, c_0, acc
LDRSH x_0, [x], #2
LDRSH c_0, [c], #2
MLA acc, x_1, c_1, acc
LDRSH x_1, [x], #2
LDRSH c_1, [c], #2
MLA acc, x_0, c_0, acc
LDRGTSH x_0, [x], #2
LDRGTSH c_0, [c], #2
MLA acc, x_1, c_1, acc
BGT loop_9m
MOV r0, acc
LDMFD sp!, {r4-r5, r9-r10, pc}

We have assumed that the number of samples N is a multiple of four. Therefore we can
unroll the loop four times to increase performance. The code is scheduled so that there
are four instructions between a load and the use of the loaded value. This uses the preload
tricks of Section 6.3.1.1:

■ The loads are double buffered. We use x0, c0 while we are loading x1, c1 and vice versa.

■ We load the initial values x0, c0, before the inner loop starts. This initiates the double
buffer process.

■ We are always loading one pair of values ahead of the ones we are using. Therefore we
must avoid the last pair of loads or we will read off the end of the arrays. We do this

274 Chapter 8 Digital Signal Processing

by having a loop counter that counts down to zero on the last loop. Then we can make
the final loads conditional on N > 0.

The inner loop requires 28 cycles per loop, giving 28/4 = 7 cycles per tap. See Section 8.3
for more efficient block filter implementations. ■

8.2.3 DSP on the StrongARM

The StrongARM core SA-1 has a 32-bit by 12-bit per cycle signed multiply array with early
termination. If you attempt to use a multiply result in the following instruction, or start
a new multiply, then the core will stall for one cycle. Load instructions take one cycle,
except for signed byte and halfword loads, which take two cycles. There is a one-cycle
delay before you can use the loaded value. See Section D.4 in Appendix D for details of the
StrongARM instruction cycle timings.

Summary Writing DSP Code for the StrongARM

■ Avoid signed byte and halfword loads. Schedule the code to avoid using the loaded
value for one cycle. There is no advantage to using load multiples.

■ The multiply instructions use early termination based on the second operand in the
product Rs. For predictable performance use the second operand to specify constant
coefficients or multiples.

■ Multiply is the same speed as multiply accumulate. Try to use the MLA instruction rather
than a separate multiply and add.

Example

8.4
This example shows a 16-bit dot-product. Since a signed 16-bit load requires two cycles, it
is more efficient to use 32-bit data containers for the StrongARM. To schedule StrongARM
code, one trick is to interleave loads and multiplies.

x RN 0 ; input array x[]
c RN 1 ; input array c[]
N RN 2 ; number of samples (a multiple of 4)
acc RN 3 ; accumulator
x_0 RN 4 ; elements from array x[]
x_1 RN 5
c_0 RN 9 ; elements from array c[]
c_1 RN 10

; int dot_16by16_SA1(int *x, int *c, unsigned N)
dot_16by16_SA1

STMFD sp!, {r4-r5, r9-r10, lr}

8.2 Introduction to DSP on the ARM 275

MOV acc, #0
LDR x_0, [x], #4
LDR c_0, [c], #4

loop_sa ; accumulate 4 products
SUBS N, N, #4
LDR x_1, [x], #4
LDR c_1, [c], #4
MLA acc, x_0, c_0, acc
LDR x_0, [x], #4
LDR c_0, [c], #4
MLA acc, x_1, c_1, acc
LDR x_1, [x], #4
LDR c_1, [c], #4
MLA acc, x_0, c_0, acc
LDRGT x_0, [x], #4
LDRGT c_0, [c], #4
MLA acc, x_1, c_1, acc
BGT loop_sa
MOV r0, acc
LDMFD sp!, {r4-r5, r9-r10, pc}

We have assumed that the number of samples N is a multiple of four and so have
unrolled by four times. For worst-case 16-bit coefficients, each multiply requires two cycles.
We have scheduled to remove all load and multiply use interlocks. The inner loop uses
19 cycles to process 4 taps, giving a rating of 19/4 = 4.75 cycles per tap. ■

8.2.4 DSP on the ARM9E

The ARM9E core has a very fast pipelined multiplier array that performs a 32-bit by 16-bit
multiply in a single issue cycle. The result is not available on the next cycle unless you
use the result as the accumulator in a multiply accumulate operation. The load and store
operations are the same speed as on the ARM9TDMI. See Section D.5 in Appendix D for
details of the ARM9E instruction cycle times.

To access the fast multiplier, you will need to use the multiply instructions defined in the
ARMv5TE architecture extensions. For 16-bit by 16-bit products use SMULxy and SMLAxy.
See Appendix A for a full list of ARM multiply instructions.

Summary Writing DSP Code for the ARM9E

■ The ARMv5TE architecture multiply operations are capable of unpacking 16-bit halves
from 32-bit words and multiplying them. For best load bandwidth you should use word
load instructions to load packed 16-bit data items. As for the ARM9TDMI you should
schedule code to avoid load use interlocks.

276 Chapter 8 Digital Signal Processing

■ The multiply operations do not early terminate. Therefore you should only use MUL and
MLA for multiplying 32-bit integers. For 16-bit values use SMULxy and SMLAxy.

■ Multiply is the same speed as multiply accumulate. Try to use the SMLAxy instruction
rather than a separate multiply and add.

Example

8.5
This example shows the dot-product for the ARM9E. It assumes that the ARM is configured
for a little-endian memory system. If the ARM is configured for a big-endian memory
system, then you need to swap the B and T instruction suffixes. You can use macros to do
this for you automatically as in Example 8.11. We use the naming convention x_10 to mean
that the top 16 bits of the register holds x1 and the bottom 16 bits x0.

x RN 0 ; input array x[]
c RN 1 ; input array c[]
N RN 2 ; number of samples (a multiple of 8)
acc RN 3 ; accumulator
x_10 RN 4 ; packed elements from array x[]
x_32 RN 5
c_10 RN 9 ; packed elements from array c[]
c_32 RN 10

; int dot_16by16_arm9e(short *x, short *c, unsigned N)
dot_16by16_arm9e

STMFD sp!, {r4-r5, r9-r10, lr}
MOV acc, #0
LDR x_10, [x], #4
LDR c_10, [c], #4

loop_9e ; accumulate 8 products
SUBS N, N, #8
LDR x_32, [x], #4
SMLABB acc, x_10, c_10, acc
LDR c_32, [c], #4
SMLATT acc, x_10, c_10, acc
LDR x_10, [x], #4
SMLABB acc, x_32, c_32, acc
LDR c_10, [c], #4
SMLATT acc, x_32, c_32, acc
LDR x_32, [x], #4
SMLABB acc, x_10, c_10, acc
LDR c_32, [c], #4
SMLATT acc, x_10, c_10, acc
LDRGT x_10, [x], #4
SMLABB acc, x_32, c_32, acc
LDRGT c_10, [c], #4

8.2 Introduction to DSP on the ARM 277

SMLATT acc, x_32, c_32, acc
BGT loop_9e
MOV r0, acc
LDMFD sp!, {r4-r5, r9-r10, pc}

We have unrolled eight times, assuming that N is a multiple of eight. Each load instruc-
tion reads two 16-bit values, giving a high memory bandwidth. The inner loop requires
20 cycles to accumulate 8 products, a rating of 20/8 = 2.5 cycles per tap. A block filter gives
even greater efficiency. ■

8.2.5 DSP on the ARM10E

Like ARM9E, the ARM10E core also implements ARM architecture ARMv5TE. The range
and speed of multiply operations is the same as for the ARM9E, except that the 16-bit
multiply accumulate requires two cycles rather than one. For details of the ARM10E core
cycle timings, see Section D.6 in Appendix D.

The ARM10E implements a background loading mechanism to accelerate load and store
multiples. A load or store multiple instruction issues in one cycle. The operation will run in
the background, and if you attempt to use the value before the background load completes,
then the core will stall. ARM10E uses a 64-bit-wide data path that can transfer two registers
on every background cycle. If the address isn’t 64-bit aligned, then only 32 bits can be
transferred on the first cycle.

Summary Writing DSP Code for the ARM10E

■ Load and store multiples run in the background to give a high memory bandwidth. Use
load and store multiples whenever possible. Be careful to schedule the code so that it
does not use data before the background load has completed.

■ Ensure data arrays are 64-bit aligned so that load and store multiple operations can
transfer two words per cycle.

■ The multiply operations do not early terminate. Therefore you should only use MUL and
MLA for multiplying 32-bit integers. For 16-bit values use SMULxy and SMLAxy.

■ The SMLAxy instruction takes one cycle more than SMULxy. It may be useful to split
a multiply accumulate into a separate multiply and add.

Example

8.6
In the example code the number of samples N is a multiple of 10.

x RN 0 ; input array x[]
c RN 1 ; input array c[]
N RN 2 ; number of samples (a multiple of 10)
acc RN 3 ; accumulator

278 Chapter 8 Digital Signal Processing

x_10 RN 4 ; packed elements from array x[]
x_32 RN 5
x_54 RN 6
x_76 RN 7
x_98 RN 8
c_10 RN 9 ; packed elements from array c[]
c_32 RN 10
c_54 RN 11
c_76 RN 12
c_98 RN 14

; int dot_16by16_arm10(short *x, short *c, int n)
dot_16by16_arm10

STMFD sp!, {r4-r11, lr}
LDMIA x!, {x_10, x_32}
MOV acc, #0
LDMIA c!, {c_10, c_32}

loop_10 ; accumulate 10 products
SUBS N, N, #10
LDMIA x!, {x_54, x_76, x_98}
SMLABB acc, x_10, c_10, acc
SMLATT acc, x_10, c_10, acc
LDMIA c!, {c_54, c_76, c_98}
SMLABB acc, x_32, c_32, acc
SMLATT acc, x_32, c_32, acc
LDMGTIA x!, {x_10, x_32}
SMLABB acc, x_54, c_54, acc
SMLATT acc, x_54, c_54, acc
SMLABB acc, x_76, c_76, acc
LDMGTIA c!, {c_10, c_32}
SMLATT acc, x_76, c_76, acc
SMLABB acc, x_98, c_98, acc
SMLATT acc, x_98, c_98, acc
BGT loop_10
MOV r0, acc
LDMFD sp!, {r4-r11, pc}

The inner loop requires 25 cycles to process 10 samples, or 2.5 cycles per tap. ■

8.2.6 DSP on the Intel XScale

The Intel XScale implements version ARMv5TE of the ARM architecture like ARM9E and
ARM10E. The timings of load and multiply instructions are similar to the ARM9E, and

8.2 Introduction to DSP on the ARM 279

code you’ve optimized for the ARM9E should run efficiently on XScale. See Section D.7 in
Appendix D for details of the XScale core cycle timings.

Summary Writing DSP Code for the Intel XScale

■ The load double word instructionLDRD can transfer two words in a single cycle. Schedule
the code so that you do not use the first loaded register for two cycles and the second
for three cycles.

■ Ensure data arrays are 64-bit aligned so that you can use the 64-bit load instruction
LDRD.

■ The result of a multiply is not available immediately. Following a multiply with
another multiply may introduce stalls. Schedule code so that multiply instructions
are interleaved with load instructions to prevent processor stalls.

■ The multiply operations do not early terminate. Therefore you should only use MUL and
MLA for multiplying 32-bit integers. For 16-bit values use SMULxy and SMLAxy.

Example

8.7
In this example we use LDRD instructions to improve load bandwidth. The input arrays
must be 64-bit aligned. The number of samples N is a multiple of eight.

x RN 0 ; input array x[] (64-bit aligned)
c RN 1 ; input array c[] (64-bit aligned)
N RN 2 ; number of samples (a multiple of 8)
acc0 RN 3 ; accumulators
acc1 RN 14
x_10 RN 4 ; packed elements from array x[]
x_32 RN 5
x_54 RN 6
x_76 RN 7
c_10 RN 8 ; packed elements from array c[]
c_32 RN 9
c_54 RN 10
c_76 RN 11

dot_16by16_xscale
STMFD sp!, {r4-r11, lr}
LDRD x_10, [x], #8 ; preload x_10, x_32
LDRD c_10, [c], #8 ; preload c_10, c_32
MOV acc0, #0
MOV acc1, #0

loop_xscale
; accumulate 8 products
SUBS N, N, #8

280 Chapter 8 Digital Signal Processing

LDRD x_54, [x], #8 ; load x_54, x_76
SMLABB acc0, x_10, c_10, acc0
SMLATT acc1, x_10, c_10, acc1
LDRD c_54, [c], #8 ; load c_54, c_76
SMLABB acc0, x_32, c_32, acc0
SMLATT acc1, x_32, c_32, acc1
LDRGTD x_10, [x], #8 ; load x_10, x_32
SMLABB acc0, x_54, c_54, acc0
SMLATT acc1, x_54, c_54, acc1
LDRGTD c_10, [c], #8 ; load c_10, c_32
SMLABB acc0, x_76, c_76, acc0
SMLATT acc1, x_76, c_76, acc1
BGT loop_xscale
ADD r0, acc0, acc1
LDMFD sp!, {r4-r11, pc}

The inner loop requires 14 cycles to accumulate 8 products, a rating of 1.75 cycles
per tap. ■

8.3 FIR filters
The finite impulse response (FIR) filter is a basic building block of many DSP applications
and worth investigating in some detail. You can use a FIR filter to remove unwanted fre-
quency ranges, boost certain frequencies, or implement special effects. We will concentrate
on efficient implementation of the filter on the ARM. The FIR filter is the simplest type of
digital filter. The filtered sample yt depends linearly on a fixed, finite number of unfiltered
samples xt . Let M be the length of the filter. Then for some filter coefficients, ci :

yt =
M−1∑
i=0

cixt−i (8.21)

Some books refer to the coefficients ci as the impulse response. If you feed the impulse
signal x = (1, 0, 0, 0, . . .) into the filter, then the output is the signal of filter coefficients
y = (c0, c1, c2, . . .).

Let’s look at the issue of dynamic range and possible overflow of the output signal.
Suppose that we are using Qn and Qm fixed-point representations X [t] and C[i] for xt and
ci , respectively. In other words:

X [t] = round(2nxt) and C[i] = round(2mci) (8.22)

We implement the filter by calculating accumulated values A[t]:
A[t] = C[0]X [t] + C[1]X [t − 1] + · · · + C[M − 1]X [t − M + 1] (8.23)

8.3 FIR filters 281

Then A[t] is a Q(n+m) representation of yt . But, how large is A[t]? How many bits
of precision do we need to ensure that A[t] does not overflow its integer container and
give a meaningless filter result? There are two very useful inequalities that answer these
questions:

|A[t]| ≤ max{|X [t − i]|, 0 ≤ i < M } ×
M−1∑
i=0

|C[i]| (8.24)

|A[t]| ≤
√√√√M−1∑

i=0

|X [t − i]|2 ×
√√√√M−1∑

i=0

|C[i]|2 (8.25)

Equation (8.24) says that if you know the dynamic range of X [t], then the maximum
gain of dynamic range is bounded by the sum of the absolute values of the filter coefficients
C[i]. Equation (8.25) says that if you know the power of the signal X [t], then the dynamic
range of A[t] is bounded by the product of the input signal and coefficient powers. Both
inequalities are the best possible. Given fixed C[t], we can choose X [t] so that there is
equality. They are special cases of the more general Holder inequalities. Let’s illustrate with
an example.

Example

8.8
Consider the simple, crude, high-pass filter defined by Equation (8.26). The filter allows
through high-frequency signals, but attenuates low-frequency ones.

yt = −0. 45xt + 0. 9xt−1 − 0. 45xt−2 (8.26)

Suppose we represent xi and ci by Qn, Qm 16-bit fixed-point signals X [t] and C[i].
Then,

C[0] = −0. 45 × 2m , C[1] = 0. 90 × 2m , C[2] = −0. 45 × 2m (8.27)

Since X [t] is a 16-bit integer, |X [t]| ≤ 215, and so, using the first inequality above,

|A[t]| ≤ 215 × 1. 8 × 2m = 1. 8 × 215+m (8.28)

A[t] will not overflow a 32-bit integer, provided that m ≤ 15. So, take m = 15 for greatest
coefficient accuracy. The following integer calculation implements the filter with 16-bit Qn
input X [t] and 32-bit Q(n + 15) output A[t]:

A[t] = -0x399A*X[t] + 0x7333*X[t-1] - 0x399A*X[t-2];

For a Qn output Y [t] we need to set Y [t] = A[t] � 15. However, this could overflow
a 16-bit integer. Therefore you either need to saturate the result, or store the result using
a Q(n − 1) representation. ■

282 Chapter 8 Digital Signal Processing

8.3.1 Block FIR filters

Example 8.8 shows that we can usually implement filters using integer sums of products,
without the need to check for saturation or overflow:

A[t] = C[0]*X[t] + C[1]*X[t-1] + ... + C[M-1]*X[t-M+1];

Generally X [t] and C[i] are k-bit integers and A[t] is a 2k-bit integer, where k = 8, 16,
or 32. Table 8.3 shows the precision for some typical applications.

We will look at detailed examples of long 16-bit and 32-bit filters. By a long filter, we
mean that M is so large that you can’t hold the filter coefficients in registers. You should
optimize short filters such as Example 8.8 on a case-by-case basis. For these you can hold
many coefficients in registers.

For a long filter, each result A[t] depends on M data values and M coefficients that we
must read from memory. These loads are time consuming, and it is inefficient to calculate
just a single result A[t]. While we are loading the data and coefficients, we can calculate
A[t + 1] and possibly A[t + 2] at the same time.

An R-way block filter implementation calculates the R values A[t], A[t + 1], . . . ,
A[t + R − 1] using a single pass of the data X [t] and coefficients C[i]. This reduces
the number of memory accesses by a factor of R over calculating each result separately. So
R should be as large as possible. On the other hand, the larger R is, the more registers we
require to hold accumulated values and data or coefficients. In practice we choose R to be
the largest value such that we do not run out of registers in the inner loop. On ARM R can
range from 2 to 6, as we will show in the following code examples.

An R × S block filter is an R-way block filter where we read S data and coefficient values
at a time for each iteration of the inner loop. On each loop we accumulate R × S products
onto the R accumulators.

Figure 8.3 shows a typical 4 × 3 block filter implementation. Each accumulator on
the left is the sum of products of the coefficients on the right multiplied by the signal
value heading each column. The diagram starts with the oldest sample Xt−M+1 since the
filter routine will load samples in increasing order of memory address. Each inner loop of
a 4 × 3 filter accumulates the 12 products in a 4 × 3 parallelogram. We’ve shaded the first
parallelogram and the first sample of the third parallelogram.

As you can see from Figure 8.3, an R × S block filter implementation requires R accu-
mulator registers and a history of R − 1 input samples. You also need a register to hold the

Table 8.3 Filter precision for different applications.

Application X[t] precision (bits) C[t] precision (bits) A[t] precision (bits)

Video 8 8 16
Telecoms audio 16 16 32
High-quality audio 32 32 64

8.3 FIR filters 283

Xt−M+1

At

At+1

At+2

At+3

Xt−M+2 Xt−M+3 Xt−M+4 Xt−M+5 Xt−M+6 Xt−M+7

CM−1 CM−2 CM−3 CM−4 CM−5 CM−6 CM−7

CM−1 CM−2 CM−3 CM−4 CM−5 CM−6

CM−1 CM−2 CM−3 CM−4 CM−5

CM−1 CM−2 CM−3 CM−4

Figure 8.3 A 4 × 3 block filter implementation.

next coefficient. The loop repeats after adding S products to each accumulator. Therefore
we must allocate X [t] and X [t − S] to the same register. We must also keep the history of
length at least R − 1 samples in registers. Therefore S ≥ R − 1. For this reason, block filters
are usually of size R × (R − 1) or R × R.

The following examples give optimized block FIR implementations. We select the best
values for R and S for different ARM implementations. Note that for these implementations,
we store the coefficients in reverse order in memory. Figure 8.3 shows that we start from
coefficient C[M − 1] and work backwards.

Example

8.9
As with the ARM7TDMI dot product, we store 16-bit and 32-bit data items in 32- bit words.
Then we can use load multiples for maximum load efficiency. This example implements a
4 × 3 block filter for 16-bit input data. The array pointers a, x, and c point to output and
input arrays of the formats given in Figure 8.4.

Note that the x array holds a history of M −1 samples and that we reverse the coefficient
array. We hold the coefficient array pointer c and length M in a structure, which limits the
function to four register arguments. We also assume that N is a multiple of four and M
a multiple of three.

Array First Second Third Last Array
name element element element ... element length

a At At+1 At+2 ... At+N−1 N

x Xt−M+1 Xt−M+2 Xt−M+3 ... Xt+N−1 N + M − 1

c CM−1 CM−2 CM−3 ... C0 M

Figure 8.4 Formats of arrays a, x, and c.

284 Chapter 8 Digital Signal Processing

a RN 0 ; array for output samples a[]
x RN 1 ; array of input samples x[]
c RN 2 ; array of coefficients c[]
N RN 3 ; number of outputs (a multiple of 4)
M RN 4 ; number of coefficients (a multiple of 3)
c_0 RN 3 ; coefficient registers
c_1 RN 12
c_2 RN 14
x_0 RN 5 ; data registers
x_1 RN 6
x_2 RN 7
a_0 RN 8 ; output accumulators
a_1 RN 9
a_2 RN 10
a_3 RN 11

; void fir_16by16_arm7m
; (int *a,
; int *x,
; struct { int *c; unsigned int M; } *c,
; unsigned int N)

fir_16by16_arm7m
STMFD sp!, {r4-r11, lr}
LDMIA c, {c, M} ; load coefficient array and length

next_sample_arm7m
STMFD sp!, {N, M}
LDMIA x!, {x_0, x_1, x_2}
MOV a_0, #0 ; zero accumulators
MOV a_1, #0
MOV a_2, #0
MOV a_3, #0

next_tap_arm7m
; perform next block of 4x3=12 taps
LDMIA c!, {c_0, c_1, c_2}
MLA a_0, x_0, c_0, a_0
MLA a_0, x_1, c_1, a_0
MLA a_0, x_2, c_2, a_0
MLA a_1, x_1, c_0, a_1
MLA a_1, x_2, c_1, a_1
MLA a_2, x_2, c_0, a_2
LDMIA x!, {x_0, x_1, x_2}
MLA a_1, x_0, c_2, a_1
MLA a_2, x_0, c_1, a_2

8.3 FIR filters 285

MLA a_2, x_1, c_2, a_2
MLA a_3, x_0, c_0, a_3
MLA a_3, x_1, c_1, a_3
MLA a_3, x_2, c_2, a_3
SUBS M, M, #3 ; processed 3 coefficents
BGT next_tap_arm7m
LDMFD sp!, {N, M}
STMIA a!, {a_0, a_1, a_2, a_3}
SUB c, c, M, LSL#2 ; restore coefficient pointer
SUB x, x, M, LSL#2 ; restore data pointer
ADD x, x, #(4-3)*4 ; advance data pointer
SUBS N, N, #4 ; filtered four samples
BGT next_sample_arm7m
LDMFD sp!, {r4-r11, pc}

Each iteration of the inner loop processes the next three coefficients and updates four
filter outputs. Assuming the coefficients are 16-bit, each multiply accumulate requires
4 cycles. Therefore it processes 12 filter taps in 62 cycles, giving a block FIR rating of
5.17 cycles/tap.

Note that it is cheaper to reset the coefficient and input pointers c and x using
a subtraction, rather than save their values on the stack. ■

Example

8.10
This example gives an optimized block filter for the ARM9TDMI. First, the ARM9TDMI
has a single-cycle 16-bit load, so there is no advantage in using load multiples. We can
save memory by storing the data and coefficients in 16-bit halfwords. Second, we can use
a 4 × 4 block filter implementation rather than a 4 × 3 implementation. This reduces the
loop overhead and is useful if the number of coefficients is a multiple of four rather than a
multiple of three.

The input and output arrays have the same format as Example 8.9, except that the input
arrays are now 16-bit. The number of outputs and coefficients, N and M, must be multiples
of four.

a RN 0 ; array for output samples a[]
x RN 1 ; array of input samples x[]
c RN 2 ; array of coefficients c[]
N RN 3 ; number of outputs (a multiple of 4)
M RN 4 ; number of coefficients (a multiple of 4)
c_0 RN 3 ; coefficient registers
c_1 RN 12
x_0 RN 5 ; data registers
x_1 RN 6
x_2 RN 7
x_3 RN 14

286 Chapter 8 Digital Signal Processing

a_0 RN 8 ; output accumulators
a_1 RN 9
a_2 RN 10
a_3 RN 11

; void fir_16by16_arm9m
; (int *a,
; short *x,
; struct { short *c; unsigned int M; } *c,
; unsigned int N)

fir_16by16_arm9m
STMFD sp!, {r4-r11, lr}
LDMIA c, {c, M}

next_sample_arm9m
STMFD sp!, {N, M}
LDRSH x_0, [x], #2
LDRSH x_1, [x], #2
LDRSH x_2, [x], #2
LDRSH x_3, [x], #2
MOV a_0, #0
MOV a_1, #0
MOV a_2, #0
MOV a_3, #0

next_tap_arm9m
; perform next block of 4x4=16 taps
LDRSH c_0, [c], #2
LDRSH c_1, [c], #2
SUBS M, M, #4
MLA a_0, x_0, c_0, a_0
LDRSH x_0, [x], #2
MLA a_1, x_1, c_0, a_1
MLA a_2, x_2, c_0, a_2
MLA a_3, x_3, c_0, a_3
LDRSH c_0, [c], #2
MLA a_0, x_1, c_1, a_0
LDRSH x_1, [x], #2
MLA a_1, x_2, c_1, a_1
MLA a_2, x_3, c_1, a_2
MLA a_3, x_0, c_1, a_3
LDRSH c_1, [c], #2
MLA a_0, x_2, c_0, a_0
LDRSH x_2, [x], #2
MLA a_1, x_3, c_0, a_1
MLA a_2, x_0, c_0, a_2

8.3 FIR filters 287

MLA a_3, x_1, c_0, a_3
MLA a_0, x_3, c_1, a_0
LDRSH x_3, [x], #2
MLA a_1, x_0, c_1, a_1
MLA a_2, x_1, c_1, a_2
MLA a_3, x_2, c_1, a_3
BGT next_tap_arm9m
LDMFD sp!, {N, M}
STMIA a!, {a_0, a_1, a_2, a_3}
SUB c, c, M, LSL#1 ; restore coefficient pointer
SUB x, x, M, LSL#1 ; advance data pointer
SUBS N, N, #4 ; filtered four samples
BGT next_sample_arm9m
LDMFD sp!, {r4-r11, pc}

The code is scheduled so that we don’t use a loaded value on the following two cycles.
We’ve moved the loop counter decrement to the start of the loop to fill a load delay slot.

Each iteration of the inner loop processes the next four coefficients and updates four
filter outputs. Assuming the coefficients are 16 bits, each multiply accumulate requires
4 cycles. Therefore it processes 16 filter taps in 76 cycles, giving a block FIR rating of
4.75 cycles/tap.

This code also works well for other ARMv4 architecture processors such as the
StrongARM. On StrongARM the inner loop requires 61 cycles, or 3.81 cycles/tap. ■

Example

8.11
The ARM9E has a faster multiplier than previous ARM processors. The ARMv5TE 16-bit
multiply instructions also unpack 16-bit data when two 16-bit values are packed into
a single 32-bit word. Therefore we can store more data and coefficients in registers and use
fewer load instructions.

This example implements a 6 × 6 block filter for ARMv5TE processors. The routine
is rather long because it is optimized for maximum speed. If you don’t require as much
performance, you can reduce code size by using a 4 × 4 block implementation.

The input and output arrays have the same format as Example 8.9, except that the
input arrays are now 16-bit values. The number of outputs and coefficients, N and M,
must be multiples of six. The input arrays must be 32-bit aligned and the memory system
little-endian. If you need to write endian-neutral routines, then you should replace SMLAxy
instructions by macros that change the T and B settings according to endianness. For
example the following macro, SMLA00, evaluates to SMLABB or SMLATT for little- or big-
endian memory systems, respectively. If b and c are read as arrays of 16-bit values, then
SMLA00 always multiplies b[0] by c[0] regardless of endianness.

MACRO
SMLA00 $a, $b, $c, $d

288 Chapter 8 Digital Signal Processing

IF {ENDIAN}="big"
SMLATT $a, $b, $c, $d

ELSE
SMLABB $a, $b, $c, $d

ENDIF
MEND

To keep the example simple, we haven’t used macros like this. The following code only
works on a little-endian memory system.

a RN 0 ; array for output samples a[]
x RN 1 ; array of input samples x[] (32-bit aligned)
c RN 2 ; array of coefficients c[] (32-bit aligned)
N RN 3 ; number of outputs (a multiple of 6)
M RN 4 ; number of coefficients (a multiple of 6)
c_10 RN 0 ; coefficient pairs
c_32 RN 3
x_10 RN 5 ; sample pairs
x_32 RN 6
x_54 RN 7
a_0 RN 8 ; output accumulators
a_1 RN 9
a_2 RN 10
a_3 RN 11
a_4 RN 12
a_5 RN 14

; void fir_16by16_arm9e
; (int *a,
; short *x,
; struct { short *c; unsigned int M; } *c,
; unsigned int N)

fir_16by16_arm9e
STMFD sp!, {r4-r11, lr}
LDMIA c, {c, M}

next_sample_arm9e
STMFD sp!, {a, N, M}
LDMIA x!, {x_10, x_32, x_54} ; preload six samples
MOV a_0, #0 ; zero accumulators
MOV a_1, #0
MOV a_2, #0
MOV a_3, #0
MOV a_4, #0

8.3 FIR filters 289

MOV a_5, #0
next_tap_arm9e

; perform next block of 6x6=36 taps
LDMIA c!, {c_10, c_32} ; load four coefficients
SUBS M, M, #6
SMLABB a_0, x_10, c_10, a_0
SMLATB a_1, x_10, c_10, a_1
SMLABB a_2, x_32, c_10, a_2
SMLATB a_3, x_32, c_10, a_3
SMLABB a_4, x_54, c_10, a_4
SMLATB a_5, x_54, c_10, a_5
SMLATT a_0, x_10, c_10, a_0
LDR x_10, [x], #4 ; load two coefficients
SMLABT a_1, x_32, c_10, a_1
SMLATT a_2, x_32, c_10, a_2
SMLABT a_3, x_54, c_10, a_3
SMLATT a_4, x_54, c_10, a_4
SMLABT a_5, x_10, c_10, a_5
LDR c_10, [c], #4
SMLABB a_0, x_32, c_32, a_0
SMLATB a_1, x_32, c_32, a_1
SMLABB a_2, x_54, c_32, a_2
SMLATB a_3, x_54, c_32, a_3
SMLABB a_4, x_10, c_32, a_4
SMLATB a_5, x_10, c_32, a_5
SMLATT a_0, x_32, c_32, a_0
LDR x_32, [x], #4
SMLABT a_1, x_54, c_32, a_1
SMLATT a_2, x_54, c_32, a_2
SMLABT a_3, x_10, c_32, a_3
SMLATT a_4, x_10, c_32, a_4
SMLABT a_5, x_32, c_32, a_5
SMLABB a_0, x_54, c_10, a_0
SMLATB a_1, x_54, c_10, a_1
SMLABB a_2, x_10, c_10, a_2
SMLATB a_3, x_10, c_10, a_3
SMLABB a_4, x_32, c_10, a_4
SMLATB a_5, x_32, c_10, a_5
SMLATT a_0, x_54, c_10, a_0
LDR x_54, [x], #4
SMLABT a_1, x_10, c_10, a_1
SMLATT a_2, x_10, c_10, a_2
SMLABT a_3, x_32, c_10, a_3

290 Chapter 8 Digital Signal Processing

Table 8.4 ARMv5TE 16-bit block filter timings.

Processor Inner loop cycles Filter rating cycles/tap

ARM9E 46 46/36 = 1.28
ARM10E 78 78/36 = 2.17
XScale 46 46/36 = 1.28

SMLATT a_4, x_32, c_10, a_4
SMLABT a_5, x_54, c_10, a_5
BGT next_tap_arm9e
LDMFD sp!, {a, N, M}
STMIA a!, {a_0, a_1, a_2, a_3, a_4, a_5}
SUB c, c, M, LSL#1 ; restore coefficient pointer
SUB x, x, M, LSL#1 ; advance data pointer
SUBS N, N, #6
BGT next_sample_arm9e
LDMFD sp!, {r4-r11, pc}

Each iteration of the inner loop updates the next six filter outputs, accumulating six
products to each output. Table 8.4 shows the cycle timings for ARMv5TE architecture
processors. ■

Example

8.12
Sometimes 16-bit data items do not give a large enough dynamic range. The ARMv5TE
architecture adds an instruction SMLAWx that allows for efficient filtering of 32-bit data by
16-bit coefficients. The instruction multiplies a 32-bit data item by a 16-bit coefficient,
extracts the top 32 bits of the 48-bit result, and adds it to a 32-bit accumulator.

This example implements a 5×4 block FIR filter with 32-bit data and 16-bit coefficients.
The input and output arrays have the same format as Example 8.9, except that the coefficient
array is 16-bit. The number of outputs must be a multiple of five and the number of
coefficients a multiple of four. The input coefficient array must be 32-bit aligned and the
memory system little-endian. As described in Example 8.11, you can write endian-neutral
code by using macros.

If the input samples and coefficients use Qn and Qm representations, respectively, then
the output is Q(n + m − 16). The SMLAWx shifts down by 16 to prevent overflow.

a RN 0 ; array for output samples a[]
x RN 1 ; array of input samples x[]
c RN 2 ; array of coefficients c[] (32-bit aligned)
N RN 3 ; number of outputs (a multiple of 5)
M RN 4 ; number of coefficients (a multiple of 4)
c_10 RN 0 ; coefficient pair

8.3 FIR filters 291

c_32 RN 3
x_0 RN 5 ; input samples
x_1 RN 6
x_2 RN 7
x_3 RN 14
a_0 RN 8 ; output accumulators
a_1 RN 9
a_2 RN 10
a_3 RN 11
a_4 RN 12

; void fir_32by16_arm9e
; (int *a,
; int *x,
; struct { short *c; unsigned int M; } *c,
; unsigned int N)

fir_32by16_arm9e
STMFD sp!, {r4-r11, lr}
LDMIA c, {c, M}

next_sample32_arm9e
STMFD sp!, {a, N, M}
LDMIA x!, {x_0, x_1, x_2, x_3}
MOV a_0, #0
MOV a_1, #0
MOV a_2, #0
MOV a_3, #0
MOV a_4, #0

next_tap32_arm9e
; perform next block of 5x4=20 taps
LDMIA c!, {c_10, c_32}
SUBS M, M, #4
SMLAWB a_0, x_0, c_10, a_0
SMLAWB a_1, x_1, c_10, a_1
SMLAWB a_2, x_2, c_10, a_2
SMLAWB a_3, x_3, c_10, a_3
SMLAWT a_0, x_1, c_10, a_0
LDMIA x!, {x_0, x_1}
SMLAWT a_1, x_2, c_10, a_1
SMLAWT a_2, x_3, c_10, a_2
SMLAWB a_0, x_2, c_32, a_0
SMLAWB a_1, x_3, c_32, a_1
SMLAWT a_0, x_3, c_32, a_0
LDMIA x!, {x_2, x_3}

292 Chapter 8 Digital Signal Processing

Table 8.5 ARMv5TE 32 × 16 filter timings.

Processor Inner loop cycles Filter rating cycles/tap

ARM9E 30 30/20 = 1.5
ARM10E 44 44/20 = 2.2
XScale 34 34/20 = 1.7

SMLAWB a_4, x_0, c_10, a_4
SMLAWT a_3, x_0, c_10, a_3
SMLAWT a_4, x_1, c_10, a_4
SMLAWB a_2, x_0, c_32, a_2
SMLAWB a_3, x_1, c_32, a_3
SMLAWB a_4, x_2, c_32, a_4
SMLAWT a_1, x_0, c_32, a_1
SMLAWT a_2, x_1, c_32, a_2
SMLAWT a_3, x_2, c_32, a_3
SMLAWT a_4, x_3, c_32, a_4
BGT next_tap32_arm9e
LDMFD sp!, {a, N, M}
STMIA a!, {a_0, a_1, a_2, a_3, a_4}
SUB c, c, M, LSL#1
SUB x, x, M, LSL#2
ADD x, x, #(5-4)*4
SUBS N, N, #5
BGT next_sample32_arm9e
LDMFD sp!, {r4-r11, pc}

Each iteration of the inner loop updates five filter outputs, accumulating four products
to each. Table 8.5 gives cycle counts for architecture ARMv5TE processors. ■

Example

8.13
High-quality audio applications often require intermediate sample precision at greater
than 16-bit. On the ARM we can use the long multiply instruction SMLAL to implement an
efficient filter with 32-bit input data and coefficients. The output values are 64-bit. This
makes the ARM very competitive for CD audio quality applications.

The output and input arrays have the same format as in Example 8.9. We implement
a 3 × 2 block filter so N must be a multiple of three and M a multiple of two. The filter
works well on any ARMv4 implementation.

a RN 0 ; array for output samples a[]
x RN 1 ; array of input samples x[]
c RN 2 ; array of coefficients c[]

8.3 FIR filters 293

N RN 3 ; number of outputs (a multiple of 3)
M RN 4 ; number of coefficients (a multiple of 2)
c_0 RN 3 ; coefficient registers
c_1 RN 12
x_0 RN 5 ; data registers
x_1 RN 6
a_0l RN 7 ; accumulators (low 32 bits)
a_0h RN 8 ; accumulators (high 32 bits)
a_1l RN 9
a_1h RN 10
a_2l RN 11
a_2h RN 14

; void fir_32by32
; (long long *a,
; int *x,
; struct { int *c; unsigned int M; } *c,
; unsigned int N)

fir_32by32
STMFD sp!, {r4-r11, lr}
LDMIA c, {c, M}

next_sample32
STMFD sp!, {N, M}
LDMIA x!, {x_0, x_1}
MOV a_0l, #0
MOV a_0h, #0
MOV a_1l, #0
MOV a_1h, #0
MOV a_2l, #0
MOV a_2h, #0

next_tap32
; perform next block of 3x2=6 taps
LDMIA c!, {c_0, c_1}
SMLAL a_0l, a_0h, x_0, c_0
SMLAL a_1l, a_1h, x_1, c_0
SMLAL a_0l, a_0h, x_1, c_1
LDMIA x!, {x_0, x_1}
SUBS M, M, #2
SMLAL a_2l, a_2h, x_0, c_0
SMLAL a_1l, a_1h, x_0, c_1
SMLAL a_2l, a_2h, x_1, c_1
BGT next_tap32
LDMFD sp!, {N, M}

294 Chapter 8 Digital Signal Processing

Table 8.6 32-bit by 32-bit filter timing.

Processor Inner loop cycles Filter rating cycles/tap

ARM7TDMI 54 54/6 = 9
ARM9TDMI 50 50/6 = 8.3
StrongARM 31 31/6 = 5.2
ARM9E 26 26/6 = 4.3
ARM10E 22 22/6 = 3.7
XScale 22 22/6 = 3.7

STMIA a!, {a_0l, a_0h, a_1l, a_1h, a_2l, a_2h}
SUB c, c, M, LSL#2
SUB x, x, M, LSL#2
ADD x, x, #(3-2)*4
SUBS N, N, #3
BGT next_sample32
LDMFD sp!, {r4-r11, pc}

Each iteration of the inner loop processes the next two coefficients and updates three
filter outputs. Assuming the coefficients use the full 32-bit range, the multiply does not
terminate early. The routine is optimal for most ARM implementations. Table 8.6 gives the
cycle timings for a range of processors. ■

Summary Writing FIR Filters on the ARM

■ If the number of FIR coefficients is small enough, then hold the coefficients and history
samples in registers. Often coefficients are repeated. This will save on the number of
registers you need.

■ If the FIR filter length is long, then use a block filter algorithm of size R × (R − 1) or
R × R. Choose the largest R possible given the 14 available general purpose registers on
the ARM.

■ Ensure that the input arrays are aligned to the access size. This will be 64-bit when using
LDRD. Ensure that the array length is a multiple of the block size.

■ Schedule to avoid all load-use and multiply-use interlocks.

8.4 IIR Filters
An infinite impulse response (IIR) filter is a digital filter that depends linearly on a finite
number of input samples and a finite number of previous filter outputs. In other words, it

8.4 IIR Filters 295

combines a FIR filter with feedback from previous filter outputs. Mathematically, for some
coefficients bi and aj :

yt =
M∑

i=0

bixt−i −
L∑

j=1

aj yt−j (8.29)

If you feed in the impulse signal x = (1, 0, 0, 0, . . .), then yt may oscillate forever. This
is why it has an infinite impulse response. However, for a stable filter, yt will decay to zero.
We will concentrate on efficient implementation of this filter.

You can calculate the output signal yt directly, using Equation (8.29). In this case
the code is similar to the FIR of Section 8.3. However, this calculation method may be
numerically unstable. It is often more accurate, and more efficient, to factorize the filter
into a series of biquads—an IIR filter with M = L = 2:

yt = b0xt + b1xt−1 + b2xt−2 − a1yt−1 − a2yt−2 (8.30)

We can implement any IIR filter by repeatedly filtering the data by a number of
biquads. To see this, we use the z-transform. This transform associates with each signal xt ,
a polynomial x(z) defined as

x(z) =
∑

t

xt z−t (8.31)

If we transform the IIR equation into z-coordinates, we obtain(
1 + a1z−1 + · · · + aLz−L)

y(z) = (
b0 + b1z−1 + · · · + bM z−M)

x(z) (8.32)

Equivalently,

y(z) = H (z)x(z), where H (z) = b0 + b1z−1 + · · · + bM z−M

1 + a1z−1 + · · · + aLz−L
(8.33)

Next, consider H (z) as the ratio of two polynomials in z−1. We can factorize the
polynomials into quadratic factors. Then we can express H (z) as a product of quadratic
ratios Hi(z), each Hi(z) representing a biquad.

So, now we only have to implement biquads efficiently. On the face of it, to calculate
yt for a biquad, we need the current sample xt and four history elements xt−1, xt−2, yt−1,
yt−2. However, there is a trick to reduce the number of history or state values we require
from four to two. We define an intermediate signal st by

st = xt − a1st−1 − a2st−2 (8.34)

Then

yt = b0st + b1st−1 + b2st−2 (8.35)

In other words, we perform the feedback part of the filter before the FIR part of the filter.
Equivalently we apply the denominator of H (z) before the numerator. Now each biquad
filter requires a state of only two values, st−1 and st−2.

296 Chapter 8 Digital Signal Processing

The coefficient b0 controls the amplitude of the biquad. We can assume that b0 = 1
when performing a series of biquads, and use a single multiply or shift at the end to correct
the signal amplitude. So, to summarize, we have reduced an IIR to filtering by a series of
biquads of the form

st = xt − a1st−1 − a2st−2, yt = st + b1st−1 + b2st−2 (8.36)

To implement each biquad, we need to store fixed-point representations of the six values
−a1, −a2, b1, b2, st−1, st−2 in ARM registers. To load a new biquad requires six loads; to
load a new sample, only one load. Therefore it is much more efficient for the inner loop to
loop over samples rather than loop over biquads.

For a block IIR, we split the input signal xt into large frames of N samples. We make
multiple passes over the signal, filtering by as many biquads as we can hold in registers
on each pass. Typically for ARMv4 processors we filter by one biquad on each pass; for
ARMv5TE processors, by two biquads. The following examples give IIR code for different
ARM processors.

Example

8.14
This example implements a 1 × 2 block IIR filter on the ARM7TDMI. Each inner loop
applies one biquad filter to the next two input samples. The input arrays have the format
given in Figure 8.5.

Each biquad Bk is a list of six values (−a1, −a2, b1, b2, st−1, st−2). As with previous
implementations for the ARM7TDMI, we store the 16-bit input values in 32-bit integers so
we can use load multiples. We store the biquad coefficients at Q14 fixed-point format. The
number of samples N must be even.

y RN 0 ; address for output samples y[]
x RN 1 ; address of input samples x[]
b RN 2 ; address of biquads
N RN 3 ; number of samples to filter (a multiple of 2)
M RN 4 ; number of biquads to apply
x_0 RN 2 ; input samples

Array First Second Third Last Array
name element element element element length

x Xt Xt+1 Xt+2 ... Xt+N−1 N

y Yt Yt+1 Yt+2 ... Yt+N−1 N

b B0 B1 B2 ... BM−1 M

Figure 8.5 Formats of the arrays x, y, and b.

8.4 IIR Filters 297

x_1 RN 4
a_1 RN 6 ; biquad coefficient -a[1] at Q14
a_2 RN 7 ; biquad coefficient -a[2] at Q14
b_1 RN 8 ; biquad coefficient +b[1] at Q14
b_2 RN 9 ; biquad coefficient +b[2] at Q14
s_1 RN 10 ; s[t-1] then s[t-2] (alternates)
s_2 RN 11 ; s[t-2] then s[t-1] (alternates)
acc0 RN 12 ; accumulators
acc1 RN 14

; typedef struct {
; int a1,a2; /* coefficients -a[1],-a[2] at Q14 */
; int b1,b2; /* coefficients +b[1],+b[2] at Q14 */
; int s1,s2; /* s[t-1], s[t-2] */
; } biquad;
;
; void iir_q14_arm7m
; (int *y,
; int *x,
; struct { biquad *b; unsigned int M; } *b,
; unsigned int N);

iir_q14_arm7m
STMFD sp!, {r4-r11, lr}
LDMIA b, {b, M}

next_biquad_arm7m
LDMIA b!, {a_1, a_2, b_1, b_2, s_1, s_2}
STMFD sp!, {b, N, M}

next_sample_arm7m
; use a 2x1 block IIR
LDMIA x!, {x_0, x_1}
; apply biquad to sample 0 (x_0)
MUL acc0, s_1, a_1
MLA acc0, s_2, a_2, acc0
MUL acc1, s_1, b_1
MLA acc1, s_2, b_2, acc1
ADD s_2, x_0, acc0, ASR #14
ADD x_0, s_2, acc1, ASR #14
; apply biquad to sample 1 (x_1)
MUL acc0, s_2, a_1
MLA acc0, s_1, a_2, acc0
MUL acc1, s_2, b_1
MLA acc1, s_1, b_2, acc1
ADD s_1, x_1, acc0, ASR #14

298 Chapter 8 Digital Signal Processing

ADD x_1, s_1, acc1, ASR #14
STMIA y!, {x_0, x_1}
SUBS N, N, #2
BGT next_sample_arm7m
LDMFD sp!, {b, N, M}
STMDB b, {s_1, s_2}
SUB y, y, N, LSL#2
MOV x, y
SUBS M, M, #1
BGT next_biquad_arm7m
LDMFD sp!, {r4-r11, pc}

Each inner loop requires a worst case of 44 cycles to apply one biquad to two samples.
This gives the ARM7TDMI an IIR rating of 22 cycles/biquad-sample for a general biquad. ■

Example

8.15
On the ARM9TDMI we can use halfword load instructions rather than load multiples.
Therefore we can store samples in 16-bit short integers. This example implements a load
scheduled IIR suitable for the ARM9TDMI. The interface is the same as in Example 8.14,
except that we use 16-bit data items.

y RN 0 ; address for output samples y[]
x RN 1 ; address of input samples x[]
b RN 2 ; address of biquads
N RN 3 ; number of samples to filter (a multiple of 2)
M RN 4 ; number of biquads to apply
x_0 RN 2 ; input samples
x_1 RN 4
round RN 5 ; rounding value (1 << 13)
a_1 RN 6 ; biquad coefficient -a[1] at Q14
a_2 RN 7 ; biquad coefficient -a[2] at Q14
b_1 RN 8 ; biquad coefficient +b[1] at Q14
b_2 RN 9 ; biquad coefficient +b[2] at Q14
s_1 RN 10 ; s[t-1] then s[t-2] (alternates)
s_2 RN 11 ; s[t-2] then s[t-1] (alternates)
acc0 RN 12 ; accumulators
acc1 RN 14

; typedef struct {
; short a1,a2; /* coefficients -a[1],-a[2] at Q14 */
; short b1,b2; /* coefficients +b[1],+b[2] at Q14 */
; short s1,s2; /* s[t-1], s[t-2] */
; } biquad;
;
; void iir_q14_arm9m

8.4 IIR Filters 299

; (short *y,
; short *x,
; struct { biquad *b; unsigned int M; } *b,
; unsigned int N);

iir_q14_arm9m
STMFD sp!, {r4-r11, lr}
LDMIA b, {b, M}
MOV round, #1 << 13

iir_next_biquad
LDRSH a_1, [b], #2
LDRSH a_2, [b], #2
LDRSH b_1, [b], #2
LDRSH b_2, [b], #2
LDRSH s_1, [b], #2
LDRSH s_2, [b], #2
STMFD sp!, {b, N, M}

iir_inner_loop
; use a 2x1 block IIR
; apply biquad to x_0
MLA acc0, s_1, a_1, round
LDRSH x_0, [x], #2
MLA acc0, s_2, a_2, acc0
MLA acc1, s_1, b_1, round
MLA acc1, s_2, b_2, acc1
ADD s_2, x_0, acc0, ASR #14
ADD x_0, s_2, acc1, ASR #14
STRH x_0, [y], #2
; apply biquad to x_1
MLA acc0, s_2, a_1, round
LDRSH x_1, [x], #2
MLA acc0, s_1, a_2, acc0
MLA acc1, s_2, b_1, round
MLA acc1, s_1, b_2, acc1
ADD s_1, x_1, acc0, ASR #14
ADD x_1, s_1, acc1, ASR #14
STRH x_1, [y], #2
SUBS N, N, #2
BGT iir_inner_loop
LDMFD sp!, {b, N, M}
STRH s_1, [b, #-4]
STRH s_2, [b, #-2]
SUB y, y, N, LSL#1
MOV x, y
SUBS M, M, #1
BGT iir_next_biquad
LDMFD sp!, {r4-r11, pc}

300 Chapter 8 Digital Signal Processing

Table 8.7 ARMv4T IIR timings.

Processor Cycles per loop Cycles per biquad-sample

ARM9TDMI 44 22
StrongARM 33 16.5

The timings on ARM9TDMI and StrongARM are shown in Table 8.7. ■

Example

8.16
With ARMv5TE processors, we can pack two 16-bit values into each register. This means
we can store the state and coefficients for two biquads in registers at the same time. This
example implements a 2 × 2 block IIR filter. Each iteration of the inner loop applies two
biquad filters to the next two input samples.

The format of the input arrays is the same as for Example 8.14, except that we use
16-bit arrays. The biquad array must be 32-bit aligned. The number of samples N and
number of biquads M must be even.

As with the ARM9E FIR, the routine only works for a little-endian memory system. See
the discussion in Example 8.11 on how to write endian-neutral DSP code using macros.

y RN 0 ; address for output samples y[]
x RN 1 ; address of input samples x[]
b RN 2 ; address of biquads (32-bit aligned)
N RN 3 ; number of samples to filter (a multiple of 2)
M RN 4 ; number of biquads to apply (a multiple of 2)
x_0 RN 2 ; input samples
x_1 RN 4
s_0 RN 5 ; new state
b0_a21 RN 6 ; biquad 0, packed -a[2], -a[1]
b0_b21 RN 7 ; biquad 0, packed +b[2], +b[1]
b0_s_1 RN 8 ; biquad 0, s[t-1]
b0_s_2 RN 9 ; biquad 0, s[t-2]
b1_a21 RN 10 ; biquad 1, packed -a[2], -a[1]
b1_b21 RN 11 ; biquad 1, packed +b[2], +b[1]
b1_s_1 RN 12 ; biquad 1, s[t-1]
b1_s_2 RN 14 ; biquad 1, s[t-2]

; typedef struct {
; short a1,a2; /* coefficients -a[1],-a[2] at Q14 */
; short b1,b2; /* coefficients +b[1],+b[2] at Q14 */
; short s1,s2; /* s[t-1], s[t-2] */
; } biquad;
;

8.4 IIR Filters 301

; void iir_q14_arm9e
; (short *y,
; short *x,
; struct { biquad *b; unsigned int M; } *b,
; unsigned int N);

iir_q14_arm9e
STMFD sp!, {r4-r11, lr}
LDMIA b, {b, M}

next_biquad_arm9e
LDMIA b!, {b0_a21, b0_b21}
LDRSH b0_s_1, [b], #2
LDRSH b0_s_2, [b], #2
LDMIA b!, {b1_a21, b1_b21}
LDRSH b1_s_1, [b], #2
LDRSH b1_s_2, [b], #2
STMFD sp!, {b, N, M}

next_sample_arm9e
; use a 2 x 2 block IIR
LDRSH x_0, [x], #2
LDRSH x_1, [x], #2
SUBS N, N, #2
MOV x_0, x_0, LSL #14
MOV x_1, x_1, LSL #14
; apply biquad 0 to sample 0
SMLABB x_0, b0_s_1, b0_a21, x_0
SMLABT s_0, b0_s_2, b0_a21, x_0
SMLABB x_0, b0_s_1, b0_b21, s_0
SMLABT x_0, b0_s_2, b0_b21, x_0
MOV b0_s_2, s_0, ASR #14
; apply biquad 0 to sample 1
SMLABB x_1, b0_s_2, b0_a21, x_1
SMLABT s_0, b0_s_1, b0_a21, x_1
SMLABB x_1, b0_s_2, b0_b21, s_0
SMLABT x_1, b0_s_1, b0_b21, x_1
MOV b0_s_1, s_0, ASR #14
; apply biquad 1 to sample 0
SMLABB x_0, b1_s_1, b1_a21, x_0
SMLABT s_0, b1_s_2, b1_a21, x_0
SMLABB x_0, b1_s_1, b1_b21, s_0
SMLABT x_0, b1_s_2, b1_b21, x_0
MOV b1_s_2, s_0, ASR #14
; apply biquad 1 to sample 1
SMLABB x_1, b1_s_2, b1_a21, x_1

302 Chapter 8 Digital Signal Processing

Table 8.8 ARMv5E IIR timings.

Processor Cycles per loop Cycles per biquad-sample

ARM9E 32 8.0
ARM10E 45 11.2
XScale 30 7.7

SMLABT s_0, b1_s_1, b1_a21, x_1
SMLABB x_1, b1_s_2, b1_b21, s_0
SMLABT x_1, b1_s_1, b1_b21, x_1
MOV b1_s_1, s_0, ASR #14
MOV x_0, x_0, ASR #14
MOV x_1, x_1, ASR #14
STRH x_0, [y], #2
STRH x_1, [y], #2
BGT next_sample_arm9e
LDMFD sp!, {b, N, M}
STRH b0_s_1, [b, #-12-4]
STRH b0_s_2, [b, #-12-2]
STRH b1_s_1, [b, #-4]
STRH b1_s_2, [b, #-2]
SUB y, y, N, LSL#1
MOV x, y
SUBS M, M, #2
BGT next_biquad_arm9e
LDMFD sp!, {r4-r11, pc}

The timings on ARM9E, ARM10E, and XScale are shown in Table 8.8. ■

Summary Implementing 16-bit IIR Filters

■ Factorize the IIR into a series of biquads. Choose the data precision so there can be no
overflow during the IIR calculation. To compute the maximum gain of an IIR, apply the
IIR to an impulse to generate the impulse response. Apply the equations of Section 8.3
to the impulse response c[j].

■ Use a block IIR algorithm, dividing the signal to be filtered into large frames.

■ On each pass of the sample frame, filter by M biquads. Choose M to be the largest
number of biquads so that you can hold the state and coefficients in the 14 available
registers on the ARM. Ensure that the total number of biquads is a multiple of M.

■ As always, schedule code to avoid load and multiply use interlocks.

8.5 The Discrete Fourier Transform 303

8.5 The Discrete Fourier Transform
The Discrete Fourier Transform (DFT) converts a time domain signal xt to a frequency
domain signal yk . The associated inverse transform (IDFT) reconstructs the time domain
signal from the frequency domain signal. This tool is heavily used in signal analysis and
compression. It is particularly powerful because there is an algorithm, the Fast Fourier
Transform (FFT), that implements the DFT very efficiently. In this section we will look at
some efficient ARM implementations of the FFT.

The DFT acts on a frame of N complex time samples, converting them into N complex
frequency coefficients. We will use Equations (8.37) and (8.38) as the definition. You may
see slightly different equations in different texts because some authors may use a different
scaling or a different definition of which is the forward and which the inverse transform.
This doesn’t affect any of the important properties of the transform.

y = DFT N (x) means yk =
N−1∑
t=0

xt wkt
N , where wN = e−2π i/N (8.37)

x = IDFT N (y) means xt = 1

N

N−1∑
k=0

yk wkt
N , where wN = e2π i/N (8.38)

As you can see, the transforms are the same except for scaling and choice of wN .
Therefore we’ll only look at the forward transform. In fact the Fast Fourier Transform
algorithm works for any wN such that wN

N = 1. The algorithm is only invertible for
principal roots of unity where wk

N �= 1 for k < N .

8.5.1 The Fast Fourier Transform

The idea of the FFT is to break down the transform by factorizing N. Suppose for example
that N = R × S. Split the output into S blocks of size R and the input into R blocks of
size S. In other words:

k = nR + m for n = 0, 1, . . . , S − 1 and m = 0, 1, . . . , R − 1 (8.39)

t = rS + s for r = 0, 1, . . . , R − 1 and s = 0, 1, . . . , S − 1 (8.40)

Then,

y[nR + m] =
R−1∑
r=0

S−1∑
s=0

x[rS + s]w(nR+m)(rS+s)
N (8.41)

y[nR + m] =
S−1∑
s=0

wns
S wms

N

(
R−1∑
r=0

x[rS + s]wmr
R

)
(8.42)

304 Chapter 8 Digital Signal Processing

Equation (8.42) reduces the N-point DFT to S sets of R-point DFTs, N multiplications
by coefficients of the form wms

N , and R sets of S-point DFTs. Specifically, if we set in turn:

(u[sR], u[sR + 1], . . . , u[sR + R − 1]) = DFT R(x[s], x[s + S], . . . , x[s + (R − 1)S])
(8.43)

v[sR + m] = wms
N u[sR + m] (8.44)

Then y[nR + m] =
S−1∑
s=0

wns
S v[sR + m], and so

(y[m], y[R + m], . . . , y[(S − 1)R + m]) = DFT S(v[m], v[R + m], . . . , v[(S − 1)R + m])
(8.45)

In practice we then repeat this process to calculate the R- and S-point DFTs efficiently. This
works well when N has many small factors. The most useful case is when N is a power of 2.

8.5.1.1 The Radix-2 Fast Fourier Transform

Suppose N = 2a . Take R = 2a−1 and S = 2 and apply the reduction of the DFT. Since
DFT 2(v[m], v[R + m]) = (v[m] + v[R + m], v[m] − v[R + m]), we have

y[m] = u[m] + wm
N u[R + m] and y[R + m] = u[m] − wm

N u[R + m] (8.46)

This pair of operations is called the decimation-in-time radix-2 butterfly. The N-point DFT
reduces to two R-point DFTs followed by N /2 butterfly operations. We repeat the process
decomposing R = 2a−2 × 2, and so on for each factor of 2. The result is an algorithm
consisting of a stages, each stage calculating N /2 butterflies.

You will notice that the data order must be changed when we calculate u[sR + m] from
x[rS + s]. We can avoid this if we store x[t] in a transposed order. For a radix-2 Fast Fourier
Transform, all the butterfly operations may be performed in place provided that the input
array x[t] is stored in bit-reversed order—store x[t] at x[s], where the a bits of the index s
are the reverse of the a bits of the index t.

There is another way to apply the FFT reduction. We could choose R = 2 and S = 2a−1

and iterate by decomposing the second factor instead. This generates the decimation-
in-frequency radix-2 transform. For the decimation-in-frequency transformation, the
butterfly is

v[2s] = x[s] + x[S + s] and v[2s + 1] = ws
N (x[s] − x[S + s]) (8.47)

From an ARM optimization point of view, the important difference is the position of the
complex multiply. The decimation-in-time algorithm multiplies by wm

N before the addition
and subtraction. The decimation-in-frequency algorithm multiplies by ws

N after the addi-
tion and subtraction. A fixed-point multiply involves a multiply followed by a right shift.

8.5 The Discrete Fourier Transform 305

The ARM barrel shifter is positioned before the add or subtract in ARM instruction
operations, so the ARM is better suited to the decimation-in-time algorithm.

We won’t go into the details of coding a radix-2 FFT, since a radix-4 FFT gives better
performance. We look at this in the next section.

8.5.1.2 The Radix-4 Fast Fourier Transform

This is very similar to the radix-2 transform except we treat N as a power of four, N = 4b .
We use the decimation-in-time decomposition, R = 4b−1 and S = 4. Then the radix-4
butterfly is

(y[m], y[R + m], y[2R + m], y[3R + m])
= DFT 4(u[m], wm

N u[R + m], w2m
N u[2R + m], w3m

N u[3R + m]) (8.48)

The four-point DFT does not require any complex multiplies. Therefore, the decimation-
in-time radix-4 algorithm requires bN /4 radix-4 butterflies with three complex multiplies in
each. The radix-2 algorithm requires 2bN /2 radix-2 butterflies with one complex multiply
in each. Therefore, the radix-4 algorithm saves 25% of the multiplies.

It is tempting to consider a radix-8 transform. However, you can only save a small
percentage of the multiplies. This gain will usually be outweighed by the extra load and
store overhead required. The ARM has too few registers to support the general radix-8
butterfly efficiently. The radix-4 butterfly is at a sweet spot: It saves a large number of
multiplies and will fit neatly into the 14 available ARM registers.

To implement the radix-4 butterfly efficiently, we use a radix-2 FFT to calculate DFT 4.
Provided that the input is bit-reversed, we can calculate a four-point DFT in place, in eight
ARM registers. The following C_FFT4 macro lies at the heart of our FFT implementations.
It performs the four-point DFT and input scale at the same time, which makes good use of
the ARM barrel shifter. To prevent overflow, we also divide the answer by four.

x0_r RN 4 ; data register (real part)
x0_i RN 5 ; data register (imaginary part)
x1_r RN 6
x1_i RN 7
x2_r RN 8
x2_i RN 9
x3_r RN 10
x3_i RN 11
y3_r RN x3_i
y3_i RN x3_r

; Four-point complex Fast Fourier Transform
;
; (x0,x1,x2,y3)=DFT4(x0,x2 >> s,x1 >> s,x3 >> s)/4

306 Chapter 8 Digital Signal Processing

;
; x0 = (x0 + (x2 >> s) + (x1 >> s) + (x3 >> s))/4
; x1 = (x0 - i*(x2 >> s) - (x1 >> s) + i*(x3 >> s))/4
; x2 = (x0 - (x2 >> s) + (x1 >> s) - (x3 >> s))/4
; y3 = (x0 + i*(x2 >> s) - (x1 >> s) - i*(x3 >> s))/4
;
MACRO
C_FFT4 $s
; (x2,x3) = (x2+x3, x2-x3)
ADD x2_r, x2_r, x3_r
ADD x2_i, x2_i, x3_i
SUB x3_r, x2_r, x3_r, LSL#1
SUB x3_i, x2_i, x3_i, LSL#1
; (x0,x1) = (x0+(x1 >> s), x0-(x1 >> s))/4
MOV x0_r, x0_r, ASR#2
MOV x0_i, x0_i, ASR#2
ADD x0_r, x0_r, x1_r, ASR#(2+$s)
ADD x0_i, x0_i, x1_i, ASR#(2+$s)
SUB x1_r, x0_r, x1_r, ASR#(1+$s)
SUB x1_i, x0_i, x1_i, ASR#(1+$s)
; (x0,x2) = (x0+(x2 >> s)/4, x0-(x2 >> s)/4)
ADD x0_r, x0_r, x2_r, ASR#(2+$s)
ADD x0_i, x0_i, x2_i, ASR#(2+$s)
SUB x2_r, x0_r, x2_r, ASR#(1+$s)
SUB x2_i, x0_i, x2_i, ASR#(1+$s)
; (x1,y3) = (x1-i*(x3 >> s)/4, x1+i*(x3 >> s)/4)
ADD x1_r, x1_r, x3_i, ASR#(2+$s)
SUB x1_i, x1_i, x3_r, ASR#(2+$s)
SUB y3_r, x1_r, x3_i, ASR#(1+$s)
ADD y3_i, x1_i, x3_r, ASR#(1+$s)
MEND

We will also use the following macros, C_LDR and C_STR, to load and store complex
values. This will clarify the FFT code listing in Examples 8.17 and 8.18.

; complex load, x=[a], a+=offset
MACRO
C_LDR $x, $a, $offset
LDRSH $x._i, [$a, #2]
LDRSH $x._r, [$a], $offset
MEND

; complex store, [a]=x, a+=offset

8.5 The Discrete Fourier Transform 307

MACRO
C_STR $x, $a, $offset
STRH $x._i, [$a, #2]
STRH $x._r, [$a], $offset
MEND

Example

8.17
This example implements a 16-bit radix-4 FFT for any ARMv4 architecture processor. We
assume that the number of points is n = 4b . If N is an odd power of two, then you will need
to alter the routine to start with a radix-2 stage, or a radix-8 stage, rather than the radix-4
stage we show.

The code uses a trick to perform a complex multiply using only three real multiplies. If
a + ib is a complex data item, and c + is a complex coefficient, then

(a + ib)(c − is) = [(b − a)s + a(c + s)] + i[(b − a)s + b(c − s)] (8.49)

(a + ib)(c + is) = [(a − b)s + a(c − s)] + i[(a − b)s + b(c + s)] (8.50)

When c + is = e2π i/N , these are the complex multiplies required for the forward and
inverse transform radix-4 butterflies, respectively. Given inputs c − s, s, c + s, a, b, you can
calculate either of the above using a subtract, multiply, and two multiply accumulates. In
the coefficient lookup table we store (c − s, s) and calculate c + s on the fly. We can use the
same table for both forward and inverse transforms.

Use the following code to perform the radix-4 transform on ARMv4. The number of
points N must be a power of four. The algorithm actually calculates DFT N (x)/N , the extra
scaling by N preventing overflow. The algorithm uses the C_FFT4 and load-store macros
defined previously.

; Complex conjugate multiply a=(xr+i*xi)*(cr-i*ci)
; x = xr + i*xi
; w = (cr-ci) + i*ci
MACRO
C_MUL9m $a, $x, $w
SUB t1, $x._i, $x._r ; (xi-xr)
MUL t0, t1, $w._i ; (xi-xr)*ci
ADD t1, $w._r, $w._i, LSL#1 ; (cr+ci)
MLA $a._i, $x._i, $w._r, t0 ; xi*cr-xr*ci
MLA $a._r, $x._r, t1, t0 ; xr*cr+xi*ci
MEND

y RN 0 ; output complex array y[]
c RN 0 ; coefficient array
x RN 1 ; input complex array x[]
N RN 2 ; number of samples (a power of 2)
S RN 2 ; the number of blocks

308 Chapter 8 Digital Signal Processing

R RN 3 ; the number of samples in each block
x0_r RN 4 ; data register (real part)
x0_i RN 5 ; data register (complex part)
x1_r RN 6
x1_i RN 7
x2_r RN 8
x2_i RN 9
x3_r RN 10
x3_i RN 11
y3_r RN x3_i
y3_i RN x3_r
t0 RN 12 ; scratch register
t1 RN 14

; void fft_16_arm9m(short *y, short *x, unsigned int N)
fft_16_arm9m

STMFD sp!, {r4-r11, lr}
MOV t0, #0 ; bit reversed counter

first_stage_arm9m
; first stage load and bit reverse
ADD t1, x, t0, LSL#2
C_LDR x0, t1, N
C_LDR x2, t1, N
C_LDR x1, t1, N
C_LDR x3, t1, N
C_FFT4 0
C_STR x0, y, #4
C_STR x1, y, #4
C_STR x2, y, #4
C_STR y3, y, #4
EOR t0, t0, N, LSR#3 ; increment third bit
TST t0, N, LSR#3 ; from the top
BNE first_stage_arm9m
EOR t0, t0, N, LSR#4 ; increment fourth bit
TST t0, N, LSR#4 ; from the top
BNE first_stage_arm9m
MOV t1, N, LSR#5 ; increment fifth

bit_reversed_count_arm9m ; bits downward
EOR t0, t0, t1
TST t0, t1
BNE first_stage_arm9m
MOVS t1, t1, LSR#1
BNE bit_reversed_count_arm9m

8.5 The Discrete Fourier Transform 309

; finished the first stage
SUB x, y, N, LSL#2 ; x = working buffer
MOV R, #16
MOVS S, N, LSR#4
LDMEQFD sp!, {r4-r11, pc}
ADR c, fft_table_arm9m

next_stage_arm9m
; S = the number of blocks
; R = the number of samples in each block
STMFD sp!, {x, S}
ADD t0, R, R, LSL#1
ADD x, x, t0
SUB S, S, #1 << 16

next_block_arm9m
ADD S, S, R, LSL#(16-2)

next_butterfly_arm9m
; S=((number butterflies left-1) << 16)
; + (number of blocks left)
C_LDR x0, x, -R
C_LDR x3, c, #4
C_MUL9m x3, x0, x3
C_LDR x0, x, -R
C_LDR x2, c, #4
C_MUL9m x2, x0, x2
C_LDR x0, x, -R
C_LDR x1, c, #4
C_MUL9m x1, x0, x1
C_LDR x0, x, #0
C_FFT4 14 ; coefficients are Q14
C_STR x0, x, R
C_STR x1, x, R
C_STR x2, x, R
C_STR y3, x, #4
SUBS S, S, #1 << 16
BGE next_butterfly_arm9m
ADD t0, R, R, LSL#1
ADD x, x, t0
SUB S, S, #1
MOVS t1, S, LSL#16
SUBNE c, c, t0
BNE next_block_arm9m
LDMFD sp!, {x, S}
MOV R, R, LSL#2 ; quadruple block size

310 Chapter 8 Digital Signal Processing

MOVS S, S, LSR#2 ; quarter number of blocks
BNE next_stage_arm9m
LDMFD sp!, {r4-r11, pc}

fft_table_arm9m
; FFT twiddle table of triplets E(3t), E(t), E(2t)
; Where E(t)=(cos(t)-sin(t))+i*sin(t) at Q14
; N=16 t=2*PI*k/N for k=0,1,2,..,N/4-1
DCW 0x4000,0x0000, 0x4000,0x0000, 0x4000,0x0000
DCW 0xdd5d,0x3b21, 0x22a3,0x187e, 0x0000,0x2d41
DCW 0xa57e,0x2d41, 0x0000,0x2d41, 0xc000,0x4000
DCW 0xdd5d,0xe782, 0xdd5d,0x3b21, 0xa57e,0x2d41
; N=64 t=2*PI*k/N for k=0,1,2,..,N/4-1
DCW 0x4000,0x0000, 0x4000,0x0000, 0x4000,0x0000
DCW 0x2aaa,0x1294, 0x396b,0x0646, 0x3249,0x0c7c
DCW 0x11a8,0x238e, 0x3249,0x0c7c, 0x22a3,0x187e
DCW 0xf721,0x3179, 0x2aaa,0x1294, 0x11a8,0x238e
DCW 0xdd5d,0x3b21, 0x22a3,0x187e, 0x0000,0x2d41
DCW 0xc695,0x3fb1, 0x1a46,0x1e2b, 0xee58,0x3537
DCW 0xb4be,0x3ec5, 0x11a8,0x238e, 0xdd5d,0x3b21
DCW 0xa963,0x3871, 0x08df,0x289a, 0xcdb7,0x3ec5
DCW 0xa57e,0x2d41, 0x0000,0x2d41, 0xc000,0x4000
DCW 0xa963,0x1e2b, 0xf721,0x3179, 0xb4be,0x3ec5
DCW 0xb4be,0x0c7c, 0xee58,0x3537, 0xac61,0x3b21
DCW 0xc695,0xf9ba, 0xe5ba,0x3871, 0xa73b,0x3537
DCW 0xdd5d,0xe782, 0xdd5d,0x3b21, 0xa57e,0x2d41
DCW 0xf721,0xd766, 0xd556,0x3d3f, 0xa73b,0x238e
DCW 0x11a8,0xcac9, 0xcdb7,0x3ec5, 0xac61,0x187e
DCW 0x2aaa,0xc2c1, 0xc695,0x3fb1, 0xb4be,0x0c7c
; N=256 t=2*PI*k/N for k=0,1,2,..,N/4-1
;... continue as necessary ...

The code is in two parts. The first stage does not require any complex multiplies. We
read the data in a bit-reversed order from the source array x, and then we apply the radix-4
butterfly and write to the destination array y. We perform the remaining stages in place in
the destination buffer.

It is possible to implement the FFT without bit reversal, by alternating between the
source and destination buffers at each stage. However, this requires more registers in the
general stage loop, and there are none available. The bit-reversed increment is very cheap,
costing less than 1.5 cycles per input sample in total.

See Section 8.6 for the benchmark results for the preceding code. ■

Example

8.18
This example implements a radix-4 FFT on an ARMv5TE architecture processor such
as the ARM9E. For the ARM9E we do not need to avail ourselves of the trick used in

8.5 The Discrete Fourier Transform 311

Example 8.17 to reduce a complex multiply to three real multiplies. With the single-cycle
16-bit × 16-bit multiplier it is faster to implement the complex multiply in the normal way.
This also means that we can use a Q15 coefficient table of (c , s) values, and so the transform
is slightly more accurate than in Example 8.17. We have omitted the register allocation
because it is the same as for Example 8.17.

; Complex conjugate multiply a=(xr+i*xi)*(cr-i*ci)
; x = xr + i*xi (two 16-bits packed in 32-bit)
; w = cr + i*ci (two 16-bits packed in 32-bit)
MACRO
C_MUL9e $a, $x, $w
SMULBT t0, $x, $w ; xr*ci
SMULBB $a._r, $x, $w ; xr*cr
SMULTB $a._i, $x, $w ; xi*cr
SMLATT $a._r, $x, $w, $a._r ; xr*cr+xi*ci
SUB $a._i, $a._i, t0 ; xi*cr-xr*ci
MEND

; void fft_16_arm9e(short *y, short *x, unsigned int N)
fft_16_arm9e

STMFD sp!, {r4-r11, lr}
MOV t0, #0 ; bit-reversed counter
MVN R, #0x80000000 ; R=0x7FFFFFFF

first_stage_arm9e
; first stage load and bit reverse
ADDS t1, x, t0, LSL#2 ; t1=&x[t0] and clear carry
C_LDR x0, t1, N
C_LDR x2, t1, N
C_LDR x1, t1, N
C_LDR x3, t1, N
C_FFT4 0
C_STR x0, y, #4
C_STR x1, y, #4
C_STR x2, y, #4
C_STR y3, y, #4
; bit reversed increment modulo (N/4)
RSC t0, t0, N, LSR #2 ; t0 = (N/4)-t0-1
CLZ t1, t0 ; find leading 1
EORS t0, t0, R, ASR t1 ; toggle bits below leading 1
BNE first_stage_arm9e ; loop if count nonzero
; finished the first stage
SUB x, y, N, LSL #2 ; x = working buffer
MOV R, #16

312 Chapter 8 Digital Signal Processing

MOVS S, N, LSR#4
LDMEQFD sp!, {r4-r11, pc}
ADR c, fft_table_arm9e

next_stage_arm9e
; S = the number of blocks
; R = the number of samples in each block
STMFD sp!, {x, S}
ADD t0, R, R, LSL#1
ADD x, x, t0
SUB S, S, #1 << 16

next_block_arm9e
ADD S, S, R, LSL#(16-2)

next_butterfly_arm9e
; S=((number butterflies left-1) << 16)
; + (number of blocks left)
LDR x2_r, [x], -R ; packed data
LDR x2_i, [c], #4 ; packed coefficients
LDR x1_r, [x], -R
LDR x1_i, [c], #4
LDR x0_r, [x], -R
LDR x0_i, [c], #4
C_MUL9e x3, x2_r, x2_i
C_MUL9e x2, x1_r, x1_i
C_MUL9e x1, x0_r, x0_i
C_LDR x0, x, #0
C_FFT4 15 ; coefficients are Q15
C_STR x0, x, R
C_STR x1, x, R
C_STR x2, x, R
C_STR y3, x, #4
SUBS S, S, #1 << 16
BGE next_butterfly_arm9e
ADD t0, R, R, LSL#1
ADD x, x, t0
SUB S, S, #1
MOVS t1, S, LSL#16
SUBNE c, c, t0
BNE next_block_arm9e
LDMFD sp!, {x, S}
MOV R, R, LSL#2 ; quadruple block size
MOVS S, S, LSR#2 ; quarter number of blocks
BNE next_stage_arm9e
LDMFD sp!, {r4-r11, pc}

8.5 The Discrete Fourier Transform 313

fft_table_arm9e
; FFT twiddle table of triplets E(3t), E(t), E(2t)
; Where E(t)=cos(t)+i*sin(t) at Q15
; N=16 t=2*PI*k/N for k=0,1,2,..,N/4-1
DCW 0x7fff,0x0000, 0x7fff,0x0000, 0x7fff,0x0000
DCW 0x30fc,0x7642, 0x7642,0x30fc, 0x5a82,0x5a82
DCW 0xa57e,0x5a82, 0x5a82,0x5a82, 0x0000,0x7fff
DCW 0x89be,0xcf04, 0x30fc,0x7642, 0xa57e,0x5a82
; N=64 t=2*PI*k/N for k=0,1,2,..,N/4-1
DCW 0x7fff,0x0000, 0x7fff,0x0000, 0x7fff,0x0000
DCW 0x7a7d,0x2528, 0x7f62,0x0c8c, 0x7d8a,0x18f9
DCW 0x6a6e,0x471d, 0x7d8a,0x18f9, 0x7642,0x30fc
DCW 0x5134,0x62f2, 0x7a7d,0x2528, 0x6a6e,0x471d
DCW 0x30fc,0x7642, 0x7642,0x30fc, 0x5a82,0x5a82
DCW 0x0c8c,0x7f62, 0x70e3,0x3c57, 0x471d,0x6a6e
DCW 0xe707,0x7d8a, 0x6a6e,0x471d, 0x30fc,0x7642
DCW 0xc3a9,0x70e3, 0x62f2,0x5134, 0x18f9,0x7d8a
DCW 0xa57e,0x5a82, 0x5a82,0x5a82, 0x0000,0x7fff
DCW 0x8f1d,0x3c57, 0x5134,0x62f2, 0xe707,0x7d8a
DCW 0x8276,0x18f9, 0x471d,0x6a6e, 0xcf04,0x7642
DCW 0x809e,0xf374, 0x3c57,0x70e3, 0xb8e3,0x6a6e
DCW 0x89be,0xcf04, 0x30fc,0x7642, 0xa57e,0x5a82
DCW 0x9d0e,0xaecc, 0x2528,0x7a7d, 0x9592,0x471d
DCW 0xb8e3,0x9592, 0x18f9,0x7d8a, 0x89be,0x30fc
DCW 0xdad8,0x8583, 0x0c8c,0x7f62, 0x8276,0x18f9
; N=256 t=2*PI*k/N for k=0,1,2,..,N/4-1
; continue as required

Once again, the routine actually calculates DFT N (x)/N , so that there is no possibility
of overflow. Section 8.6 gives benchmark results for the preceding code.

Note that we use the CLZ instruction in ARMv5E to accelerate the bit-reversed count
required for the bit reversal. ■

Summary DFT Implementations

■ Use a radix-4, decimation-in-time-based FFT implementation. If the number of points
is not a power of four, then use radix-2 or radix-8 first stage.

■ Perform bit reversal at the start of the algorithm, as you read data for the first stage.
Although you can perform an FFT without bit reversal, this often requires more registers
in the inner loop than are available.

■ If a scalar multiply requires more than one cycle, then reduce a complex multiply to
three scalar multiplies using the trick of Example 8.17. This is the case for a 16-bit FFT
on ARM9TDMI or a 32-bit FFT on ARM9E.

314 Chapter 8 Digital Signal Processing

■ To prevent overflow, scale down by k in each radix-k stage. Alternatively ensure that the
inputs to an N-point DFT have room to grow by N times. This is often the case when
implementing a 32-bit FFT.

8.6 Summary
Tables 8.9 and 8.10 summarize the performance obtained using the code examples of this
chapter. It’s always possible to tune these routines further by unrolling, or coding for a
specific application. However, these figures should give you a good idea of the sustained
DSP performance obtainable in practice on an ARM system. The benchmarks include all
load, store, and loop overheads assuming zero-wait-state memory or cache hits in the case
of a cached core.

In this chapter we have looked at efficient ways of implementing fixed-point DSP algo-
rithms on the ARM. We’ve looked in detail at four common algorithms: dot-product,
block FIR filter, block IIR filter, and Discrete Fourier Transform. We’ve also considered the
differences between different ARM architectures and implementations.

Table 8.9 ARM filtering benchmarks.

16-bit dot- 16-bit block 32-bit block 16-bit block
product FIR filter FIR filter IIR filter

Processor core (cycles/tap) (cycles/tap) (cycles/tap) (cycles/biquad)

ARM7TDMI 7.6 5.2 9.0 22.0
ARM9TDMI 7.0 4.8 8.3 22.0
StrongARM 4.8 3.8 5.2 16.5
ARM9E 2.5 1.3 4.3 8.0
XScale 1.8 1.3 3.7 7.7

Table 8.10 ARM FFT benchmarks.

16-bit complex FFT (radix-4) ARM9TDMI (cycles/FFT) ARM9E (cycles/FFT)

64 point 3,524 2,480
256 point 19,514 13,194
1,024 point 99,946 66,196
4,096 point 487,632 318,878

This Page Intentionally Left Blank

9.1 Exception Handling
9.1.1 ARM Processor Exceptions and Modes

9.1.2 Vector Table

9.1.3 Exception Priorities

9.1.4 Link Register Offsets

9.2 Interrupts
9.2.1 Assigning Interrupts

9.2.2 Interrupt Latency

9.2.3 IRQ and FIQ Exceptions

9.2.4 Basic Interrupt Stack Design and Implementation

9.3 Interrupt Handling Schemes
9.3.1 Nonnested Interrupt Handler

9.3.2 Nested Interrupt Handler

9.3.3 Reentrant Interrupt Handler

9.3.4 Prioritized Simple Interrupt Handler

9.3.5 Prioritized Standard Interrupt Handler

9.3.6 Prioritized Direct Interrupt Handler

9.3.7 Prioritized Grouped Interrupt Handler

9.3.8 VIC PL190 Based Interrupt Service Routine

9.4 Summary

C h a p t e r

Exception and
Interrupt
Handling

9

At the heart of an embedded system lie the exception handlers. They are responsible for
handling errors, interrupts, and other events generated by the external system. Efficient
handlers can dramatically improve system performance. The process of determining a
good handling method can be complicated, challenging, and fun.

In this chapter we will cover the theory and practice of handling exceptions, and specif-
ically the handling of interrupts on the ARM processor. The ARM processor has seven
exceptions that can halt the normal sequential execution of instructions: Data Abort,
Fast Interrupt Request, Interrupt Request, Prefetch Abort, Software Interrupt, Reset, and
Undefined Instruction.

This chapter is divided into three main sections:

■ Exception handling. Exception handling covers the specific details of how the ARM
processor handles exceptions.

■ Interrupts. ARM defines an interrupt as a special type of exception. This section discusses
the use of interrupt requests, as well as introducing some of the common terms, features,
and mechanisms surrounding interrupt handling.

■ Interrupt handling schemes. The final section provides a set of interrupt handling
methods. Included with each method is an example implementation.

317

318 Chapter 9 Exception and Interrupt Handling

9.1 Exception Handling
An exception is any condition that needs to halt the normal sequential execution of instruc-
tions. Examples are when the ARM core is reset, when an instruction fetch or memory access
fails, when an undefined instruction is encountered, when a software interrupt instruction
is executed, or when an external interrupt has been raised. Exception handling is the method
of processing these exceptions.

Most exceptions have an associated software exception handler—a software routine that
executes when an exception occurs. For instance, a Data Abort exception will have a Data
Abort handler. The handler first determines the cause of the exception and then services
the exception. Servicing takes place either within the handler or by branching to a specific
service routine. The Reset exception is a special case since it is used to initialize an embedded
system.

This section covers the following exception handling topics:

■ ARM processor mode and exceptions

■ Vector table

■ Exception priorities

■ Link register offsets

9.1.1 ARM Processor Exceptions and Modes

Table 9.1 lists the ARM processor exceptions. Each exception causes the core to enter a
specific mode. In addition, any of the ARM processor modes can be entered manually by
changing the cpsr. User and system mode are the only two modes that are not entered by a
corresponding exception, in other words, to enter these modes you must modify the cpsr.

When an exception causes a mode change, the core automatically

■ saves the cpsr to the spsr of the exception mode

■ saves the pc to the lr of the exception mode

Table 9.1 ARM processor exceptions and associated modes.

Exception Mode Main purpose

Fast Interrupt Request FIQ fast interrupt request handling
Interrupt Request IRQ interrupt request handling
SWI and Reset SVC protected mode for operating systems
Prefetch Abort and Data Abort abort virtual memory and/or memory protection handling
Undefined Instruction undefined software emulation of hardware coprocessors

9.1 Exception Handling 319

Reset

Data Abort

FIQ

IRQ

Prefetch Abort

SWI

Undefined

Exceptions
Undefined IRQ FIQ Abort SVC

Modes

Figure 9.1 Exceptions and associated modes.

■ sets the cpsr to the exception mode

■ sets pc to the address of the exception handler

Figure 9.1 shows a simplified view of exceptions and associated modes. Note that when
an exception occurs the ARM processor always switches to ARM state.

9.1.2 Vector Table

Chapter 2 introduced the vector table—a table of addresses that the ARM core branches to
when an exception is raised. These addresses commonly contain branch instructions of one
of the following forms:

■ B <address>—This branch instruction provides a branch relative from the pc.

■ LDR pc, [pc, #offset]—This load register instruction loads the handler address from
memory to the pc. The address is an absolute 32-bit value stored close to the vector
table. Loading this absolute literal value results in a slight delay in branching to a specific
handler due to the extra memory access. However, you can branch to any address in
memory.

■ LDR pc, [pc, #-0xff0]—This load register instruction loads a specific interrupt ser-
vice routine address from address 0xfffff030 to the pc. This specific instruction is
only used when a vector interrupt controller is present (VIC PL190).

320 Chapter 9 Exception and Interrupt Handling

Table 9.2 Vector table and processor modes.

Exception Mode Vector table offset

Reset SVC +0x00
Undefined Instruction UND +0x04
Software Interrupt (SWI) SVC +0x08
Prefetch Abort ABT +0x0c
Data Abort ABT +0x10
Not assigned — +0x14
IRQ IRQ +0x18
FIQ FIQ +0x1c

■ MOV pc, #immediate—This move instruction copies an immediate value into the pc.
It lets you span the full address space but at limited alignment. The address must be an
8-bit immediate rotated right by an even number of bits.

You can also have other types of instructions in the vector table. For example, the FIQ
handler might start at address offset +0x1c. Thus, the FIQ handler can start immediately
at the FIQ vector location, since it is at the end of the vector table. The branch instructions
cause the pc to jump to a specific location that can handle the specific exception.

Table 9.2 shows the exception, mode, and vector table offset for each exception.

Example

9.1
Figure 9.2 shows a typical vector table. The Undefined Instruction entry is a branch instruc-
tion to jump to the undefined handler. The other vectors use an indirect address jump with
the LDR load to pc instruction.

Notice that the FIQ handler also uses the LDR load to pc instruction and does not take
advantage of the fact that the handler can be placed at the FIQ vector entry location. ■

0x00000000: 0xe59ffa38 RESET: > ldr pc, [pc, #reset]
0x00000004: 0xea000502 UNDEF: b undInstr
0x00000008: 0xe59ffa38 SWI : ldr pc, [pc, #swi]
0x0000000c: 0xe59ffa38 PABT : ldr pc, [pc, #prefetch]
0x00000010: 0xe59ffa38 DABT : ldr pc, [pc, #data]
0x00000014: 0xe59ffa38 - : ldr pc, [pc, #notassigned]
0x00000018: 0xe59ffa38 IRQ : ldr pc, [pc, #irq]
0x0000001c: 0xe59ffa38 FIQ : ldr pc, [pc, #fiq]

Figure 9.2 Example vector table.

9.1 Exception Handling 321

9.1.3 Exception Priorities

Exceptions can occur simultaneously, so the processor has to adopt a priority mechanism.
Table 9.3 shows the various exceptions that occur on the ARM processor and their associ-
ated priority level. For instance, the Reset exception is the highest priority and occurs when
power is applied to the processor. Thus, when a reset occurs, it takes precedence over all
other exceptions. Similarly, when a Data Abort occurs, it takes precedence over all other
exceptions apart from a Reset exception. The lowest priority level is shared by two excep-
tions, the Software Interrupt and Undefined Instruction exceptions. Certain exceptions
also disable interrupts by setting the I or F bits in the cpsr, as shown in Table 9.3.

Each exception is dealt with according to the priority level set out in Table 9.3. The
following is a summary of the exceptions and how they should be handled, starting with
the highest.

The Reset exception is the highest priority exception and is always taken whenever it is
signaled. The reset handler initializes the system, including setting up memory and caches.
External interrupt sources should be initialized before enabling IRQ or FIQ interrupts to
avoid the possibility of spurious interrupts occurring before the appropriate handler has
been set up. The reset handler must also set up the stack pointers for all processor modes.

During the first few instructions of the handler, it is assumed that no exceptions or
interrupts will occur. The code should be designed to avoid SWIs, undefined instructions,
and memory accesses that may abort, that is, the handler is carefully implemented to avoid
further triggering of an exception.

Data Abort exceptions occur when the memory controller or MMU indicates that an
invalid memory address has been accessed (for example, if there is no physical memory
for an address) or when the current code attempts to read or write to memory without the
correct access permissions. An FIQ exception can be raised within a Data Abort handler
since FIQ exceptions are not disabled. When the FIQ is completely serviced, control is
returned back to the Data Abort handler.

A Fast Interrupt Request (FIQ) exception occurs when an external peripheral sets the
FIQ pin to nFIQ. An FIQ exception is the highest priority interrupt. The core disables

Table 9.3 Exception priority levels.

Exceptions Priority I bit F bit

Reset 1 1 1
Data Abort 2 1 —
Fast Interrupt Request 3 1 1
Interrupt Request 4 1 —
Prefetch Abort 5 1 —
Software Interrupt 6 1 —
Undefined Instruction 6 1 —

322 Chapter 9 Exception and Interrupt Handling

both IRQ and FIQ exceptions on entry into the FIQ handler. Thus, no external source can
interrupt the processor unless the IRQ and/or FIQ exceptions are reenabled by software. It
is desirable that the FIQ handler (and also the abort, SWI, and IRQ handlers) is carefully
designed to service the exception efficiently.

An Interrupt Request (IRQ) exception occurs when an external peripheral sets the IRQ
pin to nIRQ. An IRQ exception is the second-highest priority interrupt. The IRQ handler
will be entered if neither an FIQ exception nor Data Abort exception occurs. On entry to
the IRQ handler, the IRQ exceptions are disabled and should remain disabled until the
current interrupt source has been cleared.

A Prefetch Abort exception occurs when an attempt to fetch an instruction results
in a memory fault. This exception is raised when the instruction is in the execute stage
of the pipeline and if none of the higher exceptions have been raised. On entry to the
handler, IRQ exceptions will be disabled, but the FIQ exceptions will remain unchanged.
If FIQ is enabled and an FIQ exception occurs, it can be taken while servicing the Prefetch
Abort.

A Software Interrupt (SWI) exception occurs when the SWI instruction is executed and
none of the other higher-priority exceptions have been flagged. On entry to the handler,
the cpsr will be set to supervisor mode.

If the system uses nested SWI calls, the link register r14 and spsr must be stored away
before branching to the nested SWI to avoid possible corruption of the link register and
the spsr.

An Undefined Instruction exception occurs when an instruction not in the ARM or
Thumb instruction set reaches the execute stage of the pipeline and none of the other
exceptions have been flagged. The ARM processor “asks” the coprocessors if they can
handle this as a coprocessor instruction. Since coprocessors follow the pipeline, instruction
identification can take place in the execute stage of the core. If none of the coprocessors
claims the instruction, an Undefined Instruction exception is raised.

Both the SWI instruction and Undefined Instruction have the same level of priority,
since they cannot occur at the same time (in other words, the instruction being executed
cannot both be an SWI instruction and an undefined instruction).

9.1.4 Link Register Offsets

When an exception occurs, the link register is set to a specific address based on the current
pc. For instance, when an IRQ exception is raised, the link register lr points to the last
executed instruction plus 8. Care has to be taken to make sure the exception handler does
not corrupt lr because lr is used to return from an exception handler. The IRQ exception
is taken only after the current instruction is executed, so the return address has to point to
the next instruction, or lr − 4. Table 9.4 provides a list of useful addresses for the different
exceptions.

The next three examples show different methods of returning from an IRQ or FIQ
exception handler.

9.1 Exception Handling 323

Table 9.4 Useful link-register-based addresses.

Exception Address Use

Reset — lr is not defined on a Reset
Data Abort lr − 8 points to the instruction that caused the Data Abort exception
FIQ lr − 4 return address from the FIQ handler
IRQ lr − 4 return address from the IRQ handler
Prefetch Abort lr − 4 points to the instruction that caused the Prefetch Abort exception
SWI lr points to the next instruction after the SWI instruction
Undefined Instruction lr points to the next instruction after the undefined instruction

Example

9.2
This example shows that a typical method of returning from an IRQ and FIQ handler is to
use a SUBS instruction:

handler
<handler code>
...
SUBS pc, r14, #4 ; pc=r14-4

Because there is an S at the end of the SUB instruction and the pc is the destination register,
the cpsr is automatically restored from the spsr register. ■

Example

9.3
This example shows another method that subtracts the offset from the link register r14 at
the beginning of the handler.

handler
SUB r14, r14, #4 ; r14-=4
...
<handler code>
...
MOVS pc, r14 ; return

After servicing is complete, return to normal execution occurs by moving the link register
r14 into the pc and restoring cpsr from the spsr. ■

Example

9.4
The final example uses the interrupt stack to store the link register. This method first
subtracts an offset from the link register and then stores it onto the interrupt stack.

handler
SUB r14, r14, #4 ; r14-=4

324 Chapter 9 Exception and Interrupt Handling

STMFD r13!,{r0-r3, r14} ; store context
...
<handler code>
...
LDMFD r13!,{r0-r3, pc}ˆ ; return

To return to normal execution, the LDM instruction is used to load the pc. The ˆ symbol in
the instruction forces the cpsr to be restored from the spsr. ■

9.2 Interrupts
There are two types of interrupts available on the ARM processor. The first type of interrupt
causes an exception raised by an external peripheral—namely, IRQ and FIQ. The second
type is a specific instruction that causes an exception—the SWI instruction. Both types
suspend the normal flow of a program.

In this section we will focus mainly on IRQ and FIQ interrupts. We will cover these
topics:

■ Assigning interrupts

■ Interrupt latency

■ IRQ and FIQ exceptions

■ Basic interrupt stack design and implementation

9.2.1 Assigning Interrupts

A system designer can decide which hardware peripheral can produce which interrupt
request. This decision can be implemented in hardware or software (or both) and depends
upon the embedded system being used.

An interrupt controller connects multiple external interrupts to one of the two ARM
interrupt requests. Sophisticated controllers can be programmed to allow an external
interrupt source to cause either an IRQ or FIQ exception.

When it comes to assigning interrupts, system designers have adopted a standard design
practice:

■ Software Interrupts are normally reserved to call privileged operating system routines.
For example, an SWI instruction can be used to change a program running in user mode
to a privileged mode. For an SWI handler example, take a look at Chapter 11.

■ Interrupt Requests are normally assigned for general-purpose interrupts. For example,
a periodic timer interrupt to force a context switch tends to be an IRQ exception. The
IRQ exception has a lower priority and higher interrupt latency (to be discussed in the
next section) than the FIQ exception.

9.2 Interrupts 325

■ Fast Interrupt Requests are normally reserved for a single interrupt source that requires
a fast response time—for example, direct memory access specifically used to move
blocks of memory. Thus, in an embedded operating system design, the FIQ exception
is used for a specific application, leaving the IRQ exception for more general operating
system activities.

9.2.2 Interrupt Latency

Interrupt-driven embedded systems have to fight a battle with interrupt latency—the inter-
val of time from an external interrupt request signal being raised to the first fetch of an
instruction of a specific interrupt service routine (ISR).

Interrupt latency depends on a combination of hardware and software. System architects
must balance the system design to handle multiple simultaneous interrupt sources and
minimize interrupt latency. If the interrupts are not handled in a timely manner, then the
system will exhibit slow response times.

Software handlers have two main methods to minimize interrupt latency. The first
method is to use a nested interrupt handler, which allows further interrupts to occur
even when currently servicing an existing interrupt (see Figure 9.3). This is achieved by
reenabling the interrupts as soon as the interrupt source has been serviced (so it won’t
generate more interrupts) but before the interrupt handling is complete. Once a nested
interrupt has been serviced, then control is relinquished to the original interrupt service
routine.

Normal execution

Interrupt (1)

Interrupt (2)
Interrupt (3)

Interrupt handler

Interrupt enabled

Return

Return

Return

Figure 9.3 A three-level nested interrupt.

326 Chapter 9 Exception and Interrupt Handling

The second method involves prioritization. You program the interrupt controller to
ignore interrupts of the same or lower priority than the interrupt you are handling, so only
a higher-priority task can interrupt your handler. You then reenable interrupts.

The processor spends time in the lower-priority interrupts until a higher-priority inter-
rupt occurs. Therefore higher-priority interrupts have a lower average interrupt latency
than the lower-priority interrupts, which reduces latency by speeding up the completion
time on the critical time-sensitive interrupts.

9.2.3 IRQ and FIQ Exceptions

IRQ and FIQ exceptions only occur when a specific interrupt mask is cleared in the cpsr. The
ARM processor will continue executing the current instruction in the execution stage of the
pipeline before handling the interrupt—an important factor in designing a deterministic
interrupt handler since some instructions require more cycles to complete the execution
stage.

An IRQ or FIQ exception causes the processor hardware to go through a standard
procedure (provided the interrupts are not masked):

1. The processor changes to a specific interrupt request mode, which reflects the interrupt
being raised.

2. The previous mode’s cpsr is saved into the spsr of the new interrupt request mode.

3. The pc is saved in the lr of the new interrupt request mode.

4. Interrupt/s are disabled—either the IRQ or both IRQ and FIQ exceptions are disabled
in the cpsr. This immediately stops another interrupt request of the same type being
raised.

5. The processor branches to a specific entry in the vector table.

The procedure varies slightly depending upon the type of interrupt being raised. We will
illustrate both interrupts with an example. The first example shows what happens when
an IRQ exception is raised, and the second example shows what happens when an FIQ
exception is raised.

Example

9.5
Figure 9.4 shows what happens when an IRQ exception is raised when the processor is in
user mode. The processor starts in state 1. In this example both the IRQ and FIQ exception
bits in the cpsr are enabled.

When an IRQ occurs the processor moves into state 2. This transition automatically
sets the IRQ bit to one, disabling any further IRQ exceptions. The FIQ exception, however,
remains enabled because FIQ has a higher priority and therefore does not get disabled when
a low-priority IRQ exception is raised. The cpsr processor mode changes to IRQ mode. The
user mode cpsr is automatically copied into spsr_irq.

9.2 Interrupts 327

nzcvqjift_usr
IRQ1.

2.

3.

Return to
user mode

code

Software
handler

nzcvqjIft_irq
spsr_irq=cpsr
r14_irq=pc
pc=0x18

Figure 9.4 Interrupt Request (IRQ).

Register r14_irq is assigned the value of the pc when the interrupt was raised. The pc is
then set to the IRQ entry +0x18 in the vector table.

In state 3 the software handler takes over and calls the appropriate interrupt service
routine to service the source of the interrupt. Upon completion, the processor mode reverts
back to the original user mode code in state 1. ■

Example

9.6
Figure 9.5 shows an example of an FIQ exception. The processor goes through a similar
procedure as with the IRQ exception, but instead of just masking further IRQ exceptions
from occurring, the processor also masks out further FIQ exceptions. This means that both
interrupts are disabled when entering the software handler in state 3.

nzcvqjift_usr
FIQ1.

2.

3.

Return to
user mode

code

Software
handler

nzcvqjIFt_fiq
spsr_fiq=cpsr
r14_fiq=pc
pc=0x1c

Figure 9.5 Fast Interrupt Request (FIQ).

328 Chapter 9 Exception and Interrupt Handling

Changing to FIQ mode means there is no requirement to save registers r8 to r12 since
these registers are banked in FIQ mode. These registers can be used to hold temporary
data, such as buffer pointers or counters. This makes FIQ ideal for servicing a single-source,
high-priority, low-latency interrupt. ■

9.2.3.1 Enabling and Disabling FIQ and IRQ Exceptions

The ARM processor core has a simple procedure to manually enable and disable interrupts
that involves modifying the cpsr when the processor is in a privileged mode.

Table 9.5 shows how IRQ and FIQ interrupts are enabled. The procedure uses three
ARM instructions.

The first instruction MRS copies the contents of the cpsr into register r1. The second
instruction clears the IRQ or FIQ mask bit. The third instruction then copies the updated
contents in register r1 back into the cpsr, enabling the interrupt request. The postfix _c iden-
tifies that the bit field being updated is the control field bit [7:0] of the cpsr. (For more details
see Chapter 2.) Table 9.6 shows a similar procedure to disable or mask an interrupt request.

It is important to understand that the interrupt request is either enabled or disabled
only once the MSR instruction has completed the execution stage of the pipeline. Interrupts
can still be raised or masked prior to the MSR completing this stage.

Table 9.5 Enabling an interrupt.

cpsr value IRQ FIQ

Pre nzcvqjIFt_SVC nzcvqjIFt_SVC
Code enable_irq

MRS r1, cpsr
BIC r1, r1, #0x80
MSR cpsr_c, r1

enable_fiq
MRS r1, cpsr
BIC r1, r1, #0x40
MSR cpsr_c, r1

Post nzcvqjiFt_SVC nzcvqjIft_SVC

Table 9.6 Disabling an interrupt.

cpsr IRQ FIQ

Pre nzcvqjift_SVC nzcvqjift_SVC
Code disable_irq

MRS r1, cpsr
ORR r1, r1, #0x80
MSR cpsr_c, r1

disable_fiq
MRS r1, cpsr
ORR r1, r1, #0x40
MSR cpsr_c, r1

Post nzcvqjIft_SVC nzcvqjiFt_SVC

9.2 Interrupts 329

To enable and disable both the IRQ and FIQ exceptions requires a slight modification to
the second instruction. The immediate value on the data processing BIC or ORR instruction
has to be changed to 0xc0 to enable or disable both interrupts.

9.2.4 Basic Interrupt Stack Design and Implementation

Exceptions handlers make extensive use of stacks, with each mode having a dedicated
register containing the stack pointer. The design of the exception stacks depends upon
these factors:

■ Operating system requirements—Each operating system has its own requirements for
stack design.

■ Target hardware—The target hardware provides a physical limit to the size and
positioning of the stack in memory.

Two design decisions need to be made for the stacks:

■ The location determines where in the memory map the stack begins. Most ARM-based
systems are designed with a stack that descends downwards, with the top of the stack
at a high memory address.

■ Stack size depends upon the type of handler, nested or nonnested. A nested interrupt
handler requires more memory space since the stack will grow with the number of
nested interrupts.

A good stack design tries to avoid stack overflow—where the stack extends beyond
the allocated memory—because it causes instability in embedded systems. There are soft-
ware techniques that identify overflow and that allow corrective measures to take place to
repair the stack before irreparable memory corruption occurs. The two main methods are
(1) to use memory protection and (2) to call a stack check function at the start of each
routine.

The IRQ mode stack has to be set up before interrupts are enabled—normally in the
initialization code for the system. It is important that the maximum size of the stack is
known in a simple embedded system, since the stack size is reserved in the initial stages of
boot-up by the firmware.

Figure 9.6 shows two typical memory layouts in a linear address space. The first layout,
A, shows a traditional stack layout with the interrupt stack stored underneath the code
segment. The second layout, B, shows the interrupt stack at the top of the memory above
the user stack. The main advantage of layout B over A is that B does not corrupt the vector
table when a stack overflow occurs, and so the system has a chance to correct itself when an
overflow has been identified.

330 Chapter 9 Exception and Interrupt Handling

A B

0x00008000

0x00000000 0x00000000

User stack

Heap

Interrupt stack

Vector table

Code

User stack

Heap

Interrupt stack

Vector table

Code

Figure 9.6 Typical memory layouts.

Example

9.7
For each processor mode a stack has to be set up. This is carried out every time the processor
is reset. Figure 9.7 shows an implementation using layout A. To help set up the memory
layout, a set of defines are declared that map the memory region names with an absolute
address.

For instance, the User stack is given the label USR_Stack and is set to address 0x20000.
The Supervisor stack is set to an address that is 128 bytes below the IRQ stack.

USR_Stack EQU 0x20000
IRQ_Stack EQU 0x8000
SVC_Stack EQU IRQ_Stack-128

To help change to the different processor modes, we declare a set of defines that map
each processor mode with a particular mode bit pattern. These labels can then be used to
set the cpsr to a new mode.

Usr32md EQU 0x10 ; User mode
FIQ32md EQU 0x11 ; FIQ mode
IRQ32md EQU 0x12 ; IRQ mode
SVC32md EQU 0x13 ; Supervisor mode
Abt32md EQU 0x17 ; Abort mode
Und32md EQU 0x1b ; Undefined instruction mode
Sys32md EQU 0x1f ; System mode

9.2 Interrupts 331

0x20000

0x10000

0x8000 + code size

0x8000

0x8000 – 128

0x8000 – 640

0x20

0x00

User stack

Unused

Static data

IRQ stack

SVC stack

Free space

Vector table

Code

Figure 9.7 Example implementation using layout A.

For safety reasons a define is declared to disable both the IRQ and FIQ exceptions in the
cpsr :

NoInt EQU 0xc0 ; Disable interrupts

NoInt masks both interrupts by setting the masks to one.
Initialization code starts by setting up the stack registers for each processor mode. The

stack register r13 is one of the registers that is always banked when a mode change occurs.
The code first initializes the IRQ stack. For safety reasons, it is always best to make sure that
interrupts are disabled by using a bitwise OR between NoInt and the new mode.

332 Chapter 9 Exception and Interrupt Handling

Each mode stack must be set up. Here is an example of how to set up three different
stacks when the processor core comes out of reset. Note that, since this is a basic example,
we do not implement a stack for the abort, FIQ, and undefined instruction modes. If these
stacks are required, then very similar code is used.

■ Supervisor mode stack—The processor core starts in supervisor mode so the SVC stack
setup involves loading register r13_svc with the address pointed to by SVC_NewStack.
For this example the value is SVC_Stack.

LDR r13, SVC_NewStack ; r13_svc

...

SVC_NewStack

DCD SVC_Stack

■ IRQ mode stack—To set up the IRQ stack, the processor mode has to change to IRQ
mode. This is achieved by storing a cpsr bit pattern into register r2. Register r2 is then
copied into the cpsr, placing the processor into IRQ mode. This action immediately
makes register r13_irq viewable, and it can then be assigned the IRQ_Stack value.

MOV r2, #NoInt|IRQ32md

MSR cpsr_c, r2

LDR r13, IRQ_NewStack ; r13_irq

...

IRQ_NewStack

DCD IRQ_Stack

■ User mode stack—It is common for the user mode stack to be the last to be set up because
when the processor is in user mode there is no direct method to modify the cpsr. An
alternative is to force the processor into system mode to set up the user mode stack since
both modes share the same registers.

MOV r2, #Sys32md

MSR cpsr_c, r2

LDR r13, USR_NewStack ; r13_usr

...

USR_NewStack

DCD USR_Stack

Using separate stacks for each mode rather than processing using a single stack has one
main advantage: errant tasks can be debugged and isolated from the rest of the system. ■

9.3 Interrupt Handling Schemes 333

9.3 Interrupt Handling Schemes
In this final section we will introduce a number of different interrupt handling schemes,
ranging from the simple nonnested interrupt handler to the more complex grouped prior-
itized interrupt handler. Each scheme is presented as a reference with a general description
plus an example implementation.

The schemes covered are the following:

■ A nonnested interrupt handler handles and services individual interrupts sequentially. It
is the simplest interrupt handler.

■ A nested interrupt handler handles multiple interrupts without a priority assignment.

■ A reentrant interrupt handler handles multiple interrupts that can be prioritized.

■ A prioritized simple interrupt handler handles prioritized interrupts.

■ A prioritized standard interrupt handler handles higher-priority interrupts in a shorter
time than lower-priority interrupts.

■ A prioritized direct interrupt handler handles higher-priority interrupts in a shorter time
and goes directly to a specific service routine.

■ A prioritized grouped interrupt handler is a mechanism for handling interrupts that are
grouped into different priority levels.

■ A VIC PL190 based interrupt service routine shows how the vector interrupt controller
(VIC) changes the design of an interrupt service routine.

9.3.1 Nonnested Interrupt Handler

The simplest interrupt handler is a handler that is nonnested: the interrupts are disabled
until control is returned back to the interrupted task or process. Because a nonnested
interrupt handler can only service a single interrupt at a time, handlers of this form are
not suitable for complex embedded systems that service multiple interrupts with differing
priority levels.

Figure 9.8 shows the various stages that occur when an interrupt is raised in a system
that has implemented a simple nonnested interrupt handler:

1. Disable interrupt/s—When the IRQ exception is raised, the ARM processor will disable
further IRQ exceptions from occurring. The processor mode is set to the appropri-
ate interrupt request mode, and the previous cpsr is copied into the newly available
spsr_{interrupt request mode}. The processor will then set the pc to point to the correct
entry in the vector table and execute the instruction. This instruction will alter the pc to
point to the specific interrupt handler.

2. Save context—On entry the handler code saves a subset of the current processor mode
nonbanked registers.

334 Chapter 9 Exception and Interrupt Handling

Disable interrupts,
pc = vector table entry
spsr_{mode} = cpsr,

1.

Enable interrupts
pc = lr−4
cpsr = spsr_{mode}

6.

2.

3.

4.

Return to
task

Interrupt
handler

Save context

5. Restore
context

Service
interrupt
routine

Interrupt

Figure 9.8 Simple nonnested interrupt handler.

3. Interrupt handler—The handler then identifies the external interrupt source and
executes the appropriate interrupt service routine (ISR).

4. Interrupt service routine—The ISR services the external interrupt source and resets the
interrupt.

5. Restore context—The ISR returns back to the interrupt handler, which restores the
context.

6. Enable interrupts—Finally, to return from the interrupt handler, the spsr_{interrupt
request mode} is restored back into the cpsr. The pc is then set to the next instruction
after the interrupt was raised.

Example

9.8
This IRQ handler example assumes that the IRQ stack has been correctly set up by the
initialization code.

9.3 Interrupt Handling Schemes 335

interrupt_handler
SUB r14,r14,#4 ; adjust lr
STMFD r13!,{r0-r3,r12,r14} ; save context
<interrupt service routine>
LDMFD r13!,{r0-r3,r12,pc}ˆ ; return

The first instruction sets the link register r14_irq to return back to the correct location
in the interrupted task or process. As described in Section 9.1.4, due to the pipeline, on
entry to an IRQ handler the link register points four bytes beyond the return address, so the
handler must subtract four from the link register to account for this discrepancy. The link
register is stored on the stack. To return to the interrupted task, the link register contents
are restored from the stack and moved into the pc.

Notice registers r0 to r3 and register r12 are also preserved because of the ATPCS. This
allows an ATPCS-compliant subroutine to be called within the handler.

The STMFD instruction saves the context by placing a subset of the registers onto the
stack. To reduce interrupt latency we save a minimum number of registers because the
time taken to execute an STMFD or LDMFD instruction is proportional to the number of
registers being transferred. The registers are saved to the stack pointed to by the register
r13_{interrupt request mode}.

If you are using a high-level language within your system it is important to understand
the compiler’s procedure calling convention because it will influence both the registers saved
and the order they are saved onto the stack. For instance, the ARM compilers preserves
registers r4 to r11 within a subroutine call so there is no need to preserve them unless they
will be used by the interrupt handler. If no C routines are called, it may not be necessary
to save all of the registers. It is safe to call a C function only when the registers have been
saved onto the interrupt stack.

Within a nonnested interrupt handler, it is not necessary to save the spsr because it will
not be destroyed by any subsequent interrupt.

At the end of the handler the LDMFD instruction will restore the context and return from
the interrupt handler. The ˆ at the end of the LDMFD instruction means that the cpsr will be
restored from the spsr, which is only valid if the pc is loaded at the same time. If the pc is
not loaded, then ˆ will restore the user bank registers.

In this handler all processing is handled within the interrupt handler, which returns
directly to the application.

Once the interrupt handler has been entered and the context has been saved, the handler
must determine the interrupt source. The following code shows a simple example of how
to determine the interrupt source. IRQStatus is the address of the interrupt status register.
If the interrupt source is not determined, then control can pass to another handler. In
this example we pass control to the debug monitor. Alternatively we could just ignore the
interrupt.

interrupt_handler
SUB r14,r14,#4 ; r14-=4

336 Chapter 9 Exception and Interrupt Handling

STMFD sp!,{r0-r3,r12,r14} ; save context
LDR r0,=IRQStatus ; interrupt status addr
LDR r0,[r0] ; get interrupt status
TST r0,#0x0080 ; if counter timer
BNE timer_isr ; then branch to ISR
TST r0,#0x0001 ; else if button press
BNE button_isr ; then call button ISR
LDMFD sp!,{r0-r3,r12,r14} ; restore context
LDR pc,=debug_monitor ; else debug monitor

In the preceding code there are two ISRs: timer_isr and button_isr. They are
mapped to specific bits in the IRQStatus register, 0x0080 and 0x0001, respectively. ■

Summary Simple Nonnested Interrupt Handler

■ Handles and services individual interrupts sequentially.

■ High interrupt latency; cannot handle further interrupts occurring while an interrupt
is being serviced.

■ Advantages: relatively easy to implement and debug.

■ Disadvantage: cannot be used to handle complex embedded systems with multiple
priority interrupts.

9.3.2 Nested Interrupt Handler

A nested interrupt handler allows for another interrupt to occur within the currently called
handler. This is achieved by reenabling the interrupts before the handler has fully serviced
the current interrupt.

For a real-time system this feature increases the complexity of the system but also
improves its performance. The additional complexity introduces the possibility of subtle
timing issues that can cause a system failure, and these subtle problems can be extremely
difficult to resolve. A nested interrupt method is designed carefully so as to avoid these
types of problems. This is achieved by protecting the context restoration from interruption,
so that the next interrupt will not fill the stack (cause stack overflow) or corrupt any of the
registers.

The first goal of any nested interrupt handler is to respond to interrupts quickly so the
handler neither waits for asynchronous exceptions, nor forces them to wait for the handler.
The second goal is that execution of regular synchronous code is not delayed while servicing
the various interrupts.

The increase in complexity means that the designers have to balance efficiency with
safety, by using a defensive coding style that assumes problems will occur. The handler has
to check the stack and protect against register corruption where possible.

9.3 Interrupt Handling Schemes 337

Disable interrupt

Enable interrupt

1.

2.

3.

4. 5.

6.

7.

8.

9.

10.

11.

Save context

Restore context

Restore context

Prepare stack

Switch to mode

Start constructing
a frame

Service
interrupt

Finish
frame

construction

Complete
servicing

the interrupt

Interrupt

Enter interrupt handler

Complete Not complete

Interrupt

Interrupt

Return to task

Return to task

Figure 9.9 Nested interrupt handler.

Figure 9.9 shows a nested interrupt handler. As can been seen from the diagram, the han-
dler is quite a bit more complicated than the simple nonnested interrupt handler described
in Section 9.3.1.

The nested interrupt handler entry code is identical to the simple nonnested interrupt
handler, except that on exit, the handler tests a flag that is updated by the ISR. The flag
indicates whether further processing is required. If further processing is not required, then
the interrupt service routine is complete and the handler can exit. If further processing is

338 Chapter 9 Exception and Interrupt Handling

required, the handler may take several actions: reenabling interrupts and/or performing a
context switch.

Reenabling interrupts involves switching out of IRQ mode to either SVC or system
mode. Interrupts cannot simply be reenabled when in IRQ mode because this would
lead to possible link register r14_irq corruption, especially if an interrupt occurred after
the execution of a BL instruction. This problem will be discussed in more detail in
Section 9.3.3.

Performing a context switch involves flattening (emptying) the IRQ stack because the
handler does not perform a context switch while there is data on the IRQ stack. All registers
saved on the IRQ stack must be transferred to the task’s stack, typically on the SVC stack.
The remaining registers must then be saved on the task stack. They are transferred to a
reserved block of memory on the stack called a stack frame.

Example

9.9
This nested interrupt handler example is based on the flow diagram in Figure 9.9. The rest
of this section will walk through the handler and describe in detail the various stages.

Maskmd EQU 0x1f ; processor mode mask
SVC32md EQU 0x13 ; SVC mode
I_Bit EQU 0x80 ; IRQ bit

FRAME_R0 EQU 0x00
FRAME_R1 EQU FRAME_R0+4
FRAME_R2 EQU FRAME_R1+4
FRAME_R3 EQU FRAME_R2+4
FRAME_R4 EQU FRAME_R3+4
FRAME_R5 EQU FRAME_R4+4
FRAME_R6 EQU FRAME_R5+4
FRAME_R7 EQU FRAME_R6+4
FRAME_R8 EQU FRAME_R7+4
FRAME_R9 EQU FRAME_R8+4
FRAME_R10 EQU FRAME_R9+4
FRAME_R11 EQU FRAME_R10+4
FRAME_R12 EQU FRAME_R11+4
FRAME_PSR EQU FRAME_R12+4
FRAME_LR EQU FRAME_PSR+4
FRAME_PC EQU FRAME_LR+4
FRAME_SIZE EQU FRAME_PC+4

IRQ_Entry ; instruction state : comment
SUB r14,r14,#4 ; 2 :
STMDB r13!,{r0-r3,r12,r14} ; 2 : save context
<service interrupt>
BL read_RescheduleFlag ; 3 : more processing

9.3 Interrupt Handling Schemes 339

CMP r0,#0 ; 3 : if processing?
LDMNEIA r13!,{r0-r3,r12,pc}ˆ ; 4 : else return
MRS r2,spsr ; 5 : copy spsr_irq
MOV r0,r13 ; 5 : copy r13_irq
ADD r13,r13,#6*4 ; 5 : reset stack
MRS r1,cpsr ; 6 : copy cpsr
BIC r1,r1,#Maskmd ; 6 :
ORR r1,r1,#SVC32md ; 6 :
MSR cpsr_c,r1 ; 6 : change to SVC
SUB r13,r13,#FRAME_SIZE-FRAME_R4 ; 7 : make space
STMIA r13,{r4-r11} ; 7 : save r4-r11
LDMIA r0,{r4-r9} ; 7 : restore r4-r9
BIC r1,r1,#I_Bit ; 8 :
MSR cpsr_c,r1 ; 8 : enable IRA
STMDB r13!,{r4-r7} ; 9 : save r4-r7 SVC
STR r2,[r13,#FRAME_PSR] ; 9 : save PSR
STR r8,[r13,#FRAME_R12] ; 9 : save r12
STR r9,[r13,#FRAME_PC] ; 9 : save pc
STR r14,[r13,#FRAME_LR] ; 9 : save lr
<complete interrupt service routine>
LDMIA r13!,{r0-r12,r14} ; 11 : restore context
MSR spsr_cxsf,r14 ; 11 : restore spsr
LDMIA r13!,{r14,pc}ˆ ; 11 : return

This example uses a stack frame structure. All registers are saved onto the frame except
for the stack register r13. The order of the registers is unimportant except that FRAME_LR
and FRAME_PC should be the last two registers in the frame because we will return with a
single instruction:

LDMIA r13!, {r14, pc}ˆ

There may be other registers that are required to be saved onto the stack frame,
depending upon the operating system or application being used. For example:

■ Registers r13_usr and r14_usr are saved when there is a requirement by the operating
system to support both user and SVC modes.

■ Floating-point registers are saved when the system uses hardware floating point.

There are a number of defines declared in this example. These defines map various
cpsr/spsr changes to a particular label (for example, the I_Bit).

A set of defines is also declared that maps the various frame register references with
frame pointer offsets. This is useful when the interrupts are reenabled and registers have to
be stored into the stack frame. In this example we store the stack frame on the SVC stack.

340 Chapter 9 Exception and Interrupt Handling

The entry point for this example handler uses the same code as for the simple
nonnested interrupt handler. The link register r14 is first modified so that it points to
the correct return address, and then the context plus the link register r14 are saved onto
the IRQ stack.

An interrupt service routine then services the interrupt. When servicing is complete or
partially complete, control is passed back to the handler. The handler then calls a function
called read_RescheduleFlag, which determines whether further processing is required.
It returns a nonzero value in register r0 if no further processing is required; otherwise it
returns a zero. Note we have not included the source for read_RescheduleFlag because
it is implementation specific.

The return flag in register r0 is then tested. If the register is not equal to zero, the handler
restores context and returns control back to the suspended task.

Register r0 is set to zero, indicating that further processing is required. The first operation
is to save the spsr, so a copy of the spsr_irq is moved into register r2. The spsr can then be
stored in the stack frame by the handler later on in the code.

The IRQ stack address pointed to by register r13_irq is copied into register r0 for later
use. The next step is to flatten (empty) the IRQ stack. This is done by adding 6 * 4 bytes to
the top of the stack because the stack grows downwards and an ADD instruction can be used
to set the stack.

The handler does not need to worry about the data on the IRQ stack being corrupted
by another nested interrupt because interrupts are still disabled and the handler will not
reenable the interrupts until the data on the IRQ stack has been recovered.

The handler then switches to SVC mode; interrupts are still disabled. The cpsr is copied
into register r1 and modified to set the processor mode to SVC. Register r1 is then written
back into the cpsr, and the current mode changes to SVC mode. A copy of the new cpsr is
left in register r1 for later use.

The next stage is to create a stack frame by extending the stack by the stack frame size.
Registers r4 to r11 can be saved onto the stack frame, which will free up enough registers to
allow us to recover the remaining registers from the IRQ stack still pointed to by register r0.

At this stage the stack frame will contain the information shown in Table 9.7. The only
registers that are not in the frame are the registers that are stored upon entry to the IRQ
handler.

Table 9.8 shows the registers in SVC mode that correspond to the existing IRQ registers.
The handler can now retrieve all the data from the IRQ stack, and it is safe to reenable
interrupts.

IRQ exceptions are reenabled, and the handler has saved all the important registers. The
handler can now complete the stack frame. Table 9.9 shows a completed stack frame that
can be used either for a context switch or to handle a nested interrupt.

At this stage the remainder of the interrupt servicing may be handled. A context switch
may be performed by saving the current value of register r13 in the current task’s control
block and loading a new value for register r13 from the new task’s control block.

It is now possible to return to the interrupted task/handler, or to another task if a context
switch occurred. ■

9.3 Interrupt Handling Schemes 341

Table 9.7 SVC stack frame.

Label Offset Register

FRAME_R0 +0 —
FRAME_R1 +4 —
FRAME_R2 +8 —
FRAME_R3 +12 —
FRAME_R4 +16 r4
FRAME_R5 +20 r5
FRAME_R6 +24 r6
FRAME_R7 +28 r7
FRAME_R8 +32 r8
FRAME_R9 +36 r9
FRAME_R10 +40 r10
FRAME_R11 +44 r11
FRAME_R12 +48 —
FRAME_PSR +52 —
FRAME_LR +56 —
FRAME_PC +60 —

Table 9.8 Data retrieved from the IRQ stack.

Registers (SVC) Retrieved IRQ registers

r4 r0
r5 r1
r6 r2
r7 r3
r8 r12
r9 r14 (return address)

Summary Nested Interrupt Handler

■ Handles multiple interrupts without a priority assignment.

■ Medium to high interrupt latency.

■ Advantage—can enable interrupts before the servicing of an individual interrupt is
complete reducing interrupt latency.

■ Disadvantage—does not handle prioritization of interrupts, so lower priority interrupts
can block higher priority interrupts.

342 Chapter 9 Exception and Interrupt Handling

Table 9.9 Complete frame stack.

Label Offset Register

FRAME_R0 +0 r0
FRAME_R1 +4 r1
FRAME_R2 +8 r2
FRAME_R3 +12 r3
FRAME_R4 +16 r4
FRAME_R5 +20 r5
FRAME_R6 +24 r6
FRAME_R7 +28 r7
FRAME_R8 +32 r8
FRAME_R9 +36 r9
FRAME_R10 +40 r10
FRAME_R11 +44 r11
FRAME_R12 +48 r12
FRAME_PSR +52 spsr_irq
FRAME_LR +56 r14
FRAME_PC +60 r14_irq

9.3.3 Reentrant Interrupt Handler

A reentrant interrupt handler is a method of handling multiple interrupts where interrupts
are filtered by priority, which is important if there is a requirement that interrupts with
higher priority have a lower latency. This type of filtering cannot be achieved using the
conventional nested interrupt handler.

The basic difference between a reentrant interrupt handler and a nested interrupt han-
dler is that the interrupts are reenabled early on in the reentrant interrupt handler, which
can reduce interrupt latency. There are a number of issues relating to reenabling interrupts
early, which will be described in more detail later on in this section.

All interrupts in a reentrant interrupt handler must be serviced in SVC, system, undefined
instruction, or abort mode on the ARM processor.

If interrupts are reenabled in an interrupt mode and the interrupt routine performs a BL
subroutine call instruction, the subroutine return address will be set in the register r14_irq.
This address would be subsequently destroyed by an interrupt, which would overwrite the
return address into register r14_irq. To avoid this, the interrupt routine should swap into
SVC or system mode. The BL instruction can then use register r14_svc to store the subroutine
return address. The interrupts must be disabled at the source by setting a bit in the interrupt
controller before reenabling interrupts via the cpsr.

If interrupts are reenabled in the cpsr before processing is complete and the interrupt
source is not disabled, an interrupt will be immediately regenerated, leading to an infinite
interrupt sequence or race condition. Most interrupt controllers have an interrupt mask

9.3 Interrupt Handling Schemes 343

Disable interrupt

Enable interrupt

1.

2.

3.

4.

Save partial context

Change mode

Reserve stack space
and save complete

context

Resave context

Interrupt

Enter interrupt handler

8.
9.

10.

11.

Restore context

Return to task

Servicing complete

Servicing incomplete

12. Restore context

Return to task

Interrupt

Clear external interrupt

Enable external interrupt

5.

6.

7.
Service
interrupt

Continue
servicing
interrupt

Figure 9.10 Reentrant interrupt handler.

register that allows you to mask out one or more interrupts, but the remaining interrupts
are still enabled.

The interrupt stack is unused since interrupts are serviced in SVC mode (for example,
on the task’s stack). Instead the IRQ stack register r13 is used to point to a 12-byte structure
that will be used to store some registers temporarily on interrupt entry.

344 Chapter 9 Exception and Interrupt Handling

It is paramount to prioritize interrupts in a reentrant interrupt handler. If the interrupts
are not prioritized, the system latency degrades to that of a nested interrupt handler because
lower-priority interrupts will be able to preempt the servicing of a higher-priority interrupt.
This in turn leads to the locking out of higher-priority interrupts for the duration of the
servicing of a lower-priority interrupt.

Example

9.10
It is assumed that register r13_irq has been set up to point to a 12-byte data structure and
does not point to a standard IRQ stack. Offsets such as IRQ_SPSR are used to point into the
data structure. As with all interrupt handlers, there are some standard definitions that are
required to modify the cpsr and spsr registers.

IRQ_R0 EQU 0
IRQ_spsr EQU 4
IRQ_R14 EQU 8

Maskmd EQU 0x1f ; mask mode
SVC32md EQU 0x13 ; SVC mode
I_Bit EQU 0x80 ; IRQ bit

ic_Base EQU 0x80000000
IRQStatus EQU 0x0
IRQRawStatus EQU 0x4
IRQEnable EQU 0x8
IRQEnableSet EQU 0x8
IRQEnableClear EQU 0xc

IRQ_Entry ; instruction state : comment
SUB r14, r14, #4 ; 2 : r14_irq-=4
STR r14, [r13, #IRQ_R14] ; 2 : save r14_irq
MRS r14, spsr ; 2 : copy spsr
STR r14, [r13, #IRQ_spsr] ; 2 : save spsr
STR r0, [r13, #IRQ_R0] ; 2 : save r0
MOV r0, r13 ; 2 : copy r13_irq
MRS r14, cpsr ; 3 : copy cpsr
BIC r14, r14, #Maskmd ; 3 :
ORR r14, r14, #SVC32md ; 3 :
MSR cpsr_c, r14 ; 3 : enter SVC mode
STR r14, [r13, #-8]! ; 4 : save r14
LDR r14, [r0, #IRQ_R14] ; 4 : r14_svc=r14_irq
STR r14, [r13, #4] ; 4 : save r14_irq
LDR r14, [r0, #IRQ_spsr] ; 4 : r14_svc=spsr_irq
LDR r0, [r0, #IRQ_R0] ; 4 : restore r0
STMDB r13!, {r0-r3,r8,r12,r14} ; 4 : save context

9.3 Interrupt Handling Schemes 345

LDR r14, =ic_Base ; 5 : int crtl address
LDR r8, [r14, #IRQStatus] ; 5 : get int status
STR r8, [r14, #IRQEnableClear] ; 5 : clear interrupts
MRS r14, cpsr ; 6 : r14_svc=cpsr
BIC r14, r14, #I_Bit ; 6 : clear I-Bit
MSR cpsr_c, r14 ; 6 : enable IRQ int
BL process_interrupt ; 7 : call ISR
LDR r14, =ic_Base ; 9 : int ctrl address
STR r8, [r14, #IRQEableSet] ; 9 : enable ints
BL read_RescheduleFlag ; 9 : more processing
CMP r0, #0 ; 8 : if processing
LDMNEIA r13!, {r0-r3,r8,r12,r14} ; 8 : then load context
MSRNE spsr_cxsf, r14 ; 8 : update spsr
LDMNEIA r13!, {r14, pc}ˆ ; 8 : return
LDMIA r13!, {r0-r3, r8} ; 10 : else load reg
STMDB r13!, {r0-r11} ; 10 : save context
BL continue_servicing ; 11 : continue service
LDMIA r13!, {r0-r12, r14} ; 12 : restore context
MSR spsr_cxsf, r14 ; 12 : update spsr
LDMIA r13!, {r14, pc}ˆ ; 12 : return

The start of the handler includes a normal interrupt entry point, with four being
subtracted from the register r14_irq.

It is now important to assign values to the various fields in the data structure pointed to
by register r13_irq. The registers that are recorded are r14_irq, spsr_irq, and r0. The register
r0 is used to transfer a pointer to the data structure when swapping to SVC mode since
register r0 will not be banked. This is why register r13_irq cannot be used for this purpose:
it is not visible from SVC mode.

The pointer to the data structure is saved by copying register r13_irq into r0.

Offset (from r13_irq) Value

+0 r0 (on entry)
+4 spsr_irq
+8 r14_irq

The handler will now set the processor into SVC mode using the standard procedure
of manipulating the cpsr. The link register r14 for SVC mode is saved on the SVC stack.
Subtracting 8 provides room on the stack for two 32-bit words.

Register r14_irq is then recovered and stored on the SVC stack. Now both the link
registers r14 for IRQ and SVC are stored on the SVC stack.

The rest of the IRQ context is recovered from the data structure passed into the SVC
mode. Register r14_svc will now contain the spsr for IRQ mode.

346 Chapter 9 Exception and Interrupt Handling

Registers are then saved onto the SVC stack. Register r8 is used to hold the interrupt
mask for the interrupts that have been disabled in the interrupt handler. They will be
reenabled later.

The interrupt source(s) are then disabled. An embedded system would at this point
prioritize the interrupts and disable all interrupts lower than the current priority to prevent
a low-priority interrupt from locking out a high-priority interrupt. Interrupt prioritizing
will be discussed later on in this chapter.

Since the interrupt source has been cleared, it is now safe to reenable IRQ exceptions.
This is achieved by clearing the i bit in the cpsr. Note that the interrupt controller still has
external interrupts disabled.

It is now possible to process the interrupt. The interrupt processing should not attempt
to do a context switch because the external source interrupt is disabled. If during the
interrupt processing a context switch is needed, it should set a flag that could be picked up
later by the interrupt handler. It is now safe to reenable external interrupts.

The handler needs to check if further processing is required. If the returned value is
nonzero in register r0, then no further processing is required. If zero, the handler restores
the context and then returns control back to the suspended task.

A stack frame now has to be created so that the service routine can complete. This is
achieved by restoring parts of the context and then storing the complete context back on to
the SVC stack.

The subroutine continue_servicing, which will complete the servicing of the
interrupt, is called. This routine is not provided because it is specific to an implementation.

After the interrupt routine has been serviced, control can be given back to the suspended
task. ■

Summary Reentrant Interrupt Handler

■ Handles multiple interrupts that can be prioritized.

■ Low interrupt latency.

■ Advantage: handles interrupts with differing priorities.

■ Disadvantage: tends to be more complex.

9.3.4 Prioritized Simple Interrupt Handler

Both the nonnested interrupt handler and the nested interrupt handler service interrupts
on a first-come-first-served basis. In comparison, the prioritized interrupt handler will
associate a priority level with a particular interrupt source. The priority level is used to dictate
the order that the interrupts will be serviced. Thus, a higher-priority interrupt will take
precedence over a lower-priority interrupt, which is a particularly desirable characteristic
in many embedded systems.

9.3 Interrupt Handling Schemes 347

Methods of handling prioritization can either be achieved in hardware or software. For
hardware prioritization, the handler is simpler to design since the interrupt controller will
provide the current highest-priority interrupt that requires servicing. These systems require
more initialization code at startup since the interrupts and associated priority level tables
have to be constructed before the system can be switched on; software prioritization, on
the other hand, requires the additional assistance of an external interrupt controller. This
interrupt controller has to provide a minimal set of functions that include being able to set
and un-setmasks, and to read the interrupt status and source.

The rest of this section will cover a software prioritization technique chosen because it
is a general method and does not rely on a specialized interrupt controller. To help describe
the priority interrupt handler, we will introduce a fictional interrupt controller based upon
a standard interrupt controller from ARM. The controller takes multiple interrupt sources
and generates an IRQ and/or FIQ signal depending upon whether a particular interrupt
source is enabled or disabled.

Figure 9.11 shows a flow diagram of a simple priority interrupt handler, based on a
reentrant interrupt handler.

Example

9.11
The interrupt controller has a register (IRQRawStatus) that holds the raw interrupt status—
the state of the interrupt signals prior to being masked by the controller. The IRQEnable
register determines which interrupts are masked from the processor. This register can only
be set or cleared using IRQEnableSet and IRQEnableClear. Table 9.10 shows the interrupt
controller register names, offsets from the controller’s base address, read/write operations,
and a description of the registers.

I_Bit EQU 0x80

PRIORITY_0 EQU 2 ; Comms Rx
PRIORITY_1 EQU 1 ; Comms Tx
PRIORITY_2 EQU 0 ; Timer 1
PRIORITY_3 EQU 3 ; Timer 2

BINARY_0 EQU 1 << PRIORITY_0 ; 1 << 2 0x00000004
BINARY_1 EQU 1 << PRIORITY_1 ; 1 << 1 0x00000002
BINARY_2 EQU 1 << PRIORITY_2 ; 1 << 0 0x00000001
BINARY_3 EQU 1 << PRIORITY_3 ; 1 << 3 0x00000008

MASK_3 EQU BINARY_3
MASK_2 EQU MASK_3+BINARY_2
MASK_1 EQU MASK_2+BINARY_1
MASK_0 EQU MASK_1+BINARY_0

ic_Base EQU 0x80000000
IRQStatus EQU 0x0

348 Chapter 9 Exception and Interrupt Handling

Disable interrupts1.

2.

3.

4.

Save minimum context

Get external interrupt
status

Identify interrupt
priority and mask off

lower-priority
interrupts and enable

IRQs

5. Jump to service
routine

Switch on internal
interrupts followed

by external interrupt

6. Create a context

Interrupt

9.
8.

Restore context

Return to task

7.
Service
interrupt

Figure 9.11 Priority interrupt handler.

IRQRawStatus EQU 0x4
IRQEnable EQU 0x8
IRQEnableSet EQU 0x8
IRQEnableClear EQU 0xc

9.3 Interrupt Handling Schemes 349

Table 9.10 Interrupt controller registers.

Register Offset R/W Description

IRQRawStatus +0x04 r represents status of the interrupt sources
IRQEnable +0x08 r masks the interrupt sources that generate IRQ/FIQ to the CPU
IRQStatus +0x00 r represents interrupt sources after masking
IRQEnableSet +0x08 w sets bits in the interrupt enable register
IRQEnableClear +0x0c w clears bits in the interrupt enable register

IRQ_Handler ; instruction state : comment
SUB r14, r14, #4 ; 2 : r14_irq -= 4
STMFD r13!, {r14} ; 2 : save r14_irq
MRS r14, spsr ; 2 : copy spsr_irq
STMFD r13!, {r10,r11,r12,r14} ; 2 : save context
LDR r14, =ic_Base ; 3 : int crtl addr
MOV r11, #PRIORITY_3 ; 3 : default priority
LDR r10, [r14, #IRQStatus] ; 3 : load IRQ status
TST r10, #BINARY_3 ; 4 : if Timer 2
MOVNE r11, #PRIORITY_3 ; 4 : then P3(lo)
TST r10, #BINARY_2 ; 4 : if Timer 1
MOVNE r11, #PRIORITY_2 ; 4 : then P2
TST r10, #BINARY_1 ; 4 : if Comm Tx
MOVNE r11, #PRIORITY_1 ; 4 : then P1
TST r10, #BINARY_0 ; 4 : if Comm Rx
MOVNE r11, #PRIORITY_0 ; 4 : then P0(hi)
LDR r12, [r14,#IRQEnable] ; 4 : IRQEnable reg
ADR r10, priority_masks ; 4 : mask address
LDR r10, [r10,r11,LSL #2] ; 4 : priority value
AND r12, r12,r10 ; 4 : AND enable reg
STR r12, [r14,#IRQEnableClear] ; 4 : disable ints
MRS r14, cpsr ; 4 : copy cpsr
BIC r14, r14, #I_Bit ; 4 : clear I-bit
MSR cpsr_c, r14 ; 4 : enable IRQ ints
LDR pc, [pc, r11, LSL#2] ; 5 : jump to an ISR
NOP ;
DCD service_timer1 ; timer1 ISR
DCD service_commtx ; commtx ISR
DCD service_commrx ; commrx ISR
DCD service_timer2 ; timer2 ISR

priority_masks
DCD MASK_2 ; priority mask 2

350 Chapter 9 Exception and Interrupt Handling

DCD MASK_1 ; priority mask 1
DCD MASK_0 ; priority mask 0
DCD MASK_3 ; priority mask 3
...

service_timer1
STMFD r13!, {r0-r9} ; 6 : save context
<service routine>
LDMFD r13!, {r0-r10} ; 7 : restore context
MRS r11, cpsr ; 8 : copy cpsr
ORR r11, r11, #I_Bit ; 8 : set I-bit
MSR cpsr_c, r11 ; 8 : disable IRQ
LDR r11, =ic_Base ; 8 : int ctrl addr
STR r12, [r11, #IRQEnableSet] ; 8 : enable ints
LDMFD r13!, {r11, r12, r14} ; 9 : restore context
MSR spsr_cxsf, r14 ; 9 : set spsr
LDMFD r13!, {pc}ˆ ; 9 : return

Most interrupt controllers also have a corresponding set of registers for the FIQ excep-
tions and even allow individual interrupt sources to be attached to a particular interrupt
signal going to the core. Thus, by programming the controller, a particular interrupt source
can be made to cause either an IRQ or FIQ exception.

The registers are offset from a base address in memory. Table 9.10 shows all the offsets
for the various registers from interrupt controller base address ic_Base. Note that offset
0x08 is used for both IRQEnable and IRQEnableSet.

In the interrupt controller each bit is associated with a particular interrupt source
(see Figure 9.12). For example, bit 2 is associated with a receive interrupt source for serial
communication.

Binary

Bit position

8 4 2 u

012331

t2 rx tx t1

t1—timer 1
t2—timer 2
tx—serial transmit
rx—serial receive

Figure 9.12 32-bit interrupt control register.

9.3 Interrupt Handling Schemes 351

The PRIORITY_x defines the four interrupt sources, used in the example, to a cor-
responding set of priority levels, where PRIORITY_0 is the highest-priority interrupt and
PRIORITY_3 is the lowest-priority interrupt.

TheBINARY_x defines provide the bit patterns for each of the priority levels. For instance,
for a PRIORITY_0 interrupt the binary pattern would be 0x00000004 (or 1 � 2). For each
priority level there is a corresponding mask that masks out all interrupts that are equal or
lower in priority. For instance, MASK_2 will mask out interrupts from Timer2 (priority = 3)
and CommRx (priority = 2).

The defines for the interrupt controller registers are also listed. ic_Base is the base
address, and the remaining defines (for instance, IRQStatus) are all offsets from that base
address.

The priority interrupt handler starts with a standard entry, but at first only the IRQ link
register is stored onto the IRQ stack.

Next the handler obtains the spsr and places the contents into register r14_irq and frees
up a group of registers for use in processing the prioritization.

The handler needs to obtain the status of the interrupt controller. This is achieved by
loading in the base address of the interrupt controller into register r14 and loading register
r10 with ic_Base (register r14) offset by IRQStatus (0x00).

The handler now needs to determine the highest-priority interrupt by testing the status
information. If a particular interrupt source matches a priority level, then the priority level
is set in register r11. The method compares the interrupt source with all the set priority
levels, starting first with the lowest priority and working to the highest priority.

After this code fragment, register r14_irq will contain the base address of the interrupt
controller, and register r11 will contain the bit number of the highest-priority interrupt. It is
now important to disable the lower- and equal-priority interrupts so that the higher-priority
interrupts can still interrupt the handler.

Notice that this method is more deterministic since the time taken to discover the
priority is always the same.

To set the interrupt mask in the controller, the handler must determine the current
IRQ enable register and also obtain the start address of the priority mask table. The
priority_masks are defined at the end of the handler.

Register r12 will now contain the current IRQ enable register, and register r10 will
contain the start address of the priority table. To obtain the correct mask, register r11 is
shifted left by two (using the barrel shifter LSL #2). This will multiply the address by four
and add that to the start address of the priority table.

Register r10 contains the new mask. The next step is to clear the lower-priority interrupts
using the mask, by performing a binary AND with the mask and register r12 (IRQEnable
register) and then clearing the bits by storing the new mask into IRQEnableClear register.
It is now safe to enable IRQ exceptions by clearing the i bit in the cpsr.

Lastly the handler needs to jump to the correct service routine, by modifying register r11
(which still contains the highest-priority interrupt) and the pc. Shifting register r11 left by
two (multiplying by four) and adding it to the pc allows the handler to jump to the correct
routine by loading the address of the service routine directly into the pc.

352 Chapter 9 Exception and Interrupt Handling

The jump table has to follow the instruction that loads the pc. There is an NOP in between
the jump table and the instruction that manipulates the pc because the pc will be pointing two
instructions ahead (or eight bytes). The priority mask table is in interrupt source bit order.

Each ISR follows the same entry style. The example given is for the timer1 interrupt
service routine.

The ISR is then inserted after the header above. Once the ISR is complete, the interrupt
sources must be reset and control passed back to the interrupted task.

The handler must disable the IRQs before the interrupts can be switched back on. The
external interrupts can now be restored to their original value, which is possible because
the service routine did not modify register r12 and so it still contains the original value.

To return back to the interrupted task, context is restored and the original spsr is copied
back into the spsr_irq.

Summary Prioritized Simple Interrupt Handler

■ Handles prioritized interrupts.

■ Low interrupt latency.

■ Advantage: deterministic interrupt latency since the priority level is identified first and
then the service is called after the lower-priority interrupts are masked.

■ Disadvantage: the time taken to get to a low-priority service routine is the same as for
a high-priority routine.

9.3.5 Prioritized Standard Interrupt Handler

Following on from the prioritized simple interrupt handler, the next handler adds an addi-
tional level of complexity. The prioritized simple interrupt handler tested all the interrupts
to establish the highest priority—an inefficient method of establishing the priority level but
it does have the advantage of being deterministic since each interrupt priority will take the
same length of time to be identified.

An alternative approach is to jump early when the highest-priority interrupt has been
identified (see Figure 9.13), by setting the pc and jumping immediately once the priority
level has been established. This means that the identification section of the code for the
prioritized standard interrupt handler is more involved than for the prioritized simple
interrupt handler. The identification section will determine the priority level and jump
immediately to a routine that will handle the masking of the lower-priority interrupts and
then jump again via a jump table to the appropriate ISR.

Example

9.12
A prioritized standard interrupt handler starts the same as a prioritized simple interrupt
handler but intercepts the interrupts with a higher-priority earlier. Register r14 is assigned
to point to the base of the interrupt controller and load register r10 with the interrupt
controller status register. To allow the handler to be relocatable, the current address pointed
to by the pc is recorded into register r11.

9.3 Interrupt Handling Schemes 353

Obtain external
interrupt status

Is a priority 1
interrupt?

Is a priority 2
interrupt?

Disable lower-
priority interrupts

Enable external
interrupts

Enable internal
interrupts

Service
interrupt

9.

8.

7.

6.

5.

3.

4.

Restore context

Return to task

Interrupt

Figure 9.13 Part of a prioritized standard interrupt handler.

354 Chapter 9 Exception and Interrupt Handling

I_Bit EQU 0x80

PRIORITY_0 EQU 2 ; Comms Rx
PRIORITY_1 EQU 1 ; Comms Tx
PRIORITY_2 EQU 0 ; Timer 1
PRIORITY_3 EQU 3 ; Timer 2

BINARY_0 EQU 1 << PRIORITY_0 ; 1 << 2 0x00000004
BINARY_1 EQU 1 << PRIORITY_1 ; 1 << 1 0x00000002
BINARY_2 EQU 1 << PRIORITY_2 ; 1 << 0 0x00000001
BINARY_3 EQU 1 << PRIORITY_3 ; 1 << 3 0x00000008

MASK_3 EQU BINARY_3
MASK_2 EQU MASK_3+BINARY_2
MASK_1 EQU MASK_2+BINARY_1
MASK_0 EQU MASK_1+BINARY_0

ic_Base EQU 0x80000000
IRQStatus EQU 0x0
IRQRawStatus EQU 0x4
IRQEnable EQU 0x8
IRQEnableSet EQU 0x8
IRQEnableClear EQU 0xc

IRQ_Handler ; instruction state : comment
SUB r14, r14, #4 ; 2 : r14_irq -= 4
STMFD r13!, {r14} ; 2 : save r14_irq
MRS r14, spsr ; 2 : copy spsr_irq
STMFD r13!,{r10,r11,r12,r14} ; 2 : save context
LDR r14, =ic_Base ; 3 : int crtl addr
LDR r10, [r14, #IRQStatus] ; 3 : load IRQ status
MOV r11, pc ; 4 : copy pc
TST r10, #BINARY_0 ; 5 : if CommRx
BLNE disable_lower ; 5 : then branch
TST r10, #BINARY_1 ; 5 : if CommTx
BLNE disable_lower ; 5 : then branch
TST r10, #BINARY_2 ; 5 : if Timer1
BLNE disable_lower ; 5 : then branch
TST r10, #BINARY_3 ; 5 : if Timer2
BLNE disable_lower ; 5 : then branch

disable_lower
SUB r11, r14, r11 ; 5 : r11=r14-copy of pc
LDR r12,=priority_table ; 5 : priority table

9.3 Interrupt Handling Schemes 355

LDRB r11,[r12,r11,LSR #3] ; 5 : mem8[tbl+(r11 >> 3)]
ADR r10, priority_masks ; 5 : priority mask
LDR r10, [r10,r11,LSL #2] ; 5 : load mask
LDR r14, =ic_Base ; 6 : int crtl addr
LDR r12, [r14,#IRQEnable] ; 6 : IRQ enable reg
AND r12, r12, r10 ; 6 : AND enable reg
STR r12, [r14,#IRQEnableClear] ; 6 : disable ints
MRS r14, cpsr ; 7 : copy cpsr
BIC r14, r14, #I_Bit ; 7 : clear I-bit
MSR cpsr_c, r14 ; 7 : enable IRQ
LDR pc, [pc, r11, LSL#2] ; 8 : jump to an ISR
NOP ;

DCD service_timer1 ; timer1 ISR
DCD service_commtx ; commtx ISR
DCD service_commrx ; commrx ISR
DCD service_timer2 ; timer2 ISR

priority_masks
DCD MASK_2 ; priority mask 2
DCD MASK_1 ; priority mask 1
DCD MASK_0 ; priority mask 0
DCD MASK_3 ; priority mask 3

priority_table
DCB PRIORITY_0 ; priority 0
DCB PRIORITY_1 ; priority 1
DCB PRIORITY_2 ; priority 2
DCB PRIORITY_3 ; priority 3
ALIGN

The interrupt source can now be tested by comparing the highest to the lowest priority.
The first priority level that matches the interrupt source determines the priority level of
the incoming interrupt because each interrupt has a preset priority level. Once a match
is achieved, then the handler can branch to the routine that masks off the lower-priority
interrupts.

To disable the equal- or lower-priority interrupts, the handler enters a routine that first
calculates the priority level using the base address in register r11 and link register r14.

Following the SUB instruction register r11 will now contain the value 4, 12, 20, or 28.
These values correspond to the priority level of the interrupt multiplied by eight plus four.
Register r11 is then divided by eight and added to the address of the priority_table. Following
the LDRB register r11 will equal one of the priority interrupt numbers (0, 1, 2, or 3).

The priority mask can now be determined, using the technique of shifting left by two
and adding that to the register r10, which contains the address of the priority_mask.

356 Chapter 9 Exception and Interrupt Handling

The base address for the interrupt controller is copied into register r14_irq and is used
to obtain the IRQEnable register in the controller and place it into register r12.

Register r10 contains the new mask. The next step is to clear the lower-priority
interrupts using this mask by performing a binary AND with the mask and r12 (IRQEnable
register) and storing the result into the IRQEnableClear register. It is now safe to enable
IRQ exceptions by clearing the i bit in the cpsr.

Lastly the handler needs to jump to the correct service routine, by modifying r11 (which
still contains the highest-priority interrupt) and the pc. Shifting register r11 left by two
(multiplying r11 by four) and adding it to the pc allows the handler to jump to the correct
routine by loading the address of the service routine directly into the pc. The jump table
must follow the instruction that loads the pc. There is an NOP between the jump table and
the LDR instruction that modifies the pc because the pc is pointing two instructions ahead
(or eight bytes).

Note that the priority mask table is in interrupt bit order, and the priority table is in
priority order. ■

Summary Prioritized Standard Interrupt Handler

■ Handles higher-priority interrupts in a shorter time than lower-priority interrupts.

■ Low interrupt latency.

■ Advantage: higher-priority interrupts treated with greater urgency with no duplication
of code to set external interrupt masks.

■ Disadvantage: there is a time penalty since this handler requires two jumps, resulting
in the pipeline being flushed each time a jump occurs.

9.3.6 Prioritized Direct Interrupt Handler

One difference between the prioritized direct interrupt handler and the prioritized standard
interrupt handler is that some of the processing is moved out of the handler into the
individual ISRs. The moved code masks out the lower-priority interrupts. Each ISR will
have to mask out the lower-priority interrupts for the particular priority level, which can
be a fixed number since the priority level has already been previously determined.

The second difference is that the prioritized direct interrupt handler jumps directly to the
appropriate ISR. Each ISR is responsible for disabling the lower-priority interrupts before
modifying the cpsr to reenable interrupts. This type of handler is relatively simple since the
masking is done by the individual ISR, but there is a small amount of code duplication since
each interrupt service routine is effectively carrying out the same task.

Example

9.13
The bit_x defines associate an interrupt source with a bit position within the interrupt
controller, which will be used to help mask the lower-priority interrupts within an ISR.

9.3 Interrupt Handling Schemes 357

Once the context is saved, the base address of the ISR table has to be loaded into register
r12. This register is used to jump to the correct ISR once the priority has been established
for the interrupt source.

I_Bit EQU 0x80

PRIORITY_0 EQU 2 ; Comms Rx
PRIORITY_1 EQU 1 ; Comms Tx
PRIORITY_2 EQU 0 ; Timer 1
PRIORITY_3 EQU 3 ; Timer 2

BINARY_0 EQU 1 << PRIORITY_0 ; 1 << 2 0x00000004
BINARY_1 EQU 1 << PRIORITY_1 ; 1 << 1 0x00000002
BINARY_2 EQU 1 << PRIORITY_2 ; 1 << 0 0x00000001
BINARY_3 EQU 1 << PRIORITY_3 ; 1 << 3 0x00000008

MASK_3 EQU BINARY_3
MASK_2 EQU MASK_3+BINARY_2
MASK_1 EQU MASK_2+BINARY_1
MASK_0 EQU MASK_1+BINARY_0

ic_Base EQU 0x80000000
IRQStatus EQU 0x0
IRQRawStatus EQU 0x4
IRQEnable EQU 0x8
IRQEnableSet EQU 0x8
IRQEnableClear EQU 0xc

bit_timer1 EQU 0
bit_commtx EQU 1
bit_commrx EQU 2
bit_timer2 EQU 3

IRQ_Handler ; instruction comment
SUB r14, r14, #4 ; r14_irq-=4
STMFD r13!, {r14} ; save r14_irq
MRS r14, spsr ; copy spsr_irq
STMFD r13!,{r10,r11,r12,r14} ; save context
LDR r14, =ic_Base ; int crtl addr
LDR r10, [r14, #IRQStatus] ; load IRQ status
ADR r12, isr_table ; obtain ISR table
TST r10, #BINARY_0 ; if CommRx
LDRNE pc, [r12, #PRIORITY_0 << 2] ; then CommRx ISR

358 Chapter 9 Exception and Interrupt Handling

TST r10, #BINARY_1 ; if CommTx
LDRNE pc, [r12, #PRIORITY_1 << 2] ; then CommTx ISR
TST r10, #BINARY_2 ; if Timer1
LDRNE pc, [r12, #PRIORITY_2 << 2] ; then Timer1 ISR
TST r10, #BINARY_3 ; if Timer2
LDRNE pc, [r12, #PRIORITY_3 << 2] ; then Timer2 ISR
B service_none

isr_table
DCD service_timer1 ; timer1 ISR
DCD service_commtx ; commtx ISR
DCD service_commrx ; commrx ISR
DCD service_timer2 ; timer2 ISR

priority_masks
DCD MASK_2 ; priority mask 2
DCD MASK_1 ; priority mask 1
DCD MASK_0 ; priority mask 0
DCD MASK_3 ; priority mask 3
...

service_timer1
MOV r11, #bit_timer1 ; copy bit_timer1
LDR r14, =ic_Base ; int ctrl addr
LDR r12, [r14,#IRQEnable] ; IRQ enable register
ADR r10, priority_masks ; obtain priority addr
LDR r10, [r10,r11,LSL#2] ; load priority mask
AND r12, r12, r10 ; AND enable reg
STR r12, [r14, #IRQEnableClear] ; disable ints
MRS r14, cpsr ; copy cpsr
BIC r14, r14, #I_Bit ; clear I-bit
MSR cpsr_c, r14 ; enable IRQ
<rest of the ISR>

The priority interrupt is established by checking the highest-priority interrupt first and
then working down to the lowest. Once a priority interrupt is identified, the pc is then loaded
with the address of the appropriate ISR. The indirect address is stored at the address of the
isr_table plus the priority level shifted two bits to the left (multiplied by four). Alternatively
you could use a conditional branch BNE.

The ISR jump table isr_table is ordered with the highest-priority interrupt at the
beginning of the table.

The service_timer1 entry shows an example of an ISR used in a priority direct interrupt
handler. Each ISR is unique and depends upon the particular interrupt source.

A copy of the base address for the interrupt controller is placed into register r14_irq.
This address plus an offset is used to copy the IRQEnable register into register r12.

9.3 Interrupt Handling Schemes 359

The address of the priority mask table has to be copied into register r10 so it can be used
to calculate the address of the actual mask. Register r11 is shifted left two positions, which
gives an offset of 0, 4, 8, or 12. The offset plus the address of the priority mask table address
is used to load the mask into register r10. The priority mask table is the same as for the
priority interrupt handler in the previous section.

Register r10 will contain the ISR mask, and register r12 will contain the current mask.
A binary AND is used to merge the two masks. Then the new mask is used to configure
the interrupt controller using the IRQEnableClear register. It is now safe to enable IRQ
exceptions by clearing the i bit in the cpsr.

The handler can continue servicing the current interrupt unless an interrupt with a
higher priority occurs, in which case that interrupt will take precedence over the current
interrupt. ■

Summary Prioritized Direct Interrupt Handler

■ Handles higher-priority interrupts in a shorter time. Goes directly to the specific ISR.

■ Low interrupt latency.

■ Advantage: uses a single jump and saves valuable cycles to go to the ISR.

■ Disadvantage: each ISR has a mechanism to set the external interrupt mask to stop
lower-priority interrupts from halting the current ISR, which adds extra code to
each ISR.

9.3.7 Prioritized Grouped Interrupt Handler

Lastly, the prioritized grouped interrupt handler differs from the other prioritized interrupt
handlers since it is designed to handle a large set of interrupts. This is achieved by grouping
interrupts together and forming a subset, which can then be given a priority level.

The designer of an embedded system must identify each subset of interrupt sources
and assign a group priority level to that subset. It is important to be careful when selecting
the subsets of interrupt sources since the groups can determine the characteristics of the
system. Grouping the interrupt sources together tends to reduce the complexity of the
handler since it is not necessary to scan through every interrupt to determine the priority
level. If a prioritized grouped interrupt handler is well designed, it will dramatically improve
overall system response times.

Example

9.14
This handler has been designed to have two priority groups. Timer sources are grouped into
group 0, and communication sources are grouped into group 1 (see Table 9.11.) Group 0
interrupts are given a higher priority than group 1 interrupts.

I_Bit EQU 0x80

PRIORITY_0 EQU 2 ; Comms Rx

360 Chapter 9 Exception and Interrupt Handling

Table 9.11 Group interrupt sources.

Group Interrupts

0 timer1, timer2
1 commtx, commrx

PRIORITY_1 EQU 1 ; Comms Tx
PRIORITY_2 EQU 0 ; Timer 1
PRIORITY_3 EQU 3 ; Timer 2

BINARY_0 EQU 1 << PRIORITY_0 ; 1 << 2 0x00000004
BINARY_1 EQU 1 << PRIORITY_1 ; 1 << 1 0x00000002
BINARY_2 EQU 1 << PRIORITY_2 ; 1 << 0 0x00000001
BINARY_3 EQU 1 << PRIORITY_3 ; 1 << 3 0x00000008

GROUP_0 EQU BINARY_2|BINARY_3
GROUP_1 EQU BINARY_0|BINARY_1

GMASK_1 EQU GROUP_1
GMASK_0 EQU GMASK_1+GROUP_0

MASK_TIMER1 EQU GMASK_0
MASK_COMMTX EQU GMASK_1
MASK_COMMRX EQU GMASK_1
MASK_TIMER2 EQU GMASK_0

ic_Base EQU 0x80000000
IRQStatus EQU 0x0
IRQRawStatus EQU 0x4
IRQEnable EQU 0x8
IRQEnableSet EQU 0x8
IRQEnableClear EQU 0xc

interrupt_handler
SUB r14, r14,#4 ; r14_irq-=4
STMFD r13!, {r14} ; save r14_irq
MRS r14, spsr ; copy spsr_irq
STMFD r13!, {r10,r11,r12,r14} ; save context
LDR r14, =ic_Base ; int ctrl addr
LDR r10, [r14, #IRQStatus] ; load IRQ status
ANDS r11, r10, #GROUP_0 ; belong to GROUP_0
ANDEQS r11, r10, #GROUP_1 ; belong to GROUP_1

9.3 Interrupt Handling Schemes 361

AND r10, r11, #0xf ; mask off top 24-bit
ADR r11, lowest_significant_bit ; load LSB addr
LDRB r11, [r11, r10] ; load byte
B disable_lower_priority ; jump to routine

lowest_significant_bit
; 0 1 2 3 4 5 6 7 8 9 a b c d e f
DCB 0xff,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0

disable_lower_priority
CMP r11, #0xff ; if unknown
BEQ unknown_condition ; then jump
LDR r12, [r14, #IRQEnable] ; load IRQ enable reg
ADR r10, priority_mask ; load priority addr
LDR r10, [r10, r11, LSL #2] ; mem32[r10+r11 << 2]
AND r12, r12, r10 ; AND enable reg
STR r12, [r14, #IRQEnableClear] ; disable ints
MRS r14, cpsr ; copy cpsr
BIC r14, r14, #I_Bit ; clear I-bit
MSR cpsr_c, r14 ; enable IRQ ints
LDR pc, [pc, r11, LSL #2] ; jump to an ISR
NOP
DCD service_timer1 ; timer1 ISR
DCD service_commtx ; commtx ISR
DCD service_commrx ; commrx ISR
DCD service_timer2 ; timer2 ISR

priority_mask
DCD MASK_TIMER1 ; mask GROUP 0
DCD MASK_COMMTX ; mask GROUP 1
DCD MASK_COMMRX ; mask GROUP 1
DCD MASK_TIMER2 ; mask GROUP 0

The GROUP_x defines assign the various interrupt sources to their specific priority level
by using a binary OR operation on the binary patterns. The GMASK_x defines assign the
masks for the grouped interrupts. The MASK_x defines connect each GMASK_x to a specific
interrupt source, which can then be used in the priority mask table.

After the context has been saved the interrupt handler loads the IRQ status register using
an offset from the interrupt controller base address.

The handler then identifies the group to which the interrupt source belongs by using
the binary AND operation on the source. The letter S postfixed to the instructions means
update condition flags in the cpsr.

Register r11 will now contain the highest-priority group 0 or 1. The handler now masks
out the other interrupt sources by applying a binary AND operation with 0xf.

362 Chapter 9 Exception and Interrupt Handling

Table 9.12 Lowest significant bit table.

Binary pattern Value

0000 unknown
0001 0
0010 1
0011 0
0100 2
0101 0
0110 1
0111 0
1000 3
1001 0
1010 1
1011 0
1100 2
1101 0
1110 1
1111 0

The address of the lowest significant bit table is then loaded into register r11. A byte is
loaded from the start of the table using the value in register r10 (0, 1, 2, or 3, see Table 9.12).
Once the lowest significant bit position is loaded into register r11, the handler branches to
a routine.

The disable_lower_priority interrupt routine first checks for a spurious (no longer
present) interrupt. If the interrupt is spurious, then the unknown_condition routine is
called. The handler then loads the IRQEnable register and places the result in register r12.

The priority mask is found by loading in the address of the priority mask table and
then shifting the data in register r11 left by two. The result, 0, 4, 8, or 12, is added to the
priority mask address. Register r10 then contains a mask to disable the lower-priority group
interrupts from being raised.

The next step is to clear the lower-priority interrupts using the mask by performing a
binary AND with the mask in registers r10 and r12 (IRQEnable register) and then clearing
the bits by saving the result into the IRQEnableClear register. At this point it is now safe
to enable IRQ exceptions by clearing the i bit in the cpsr.

Lastly the handler jumps to the correct interrupt service routine by modifying register
r11 (which still contains the highest-priority interrupt) and the pc. By shifting register r11
left by two and adding the result to the pc the address of the ISR is determined. This address
is then loaded directly into the pc. Note that the jump table must follow the LDR instruction.
The NOP is present due to the ARM pipeline. ■

9.3 Interrupt Handling Schemes 363

Summary Prioritized Grouped Interrupt Handler

■ Mechanism for handling interrupts that are grouped into different priority levels.

■ Low interrupt latency.

■ Advantage: useful when the embedded system has to handle a large number of inter-
rupts, and also reduces the response time since the determining of the priority level is
shorter.

■ Disadvantage: determining how the interrupts are grouped together.

9.3.8 VIC PL190 Based Interrupt Service Routine

To take advantage of the vector interrupt controller, the IRQ vector entry has to be modified.

0x00000018 LDR pc,[pc,#-0xff0] ; IRQ pc=mem32[0xfffff030]

This instruction loads an ISR address from the memory mapped location 0xffffff030 into
the pc which bypasses any software interrupt handler since the interrupt source can be
obtained directly from the hardware. It also reduces interrupt latency since there is only a
single jump to a specific ISR.

Here is an example of VIC service routine:

INTON EQU 0x0000 ; enable interrupts
SYS32md EQU 0x1f ; system mode
IRQ32md EQU 0x12 ; IRQ mode
I_Bit EQU 0x80
VICBaseAddr EQU 0xfffff000 ; addr of VIC ctrl
VICVectorAddr EQU VICBaseAddr+0x30 ; isr address of int

vector_service_routine
SUB r14,r14,#4 ; r14-=4
STMFD r13!, {r0-r3,r12,r14} ; save context
MRS r12, spsr ; copy spsr
STMFD r13!,{r12} ; save spsr
<clear the interrupt source>
MSR cpsr_c, #INTON|SYS32md ; cpsr_c=ift_sys
<interrupt service code>
MSR cpsr_c, #I_Bit|IRQ32md ; cpsr_c=Ift_irq
LDMFD r13!, {r12} ; restore (spsr_irq)
MSR spsr_cxsf, r12 ; restore spsr
LDR r1,=VICVectorAddr ; load VectorAddress
STR r0, [r1] ; servicing complete
LDMFD r13!, {r0-r3,r12,pc}ˆ ; return

364 Chapter 9 Exception and Interrupt Handling

This routine saves the context and s psr_irq before clearing the interrupt source. Once this is
complete, the IRQ exceptions can be reenabled by clearing the i bit, and the processor mode
is set to system mode. The service routine can then process the interrupt in system mode.
Once complete, the IRQ exceptions are disabled by setting the i bit, and the processor mode
is switched back to IRQ mode.

The spsr_irq is restored from the IRQ stack, preparing the routine to return to the
interrupted task.

The service routine then writes to the VICVectorAddr register in the controller. Writing
to this address indicates to the priority hardware that the interrupt has been serviced.

Note that since the VIC is basically a hardware interrupt handler, the array of ISR
addresses must be preprogrammed into the VIC before it is activated. ■

9.4 Summary
An exception changes the normal sequential execution of instructions. There are seven
exceptions: Data Abort, Fast Interrupt Request, Interrupt Request, Prefetch Abort, Soft-
ware Interrupt, Reset, and Undefined Instruction. Each exception has an associated ARM
processor mode. When an exception is raised, the processor goes into a specific mode and
branches to an entry in the vector table. Each exception also has a priority level.

Interrupts are a special type of exception that are caused by an external peripheral.
The IRQ exception is used for general operating system activities. The FIQ exception is
normally reserved for a single interrupt source. Interrupt latency is the interval of time from
an external interrupt request signal being raised to the first fetch of an instruction of a
specific interrupt service routine (ISR).

We covered eight interrupt handling schemes, from a very simple nonnested interrupt
handler that handles and services individual interrupts, to an advanced prioritized grouped
interrupt handler that handles interrupts that are grouped into different priority levels.

This Page Intentionally Left Blank

10.1 Firmware and Bootloader
10.1.1 ARM Firmware Suite

10.1.2 Red Hat RedBoot

10.2 Example: Sandstone
10.2.1 Sandstone Directory Layout

10.2.2 Sandstone Code Structure

10.3 Summary

C h a p t e r

Firmware 10

This chapter discusses firmware for ARM-based embedded systems. Firmware is an impor-
tant part of any embedded system since it is frequently the first code to be ported and
executed on a new platform. Firmware can vary from being a complete software embedded
system to just a simple initialization and bootloader routine. We have divided this chapter
into two sections.

The first section introduces firmware. In this section we define the term firmware
and describe two popular industry standard firmware packages available for the ARM
processor—ARM Firmware Suite and Red Hat’s RedBoot. These firmware packages are
general purpose and can be ported to different ARM platforms relatively easily and quickly.

The second section focuses on just the initialization and bootloader process. To help
with this, we have developed a simple example called Sandstone. Sandstone is designed to
initialize hardware, load an image into memory, and relinquish control of the pc over to
that image.

We start by first discussing firmware and introduce the two common ARM firmware
packages.

10.1 Firmware and Bootloader
We realize that the use of terms may differ among engineers, but we will use the following
definitions:

■ The firmware is the deeply embedded, low-level software that provides an interface
between the hardware and the application/operating system level software. It resides
in the ROM and executes when power is applied to the embedded hardware
system. Firmware can remain active after system initialization and supports basic

367

368 Chapter 10 Firmware

system operations. The choice of which firmware to use for a particular ARM-based
system depends upon the specific application, which can range from loading and exe-
cuting a sophisticated operating system to simply relinquishing control to a small
microkernel. Consequently, requirements can vary greatly from one firmware imple-
mentation to another. For example, a small system may require just minimal firmware
support to boot a small operating system. One of the main purposes of firmware is to
provide a stable mechanism to load and boot an operating system.

■ The bootloader is a small application that installs the operating system or application
onto a hardware target. The bootloader only exists up to the point that the operating
system or application is executing, and it is commonly incorporated into the
firmware.

To help understand the features of different firmware implementations, we have a
common execution flow (see Table 10.1). Each stage is now discussed in more detail.

The first stage is to set up the target platform—in other words, prepare the environ-
ment to boot an operating system since an operating system expects a particular type
of environment before it can operate. This step involves making sure that the platform
is correctly initialized (for example, making sure that the control registers of a particular
microcontroller are placed at a known address or changing the memory map to an expected
layout).

It is common for the same executable to operate on different cores and platforms. In this
case, the firmware has to identify and discover the exact core and platform it is operating
on. The core is normally recognized by reading register 0 in coprocessor 15, which holds
both the processor type and the manufacturer name. There are multiple ways to identify
the platform, from checking for the existence of a set of particular peripherals to simply
reading a preprogrammed chip.

Table 10.1 Firmware execution flow.

Stage Features

Set up target platform Program the hardware system registers
Platform identification
Diagnostics
Debug interface
Command line interpreter

Abstract the hardware Hardware Abstraction Layer
Device driver

Load a bootable image Basic filing system

Relinquish control Alter the pc to point into the new image

10.1 Firmware and Bootloader 369

Diagnostics software provides a useful way for quickly identifying basic hardware
malfunctions. Because of the nature of this type of software, it tends to be specific to
a particular piece of hardware.

Debug capabiliy is provided in the form of a module or monitor that provides software
assistance for debugging code running on a hardware target. This assistance includes the
following:

■ Setting up breakpoints in RAM. A breakpoint allows a program to be interrupted and
the state of the processor core to be examined.

■ Listing and modifying memory (using peek and poke operations).

■ Showing current processor register contents.

■ Disassembling memory into ARM and Thumb instruction mnemonics.

These are interactive functions: you can either send the commands through a command
line interpreter (CLI) or through a dedicated host debugger attached to the target platform.
Unless the firmware has access to the internal hardware debug circuitry, only RAM images
can be debugged through a software debug mechanism.

The CLI is commonly available on the more advanced firmware implementations. It
allows you to change the operating system to be booted by altering the default configurations
through typing commands at a command prompt. For embedded systems, the CLI is
commonly controlled through a host terminal application. Communication between the
host and the target is normally over a serial or network connection.

The second stage is to abstract the hardware. The Hardware Abstraction Layer (HAL) is
a software layer that hides the underlying hardware by providing a set of defined pro-
gramming interfaces. When you move to a new target platform, these programming
interfaces remain constant but the underlying implementation changes. For instance, two
target platforms might use a different timer peripheral. Each peripheral would require
new code to initialize and configure the device. The HAL programming interface would
remain unaltered even though both the hardware and software may differ greatly between
implementations.

The HAL software that communicates with specific hardware peripherals is called a
device driver. A device driver provides a standard application programming interface (API)
to read and write to a specific peripheral.

The third stage is to load a bootable image. The ability of firmware to carry out this
activity depends upon the type of media used to store the image. Note that not all operating
system images or application images need to be copied into RAM. The operating system
image or application image can simply execute directly from ROM.

ARM processors are normally found in small devices that include flash ROM. A common
feature is a simple flash ROM filing system (FFS), which allows multiple executable images
to be stored.

Other media devices, such as hard drives, require that the firmware incorporates a
device driver that is suitable for accessing the hardware. Accessing the hardware requires

370 Chapter 10 Firmware

that the firmware has knowledge of the underlying filing system format, which gives the
firmware the ability to read the filing system, find the file that contains the image, and copy
the image into memory. Similarly, if the image is on the network, then the firmware must
also understand the network protocol as well as the Ethernet hardware.

The load process has to take into account the image format. The most basic image format
is plain binary. A plain binary image does not contain any header or debug information.
A popular image format for ARM-based systems is Executable and Linking Format (ELF).
This format was originally developed for UNIX systems and replaced the older format
called Common Object File Format (COFF). ELF files come in three forms: relocatable,
executable, and shared object.

Most firmware systems must deal with the executable form. Loading an ELF image
involves deciphering the standard ELF header information (that is, execution address, type,
size, and so on). The image may also be encrypted or compressed, in which case the load
process would involve performing decryption or decompression on the image.

The fourth stage is to relinquish control. This is where the firmware hands over control
of the platform to an operating system or application. Note that not all firmware hands
over control; instead the firmware can remain the controlling software on the platform.

Firmware designed to pass control to an operating system may become inactive once
the operating system has control. Alternatively, the Machine Independent Layer (MIL)
or Hardware Abstraction Layer (HAL) part of the firmware can remain active. This layer
exposes, through the SWI mechanism, a standard application interface for specific hardware
devices.

Relinquishing control on an ARM system means updating the vector table and modify-
ing the pc. Updating the vector table involves modifying particular exception and interrupt
vectors so that they point to specialized operating system handlers. The pc has to be modified
so that it points to the operating system entry point address.

For more sophisticated operating systems, such as Linux, relinquishing control requires
that a standard data structure be passed to the kernel. This data structure explains the
environment that the kernel will be running in. For example, one field may include the
amount of available RAM on the platform, while another field includes the type of MMU
being used.

We use these definitions to describe two common firmware suites.

10.1.1 ARM Firmware Suite

ARM has developed a firmware package called the ARM Firmware Suite (AFS). AFS is
designed purely for ARM-based embedded systems. It provides support for a number of
boards and processors including the Intel XScale and StrongARM processors. The pack-
age includes two major pieces of technology, a Hardware Abstraction Layer called μHAL
(pronounced micro-HAL) and a debug monitor called Angel.

μHAL provides a low-level device driver framework that allows it to operate over dif-
ferent communication devices (for example, USB, Ethernet, or serial). It also provides a

10.1 Firmware and Bootloader 371

standard API. Consequently, when a port takes place, the various hardware-specific parts
must be implemented in accordance with the various μHAL API functions.

This has the advantage of making the porting process relatively straightforward since
you have a standard function framework to work within. Once the firmware is ported, the
task of moving an operating system over to the new target platform can take place. The
speed of this activity depends upon whether the OS takes advantage of the ported μHAL
API call to access the hardware.

μHAL supports these main features:

■ System initialization—setting up the target platform and processor core. Depending
upon the complexity of the target platform, this can either be a simple or complicated
task.

■ Polled serial driver—used to provide a basic method of communication with a host.

■ LED support—allows control over the LEDs for simple user feedback. This provides an
application the ability to display operational status.

■ Timer support—allows a periodic interrupt to be set up. This is essential for preemptive
context switching operating systems that require this mechanism.

■ Interrupt controllers—support for different interrupt controllers.

The boot monitor in μHAL contains a CLI.
The second technology, Angel, allows communication between a host debugger and

a target platform. It allows you to inspect and modify memory, download and execute
images, set breakpoints, and display processor register contents. All this control is through
the host debugger. The Angel debug monitor must have access to the SWI and IRQ or FIQ
vectors.

Angel uses SWI instructions to provides a set of APIs that allow a program to open,
read, and write to a host filing system. IRQ/FIQ interrupts are used for communication
purposes with the host debugger.

10.1.2 Red Hat RedBoot

RedBoot is a firmware tool developed by Red Hat. It is provided under an open source
license with no royalties or up front fees. RedBoot is designed to execute on different CPUs
(for instance, ARM, MIPS, SH, and so on). It provides both debug capability through GNU
Debugger (GDB), as well as a bootloader. The RedBoot software core is based on a HAL.

RedBoot supports these main features:

■ Communication—configuration is over serial or Ethernet. For serial, X-Modem proto-
col is used to communicate with the GNU Debugger (GDB). For Ethernet, TCP is used
to communicate with GDB. RedBoot supports a range of network standards, such as
bootp, telnet, and tftp.

372 Chapter 10 Firmware

■ Flash ROM memory management—provides a set of filing system routines that can
download, update, and erase images in flash ROM. In addition, the images can either
be compressed or uncompressed.

■ Full operating system support—supports the loading and booting of Embedded Linux,
Red Hat eCos, and many other popular operating systems. For Embedded Linux,
RedBoot supports the ability to define parameters that are passed directly to the kernel
upon booting.

10.2 Example: Sandstone
We have designed Sandstone to be a minimal system. It carries out only the following tasks:
set up target platform environment, load a bootable image into memory, and relinquish
control to an operating system. It is, however, still a real working example.

The implementation is specific to the ARM Evaluator-7T platform, which includes an
ARM7TDMI processor. This example shows you exactly how a simple platform can be set
up and a software payload can be loaded into memory and booted. The payload can either
be an application or operating system image. Sandstone is a static design and cannot be
configured after the build process is complete. Table 10.2 lists the basic characteristics of
Sandstone.

We will walk you through the directory layout and code structure. The directory layout
shows you where the source code is located and where the different build files are placed.
The code structure focuses more on the actual initialization and boot process.

Note that Sandstone is written entirely in ARM assembler and is a working piece of code
that can be used to intialize target hardware and boot any piece of software, within reason,
on the ARM Evaluator-7T.

10.2.1 Sandstone Directory Layout

Sandstone can be found on our Web site. If you take a look at Sandstone, you will see that
the directory structure is as shown in Figure 10.1. The structure follows a standard style

Table 10.2 Summary of Sandstone.

Feature Configuration

Code ARM instructions only
Tool chain ARM Developer Suite 1.2
Image size 700 bytes
Source 17 KB
Memory remapped

10.2 Example: Sandstone 373

[Sand]

makefile readme.txt [build] [payload]

[src]

sand.s

[obj] [image] [log]

slos.bin

Figure 10.1 Standstone directory layout.

that we will continue to use in further chapters. The sandstone source file sand.s is located
under the sand/build/src directory.

The object file produced by the assembler is placed under the build/obj directory.
The object file is then linked, and the final Sandstone image is placed under the
sand/build/image directory. This image includes both the Sandstone code and the pay-
load. The payload image, the image that is loaded and booted by Sandstone, is found under
the sand/payload directory.

For information about the Sandstone build procedure, take a look at the readme.txt
file under the sand directory. This file contains a description of how to build the example
binary image for the ARM Evaluator-7T.

10.2.2 Sandstone Code Structure

Sandstone consists of a single assembly file. The file structure is broken down into a
number of steps, where each step corresponds to a stage in the execution flow of Sandstone
(see Table 10.3).

Table 10.3 Sandstone execution flow.

Step Description

1 Take the Reset exception
2 Start initializing the hardware
3 Remap memory
4 Initialize communication hardware
5 Bootloader—copy payload and relinquish control

374 Chapter 10 Firmware

We will take you through these steps, trying to avoid as much as possible the platform-
specific parts. You should note that some specific parts are unavoidable (for example,
configuring system registers and memory remapping).

The initial goal of Sandstone is to set up the target platform environment so that it can
provide some form of feedback to indicate that the firmware is running and has control of
the platform.

10.2.2.1 Step 1: Take the Reset Exception

Execution begins with a Reset exception. Only the reset vector entry is required in the
default vector table. It is the very first instruction executed. You can see from the code
here that all the vectors, apart from the reset vector, branch to a unique dummy handler—a
branch instruction that causes an infinite loop. It is assumed that no exception or interrupt
will occur during the operation of Sandstone. The reset vector is used to move the execution
flow to the second stage.

AREA start,CODE,READONLY
ENTRY

sandstone_start
B sandstone_init1 ; reset vector
B ex_und ; undefined vector
B ex_swi ; swi vector
B ex_pabt ; prefetch abort vector
B ex_dabt ; data abort vector
NOP ; not used...
B int_irq ; irq vector
B int_fiq ; fiq vector

ex_und B ex_und ; loop forever
ex_swi B ex_swi ; loop forever
ex_dabt B ex_dabt ; loop forever
ex_pabt B ex_pabt ; loop forever
int_irq B int_irq ; loop forever
int_fiq B int_fiq ; loop forever

sandstone_start is located at address 0x00000000.
The results of executing step 1 are the following:

■ Dummy handlers are set up.

■ Control is passed to code to initialize the hardware.

10.2 Example: Sandstone 375

10.2.2.2 Step 2: Start Initializing the Hardware

The primary phase in initializing hardware is setting up system registers. These registers
have to be set up before accessing the hardware. For example, the ARM Evaluator-7T has a
seven-segment display, which we have chosen to be used as a feedback tool to indicate that
the firmware is active. Before we can set up the segment display, we have to position the
base address of the system registers to a known location. In this case, we have picked the
default address 0x03ff0000, since this places all the hardware system registers away from
both ROM and RAM, separating the peripherals and memory.

Consequently, all the microcontroller memory-mapped registers are located as an offset
from 0x03ff0000. This is achieved using the following code:

sandstone_init1
LDR r3, =SYSCFG ; where SYSCFG=0x03ff0000
LDR r4, =0x03ffffa0
STR r4, [r3]

Register r3 contains the default system register base address and is used to set the new
default address, as well as other specific attributes such as the cache. Register r4 contains
the new configuration. The top 16 bits contain the high address of the new system register
base address 0x03ff, and the lower 16 bits contain the new attribute settings 0xffa0.

After setting up the system register base address, the segment display can be configured.
The segment display hardware is used to show Sandstone’s progress. Note that the segment
display is not shown since it is hardware specific.

The results of executing step 2 are the following:

■ The system registers are set from a known base address—0x03ff0000.

■ The segment display is configured, so that it can be used to display progress.

10.2.2.3 Step 3: Remap Memory

One of the major activities of hardware initialization is to set up the memory environment.
Sandstone is designed to initialize SRAM and remap memory. This process occurs fairly
early on in the initialization of the system. The platform starts in a known memory state,
as shown in Table 10.4.

As you can see, when the platform is powered up, only flash ROM is assigned a location
in the memory map. The two SRAM banks (0 and 1) have not been initialized and are not
available. The next stage is to bring in the two SRAM banks and remap flash ROM to a new
location. This is achieved using the following code:

LDR r14, =sandstone_init2
LDR r4, =0x01800000 ; new flash ROM location

376 Chapter 10 Firmware

Table 10.4 Initial memory state.

Memory type Start address End address Size

Flash ROM 0x00000000 0x00080000 512K
SRAM bank 0 Unavailable unavailable 256K
SRAM bank 1 Unavailable unavailable 256K

ADD r14, r14, r4
ADRL r0, memorymaptable_str
LDMIA r0, {r1-r12}
LDR r0, =EXTDBWTH ; =(SYSCFG + 0x3010)
STMIA r0, {r1-r12}
MOV pc, r14 ; jump to remapped memory

sandstone_init2
; Code after sandstone_init2 executes @ +0x1800000

The first part of the code calculates the absolute address of the routine sandstone_init2 before
remapping takes place. This address is used by Sandstone to jump to the next routine in
the new remapped environment.

The second part carries out the memory remapping. The new memory map data is
loaded into registers r1 to r12, from a structure pointed by memorymaptable_str. This
structure, using the registers, is then written to the memory controller offset 0x3010 from
system configuration register. Once this is complete, the new memory map as shown in
Table 10.5 is active.

You can see that the SRAM banks are now available, and the flash ROM is set to a higher
address. The final part is to jump to the next routine, or stage, of the firmware.

This jump is achieved by taking advantage of the ARM pipeline. Even though the
new memory environment is active, the next instruction has already been loaded into the
pipeline. The next routine can be called by moving the contents of register r14 (the address
sandstone_init2) into the pc. We achieve this by using a single MOV instruction that
follows immediately after the remap code.

Table 10.5 Remapping.

Type Start address End address Size

Flash ROM 0x01800000 0x01880000 512K
SRAM bank 0 0x00000000 0x00040000 256K
SRAM bank 1 0x00040000 0x00080000 256K

10.2 Example: Sandstone 377

The results of executing step 3 are the following:

■ Memory has been remapped as shown in Table 10.5.

■ pc now points to the next step. This address is located in the newly remapped flash
ROM.

10.2.2.4 Step 4: Initialize Communication Hardware

Communication initialization involves configuring a serial port and outputting a standard
banner. The banner is used to show that the firmware is fully functional and memory has
been successfully remapped. Again, because the code for initializing the serial port on the
ARM Evaluator-7T is hardware specific, it is not shown.

The serial port is set to 9600 baud, no parity, one stop bit, and no flow control. If a
serial cable is attached to the board, then the host terminal has to be configured with these
settings.

The results of executing step 4 are the following:

■ Serial port initialized—9600 baud, no parity, one stop bit, and no flow control.

■ Sandstone banner sent out through the serial port:

Sandstone Firmware (0.01)

- platform e7t

- status alive

- memory remapped

+ booting payload ...

10.2.2.5 Step 5: Bootloader—Copy Payload and Relinquish Control

The final stage involves copying a payload and relinquishing control of the pc over to the
copied payload. This is achieved using the code shown here. The first part of the code sets
up the registers r12, r13, and r14 used in the block copy. The bootloader code assumes that
the payload is a plain binary image that requires no deciphering or uncompressing.

sandstone_load_and_boot
MOV r13,#0 ; destination addr
LDR r12,payload_start_address ; start addr
LDR r14,payload_end_address ; end addr

378 Chapter 10 Firmware

_copy
LDMIA r12!,{r0-r11}
STMIA r13!,{r0-r11}
CMP r12,r14
BLT _copy
MOV pc,#0

payload_start_address
DCD startAddress

payload_end_address
DCD endAddress

Destination register r13 points to the beginning of SRAM, in this case 0x00000000.
The source register r12 points to the start of the payload, and the source end register r14
points to the end of the payload. Using these registers, the payload is then copied into
SRAM.

Control of the pc is then relinquished to the payload by forcing the pc to the entry address
of the copied payload. For this particular payload the entry point is address 0x00000000.
The payload now has control of the system.

The results of executing step 5 are the following:

■ Payload copied into SRAM, address 0x00000000.

■ Control of the pc is relinquished to the payload; pc = 0x00000000.

■ The system is completely booted. The following output is shown on the serial port:

Sandstone Firmware (0.01)

- platform e7t

- status alive

- memory remapped

+ booting payload ...

Simple Little OS (0.09)

- initialized ok

- running on e7t

e7t:

10.3 Summary 379

10.3 Summary
This chapter covered the firmware. We defined firmware as the low-level code that interfaces
the hardware with an application or operating system. We also defined the bootloader as
the software that loads an operating system or application into memory and relinquishes
control of the pc to that software.

We introducted the ARM Firmware Suite and RedBoot. The ARM Firmware Suite is
designed only for ARM-based systems. RedBoot, however, is more generic and can be used
on other, non-ARM processors.

Next we looked at a firmware example called Sandstone. Sandstone initializes the
hardware and then loads and boots an image following this procedure:

■ Takes the Reset exception.

■ Starts initializing the hardware; sets the system register’s base address and initializes
segment display hardware.

■ Remaps memory; ROM address = high addr and SRAM addr = 0x00000000.

■ Initializes the communication hardware output on the serial port.

■ Bootloader—loads an image into SRAM and relinquishes control of the pc to the image
(pc = 0x00000000).

We now have a fully initialized ARM7TDMI embedded system.

11.1 Fundamental Components
11.2 Example: Simple Little Operating System

11.2.1 SLOS Directory Layout

11.2.2 Initialization

11.2.3 Memory Model

11.2.4 Interrupts and Exceptions Handling

11.2.5 Scheduler

11.2.6 Context Switch

11.2.7 Device Driver Framework

11.3 Summary

C h a p t e r

Embedded
Operating

Systems

11

This chapter discusses the implementation of embedded operating systems (OS). Because
embedded operating systems are designed for a specific purpose, historically embedded
operating systems were simple, time constrained, and operated in limited memory. This
distinction has changed over time as the sophistication of embedded hardware has increased.
Features, traditionally found on desktop computers, such as virtual memory, have migrated
into the embedded system world.

Since this is a large subject, we have limited our scope to just the fundamental compo-
nents that make up an embedded operating system. We also build on the firmware example
shown in Chapter 10.

This chapter is divided into two sections: The first section takes you through the funda-
mental components that make up an embedded operating system and notes issues specific to
ARM processors. The second section takes you through an example operating system called
the Simple Little Operating System (SLOS). SLOS is designed to show an implementation
of the fundamental components.

11.1 Fundamental Components
There is a common set of low-level components, each carrying out a prescribed action, that
form an operating system. It is how these components interact and function that determines
the characteristics of a specific operating system.

381

382 Chapter 11 Embedded Operating Systems

Initialization is the first code of the operating system to execute and involves setting up
internal data structures, global variables, and the hardware. Initialization starts after the
firmware hands over control. For hardware initialization an operating system sets up various
control registers, initializes the device drivers, and, if the operating system is preemptive,
sets up a periodic interrupt.

Memory handling involves setting up the system and task stacks. The positioning of the
stacks determines how much memory is available for either the tasks or the system. The
decision as to where the system stack is placed is normally carried out during operating
system initialization. Setting up the task stack depends upon whether the task is static or
dynamic.

A static task is defined at build time and is included in the operating system image.
For these tasks the stack can be set up during operating system initialization. For example,
SLOS is a static-task-based operating system.

A dynamic task loads and executes after the operating system is installed and executing
and is not part of the operating system image. The stack is set up when the task is created
(for example, as in Linux). Memory handling varies in complexity from one operating
system to another. It depends upon a number of factors, such as the ARM processor core
selected, the capabilities of the microcontroller, and the physical memory layout of the end
target hardware.

The example operating system, SLOS, in Section 11.2 uses a static memory design. It
simply configures a set of registers within the microcontroller and positions the stacks.
Because there is no form of dynamic memory management, you will not find an imple-
mentation of malloc() and free(). These functions are normally found in the standard
C library.

The method for handling interrupts and exceptions is part of the architecture design of
the operating system. You have to decide how to handle the various exceptions: Data Abort,
Fast Interrupt Request, Interrupt Request, Prefetch Abort, Reset, and Software Interrupt
(SWI).

Not all of the exceptions require a handler. For instance, if you have a target board that
does not use the FIQ interrupt, then a specific FIQ handler is not required. It is always safer
to provide an infinite loop as a default handler for unused exceptions. This approach makes
it easy to debug: when you break, it is clear that you have trapped at a specific handler. It
also protects the system from unexpected exceptions.

A preemptive operating system like SLOS requires a periodic interrupt, which is normally
produced by a counter/timer device on the target hardware. As part of the initialization
stage, an operating system sets the periodic interrupt frequency. This is normally achieved
by setting a specified value into one of the counter/timer memory-mapped registers.

When activated, the counter/timer will start to decrement this value. Once the value
reaches zero, an interrupt is raised. This interrupt is then handled by the appropriate ISR
for periodic interrupts. The ISR first reinitializes the counter/timer with a new start value
and then calls either a scheduler or another specialized routine.

In contrast, a nonpreemptive operating system does not require a periodic interrupt
and will use a different technique, for example, polling—the continuous checking for a state

11.2 Example: Simple Little Operating System 383

change in a device. If the device state changes, then a specific action can be connected to
a particular state change.

The scheduler is an algorithm that determines which task is to be executed next. There
are many scheduling algorithms available. One of the simplest is called a round-robin
algorithm—it activates tasks in a fixed cyclic order. Scheduling algorithms have to balance
efficiency and size with complexity.

Once the scheduler is complete, the new and old tasks have to be swapped with a context
switch. A context switch saves all the old task registers from the processor into a data
structure. Data for the new task is then loaded into the processor’s registers. (For more
details on this procedure, take a look at Section 11.2.6.)

The last component is the device driver framework—the mechanism an operating system
uses to provide a consistent interface between different hardware peripherals. The frame-
work allows a standard and easy way of integrating new support for a particular peripheral
into the operating system. For an application to access a particular peripheral there has to
be a specific device driver available. The framework must provide a safe method of accessing
the peripheral (for example, not allowing the simultaneous access of the same peripheral
by more than one application).

11.2 Example: Simple Little Operating System
We have developed a small operating system we call the Simple Little Operating System
(SLOS). It shows how the fundamental components discussed earlier come together in
a complete operating system. We have chosen the ARM7TDMI since it is the simplest core
in the ARM family. For a development environment we use the ARM Developers’ Suite
version 1.2, and for a target the Evaluator-7T from ARM. It should be relatively easy to
modify SLOS to build in other development environments. SLOS is loaded and executed
using the Sandstone firmware described in Chapter 10.

SLOS is a preemptive operating system. A periodic interrupt activates a dormant task.
For simplicity, all the tasks and device drivers are static; that is, they are created at build
time and not while the system is running. SLOS also provides a device driver framework,
discussed in Section 11.2.7.

SLOS is designed to execute on an ARM7TDMI core with no memory management
unit or protection unit. It is assumed that the memory map has already been configured by
the initialization code (in this case, Sandstone, found in Chapter 10). SRAM is required to
be located between 0x00000000 to 0x00080000, and the base configuration registers must
be set to address 0x03ff0000.

SLOS is loaded at address 0x00000000, where the vector table is located. This is the
same address as the entry point into SLOS. It is important that the ARM processor is in
SVC mode when the firmware hands over control because SVC mode is a privileged mode
and hence allows the initialization code to change modes by accessing the cpsr. We take
advantage of this to set up the stacks in IRQ and system mode.

384 Chapter 11 Embedded Operating Systems

In this current configuration, SLOS includes three tasks and two service routines. Tasks
1 and 2 provide an example of mutual exclusion using a binary semaphore. The two
service routines implemented are the periodic timer (which is essential) and a push-button
interrupt (which is optional). Task 3 provides a simple command line interface through
one of the ARM Evaluator-7T’s serial ports.

Each task in SLOS requires its own stack. All the tasks operate in user mode; thus, a task
can read but not write to the cpsr. The only way a task can change to a privileged mode is
to use an SWI instruction call. This is the mechanism used to call a device driver function,
since a device driver may require full access to the cpsr.

The cpsr can be modified in a task, but only indirectly using an instruction that updates
the condition flags.

11.2.1 SLOS Directory Layout

SLOS can be found on our Web site under the Chapter 11 directory. The directory layout
for SLOS is similar to the Sandstone firmware layout (see Figures 10.1 and 11.1).

There are six subdirectories under slos/build/src that hold all the operating system source
files. The slos/build/src/core directory includes the miscellaneous utility files, as well as the
command line interpreter (CLI) sources.

Specific code for a platform is stored under a directory with the name of that platform.
For instance, the code for the Evaluator-7T is stored under directory e7t.

The slos/build/src/e7t/devices directory holds all the device driver files, and the
slos/build/src/e7t/events directory holds the files that handle services, exceptions,
and interrupts.

[slos]

makefile readme.txt [build]

[src] [obj] [image]

[apps] [core] [devices] [e7t] [events] [headers]

[devices] [events] [headers]

Figure 11.1 SLOS directory layout.

11.2 Example: Simple Little Operating System 385

Finally, the slos/build/src/apps directory holds all the applications/tasks for a par-
ticular configuration. For instance, for the Evaluator-7T implementation, there are three
applications/tasks.

11.2.2 Initialization

There are three main stages of initializing SLOS—startup, executing process control block
(PCB) setup code, and executing the C initialization code. The startup code sets up the
FIQ registers and the system, SVC, and IRQ mode stacks. In the next stage, the PCB, which
contains the state of each task, is set up, including all the ARM registers. It is used to store
and restore task state during a context switch. The setup code sets the process control block
to an initial start state. The final C initialization stage calls the device driver, event handler,
and periodic timer initialization routines. Once complete, the first task can be invoked.

Control is passed to SLOS through the reset vector. The vectorReset is a location in
memory that holds the start address of the initialization code. It is assumed that the firmware
has left the processor in SVC mode, which allows the operating system initialization code to
have full access to the cpsr. The first operating system instruction loads the pc with the start
address of the initialization code, or coreInitialization. You can see from the vector
table, shown here, that this instruction loads a word using the load pc-relative instruction.
The assembler tool has already calculated the offset value using the difference between the
pc and the address of the vectorReset.

AREA ENTRYSLOS,CODE,READONLY
ENTRY

LDR pc, vectorReset
LDR pc, vectorUndefined
LDR pc, vectorSWI
LDR pc, vectorPrefetchAbort
LDR pc, vectorDataAbort
LDR pc, vectorReserved
LDR pc, vectorIRQ
LDR pc, vectorFIQ

vectorReset DCD coreInitialize
vectorUndefined DCD coreUndefinedHandler
vectorSWI DCD coreSWIHandler
vectorPrefetchAbort DCD corePrefetchAbortHandler
vectorDataAbort DCD coreDataAbortHandler
vectorReserved DCD coreReservedHandler
vectorIRQ DCD coreIRQHandler
vectorFIQ DCD coreFIQHandler

386 Chapter 11 Embedded Operating Systems

As part of the initialization process we have implemented a low-level debug system
using the banked FIQ mode registers, as shown here. These registers are used to store status
information. It is not always possible to use FIQ registers since they may be used for another
purpose.

bringupInitFIQRegisters
MOV r2,r14 ; save r14
BL switchToFIQMode ; change FIQ mode
MOV r8,#0 ; r8_fiq=0
MOV r9,#0 ; r9_fiq=0
MOV r10,#0 ; r10_fiq=0
BL switchToSVCMode ; change SVC mode
MOV pc,r2 ; return

coreInitialize
BL bringupInitFIQRegisters

The next stage is to set up the SVC, IRQ, and System base stack registers. For the SVC
stack, this is straightforward since the processor is already in SVC mode. The code is

MOV sp,#0x80000 ; SVC stack
MSR cpsr_c,#NoInt|SYS32md
MOV sp,#0x40000 ; user/system stack
MSR cpsr_c,#NoInt|IRQ32md
MOV sp,#0x9000 ; IRQ stack
MSR cpsr_c,#NoInt|SVC32md

As you can see from the code, once the stacks are set up, the processor is switched back into
SVC mode, which allows the rest of the initialization process to continue. Being in privileged
mode allows the final initialization stage to unmask the IRQ interrupt by clearing the I bit
and changing the processor to user mode.

The results of executing the startup code are the following:

■ Low-level debug mechanism is initialized.

■ SVC, IRQ, and System base stacks are set.

To start SLOS running, the PCB for each task has to be initialized. A PCB is a
reserved data structure and holds a copy of the entire ARM register set (see Table 11.1).
A task is made active by copying the appropriate task’s PCB data into the processor
registers.

The PCB of each task has to be set up prior to a context switch occurring since the switch
will transfer the PCB data into registers r0 to r15 and cpsr. Left uninitialized, the context
switch will copy garbage data into these registers.

11.2 Example: Simple Little Operating System 387

Table 11.1 Process control block.

Offset Registers

0 —
−4 r14
−8 r13

−12 r12
−16 r11
−20 r10
−24 r9
−28 r8
−32 r7
−36 r6
−40 r5
−44 r4
−48 r3
−52 r2
−56 r1
−60 r0
−64 pc + 4
−68 spsr

There are four major parts of the PCB that have to be initialized: the program counter,
the link register, the user mode stack, and the saved processor status register (in other words
registers r13, r14, r15, and the spsr) for each task.

; void pcbSetUp(void *entryAddr, void *PCB, UINT offset);
pcbSetUp

STR r0,[r1,#-4] ; PCB[-4]=C_TaskEntry
STR r0,[r1,#-64] ; PCB[-64]=C_TaskEntry
SUB r0,sp,r2
STR r0,[r1,#-8] ; PCB[-8]=sp-<offset>
MOV r0,#0x50 ; cpsr_c
STR r0,[r1,#-68] ; PCB[-68]=iFt_User
MOV pc,lr

To help illustrate this, we have extracted the routine for initializing PCBs. The rou-
tine pcbSetUp is called to set up tasks 2 and 3. Register r0 is the task entry address—label
entryAddr. This is the execution address for a task. Register r1 is the PCB data struc-
ture address—label pcbAddr. This address points into a block of memory that stores the

388 Chapter 11 Embedded Operating Systems

PCB for a task. Register r2 is the stack offset and is used to position the stack in the mem-
ory map. Note that task 1 does not require initialization since it is the first task to be
executed.

The final part of setting up the PCBs is to set up the current task identifier, which is used
by the scheduling algorithm to determine which task is to be executed.

LDR r0,=PCB_CurrentTask
MOV r1,#0
STR r1,[r0]
LDR lr,=C_Entry
MOV pc,lr ; enter the CEntry world

At the end of the code fragment the first C routine—C_Entry—is called by setting the
pc to the start address of the routine.

The results of executing the PCB setup code are the following:

■ Initialize the PCB for all three tasks.

■ Set the current PCB to be executed as task 1 (identifier 0).

Initialization is now handed over to the C_Entry() routine, which can be found in
build/src/core/cinit.cfile. TheC_Entry routine calls another routine, cinit_init().
This routine, shown here, initializes the device drivers, services, and finally the periodic
interrupt tick. The C code has been designed so it does not require the standard C library
to be initialized because it does not call any standard C library functions such as printf(),
fopen(), and so on.

void cinit_init(void)
{

eventIODeviceInit();
eventServicesInit();
eventTickInit(2);

}

The functions eventIODeviceInit, eventServicesInit, and eventTickInit are all
called to initialize the various specific parts of the operating system. You will notice that
eventTickInit has a single parameter with the value 2. This is used to set the number of
milliseconds between periodic tick events.

After initialization is complete, the periodic timer can be started, as shown here. This
means that task 1 needs to be called before the first timer interrupt. To allow for the periodic
event to interrupt the processor, the IRQ has to be enabled and the processor has to be
placed into user mode. Once this is accomplished, the address of the entry point for task 1,
C_EntryTask1, is then called.

11.2 Example: Simple Little Operating System 389

int C_Entry(void)
{

cinit_init();
eventTickStart();
__asm
{
MSR cpsr_c,#0x50
}

C_EntryTask1();
return 0;

}

If everything is working correctly, the return at the end of C_Entry routine will never
be executed. At this point all initialization is complete and the operating system is fully
functional.

The results of executing all the C initialization code are the following:

■ The device drivers are initialized.

■ The services are initialized.

■ The periodic timer tick is initialized and started.

■ The IRQ interrupts are enabled in the cpsr.

■ The processor is placed in user mode.

■ The entry point to task 1 is called (i.e., C_EntryTask1).

11.2.3 Memory Model

We have adopted a simple memory model for SLOS. Figure 11.2 shows that the code portion
of SLOS, including the tasks, are located in low memory, and the stacks for the IRQ and
for each task are located in higher memory. The SVC stack is set at the top of memory. The
arrows in the memory map show the direction of stack growth.

11.2.4 Interrupts and Exceptions Handling

In this implementation of the operating system only three exceptions are actually used. The
other exceptions are ignored by going to specific dummy handlers, which for safety reasons
are implemented as infinite loops. For a complete implementation these dummy handlers
should be replaced with full handlers. Table 11.2 shows the three exceptions and how they
are used within the operating system.

390 Chapter 11 Embedded Operating Systems

0x03ff0000

Microcontroller
registers

SVC stack

System/User/Task1 stack base

Task3 stack base

Task2 stack base

IRQ stack base

Code

0x00080000

0x00040000

0x00020000

0x00010000

0x00009000

0x00000000

Figure 11.2 Memory map.

Table 11.2 Exception assignment.

Exception Purpose

Reset initialize the operating system
SWI mechanism to access device drivers
IRQ mechanism to service events

11.2.4.1 Reset Exception

The reset vector is only called once during the initialization phase. In theory, it could
be called again to reinitialize the system—for example, in response to a watchdog timer
event resetting the processor. Watchdog timers are used to reset a system when prolonged
inactivity occurs.

11.2.4.2 SWI Exception

Whenever a device driver is called from an application, the call goes through the SWI handler
mechanism. The SWI instruction forces the processor to change from user to SVC mode.

11.2 Example: Simple Little Operating System 391

The core SWI handler is shown here. The first action of the handler is to store registers r0
to r12 to the SVC stack.

The next action calculates the address of the SWI instruction and loads that instruction
into register r10. The SWI number is obtained by masking the top 8 bits. The address of the
SVC stack is then copied into register r1 and is used as the second parameter when calling
the SWI C handler.

The spsr is then copied to register r2 and stored on the stack. This is only required when
a nested SWI call occurs. The handler then jumps to the code that calls the C handler routine.

coreSWIHandler
STMFD sp!,{r0-r12,r14} ; save context
LDR r10,[r14,#-4] ; load SWI instruction
BIC r10,r10,#0xff000000 ; mask off the MSB 8 bits
MOV r1,r13 ; copy r13_svc to r1
MRS r2,spsr ; copy spsr to r2
STMFD r13!,{r2} ; save r2 onto the stack
BL swi_jumptable ; branch to the swi_jumptable

The code that follows the BL instruction returns back to the callee program as shown
here. This is achieved by restoring the spsr from the stack and loading all the user banked
registers back, including the pc.

LDMFD r13!,{r2} ; restore the r2 (spsr)
MSR spsr_cxsf,r2 ; copy r2 back to spsr
LDMFD r13!,{r0-r12,pc}ˆ ; restore context and return

The link register has been set in the BL instruction. This code is executed when the SWI
C handler is complete.

swi_jumptable
MOV r0,r10 ; move the SWI number to r0
B eventsSWIHandler ; branch to SWI handler

The C handler, eventsSWIHandler, shown in Figure 11.3, is called with register r0
containing the SWI number and register r1 pointing to the registers stored on the SVC
stack.

392 Chapter 11 Embedded Operating Systems

void eventsSWIHandler(int swi_number, SwiRegs *r)
{

if (swi_number==SLOS)
{

if (r->r[0]==Event_IODeviceInit)
{
/* do not enable IRQ interrupts */
io_initialize_drivers ();
}
else
{

/* if not initializing change to system mode
and enable IRQs */

if (STATE!=1) {modifyControlCPSR (SYSTEM|IRQoN);}

switch (r->r[0])
{
case /* SWI */ Event_IODeviceOpen:

r->r[0] =
(unsigned int) io_open_driver
(
/*int *ID */ (UID *)r->r[1],
/*unsigned major_device */ r->r[2],
/*unsigned minor_device */ r->r[3]
);

break;
case /* SWI */ Event_IODeviceClose:

/* call io_open_driver */
break;

case /* SWI */ Event_IODeviceWriteByte:
/* call io_writebyte_driver */
break;

case /* SWI */ Event_IODeviceReadByte:
/* call io_readbyte_driver */
break;

case /* SWI */ Event_IODeviceWriteBit:
/* call io_writebit_driver */
break;

case /* SWI */ Event_IODeviceReadBit:
/* call io_readbit_driver */
break;

Figure 11.3 SWI C handler.

11.2 Example: Simple Little Operating System 393

case /* SWI */ Event_IODeviceWriteBlock:
/* call io_writeblock_driver */
break;

case /* SWI */ Event_IODeviceReadBlock:
/* call io_readblock_driver */
break;

}
/* if not initializing change back to svc mode

and disable IRQs */
if (STATE!=1) {modifyControlCPSR (SVC|IRQoFF);}
}

}
}

}

Figure 11.3 SWI C handler. (Continued.)

11.2.4.3 IRQ Exception

The IRQ handler is a lot simpler than the SWI handler. It is implemented as a basic
nonnested interrupt handler. The handler first saves the context and then copies the
contents of the interrupt controller status register, INTPND, into register r0. Each service
routine then compares register r0 with a particular interrupt source. If the source and
interrupt match, then the service routine is called; otherwise the interrupt is treated as
being a phantom interrupt and ignored.

TICKINT EQU 0x400
BUTTONINT EQU 0x001

eventsIRQHandler
SUB r14, r14, #4 ; r14_irq-=4
STMFD r13!, {r0-r3, r12, r14} ; save context
LDR r0,INTPND ; r0=int pending reg
LDR r0,[r0] ; r0=memory[r0]
TST r0,#TICKINT ; if tick int
BNE eventsTickVeneer ; then tick ISR
TST r0,#BUTTONINT ; if button interrupt
BNE eventsButtonVeneer ; then button ISR
LDMFD r13!, {r0-r3, r12, pc}ˆ ; return to task

For a known interrupt source an interrupt veneer is called to service the event. The
following code shows an example timer veneer. You can see from the example that the veneer

394 Chapter 11 Embedded Operating Systems

includes calling two routines: The first resets the timer, eventsTickService (platform-
specific call), and the second, kernelScheduler, calls the scheduler, which in turn calls
a context switch.

eventsTickVeneer
BL eventsTickService ; reset tick hardware
B kernelScheduler ; branch to scheduler

There is no requirement to have registers r4 to r12 on the IRQ stack, since the scheduling
algorithm and the context switch handle all the register details.

11.2.5 Scheduler

The low-level scheduler, or dispatcher, used in SLOS is a simple static round-robin algo-
rithm as illustrated in the following pseudocode. “Static” in this case means that the tasks
are only created when the operating system is initialized. Tasks in SLOS can neither be
created nor destroyed when the operating system is active.

task t=0,t’;

scheduler()
{

t’ = t + 1;
if t’ = MAX_NUMBER_OF_TASKS then

t’ = 0 // the first task.
end;

ContextSwitch(t,t’)
}

As stated previously, the current active task t, PCB_CurrentTask, is set to 0 during the ini-
tialization phase. When the periodic tick interrupt occurs, the new task t′ is calculated from
the current task t plus 1. If this task number equals the task limit, MAX_NUMBER_OF_TASKS,
then task t′ is reset to the start 0.

Table 11.3 is a list of the labels used by the scheduler and a description of how they are
used in the algorithm. These labels are used in the following procedure and code for the
scheduler:

1. Obtain the current task ID by loading the contents of PCB_CurrentTask.

2. Find the corresponding PCB address of the current task by using the PCB_CurrentTask
as the index into the PCB_Table.

3. Use the address obtained in stage 2 to update the value in the PCB_PtrCurrentTask.

11.2 Example: Simple Little Operating System 395

Table 11.3 Labels used by the scheduler.

Label Description

PCB_CurrentTask contains the current task t
PCB_Table table of address pointers to each task PCB
PCB_PtrCurrentTask pointer to the current task t
PCB_PtrNextTask pointer to the next task t′
PCB_IRQStack temporary storage for the IRQ stack (context switch)

4. Calculate the new task t′ ID using the round-robin algorithm.

5. Store the new task t′ ID into PCB_CurrentTask.

6. Find the address of the next task PCB by indexing into the PCB_Table using the updated
PCB_CurrentTask.

7. Store the next task PCB into PCB_PtrNextTask.

The code scheduling the next task t′is:

MaxNumTasks EQU 3
FirstTask EQU 0

CurrentTask
LDR r3,=PCB_CurrentTask ; [1] r3=PCB_CurrentTask
LDR r0,[r3] ; r0= current Task ID
LDR r1,=PCB_Table ; [2] r1=PCB_Table address
LDR r1,[r1,r0,LSL#2] ; r1=mem32[r1+r0 << 2]
LDR r2,=PCB_PtrCurrentTask ; [3] r2=PCB_PtrCurrentTask
STR r1,[r2] ; mem32[r2]=r1 : task addr

; ** PCB_PtrCurrentTask - updated with the addr of the current task
; ** r2 = PCB_PtrCurrentTask address
; ** r1 = current task PCB address
; ** r0 = current task ID

NextTask
ADD r0,r0,#1 ; [4] r0 = (CurrentTaskID)+1
CMP r0,#MaxNumTasks ; if r0==MaxNumTasks
MOVEQ r0,#FirstTask ; then r0 = FirstTask (0)
STR r0,[r3] ; [5] mem32[r3]=next Task ID
LDR r1,=PCB_Table ; [6] r1=PCB_Table addr
LDR r1,[r1,r0,LSL#2] ; r1=memory[r1+r0 << 2]

396 Chapter 11 Embedded Operating Systems

LDR r0,=PCB_PtrNextTask ; [7] r0=PCB_PtrNextTask
STR r1,[r0] ; memory[r0]=next task addr

The results of executing the scheduler are the following:

■ PCB_PtrCurrentTask points to the address of the current active PCB.

■ PCB_PtrNextTask points to the address of the next active PCB.

■ PCB_CurrentTask holds the value of the next task identifier.

11.2.6 Context Switch

Using the updated information produced by the scheduler, the context switch then swaps
the active task t with the next task t ′. To achieve this, a context switch splits the activity into
two stages, as shown in Figure 11.4. The first stage involves saving the processor registers
into the current task t PCB pointed by PCB_PtrCurrentTask. The second stage loads the
registers with data from the next t′ PCB pointed by PCB_PtrNextTask.

We will now take you through the procedure and code of the two stages of the con-
text switch, detailing the saving of the current context first, followed by loading a new
context.

Save the current context

(a) (b)

PCB_PtrCurrentTask

Processor

Load the next context

PCB_PtrNextTask

Processor

Figure 11.4 Context switch. (a) Save the Current Context (b) Load the Next Context

11.2 Example: Simple Little Operating System 397

11.2.6.1 Save the Current Context

The first stage is to save the current registers of the active task t. All tasks execute in user
mode, so the user mode registers have to be saved. Here is the procedure:

1. We must restore registers r0 to r3 and r14 from the stack. These registers belong to the
current task.

2. Register r13 is then used to point into the PCB of the current task PCB_CurrentTask
offset by −60. This offset allows two instructions to update the entire PCB.

3. The final action of the first stage is to store all the user bank registers r0 to r14. This occurs
in a single instruction. Remember that the ˆ symbol means that the store multiple acts
on the user mode registers. The second store instruction saves the spsr and the returning
link register.

The code for saving the registers to a PCB is

Offset15Regs EQU 15*4

handler_contextswitch
LDMFD r13!,{r0-r3,r12,r14} ; [1.1] restore registers
LDR r13,=PCB_PtrCurrentTask ; [1.2]
LDR r13,[r13] ; r13=mem32[r13]
SUB r13,r13,#Offset15Regs ; r13-=15*Reg:place r13
STMIA r13,{r0-r14}ˆ ; [1.3] save user mode registers
MRS r0, spsr ; copy spsr
STMDB r13,{r0,r14} ; save r0(spsr) & r14(lr)

The results of saving the current context are the following:

■ The IRQ stack is reset and saved to PCB_IRQStack.

■ The user mode registers for task t are saved to the current PCB.

11.2.6.2 Load the Next Context

The second stage of the context switch involves transferring the PCB for t′ into the banked
user mode registers. Once complete, the routine then must hand over control to the new
task t′. Here is the procedure:

1. Load and position register r13 at offset −60 from the start of the new PCB.

2. Load register spsr and the link register first. Then the next task registers r0 to r14 are
loaded. Register r14 is the user bank register r14, not the IRQ register r14 shown by ˆ in
the instruction.

398 Chapter 11 Embedded Operating Systems

3. The IRQ stack is then restored from PCB_IRQStack.

4. The new task is resumed by copying the address held in register r14 into the pc and
updating the cpsr.

The code for loading the registers from a PCB is

LDR r13,=PCB_PtrNextTask ; [2.1] r13=PCB_PtrNextTask

LDR r13,[r13] ; r13=mem32[r13] : next PCB

SUB r13,r13,#Offset15Regs ; r13-=15*Registers

LDMDB r13,{r0,r14} ; [2.2] load r0 & r14

MSR spsr_cxsf, r0 ; spsr = r0

LDMIA r13,{r0-r14}ˆ ; load r0_user-r14_user

LDR r13,=PCB_IRQStack ; [2.3] r13=IRQ stack addr

LDR r13,[r13] ; r13=mem32[r13] : reset IRQ

MOVS pc,r14 ; [2.4] return to next task

The results of loading the next context are the following:

■ The context switch is complete.

■ The next task’s registers are loaded into the user mode registers.

■ The IRQ stack is restored to the original setting before entering the IRQ handler.

11.2.7 Device Driver Framework

The device driver framework (DDF) is implemented using SWI instructions. The DDF
protects the operating system from applications accessing hardware directly and provides
a uniform standard interface for the tasks. For a task to access a particular device it must
first obtain a unique identification number (UID). This is achieved by calling the open
macro, or eventsIODeviceOpen. This macro is translated directly into a device driver SWI
instruction. The UID is used to check that another task has not already accessed the same
device.

The task code for opening a device driver is

device_treestr *host;
UID serial;

11.2 Example: Simple Little Operating System 399

host = eventIODeviceOpen(&serial,DEVICE_SERIAL_E7T,COM1);

if (host==0)
{

/* ...error device driver not found...*/
}

switch (serial)
{
case DEVICE_IN_USE:
case DEVICE_UNKNOWN:
/* ...problem with device... */

}

The example shows a serial device being opened using the device driver framework.
A set of macros translates the arguments into registers r1 to r3. These registers are then

passed through the SWI mechanism to the device driver function. In the example, only the
value pointed to by r1, &serial, is actually updated. This value is used to return the UID.
If the value returned is zero, then an error has occurred.

The following code shows how the macro eventIODeviceOpen is transformed into
a single SWI instruction call:

PRE r0 = Event_IODeviceOpen (unsigned int)
r1 = &serial (UID *u)
r2 = DEVICE_SERIAL_E7T (unsigned int major)
r3 = COM1 (unsigned int minor)

SWI 5075

POST r1 = The data pointed to by the UID pointer is updated

The SWI interface is used as a method of changing to a privileged mode when the task
executes in a nonprivileged mode. This allows the device driver to gain full access to the
cpsr. Figure 11.5 shows the actual mode changes when a device driver function is called.
You can see from the diagram that the device driver itself executes in system mode (which
is privileged).

Once an SWI instruction is executed, the processor enters SVC mode and IRQ interrupts
are automatically disabled. Interrupts are only reenabled when the processor changes to
system mode. The only exception to this is when a device driver function is called during
the initialization phase; in this case, interrupts will remain disabled.

400 Chapter 11 Embedded Operating Systems

Task
iFt_User

SWI
instruction

Call
device
driver

Return from device driver

SWI handler
IFt_SVC

Device driver
iFt_System

SLOS kernel

Figure 11.5 Calling a device driver.

11.3 Summary
The fundamental components that make up an embedded operating system executing on
an ARM processor are the following:

■ The initialization sets up all of the internal variables, data structures, and hardware
devices used by the operating system.

■ Memory handling organizes the memory to accommodate the kernel plus the various
applications to be executed.

■ All interrupts and exceptions require a handler. For unused interrupts and exceptions,
a dummy handler must be installed.

■ A periodic timer is required for preemptive operating systems. The timer produces an
interrupt that causes the scheduler to be called.

■ A scheduler is an algorithm that determines the new task to be executed.

■ A context switch saves the state of the current task and loads the state of the next
task.

These components are exemplified in the operating system called the Simple Little
Operating System (SLOS):

■ Initialization—The initialization sets up all the functions of SLOS, including the bank
mode stacks, process control blocks (PCB) for each application, device drivers, and
so on.

11.3 Summary 401

■ Memory model—The SLOS kernel is placed in lower memory, and each application has
its own storage area and stack. The microcontroller system registers are placed away
from the ROM and SRAM.

■ Interrupts and exceptions—SLOS makes use of only three events. These events are Reset,
SWI, and IRQ. All the other unused interrupts and exceptions have a dummy handler
installed.

■ Scheduler—SLOS implements a simple round-robin scheduler.

■ Context switch—First the current context is saved into a PCB, and then the next task
context is loaded from a PCB.

■ Device driver framework—This protects the operating system from applications
accessing hardware directly.

12.1 The Memory Hierarchy and Cache Memory
12.1.1 Caches and Memory Management Units

12.2 Cache Architecture
12.2.1 Basic Architecture of a Cache Memory

12.2.2 Basic Operation of a Cache Controller

12.2.3 The Relationship between Cache and Main Memory

12.2.4 Set Associativity

12.2.5 Write Buffers

12.2.6 Measuring Cache Efficiency

12.3 Cache Policy
12.3.1 Write Policy—Writeback or Writethrough

12.3.2 Cache Line Replacement Policies

12.3.3 Allocation Policy on a Cache Miss

12.4 Coprocessor 15 and Caches
12.5 Flushing and Cleaning Cache Memory

12.5.1 Flushing ARM Cached Cores

12.5.2 Cleaning ARM Cached Cores

12.5.3 Cleaning the D-Cache

12.5.4 Cleaning the D-Cache Using Way and Set Index Addressing

12.5.5 Cleaning the D-Cache Using the Test-Clean Command

12.5.6 Cleaning the D-Cache in Intel XScale SA-110 and Intel StrongARM Cores

12.5.7 Cleaning and Flushing Portions of a Cache

12.6 Cache Lockdown
12.6.1 Locking Code and Data in Cache

12.6.2 Locking a Cache by Incrementing the Way Index

12.6.3 Locking a Cache Using Lock Bits

12.6.4 Locking Cache Lines in the Intel XScale SA-110

12.7 Caches and Software Performance
12.8 Summary

C h a p t e r

Caches 12

A cache is a small, fast array of memory placed between the processor core and main
memory that stores portions of recently referenced main memory. The processor uses
cache memory instead of main memory whenever possible to increase system performance.
The goal of a cache is to reduce the memory access bottleneck imposed on the processor
core by slow memory.

Often used with a cache is a write buffer—a very small first-in-first-out (FIFO) memory
placed between the processor core and main memory. The purpose of a write buffer is to
free the processor core and cache memory from the slow write time associated with writing
to main memory.

The word cache is a French word meaning “a concealed place for storage.” When applied
to ARM embedded systems, this definition is very accurate. The cache memory and write
buffer hardware when added to a processor core are designed to be transparent to software
code execution, and thus previously written software does not need to be rewritten for use
on a cached core. Both the cache and write buffer have additional control hardware that
automatically handles the movement of code and data between the processor and main
memory. However, knowing the details of a processor’s cache design can help you create
programs that run faster on a specific ARM core.

Since the majority of this chapter is about the wonderful things a cache can do to make
programs run faster, the question arises, “Are there any drawbacks created by having a cache
in your system?” The answer is yes. The main drawback is the difficulty of determining the
execution time of a program. Why this is a problem will become evident shortly.

Since cache memory only represents a very small portion of main memory, the cache fills
quickly during program execution. Once full, the cache controller frequently evicts existing
code or data from cache memory to make more room for the new code or data. This eviction
process tends to occur randomly, leaving some data in cache and removing others. Thus,
at any given instant in time, a value may or may not be stored in cache memory.

403

404 Chapter 12 Caches

Because data may or may not be present in cache at any given point in time, the execution
time of a routine may vary slightly from run to run due to the difference between the time
it takes to use data immediately out of cache memory and the time it takes to load a cache
line from main memory.

So, with that caveat, we begin by showing where caches fit in a standard memory hier-
archy and introduce the principle of locality of reference to explain why a cache improves
system performance. We then describe cache architectures in general and define a set of
terms used by the ARM community. We end the chapter with example code showing how
to clean and flush caches and to lock code and data segments in cache.

12.1 The Memory Hierarchy and Cache Memory
In Chapter 1 we introduced the memory hierarchy in a computer system. Figure 12.1
reviews some of this information to show where a cache and write buffer fit in the
hierarchy.

Chip

Processor
core

Tightly coupled
memory Level 1 cache Write buffer

Read path

Write path

SRAM

DRAM

Flash and other board-level nonvolatile memory

Disk, tape, and network storage

Board

Main
memory

Secondary
storage

Device

Register file

Figure 12.1 Memory hierarchy.

12.1 The Memory Hierarchy and Cache Memory 405

The innermost level of the hierarchy is at the processor core. This memory is so tightly
coupled to the processor that in many ways it is difficult to think of it as separate from
the processor. This memory is known as a register file. These registers are integral to the
processor core and provide the fastest possible memory access in the system.

At the primary level, memory components are connected to the processor core through
dedicated on-chip interfaces. It is at this level we find tightly coupled memory (TCM) and
level 1 cache. We talk more about caches in a moment.

Also at the primary level is main memory. It includes volatile components like SRAM
and DRAM, and nonvolatile components like flash memory. The purpose of main memory
is to hold programs while they are running on a system.

The next level is secondary storage—large, slow, relatively inexpensive mass storage
devices such as disk drives or removable memory. Also included in this level is data derived
from peripheral devices, which are characterized by their extremely long access times.
Secondary memory is used to store unused portions of very large programs that do not fit
in main memory and programs that are not currently executing.

It is useful to note that a memory hierarchy depends as much on architectural design as
on the technology surrounding it. For example, TCM and SRAM are of the same technology
yet differ in architectural placement: TCM is located on the chip, while SRAM is located on
a board.

A cache may be incorporated between any level in the hierarchy where there is a
significant access time difference between memory components. A cache can improve
system performance whenever such a difference exists. A cache memory system takes
information stored in a lower level of the hierarchy and temporarily moves it to a higher
level.

Figure 12.1 includes a level 1 (L1) cache and write buffer. The L1 cache is an array of
high-speed, on-chip memory that temporarily holds code and data from a slower level.
A cache holds this information to decrease the time required to access both instructions
and data. The write buffer is a very small FIFO buffer that supports writes to main memory
from the cache.

Not shown in the figure is a level 2 (L2) cache. An L2 cache is located between the
L1 cache and slower memory. The L1 and L2 caches are also known as the primary and
secondary caches.

Figure 12.2 shows the relationship that a cache has with main memory system and the
processor core. The upper half of the figure shows a block diagram of a system without a
cache. Main memory is accessed directly by the processor core using the datatypes supported
by the processor core. The lower half of the diagram shows a system with a cache. The cache
memory is much faster than main memory and thus responds quickly to data requests by
the core. The cache’s relationship with main memory involves the transfer of small blocks
of data between the slower main memory to the faster cache memory. These blocks of data
are known as cache lines. The write buffer acts as a temporary buffer that frees available
space in the cache memory. The cache transfers a cache line to the write buffer at high speed
and then the write buffer drains it to main memory at slow speed.

406 Chapter 12 Caches

Processor
core

Main
memorySlow

Slow

Fast

Fast

Slow

Slow

Word, byte
access

Block
transfer

Word, byte access

Noncached system

Cached system

Processor
core

Cache

Write
buffer

Main
memory

Word, byte access

Figure 12.2 Relationship that a cache has between the processor core and main memory.

12.1.1 Caches and Memory Management Units

If a cached core supports virtual memory, it can be located between the core and the memory
management unit (MMU), or between the MMU and physical memory. Placement of the
cache before or after the MMU determines the addressing realm the cache operates in
and how a programmer views the cache memory system. Figure 12.3 shows the difference
between the two caches.

A logical cache stores data in a virtual address space. A logical cache is located between
the processor and the MMU. The processor can access data from a logical cache directly
without going through the MMU. A logical cache is also known as a virtual cache.

A physical cache stores memory using physical addresses. A physical cache is located
between the MMU and main memory. For the processor to access memory, the MMU
must first translate the virtual address to a physical address before the cache memory can
provide data to the core.

ARM cached cores with an MMU use logical caches for processor families ARM7
through ARM10, including the Intel StrongARM and Intel XScale processors. The ARM11
processor family uses a physical cache. See Chapter 14 for additional information on the
operation of the MMU.

The improvement a cache provides is possible because computer programs execute
in nonrandom ways. Predictable program execution is the key to the success of cached
systems. If a program’s accesses to memory were random, a cache would provide little

12.1 The Memory Hierarchy and Cache Memory 407

Offset

Translation
base

Virtual
memory

Physical
memory

Logical cache
Processor

Cache

Main
memory

Data bus

Address bus

Offset

Translation
base

Virtual
memory

Physical
memory

Physical cache
Processor

Cache

Main
memory

Data bus

Address bus

MMU

MMU

Figure 12.3 Logical and physical caches.

improvement to overall system performance. The principle of locality of reference explains
the performance improvement provided by the addition of a cache memory to a system.
This principle states that computer software programs frequently run small loops of code
that repeatedly operate on local sections of data memory.

The repeated use of the same code or data in memory, or those very near, is the reason
a cache improves performance. By loading the referenced code or data into faster memory
when first accessed, each subsequent access will be much faster. It is the repeated access to
the faster memory that improves performance.

408 Chapter 12 Caches

The cache makes use of this repeated local reference in both time and space. If the
reference is in time, it is called temporal locality. If it is by address proximity, then it is called
spatial locality.

12.2 Cache Architecture
ARM uses two bus architectures in its cached cores, the Von Neumann and the Harvard.
The Von Neumann and Harvard bus architectures differ in the separation of the instruction
and data paths between the core and memory. A different cache design is used to support
the two architectures.

In processor cores using the Von Neumann architecture, there is a single cache used
for instruction and data. This type of cache is known as a unified cache. A unified cache
memory contains both instruction and data values.

The Harvard architecture has separate instruction and data buses to improve overall
system performance, but supporting the two buses requires two caches. In processor cores
using the Harvard architecture, there are two caches: an instruction cache (I-cache) and
a data cache (D-cache). This type of cache is known as a split cache. In a split cache,
instructions are stored in the instruction cache and data values are stored in the data cache.

We introduce the basic architecture of caches by showing a unified cache in Figure 12.4.
The two main elements of a cache are the cache controller and the cache memory. The
cache memory is a dedicated memory array accessed in units called cache lines. The cache
controller uses different portions of the address issued by the processor during a memory
request to select parts of cache memory. We will present the architecture of the cache
memory first and then proceed to the details of the cache controller.

12.2.1 Basic Architecture of a Cache Memory

A simple cache memory is shown on the right side of Figure 12.4. It has three main parts:
a directory store, a data section, and status information. All three parts of the cache memory
are present for each cache line.

The cache must know where the information stored in a cache line originates from in
main memory. It uses a directory store to hold the address identifying where the cache line
was copied from main memory. The directory entry is known as a cache-tag.

A cache memory must also store the data read from main memory. This information is
held in the data section (see Figure 12.4).

The size of a cache is defined as the actual code or data the cache can store from main
memory. Not included in the cache size is the cache memory required to support cache-tags
or status bits.

There are also status bits in cache memory to maintain state information. Two common
status bits are the valid bit and dirty bit. A valid bit marks a cache line as active, meaning
it contains live data originally taken from main memory and is currently available to the

12.2 Cache Architecture 409

Address issued
by processor core

Cache
controller

Cache
memory

Directory
storeHit

Miss

Cache
line

Address/data
bus

Compare
Tag

Set
index

Data
index

31

12
11

4
3

0

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

Status Data

.

.

.

Figure 12.4 A 4 KB cache consisting of 256 cache lines of four 32-bit words.

processor core on demand. A dirty bit defines whether or not a cache line contains data
that is different from the value it represents in main memory. We explain dirty bits in more
detail in Section 12.3.1.

12.2.2 Basic Operation of a Cache Controller

The cache controller is hardware that copies code or data from main memory to cache
memory automatically. It performs this task automatically to conceal cache operation from
the software it supports. Thus, the same application software can run unaltered on systems
with and without a cache.

The cache controller intercepts read and write memory requests before passing them on
to the memory controller. It processes a request by dividing the address of the request into
three fields, the tag field, the set index field, and the data index field. The three bit fields are
shown in Figure 12.4.

First, the controller uses the set index portion of the address to locate the cache line
within the cache memory that might hold the requested code or data. This cache line
contains the cache-tag and status bits, which the controller uses to determine the actual
data stored there.

410 Chapter 12 Caches

The controller then checks the valid bit to determine if the cache line is active, and
compares the cache-tag to the tag field of the requested address. If both the status check
and comparison succeed, it is a cache hit. If either the status check or comparison fails, it is
a cache miss.

On a cache miss, the controller copies an entire cache line from main memory to cache
memory and provides the requested code or data to the processor. The copying of a cache
line from main memory to cache memory is known as a cache line fill.

On a cache hit, the controller supplies the code or data directly from cache memory to
the processor. To do this it moves to the next step, which is to use the data index field of
the address request to select the actual code or data in the cache line and provide it to the
processor.

12.2.3 The Relationship between Cache and Main Memory

Having a general understanding of basic cache memory architecture and how the cache
controller works provides enough information to discuss the relationship that a cache has
with main memory.

Figure 12.5 shows where portions of main memory are temporarily stored in cache
memory. The figure represents the simplest form of cache, known as a direct-mapped cache.
In a direct-mapped cache each addressed location in main memory maps to a single location
in cache memory. Since main memory is much larger than cache memory, there are many
addresses in main memory that map to the same single location in cache memory. The
figure shows this relationship for the class of addresses ending in 0x824.

The three bit fields introduced in Figure 12.4 are also shown in this figure. The set index
selects the one location in cache where all values in memory with an ending address of
0x824 are stored. The data index selects the word/halfword/byte in the cache line, in this
case the second word in the cache line. The tag field is the portion of the address that is
compared to the cache-tag value found in the directory store. In this example there are one
million possible locations in main memory for every one location in cache memory. Only
one of the possible one million values in the main memory can exist in the cache memory
at any given time. The comparison of the tag with the cache-tag determines whether the
requested data is in cache or represents another of the million locations in main memory
with an ending address of 0x824.

During a cache line fill the cache controller may forward the loading data to the core at
the same time it is copying it to cache; this is known as data streaming. Streaming allows a
processor to continue execution while the cache controller fills the remaining words in the
cache line.

If valid data exists in this cache line but represents another address block in main
memory, the entire cache line is evicted and replaced by the cache line containing the
requested address. This process of removing an existing cache line as part of servicing a
cache miss is known as eviction—returning the contents of a cache line to main memory
from the cache to make room for new data that needs to be loaded in cache.

12.2 Cache Architecture 411

Main memory

4 KB cache memory
(direct mapped)

X X X X X 8 2 4
tag

31 12

0xFFF

0x820

0x000

Address issued by processor core

11 4 3 0

set index data index

0xFFFFFFFF

0xFFFFF000

0xFFFFE000

0x00003000

0x00002000

0x00001000

0x00000000
4 KB 0x00000824

0x00001824

0x00002824

.

.

.

0xFFFFE824

0xFFFFF824

Cache-tag v d word3 word2 word1 word0

Figure 12.5 How main memory maps to a direct-mapped cache.

A direct-mapped cache is a simple solution, but there is a design cost inherent in having
a single location available to store a value from main memory. Direct-mapped caches are
subject to high levels of thrashing—a software battle for the same location in cache memory.
The result of thrashing is the repeated loading and eviction of a cache line. The loading and
eviction result from program elements being placed in main memory at addresses that map
to the same cache line in cache memory.

Figure 12.6 takes Figure 12.5 and overlays a simple, contrived software procedure to
demonstrate thrashing. The procedure calls two routines repeatedly in a do while loop.
Each routine has the same set index address; that is, the routines are found at addresses in
physical memory that map to the same location in cache memory. The first time through
the loop, routine A is placed in the cache as it executes. When the procedure calls routine B,
it evicts routine A a cache line at a time as it is loaded into cache and executed. On the second
time through the loop, routine A replaces routine B, and then routine B replaces routine A.

412 Chapter 12 Caches

Main memory

Software procedure

Cache memory

Data array

Routine B

Routine A

4 KB,
direct-mapped
unified cache

0xFFF

0x480

0x000

0x00002000

0x00001000

0x00000000

0x00000480

do
{
 routineA();
 routineB();
 x--;
} while (x>0)

0x00001480

0x00002480

.

.

.

Figure 12.6 Thrashing: two functions replacing each other in a direct-mapped cache.

Repeated cache misses result in continuous eviction of the routine that not running. This
is cache thrashing.

12.2.4 Set Associativity

Some caches include an additional design feature to reduce the frequency of thrashing (see
Figure 12.7). This structural design feature is a change that divides the cache memory into
smaller equal units, called ways. Figure 12.7 is still a four KB cache; however, the set index
now addresses more than one cache line—it points to one cache line in each way. Instead
of one way of 256 lines, the cache has four ways of 64 lines. The four cache lines with the
same set index are said to be in the same set, which is the origin of the name “set index.”

12.2
C

ach
e

A
rch

itectu
re

413

Address issued
by processor core

Cache
controller

Cache
memory

Hit

Miss

Way 3

Way 2

Way 1

Way 0
CompareTag

Set
index

Data
index

31

10
9

4
3

0

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

Cache-tag

v d word3 word2 word1 word0

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

.

.

.

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

Cache-tag

v d word3 word2 word1 word0

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

.

.

.

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

Cache-tag

v d word3 word2 word1 word0

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

.

.

.

Directory
store

64 cache
lines per
way

Address/data
bus

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

Cache-tag v d word3 word2 word1 word0
Cache-tag v d word3 word2 word1 word0

Status Data

Cache-tag v d word3 word2 word1 word0

.

.

.

Figure 12.7 A 4 KB, four-way set associative cache. The cache has 256 total cache lines, which are
separated into four ways, each containing 64 cache lines. The cache line contains four
words.

414 Chapter 12 Caches

The set of cache lines pointed to by the set index are set associative. A data or code
block from main memory can be allocated to any of the four ways in a set without affecting
program behavior; in other words the storing of data in cache lines within a set does not
affect program execution. Two sequential blocks from main memory can be stored as cache
lines in the same way or two different ways. The important thing to note is that the data or
code blocks from a specific location in main memory can be stored in any cache line that
is a member of a set. The placement of values within a set is exclusive to prevent the same
code or data block from simultaneously occupying two cache lines in a set.

The mapping of main memory to a cache changes in a four-way set associative cache.
Figure 12.8 shows the differences. Any single location in main memory now maps to four
different locations in the cache. Although Figures 12.5 and 12.8 both illustrate 4 KB caches,
here are some differences worth noting.

The bit field for the tag is now two bits larger, and the set index bit field is two bits
smaller. This means four million main memory addresses now map to one set of four cache
lines, instead of one million addresses mapping to one location.

The size of the area of main memory that maps to cache is now 1 KB instead of 4 KB.
This means that the likelihood of mapping cache line data blocks to the same set is now four
times higher. This is offset by the fact that a cache line is one fourth less likely to be evicted.

If the example code shown in Figure 12.6 were run in the four-way set associative cache
shown in Figure 12.8, the incidence of thrashing would quickly settle down as routine A,
routine B, and the data array would establish unique places in the four available locations
in a set. This assumes that the size of each routine and the data are less than the new smaller
1 KB area that maps from main memory.

12.2.4.1 Increasing Set Associativity

As the associativity of a cache controller goes up, the probability of thrashing goes down.
The ideal goal would be to maximize the set associativity of a cache by designing it so
any main memory location maps to any cache line. A cache that does this is known as a
fully associative cache. However, as the associativity increases, so does the complexity of
the hardware that supports it. One method used by hardware designers to increase the set
associativity of a cache includes a content addressable memory (CAM).

A CAM uses a set of comparators to compare the input tag address with a cache-tag
stored in each valid cache line. A CAM works in the opposite way a RAM works. Where a
RAM produces data when given an address value, a CAM produces an address if a given data
value exists in the memory. Using a CAM allows many more cache-tags to be compared
simultaneously, thereby increasing the number of cache lines that can be included in a set.

Using a CAM to locate cache-tags is the design choice ARM made in their ARM920T
and ARM940T processor cores. The caches in the ARM920T and ARM940T are 64-way set
associative. Figure 12.9 shows a block diagram of an ARM940T cache. The cache controller
uses the address tag as the input to the CAM and the output selects the way containing the
valid cache line.

12.2 Cache Architecture 415

4G main memory

1 KB

Way 0

X X X X X 2 2 4
tag

31 10

0x3FF

0x224

0x000

Address issued by processor core

9 4 3 0

set index data index

0xFFFFFFFF

0x00000C00

0x00000800

0x00000400

0x00000000

0x00000224

0x00000424

0x00000824

.

.

.

cache-tag v d word3 word2 word1 word0

Way 1
0x3FF

0x224

0x000

cache-tag v d word3 word2 word1 word0

Way 2
0x3FF

0x224

0x000

cache-tag v d word3 word2 word1 word0

Way 3
0x3FF

0x224

0x000

cache-tag v d word3 word2 word1 word0

Figure 12.8 Main memory mapping to a four-way set associative cache.

416 Chapter 12 Caches

Address issued
by processor core

Cache
controller

Cache
memory

Miss

Tag

Set
index

Data
index

31

8
7

4
3

0

CAM
set
select
logic

64 ways

Address/data
bus

Com
pare logic

4 cache
lines per
way

Cache-tag v d DataCam3
Cache-tag v d DataCam2
Cache-tag v d DataCam1
Cache-tagCam0 v d Data

Figure 12.9 ARM940T—4 KB 64-way set associative D-cache using a CAM.

The tag portion of the requested address is used as an input to the four CAMs that
simultaneously compare the input tag with all cache-tags stored in the 64 ways. If there is
a match, cache data is provided by the cache memory. If no match occurs, a miss signal is
generated by the memory controller.

The controller enables one of four CAMs using the set index bits. The indexed CAM
then selects a cache line in cache memory and the data index portion of the core address
selects the requested word, halfword, or byte within the cache line.

12.2.5 Write Buffers

A write buffer is a very small, fast FIFO memory buffer that temporarily holds data that the
processor would normally write to main memory. In a system without a write buffer, the
processor writes directly to main memory. In a system with a write buffer, data is written at
high speed to the FIFO and then emptied to slower main memory. The write buffer reduces
the processor time taken to write small blocks of sequential data to main memory. The
FIFO memory of the write buffer is at the same level in the memory hierarchy as the L1
cache and is shown in Figure 12.1.

12.2 Cache Architecture 417

The efficiency of the write buffer depends on the ratio of main memory writes to the
number of instructions executed. Over a given time interval, if the number of writes to
main memory is low or sufficiently spaced between other processing instructions, the write
buffer will rarely fill. If the write buffer does not fill, the running program continues
to execute out of cache memory using registers for processing, cache memory for reads
and writes, and the write buffer for holding evicted cache lines while they drain to main
memory.

A write buffer also improves cache performance; the improvement occurs during cache
line evictions. If the cache controller evicts a dirty cache line, it writes the cache line to the
write buffer instead of main memory. Thus the new cache line data will be available sooner,
and the processor can continue operating from cache memory.

Data written to the write buffer is not available for reading until it has exited the write
buffer to main memory. The same holds true for an evicted cache line: it too cannot be
read while it is in the write buffer. This is one of the reasons that the FIFO depth of a write
buffer is usually quite small, only a few cache lines deep.

Some write buffers are not strictly FIFO buffers. The ARM10 family, for example,
supports coalescing—the merging of write operations into a single cache line. The write
buffer will merge the new value into an existing cache line in the write buffer if they
represent the same data block in main memory. Coalescing is also known as write merging,
write collapsing, or write combining.

12.2.6 Measuring Cache Efficiency

There are two terms used to characterize the cache efficiency of a program: the cache
hit rate and the cache miss rate. The hit rate is the number of cache hits divided by the
total number of memory requests over a given time interval. The value is expressed as
a percentage:

hit rate =
(

cache hits

memory requests

)
× 100

The miss rate is similar in form: the total cache misses divided by the total number of
memory requests expressed as a percentage over a time interval. Note that the miss rate also
equals 100 minus the hit rate.

The hit rate and miss rate can measure reads, writes, or both, which means that the
terms can be used to describe performance information in several ways. For example,
there is a hit rate for reads, a hit rate for writes, and other measures of hit and miss
rates.

Two other terms used in cache performance measurement are the hit time—the time it
takes to access a memory location in the cache and the miss penalty—the time it takes to
load a cache line from main memory into cache.

418 Chapter 12 Caches

12.3 Cache Policy
There are three policies that determine the operation of a cache: the write policy, the
replacement policy, and the allocation policy. The cache write policy determines where
data is stored during processor write operations. The replacement policy selects the cache
line in a set that is used for the next line fill during a cache miss. The allocation policy
determines when the cache controller allocates a cache line.

12.3.1 Write Policy—Writeback or Writethrough

When the processor core writes to memory, the cache controller has two alternatives for
its write policy. The controller can write to both the cache and main memory, updating
the values in both locations; this approach is known as writethrough. Alternatively, the
cache controller can write to cache memory and not update main memory, this is known
as writeback or copyback.

12.3.1.1 Writethrough

When the cache controller uses a writethrough policy, it writes to both cache and main
memory when there is a cache hit on write, ensuring that the cache and main memory
stay coherent at all times. Under this policy, the cache controller performs a write to
main memory for each write to cache memory. Because of the write to main memory,
a writethrough policy is slower than a writeback policy.

12.3.1.2 Writeback

When a cache controller uses a writeback policy, it writes to valid cache data memory
and not to main memory. Consequently, valid cache lines and main memory may contain
different data. The cache line holds the most recent data, and main memory contains older
data, which has not been updated.

Caches configured as writeback caches must use one or more of the dirty bits in the
cache line status information block. When a cache controller in writeback writes a value to
cache memory, it sets the dirty bit true. If the core accesses the cache line at a later time, it
knows by the state of the dirty bit that the cache line contains data not in main memory. If
the cache controller evicts a dirty cache line, it is automatically written out to main memory.
The controller does this to prevent the loss of vital information held in cache memory and
not in main memory.

One performance advantage a writeback cache has over a writethrough cache is in the
frequent use of temporary local variables by a subroutine. These variables are transient in
nature and never really need to be written to main memory. An example of one of these

12.3 Cache Policy 419

transient variables is a local variable that overflows onto a cached stack because there are
not enough registers in the register file to hold the variable.

12.3.2 Cache Line Replacement Policies

On a cache miss, the cache controller must select a cache line from the available set in
cache memory to store the new information from main memory. The cache line selected
for replacement is known as a victim. If the victim contains valid, dirty data, the controller
must write the dirty data from the cache memory to main memory before it copies new
data into the victim cache line. The process of selecting and replacing a victim cache line is
known as eviction.

The strategy implemented in a cache controller to select the next victim is called its
replacement policy. The replacement policy selects a cache line from the available associative
member set; that is, it selects the way to use in the next cache line replacement. To summarize
the overall process, the set index selects the set of cache lines available in the ways, and the
replacement policy selects the specific cache line from the set to replace.

ARM cached cores support two replacement policies, either pseudorandom or
round-robin.

■ Round-robin or cyclic replacement simply selects the next cache line in a set to replace.
The selection algorithm uses a sequential, incrementing victim counter that increments
each time the cache controller allocates a cache line. When the victim counter reaches
a maximum value, it is reset to a defined base value.

■ Pseudorandom replacement randomly selects the next cache line in a set to replace. The
selection algorithm uses a nonsequential incrementing victim counter. In a pseudoran-
dom replacement algorithm the controller increments the victim counter by randomly
selecting an increment value and adding this value to the victim counter. When the
victim counter reaches a maximum value, it is reset to a defined base value.

Most ARM cores support both policies (see Table 12.1 for a comprehensive list of ARM
cores and the policies they support). The round-robin replacement policy has greater pre-
dictability, which is desirable in an embedded system. However, a round-robin replacement
policy is subject to large changes in performance given small changes in memory access. To
show this change in performance, we provide Example 12.1.

Example

12.1
This example determines the time it takes to execute a software routine using the round-
robin and random replacement policies. The test routine cache_RRtest collects timings
using the clock function available in the C library header time.h. First, it enables a round
robin policy and runs a timing test, and then enables the random policy and runs the
same test.

The test routine readSet is written specifically for an ARM940T and intentionally shows
a worst-case abrupt change in cache behavior using a round-robin replacement policy.

420 Chapter 12 Caches

Table 12.1 ARM cached core policies.

Core Write policy Replacement policy Allocation policy

ARM720T writethrough random read-miss
ARM740T writethrough random read-miss
ARM920T writethrough, writeback random, round-robin read-miss
ARM940T writethrough, writeback random read-miss
ARM926EJS writethrough, writeback random, round-robin read-miss
ARM946E writethrough, writeback random, round-robin read-miss
ARM10202E writethrough, writeback random, round-robin read-miss
ARM1026EJS writethrough, writeback random, round-robin read-miss
Intel StrongARM writeback round-robin read-miss
Intel XScale writethrough, writeback round-robin read-miss, write-miss

#include <stdio.h>
#include <time.h>

void cache_RRtest(int times,int numset)
{

clock_t count;

printf("Round Robin test size = %d\r\n", numset);
enableRoundRobin();
cleanFlushCache();
count = clock();
readSet(times,numset);
count = clock() - count;
printf("Round Robin enabled = %.2f seconds\r\n",

(float)count/CLOCKS_PER_SEC);

enableRandom();
cleanFlushCache();
count = clock();
readSet(times, numset);
count = clock() - count;
printf("Random enabled = %.2f seconds\r\n\r\n",

(float)count/CLOCKS_PER_SEC);
}

int readSet(int times, int numset)
{

12.3 Cache Policy 421

int setcount, value;
volatile int *newstart;
volatile int *start = (int *)0x20000;

__asm
{

timesloop:
MOV newstart, start
MOV setcount, numset

setloop:
LDR value,[newstart,#0];
ADD newstart,newstart,#0x40;
SUBS setcount, setcount, #1;
BNE setloop;
SUBS times, times, #1;
BNE timesloop;

}
return value;

}

We wrote the readSet routine to fill a single set in the cache. There are two arguments
to the function. The first, times, is the number of times to run the test loop; this value
increases the time it takes to run the test. The second, numset, is the number of set values
to read; this value determines the number of cache lines the routine loads into the same
set. Filling the set with values is done in a loop using an LDR instruction that reads a value
from a memory location and then increments the address by 16 words (64 bytes) in each
pass through the loop. Setting the value of numset to 64 will fill all the available cache lines
in a set in an ARM940T. There are 16 words in a way and 64 cache lines per set in the
ARM940T.

Here are two calls to the round-robin test using two set sizes. The first reads and fills a
set with 64 entries; the second attempts to fill the set with 65 entries.

unsigned int times = 0x10000;
unsigned int numset = 64;

cache_RRtest(times, numset);
numset = 65;
cache_RRtest(times, numset);

The console output of the two tests follows. The tests were run on an ARM940T core
module simulated using the ARM ADS1.2 ARMulator with a core clock speed of 50 MHz
and a memory read access time of 100 ns nonsequential and 50 ns sequential. The thing to
notice is the change in timing for the round-robin test reading 65 set values.

422 Chapter 12 Caches

Round Robin test size = 64
Round Robin enabled = 0.51 seconds
Random enabled = 0.51 seconds
Round Robin test size = 65
Round Robin enabled = 2.56 seconds
Random enabled = 0.58 seconds

This is an extreme example, but it does shows a difference between using a round-robin
policy and a random replacement policy. ■

Another common replacement policy is least recently used (LRU). This policy keeps
track of cache line use and selects the cache line that has been unused for the longest time
as the next victim.

ARM’s cached cores do not support a least recently used replacement policy, although
ARM’s semiconductor partners have taken noncached ARM cores and added their own
cache to the chips they produce. So there are ARM-based products that use an LRU
replacement policy.

12.3.3 Allocation Policy on a Cache Miss

There are two strategies ARM caches may use to allocate a cache line after a the occurrence
of a cache miss. The first strategy is known as read-allocate, and the second strategy is known
as read-write-allocate.

A read allocate on cache miss policy allocates a cache line only during a read from main
memory. If the victim cache line contains valid data, then it is written to main memory
before the cache line is filled with new data.

Under this strategy, a write of new data to memory does not update the contents of the
cache memory unless a cache line was allocated on a previous read from main memory.
If the cache line contains valid data, then a write updates the cache and may update main
memory if the cache write policy is writethrough. If the data is not in cache, the controller
writes to main memory only.

A read-write allocate on cache miss policy allocates a cache line for either a read or write
to memory. Any load or store operation made to main memory, which is not in cache
memory, allocates a cache line. On memory reads the controller uses a read-allocate policy.

On a write, the controller also allocates a cache line. If the victim cache line contains
valid data, then it is first written back to main memory before the cache controller fills the
victim cache line with new data from main memory. If the cache line is not valid, it simply
does a cache line fill. After the cache line is filled from main memory, the controller writes
the data to the corresponding data location within the cache line. The cached core also
updates main memory if it is a writethrough cache.

The ARM7, ARM9, and ARM10 cores use a read-allocate on miss policy; the Intel XScale
supports both read-allocate and write-allocate on miss. Table 12.1 provides a listing of the
policies supported by each core.

12.5 Flushing and Cleaning Cache Memory 423

12.4 Coprocessor 15 and Caches
There are several coprocessor 15 registers used to specifically configure and control ARM
cached cores. Table 12.2 lists the coprocessor 15 registers that control cache configuration.
Primary CP15 registers c7 and c9 control the setup and operation of cache. Secondary
CP15:c7 registers are write only and clean and flush cache. The CP15:c9 register defines
the victim pointer base address, which determines the number of lines of code or data
that are locked in cache. We discuss these commands in more detail in the sections
that follow. To review the general use of coprocessor 15 instructions and syntax, see
Section 3.5.2.

There are other CP15 registers that affect cache operation; the definition of these registers
is core dependent. These other registers are explained in Chapter 13 in Sections 13.2.3 and
13.2.4 on initializing the MPU, and in Chapter 14 in Section 14.3.6 on initializing the MMU.

In the next several sections we use the CP15 registers listed in Table 12.2 to provide
example routines to clean and flush caches, and to lock code or data in cache. The control
system usually calls these routines as part of its memory management activities.

12.5 Flushing and Cleaning Cache Memory
ARM uses the terms flush and clean to describe two basic operations performed on a
cache.

To “flush a cache” is to clear it of any stored data. Flushing simply clears the valid bit in
the affected cache line. All or just portions of a cache may need flushing to support changes
in memory configuration. The term invalidate is sometimes used in place of the term flush.
However, if some portion of the D-cache is configured to use a writeback policy, the data
cache may also need cleaning.

To “clean a cache” is to force a write of dirty cache lines from the cache out to main
memory and clear the dirty bits in the cache line. Cleaning a cache reestablishes coherence
between cached memory and main memory, and only applies to D-caches using a writeback
policy.

Table 12.2 Coprocessor 15 registers that configure and control cache operation.

Function Primary register Secondary registers Opcode 2

Clean and flush cache c7 c5, c6, c7, c10, c13, c14 0, 1, 2
Drain write buffer c7 c10 4
Cache lockdown c9 c0 0, 1
Round-robin replacement c15 c0 0

424 Chapter 12 Caches

Changing the memory configuration of a system may require cleaning or flushing a
cache. The need to clean or flush a cache results directly from actions like changing the
access permission, cache, and buffer policy, or remapping virtual addresses.

The cache may also need cleaning or flushing before the execution of self-modifying
code in a split cache. Self-modifying code includes a simple copy of code from one location
to another. The need to clean or flush arises from two possible conditions: First, the self-
modifying code may be held in the D-cache and therefore be unavailable to load from
main memory as an instruction. Second, existing instructions in the I-cache may mask new
instructions written to main memory.

If a cache is using a writeback policy and self-modifying code is written to main memory,
the first step is to write the instructions as a block of data to a location in main memory. At
a later time, the program will branch to this memory and begin executing from that area of
memory as an instruction stream. During the first write of code to main memory as data, it
may be written to cache memory instead; this occurs in an ARM cache if valid cache lines
exist in cache memory representing the location where the self-modifying code is written.
The cache lines are copied to the D-cache and not to main memory. If this is the case, then
when the program branches to the location where the self-modifying code should be, it will
execute old instructions still present because the self-modifying code is still in the D-cache.
To prevent this, clean the cache, which forces the instructions stored as data into main
memory, where they can be read as an instruction stream.

If the D-cache has been cleaned, new instructions are present in main memory. However,
the I-cache may have valid cache lines stored for the addresses where the new data (code)
was written. Consequently, a fetch of the instruction at the address of the copied code would
retrieve the old code from the I-cache and not the new code from main memory. Flush the
I-cache to prevent this from happening.

12.5.1 Flushing ARM Cached Cores

Flushing a cache invalidates the contents of a cache. If the cache is using a writeback policy,
care should be taken to clean the cache before flushing so data is not lost as a result of the
flushing process.

There are three CP15:c7 commands that perform flush operations on a cache. The first
flushes the entire cache, the second flushes just the I-cache, and the third just the D-cache.
The commands and cores that support them are shown in Table 12.3. The value of the
processor core register Rd should be zero for all three MCR instructions.

We provide Example 12.2 to show how to flush caches using these instructions. The
example can be used “as is” or customized to suit the requirements of the system. The
example contains a macro that produces three routines (for information on using macros,
see Appendix A):

■ flushICache flushes the I-cache.

■ flushDCache flushes the D-cache.

12.5 Flushing and Cleaning Cache Memory 425

Table 12.3 CP15:c7:Cm commands to flush the entire cache.

Command MCR instruction Core support

Flush cache MCR p15, 0, Rd, c7, c7, 0 ARM720T, ARM920T, ARM922T, ARM926EJ-S,
ARM1022E, ARM1026EJ-S, StrongARM, XScale

Flush data cache MCR p15, 0, Rd, c7, c6, 0 ARM920T, ARM922T, ARM926EJ-S, ARM940T,
ARM946E-S, ARM1022E, ARM1026EJ-S,
StrongARM, XScale

Flush instruction cache MCR p15, 0, Rd, c7, c5, 0 ARM920T, ARM922T, ARM926EJ-S, ARM940T,
ARM946E-S, ARM1022E, ARM1026EJ-S,
StrongARM, XScale

■ flushCache flushes both the I-cache and D-cache.

The routines have no input parameters and are called from C with the following
prototypes:

void flushCache(void); /* flush all cache */
void flushDCache(void); /* flush D-cache */
void flushICache(void); /* flush I-cache */

Example

12.2
This example begins by filtering the cores into groups based on the commands that they
support.

We use a macro called CACHEFLUSH to help in the creation of the routines. The
macro starts by setting the core register written to the CP15:c7:Cm to zero. Then it inserts
the specific MCR instruction depending on the type of cache operation needed and its
availability within each core.

IF {CPU} = "ARM720T" :LOR: \
{CPU} = "ARM920T" :LOR: \
{CPU} = "ARM922T" :LOR: \
{CPU} = "ARM926EJ-S" :LOR: \
{CPU} = "ARM940T" :LOR: \
{CPU} = "ARM946E-S" :LOR: \
{CPU} = "ARM1022E" :LOR: \
{CPU} = "ARM1026EJ-S" :LOR: \
{CPU} = "SA-110" :LOR: \
{CPU} = "XSCALE"

c7f RN 0 ; register in CP17:c7 format

426 Chapter 12 Caches

MACRO
CACHEFLUSH $op

MOV c7f, #0
IF "$op" = "Icache"

MCR p15,0,c7f,c7,c5,0 ; flush I-cache
ENDIF
IF "$op" = "Dcache"

MCR p15,0,c7f,c7,c6,0 ; flush D-cache
ENDIF
IF "$op" = "IDcache"

IF {CPU} = "ARM940T" :LOR: \
{CPU} = "ARM946E-S"
MCR p15,0,c7f,c7,c5,0 ; flush I-cache
MCR p15,0,c7f,c7,c6,0 ; flush D-cache

ELSE
MCR p15,0,c7f,c7,c7,0 ; flush I-cache & D-cache

ENDIF
ENDIF
MOV pc, lr
MEND

IF {CPU} = "ARM720T"
EXPORT flushCache

flushCache
CACHEFLUSH IDcache

ELSE
EXPORT flushCache
EXPORT flushICache
EXPORT flushDCache

flushCache
CACHEFLUSH IDcache

flushICache
CACHEFLUSH Icache

flushDCache
CACHEFLUSH Dcache

ENDIF

Finally, we use the macro several times to create the routines. The ARM720T has a unified
cache so only the flushCache routine is available; otherwise, the routine uses the macro
three times to create the routines. ■

This example contains a little more code than most implementations require. However,
it is provided as an exhaustive routine that supports all current ARM processor cores.

12.5 Flushing and Cleaning Cache Memory 427

You can use Example 12.2 to create simpler routines dedicated to the specific core you are
using. We use an ARM926EJ-S as a model to show how the three routines can be extracted
from Example 12.2. The rewritten version is

EXPORT flushCache926
EXPORT flushICache926
EXPORT flushDCache926

c7f RN 0 ; register in CP15:c7 format

flushCache926
MCR p15,0,c7f,c7,c7,0 ; flush I-cache & D-cache
MOV pc, lr

flushICache926
MCR p15,0,c7f,c7,c5,0 ; flush I-cache
MOV pc, lr

flushDCache926
MCR p15,0,c7f,c7,c6,0 ; flush D-cache
MOV pc, lr

If you are writing in C, you might simplify this code even further and make them inline
functions that can be collected and placed in an include file. The inline functions are

__inline void flushCache926(void)
{

unsigned int c7format = 0;
__asm{ MCR p15,0,c7format,c7,c7,0 }; /* flush I&D-cache */

}

__inline void flushDcache926(void)
{

unsigned int c7format = 0;
__asm{MCR p15,0,c7format,c7,c6,0 } /* flush D-cache */

}

__inline void flushIcache926(void)
{

unsigned int c7format = 0;
__asm{MCR p15,0,c7format,c7,c5,0 } /* flush I-cache */

}

The remainder of the examples in this chapter are presented in ARM assembler and
support all current cores. The same extraction procedures can be applied to the routines
provided.

428 Chapter 12 Caches

12.5.2 Cleaning ARM Cached Cores

To clean a cache is to issue commands that force the cache controller to write all dirty
D-cache lines out to main memory. In the process the dirty status bits in the cache line
are cleared. Cleaning a cache reestablishes coherence between cached memory and main
memory and can only apply to D-caches using a writeback policy.

The terms writeback and copyback are sometimes used in place of the term clean. So to
force a writeback or copyback of cache to main memory is the same as cleaning the cache.
The terms are similar to the adjectives used to describe cache write policy; however, in this
case they describe an action performed on cache memory. In the non-ARM world the term
flush may be used to mean what ARM calls clean.

12.5.3 Cleaning the D-Cache

At the time of writing this book there are three methods used to clean the D-cache (see
Table 12.4); the method used is processor dependent because different cores have different
command sets to clean the D-cache.

Although the method used to clean the cache may vary, in the examples we provide the
same procedure call to provide a consistent interface across all cores. To do this we provide
the same three procedures to clean the entire cache written once for each method:

■ cleanDCache cleans the entire D-cache.

■ cleanFlushDCache cleans and flushes the entire D-cache.

■ cleanFlushCache cleans and flushes both the I-cache and D-cache.

The cleanDCache, cleanFlushDCache, and cleanFlushCache procedures do not take
any input parameters and can be called from C using the following prototypes:

void cleanDCache(void); /* clean D-cache */
void cleanFlushDCache(void); /* clean-and-flush D-cache */
void cleanFlushCache(void); /* clean-and-flush I&D-cache */

Table 12.4 Procedural methods to clean the D-cache.

Method Example Processor

Way and set index addressing Example 12.3 ARM920T, ARM922T, ARM926EJ-S, ARM940T,
ARM946E-S, ARM1022E, ARM1026EJ-S

Test-clean Example 12.4 ARM926EJ-S, ARM1026EJ-S
Special allocate command reading a
dedicated block of memory

Example 12.5 XScale, SA-110

12.5 Flushing and Cleaning Cache Memory 429

The macros in these examples were written to support as many ARM cores as possible
without major modification. This effort produced a common header file used in this exam-
ple and several other examples presented in this chapter. The header file is named cache.h
and is shown in Figure 12.10.

IF {CPU} = "ARM920T"
CSIZE EQU 14 ; cache size as 1 << CSIZE (16 K assumed)
CLINE EQU 5 ; cache line size in bytes as 1 << CLINE
NWAY EQU 6 ; set associativity = 1 << NWAY (64 way)
I7SET EQU 5 ; CP15 c7 set incrementer as 1 << ISET
I7WAY EQU 26 ; CP15 c7 way incrementer as 1 << SSET
I9WAY EQU 26 ; CP15 c9 way incrementer as 1 << SSET

ENDIF
IF {CPU} = "ARM922T"

CSIZE EQU 14 ; cache size as 1 << CSIZE (16 K assumed)
CLINE EQU 5 ; cache line size in bytes as 1 << CLINE
NWAY EQU 6 ; set associativity = 1 << NWAY (64 way)
I7SET EQU 5 ; CP15 c7 set incrementer as 1 << ISET
I7WAY EQU 26 ; CP15 c7 way incrementer as 1 << SSET
I9WAY EQU 26 ; CP15 c9 way incrementer as 1 << SSET

ENDIF
IF {CPU} = "ARM926EJ-S"

CSIZE EQU 14 ; cache size as 1 << CSIZE (16 K assumed)
CLINE EQU 5 ; cache line size in bytes as 1 << CLINE
NWAY EQU 2 ; set associativity = 1 << NWAY (4 way)
I7SET EQU 4 ; CP15 c7 set incrementer as 1 << ISET
I7WAY EQU 30 ; CP15 c7 way incrementer as 1 << IWAY

ENDIF
IF {CPU} = "ARM940T"

CSIZE EQU 12 ; cache size as 1 << CSIZE (4K)
CLINE EQU 4 ; cache line size in bytes as 1 << CLINE
NWAY EQU 6 ; set associativity = 1 << NWAY (64 way)
I7SET EQU 4 ; CP15 c7 set incrementer = 1 << ISET
I7WAY EQU 26 ; CP15 c7 way incrementer = 1 << IWAY
I9WAY EQU 0 ; CP15 c9 way incrementer = 1 << IWAY

ENDIF

Figure 12.10 The header file cache.h.

430 Chapter 12 Caches

IF {CPU} = "ARM946E-S"
CSIZE EQU 12 ; cache size as 1 << CSIZE (4 K assumed)
CLINE EQU 5 ; cache line size in bytes as 1 << CLINE
NWAY EQU 2 ; set associativity = 1 << NWAY (4 way)
I7SET EQU 4 ; CP15 c7 set incrementer = 1 << ISET
I7WAY EQU 30 ; CP15 c7 way incrementer = 1 << IWAY
I9WAY EQU 0 ; CP15 c7 way incrementer = 1 << IWAY

ENDIF
IF {CPU} = "ARM1022E"

CSIZE EQU 14 ; cache size as 1 << CSIZE (16 K)
CLINE EQU 5 ; cache line size in bytes as 1 << CLINE
NWAY EQU 6 ; set associativity = 1 << NWAY (64 way)
I7SET EQU 5 ; CP15 c7 set incrementer as 1 << ISET
I7WAY EQU 26 ; CP15 c7 way incrementer as 1 << SSET
I9WAY EQU 26 ; CP15 c7 way incrementer = 1 << IWAY

ENDIF
IF {CPU} = "ARM1026EJ-S"

CSIZE EQU 14 ; cache size as 1 << CSIZE (16 K assumed)
CLINE EQU 5 ; cache line size in bytes as 1 << CLINE
NWAY EQU 2 ; set associativity = 1 << NWAY (4 way)
I7SET EQU 5 ; CP15 c7 set incrementer as 1 << ISET
I7WAY EQU 30 ; CP15 c7 way incrementer as 1 << IWAY

ENDIF
IF {CPU} = "SA-110"

CSIZE EQU 14 ; cache size as 1 << CSIZE (16 K)
CLINE EQU 5 ; cache line size in bytes as 1 << CLINE
NWAY EQU 5 ; set associativity = 1 << NWAY (4 way)
CleanAddressDcache EQU 0x8000

ENDIF
IF {CPU} = "XSCALE"

CSIZE EQU 15 ; cache size as 1 << CSIZE (32 K)
CLINE EQU 5 ; cache line size in bytes as 1 << CLINE
NWAY EQU 5 ; set associativity = 1 << NWAY (32 way)
MNWAY EQU 1 ; set assoc mini D-cache = 1 << NWAY (2 way)
MCSIZE EQU 11 ; mini cache size as 1 << CSIZE (2 K)

ENDIF

; ----------------
SWAY EQU (CSIZE-NWAY) ; size of way = 1 << SWAY
NSET EQU (CSIZE-NWAY-CLINE) ; cache lines per way = 1 << NSET

Figure 12.10 The header file cache.h. (Continued.)

12.5 Flushing and Cleaning Cache Memory 431

All values in the header file are either a size expressed in log base two or a field locator.
If the value is a locator, it represents the lowest bit in a bit field in a CP15 register. For exam-
ple, the constant I7WAY points to the lowest bit in the way selection field in the CP15:c7:c5
register. Just to be clear, the value of I7WAY is 26 in an ARM920T, ARM922T, ARM940T,
and ARM1022E, and the value is 30 in the ARM926EJ-S, ARM946E-S, and ARM1026EJ-S
(see Figure 12.11). The values are stored in this format to support bit manipulation of the
core register (Rm) moved into a CP15:Cd:Cm register when a clean command is issued
using an MCR instruction.

The six constants in the header file that depend on the core architecture are the following:

■ CSIZE is the log base two of the size of the cache in bytes; in other words, the cache size
is (1�CSIZE) bytes.

■ CLINE is the log base two of the length of a cache line in bytes; the cache line length
would be (1�CLINE) bytes.

■ NWAY is the number of ways and is the same as the set associativity.

■ I7SET is the number of bits that the set index is shifted to the left in the CP15:c7
command register. This value is also used to increment or decrement the set index
portion of the CP15:c7 register when sequentially accessing the cache.

■ I7WAY is the number of bits that the way index is shifted to the left in the CP15:c7
command register. This value is also used to increment or decrement the way index
portion of the CP15:c7 register when sequentially accessing the cache.

■ I9WAY is the number of bits that the way index is shifted to the left in the CP15:c9
command register. This value is also used to increment or decrement the way index
portion of the CP15:c9 register when sequentially accessing the cache.

There are two constants calculated from the core specific data:

■ SWAY is the log base two of the size of a way in bytes. The size of a way would be
(1�SWAY) bytes.

■ NSET is the number of cache lines per way. This is the log base two of the size of the set
index. The number of sets would be (1�NSET).

12.5.4 Cleaning the D-Cache Using Way and Set Index
Addressing

Some ARM cores support cleaning and flushing a single cache line using the way and set
index to address its location in cache. The commands available to clean and flush a cache
line by way are shown as MCR instructions in Table 12.5. Two commands flush a cache line,
one flushes an instruction cache line, and another flushes a data cache line. The remaining
two commands clean the D-cache: one cleans a cache line and another cleans and flushes a
cache line.

432 Chapter 12 Caches

Table 12.5 CP15:c7 Commands to clean cache using way and set index addressing.

Command MCR instruction Core support

Flush instruction cache line MCR p15, 0, Rd, c7, c5, 2 ARM926EJ-S, ARM940T, ARM1026EJ-S
Flush data cache line MCR p15, 0, Rd, c7, c6, 2 ARM926EJ-S, ARM940T, ARM1026EJ-S
Clean data cache line MCR p15, 0, Rd, c7, c10, 2 ARM920T, ARM922T, ARM926EJ-S,

ARM940T, ARM946E-S, ARM1022E,
ARM1026EJ-S

Clean and flush data cache line MCR p15, 0, Rd, c7, c14, 2 ARM920T, ARM922T ARM926EJ-S,
ARM940T, ARM946E-S, ARM1022E,
ARM1026EJ-S

ARM920T
31 26 25

Way SBZ Set SBZ

8 7 5 4 0

ARM922T
31 26 25

Way SBZ Set SBZ

7 6 5 4 0

ARM940T
31 26 25

Way SBZ Set SBZ

6 5 4 3 0

ARM1022E
31 26 25

Way SBZ

SBZ = should be zero

SBZSet WB

78 5 4 3 2 0

ARM926EJ-S, ARM946E-S, ARM1026EJ-S
3130 29 y x

Way SBZ Set SBZ

5 4 0

Figure 12.11 Format of CP15:c7:Cm register Rd when cleaning cache by way and set index addressing.

12.5 Flushing and Cleaning Cache Memory 433

Each core listed selects an individual cache line by its way and set index address. When
using these instructions the value in core register Rd is the same for all four commands
within a single processor core; however, the format of the bit fields within the register
varies from processor to processor. The CP15:c7:Cm register format for cores that support
cleaning and flushing a cache line by way is shown in Figure 12.11. To execute the command,
create a value in a core register (Rd) in the desired CP15:c7 register format. The general
form of the register includes two bit fields: one selects the way and the other selects the set
in the way. Once the register is created, execute the desired MCR instruction to move the
core register (Rd) to the CP15:c7 register.

The cleanDCache, cleanFlushDCache, and cleanFlushCache procedures for the
ARM920T, ARM922T, ARM940T, ARM946E-S, and ARM1022E processors are shown
in the following example.

Example

12.3
We use a macro called CACHECLEANBYWAY to create the three procedures that clean, flush,
or clean and flush the cache using way and set index addressing.

The macro uses constants in the header file cache.h to build a processor register in
CP15:C7 register format (c7f) for the selected core. The first step is to set the c7f register
to zero, which is used as the Rd input value in the MCR instruction to execute the selected
operation. The macro then increments the c7f register according to the format in Figure
12.11, once for each written cache line. It increments the set index in the inner loop and
the way index in the outer loop. Using these nested loops, it steps through and cleans all
the cache lines in all the ways.

AREA cleancachebyway , CODE, READONLY ; Start of Area block
IF {CPU} = "ARM920T" :LOR: \

{CPU} = "ARM922T" :LOR: \
{CPU} = "ARM940T" :LOR: \
{CPU} = "ARM946E-S" :LOR: \
{CPU} = "ARM1022E"

EXPORT cleanDCache
EXPORT cleanFlushDCache
EXPORT cleanFlushCache
INCLUDE cache.h

c7f RN 0 ; cp15:c7 register format

MACRO
CACHECLEANBYWAY $op

MOV c7f, #0 ; create c7 format
5

IF "$op" = "Dclean"
MCR p15, 0, c7f, c7, c10, 2 ; clean D-cline

434 Chapter 12 Caches

ENDIF
IF "$op" = "Dcleanflush"

MCR p15, 0, c7f, c7, c14, 2 ; cleanflush D-cline
ENDIF

ADD c7f, c7f, #1 << I7SET ; +1 set index
TST c7f, #1 << (NSET+I7SET) ; test index overflow
BEQ

BIC c7f, c7f, #1 << (NSET+I7SET) ; clear index overflow
ADDS c7f, c7f, #1 << I7WAY ; +1 victim pointer
BCC %BT5 ; test way overflow
MEND

cleanDCache
CACHECLEANBYWAY Dclean
MOV pc, lr

cleanFlushDCache
CACHECLEANBYWAY Dcleanflush
MOV pc, lr

cleanFlushCache
CACHECLEANBYWAY Dcleanflush
MCR p15,0,r0,c7,c5,0 ; flush I-cache
MOV pc, lr

ENDIF ■

12.5.5 Cleaning the D-Cache Using the Test-Clean
Command

Two of the newer ARM cores, the ARM926EJ-S and ARM1026EJ-S, have commands to clean
cache lines using a test-clean CP15:c7 register. The test clean command is a special clean
instruction that can efficiently clean a cache when used in a software loop. The ARM926EJ-S
and ARM1026EJ-S also support cleaning using set and way indexing; however, using the
test clean command method of cleaning the D-cache is more efficient.

We use the commands shown in Table 12.6 in the following routines to clean the
ARM926EJ-S and ARM1026EJ-S cores. The cleanDCache, cleanFlushDCache, and

Table 12.6 Commands to test clean a single D-cache line.

Command MCR instruction Core Support

Test, clean D-cache line by loop MCR p15, 0, r15, c7, c10, 3 ARM926EJ-S, ARM1026EJ-S
Test, clean, and flush D-cache by loop MCR p15, 0, r15, c7, c14, 3 ARM926EJ-S, ARM1026EJ-S

12.5 Flushing and Cleaning Cache Memory 435

cleanFlushCache procedures for the ARM926EJ-S and ARM1026EJ-S processors are
shown in Example 12.4.

Example

12.4
The test clean command finds the first dirty cache line and cleans it by transferring its
contents to main memory. If another dirty cache exists in cache memory, then the Z flag
will be zero.

IF {CPU} = "ARM926EJ-S" :LOR: {CPU} = "ARM1026EJ-S"
EXPORT cleanDCache
EXPORT cleanFlushDCache
EXPORT cleanFlushCache

cleanDCache
MRC p15, 0, pc, c7, c10, 3 ; test/clean D-cline
BNE cleanDCache
MOV pc, lr

cleanFlushDCache
MRC p15, 0, pc, c7, c14, 3 ; test/cleanflush D-cline
BNE cleanFlushDCache
MOV pc, lr

cleanFlushCache
MRC p15, 0, pc, c7, c14, 3 ; test/cleanflush D-cline
BNE cleanFlushCache
MCR p15, 0, r0, c7, c5, 0 ; flush I-cache
MOV pc, lr

ENDIF

To clean the cache, a software loop is created that uses the test clean command. By testing
the Z flag and branching back to repeat the test, the processor loops through the test until
the D-cache is clean. Note that the test clean command uses the program counter (r15) as
the Rd register input to the MCR instruction. ■

12.5.6 Cleaning the D-Cache in Intel XScale SA-110 and
Intel StrongARM Cores

The Intel XScale and Intel StrongARM processors use a third method to clean their
D-caches. The Intel XScale processors have a command to allocate a line in the D-cache
without doing a line fill. When the processor executes the command, it sets the valid bit and
fills the directory entry with the cache-tag provided in the Rd register. No data is transferred
from main memory when the command executes. Thus, the data in the cache is not initial-
ized until it is written to by the processor. The allocate command, shown in Table 12.7, has
the beneficial feature of evicting a cache line if it is dirty.

436 Chapter 12 Caches

Table 12.7 Intel XScale CP15:c7 commands to allocate a D-cache line.

Command MCR instruction Core supported

Allocate line in data cache MCR p15, 0, Rd, c7, c2, 5 XScale

The Intel StrongARM and Intel XScale processors require an additional technique
to clean their caches. They need a dedicated area of unused cached main memory to
clean the cache. By software design the memory block is dedicated to cleaning the cache
only.

The Intel StrongARM and Intel XScale processors can be cleaned by reading this fixed
block of memory because they use a round-robin replacement policy. If a routine is executed
that forces the core to sequentially read an area of cached main data memory equal to the
size of the cache, then the series of reads will evict all current cache lines and replace them
with data blocks from the dedicated scratch read area. When the read sequence completes,
the cache will contain no important data because the dedicated read block has no useful
information in it. At this point, the cache can be flushed without fear of losing valued
cached data.

We use this technique to clean the Intel StrongARM D-cache and the Intel XScale mini
D-cache. The cleanDCache, cleanFlushDCache, and cleanFlushCache procedures for
the Intel XScale and Intel StrongARM processors are shown in the following example. There
is one additional procedure, called cleanMiniDCache, provided to clean the mini D-cache
in the Intel XScale processor.

Example

12.5
This example uses two macros, CPWAIT and CACHECLEANXSCALE. The CPWAIT macro is a
three-instruction sequence used on Intel XScale processors to guarantee that CP15 oper-
ations execute without side effects. The macro executes these instructions so that enough
processor cycles have completed to ensure that the CP15 command has completed and that
the pipeline is clear of instructions. The CPWAIT macro is

MACRO
CPWAIT
MRC p15, 0, r12, c2, c0, 0 ; read any CP15
MOV r12, r12
SUB pc, pc, #4 ; branch to next instruction
MEND

The macro CACHECLEANXSCALE creates the procedures cleanDCache, cleanFlushD-
Cache, and cleanFlushCache. The first part of the macro sets physical parameters for the
routine. The first parameter, adr, is the starting virtual memory address of the dedicated
area of memory used to clean the cache. The second parameter, nl is the total number of
cache lines in the cache.

12.5 Flushing and Cleaning Cache Memory 437

IF {CPU} = "XSCALE" :LOR: {CPU} = "SA-110"
EXPORT cleanDCache
EXPORT cleanFlushDCache
EXPORT cleanFlushCache
INCLUDE cache.h

CleanAddressDcache EQU 0x8000 ;(32K block 0x8000-0x10000)
CleanAddressMiniDcache EQU 0x10000 ;(2K block 0x10000-0x10800)

adr RN 0 ; start address
nl RN 1 ; number of cache lines to process
tmp RN 12 ; scratch register

MACRO
CACHECLEANXSCALE $op

IF "$op" = "Dclean"
LDR adr, =CleanAddressDcache
MOV nl, #(1 << (NWAY+NSET))

ENDIF
IF "$op" = "DcleanMini"

LDR adr, =CleanAddressMiniDcache
MOV nl, #(1 << (MNWAY+NSET))

ENDIF
5

IF {CPU} = "XSCALE" :LAND: "$op" = "Dclean"
MCR p15, 0, adr, c7, c2, 5 ; allocate d-cline
ADD adr, adr, #32 ; +1 d-cline

ENDIF
IF {CPU} = "SA-110" :LOR: "$op"= "DcleanMini"

LDR tmp,[adr],#32 ; Load data, +1 d-cline
ENDIF
SUBS nl, nl, #1 ; -1 loop count
BNE %BT5
IF {CPU} = "XSCALE"

CPWAIT
ENDIF
MEND

cleanDCache
CACHECLEANXSCALE Dclean
MOV pc, lr

438 Chapter 12 Caches

cleanFlushDCache
STMFD sp!, {lr}
BL cleanDCache
IF {CPU} = "XSCALE"

BL cleanMiniDCache
ENDIF
MOV r0, #0
MCR p15,0,r0,c7,c6,0 ; flush D-cache
IF {CPU} = "XSCALE"

CPWAIT
ENDIF
LDMFD sp!, {pc}

cleanFlushCache
STMFD sp!, {lr}
BL cleanDCache
IF {CPU} = "XSCALE"

BL cleanMiniDCache
ENDIF
MOV r0, #0
MCR p15,0,r0,c7,c7,0 ; flush I-cache & D-cache
IF {CPU} = "XSCALE"

CPWAIT
ENDIF
LDMFD sp!, {pc}

ENDIF

IF {CPU} = "XSCALE"
EXPORT cleanMiniDCache

cleanMiniDCache
CACHECLEANXSCALE DcleanMini
MOV pc, lr

ENDIF

The macro then filters the needed commands to execute the clean operation for the
two processor cores. The Intel XScale uses the allocate CP15:c7 command to clean the
D-cache and reads a dedicated cached memory block to clean the mini D-cache. The Intel
StrongARM reads from a dedicated area of memory to clean its D-cache.

Finally, we use the macro several times to create the cleanDCache, cleanFlushDCache,
cleanFlushCache, and cleanMiniDCache procedures. ■

12.5.7 Cleaning and Flushing Portions of a Cache

ARM cores support cleaning and flushing a single cache line by reference to the location it
represents in main memory. We show these commands as MCR instructions in Table 12.8.

12.5 Flushing and Cleaning Cache Memory 439

Table 12.8 Commands to clean and flush a cache line referenced by its location in main memory.

Command MCR instruction Core support

Flush instruction cache line MCR p15, 0, Rd, c7, c5, 1 ARM920T, ARM922T, ARM926EJ-S,
ARM946E-S, ARM1022E,
ARM1026EJ-S, XScale

Flush data cache line MCR p15, 0, Rd, c7, c6, 1 ARM920T, ARM922T, ARM926EJ-S,
ARM946E-S, ARM1022E,
ARM1026EJ-S, StrongARM, XScale

Clean data cache line MCR p15, 0, Rd, c7, c10, 1 ARM920T, ARM922T, ARM926EJ-S,
ARM946E-S, ARM1022E,
ARM1026EJ-S, StrongARM, XScale

Clean and flush data cache line MCR p15, 0, Rd, c7, c14, 1 ARM920T, ARM922T, ARM926EJ-S,
ARM946E-S, ARM1022E,
ARM1026EJ-S, XScale

Two of the commands flush a single cache line, one flushes the instruction cache, and the
other flushes the data cache. There are also two commands to clean the data cache: one that
cleans a single cache line and another that cleans and flushes a single cache line.

When using these instructions the value in core register Rd is the same for all four
commands within the same processor, and its contents must be the value needed to set the
CP15:c7 register. However, the format of the bit values in the CP15:c7 register vary slightly
from processor to processor. Figure 12.12 shows the register format for cores that support
cleaning and flushing a cache line by its modified virtual address if the core has an MMU,
or its physical address if it has an MPU.

We use the four commands to create six routines, which clean and/or flush the cache
lines in the cache that represent a region of memory:

■ flushICacheRegion flushes the cache lines from the I-cache representing a region of
main memory.

■ flushDCacheRegion flushes the cache lines from the D-cache representing a region of
main memory.

■ cleanDCacheRegion cleans the cache lines from the D-cache representing a region of
main memory.

■ cleanFlushDcacheRegion cleans and flushes the cache lines from the D-cache
representing a region of main memory.

■ flushCacheRegion flushes the cache lines representing a region of main memory from
both the I-cache and D-cache.

■ cleanFlushCacheRegion cleans and flushes the D-cache and then flushes the I-cache.

440 Chapter 12 Caches

ARM920T, ARM922T, ARM926EJ-S, ARM1026EJ-S
31

SBZModified virtual address

ARM946E-S
31

Physical address SBZ

5 4

5 4

0

0

ARM1022E
31

Modified virtual address WB SBZ

5 4 3 2 0

Intel StrongARM, Intel XScale
31

Modified virtual address SBZ

5 4 0

Figure 12.12 CP15:c7 Register Format when cleaning and flushing a cache line referenced by its origin
in main memory.

All the procedures have two arguments passed to them, the starting address in main
memory (adr) and the size of the region in bytes (b). The C function prototypes are

void flushICacheRegion(int * adr, unsigned int b);
void flushDCacheRegion(int * adr, unsigned int b);

void cleanDCacheRegion(int * adr, unsigned int b);
void cleanFlushDcacheRegion(int * adr, unsigned int b);

void flushCacheRegion(int * adr, unsigned int b);
void cleanFlushCacheRegion(int * adr, unsigned int b);

Care should be taken when using the clean cache region procedures. The use of these
procedures is most successful on small memory regions. If the size of the region is sev-
eral times larger than the cache itself, it is probably more efficient to clean the entire
cache using one of the clean cache procedures provided in Sections 12.5.4, 12.5.5, and
12.5.6.

The region procedures are available on a limited set of ARM cores. Figure 12.12 lists the
cores that support cleaning and flushing by address. They are also listed at the start of the
code in the following example.

12.5 Flushing and Cleaning Cache Memory 441

Example

12.6
The macro takes the input address and truncates it to a cache line boundary. This truncation
always addresses the first double word in the cache line of an ARM1022E (see Figure 12.12).
The macro then takes the size argument and converts it from bytes to cache lines. The
macro uses the number of cache lines as a counter variable to loop through the selected
flush or clean operation, incrementing the address by a cache line size at the end of each
loop. It exits when the counter reaches zero.

IF {CPU} = "ARM920T" :LOR: \
{CPU} = "ARM922T" :LOR: \
{CPU} = "ARM946E-S" :LOR: \
{CPU} = "ARM926EJ-S" :LOR: \
{CPU} = "ARM1022E" :LOR: \
{CPU} = "ARM1026EJ-S" :LOR: \
{CPU} = "XSCALE" :LOR: \
{CPU} = "SA-110"

INCLUDE cache.h

adr RN 0 ; active address
size RN 1 ; size of region in bytes
nl RN 1 ; number of cache lines to clean or flush

MACRO
CACHEBYREGION $op

BIC adr, adr, #(1 << CLINE)-1 ; clip 2 cline adr
MOV nl, size, lsr #CLINE ; bytes to cline

10
IF "$op" = "IcacheFlush"

MCR p15, 0, adr, c7, c5, 1 ; flush I-cline@adr
ENDIF
IF "$op" = "DcacheFlush"

MCR p15, 0, adr, c7, c6, 1 ; flush D-cline@adr
ENDIF
IF "$op" = "IDcacheFlush"

MCR p15, 0, adr, c7, c5, 1 ; flush I-cline@adr
MCR p15, 0, adr, c7, c6, 1 ; flush D-cline@adr

ENDIF
IF "$op" = "DcacheClean"

MCR p15, 0, adr, c7, c10, 1 ; clean D-cline@adr
ENDIF
IF "$op" = "DcacheCleanFlush"

IF {CPU} = "XSCALE" :LOR: \

442 Chapter 12 Caches

{CPU} = "SA-110"
MCR p15, 0, adr, c7, c10, 1 ; clean D-cline@adr
MCR p15, 0, adr, c7, c6, 1 ; flush D-cline@adr

ELSE
MCR p15, 0, adr, c7, c14, 1 ; cleanflush D-cline@adr

ENDIF
ENDIF
IF "$op" = "IDcacheCleanFlush"

IF {CPU} = "ARM920T" :LOR: \
{CPU} = "ARM922T" :LOR: \
{CPU} = "ARM946E-S" :LOR: \
{CPU} = "ARM926EJ-S" :LOR: \
{CPU} = "ARM1022E" :LOR: \
{CPU} = "ARM1026EJ-S"
MCR p15, 0, adr, c7, c14, 1 ;cleanflush D-cline@adr
MCR p15, 0, adr, c7, c5, 1 ; flush I-cline@adr

ENDIF
IF {CPU} = "XSCALE"

MCR p15, 0, adr, c7, c10, 1 ; clean D-cline@adr
MCR p15, 0, adr, c7, c6, 1 ; flush D-cline@adr
MCR p15, 0, adr, c7, c5, 1 ; flush I-cline@adr

ENDIF
ENDIF

ADD adr, adr, #1 << CLINE ; +1 next cline adr
SUBS nl, nl, #1 ; -1 cline counter
BNE %BT10 ; flush # lines +1
IF {CPU} = "XSCALE"

CPWAIT
ENDIF
MOV pc, lr
MEND

IF {CPU} = "SA-110"
EXPORT cleanDCacheRegion
EXPORT flushDCacheRegion
EXPORT cleanFlushDCacheRegion

cleanDCacheRegion
CACHEBYREGION DcacheClean

flushDCacheRegion
CACHEBYREGION DcacheFlush

cleanFlushDCacheRegion
CACHEBYREGION DcacheCleanFlush

12.6 Cache Lockdown 443

ELSE
EXPORT flushICacheRegion
EXPORT flushDCacheRegion
EXPORT flushCacheRegion
EXPORT cleanDCacheRegion
EXPORT cleanFlushDCacheRegion
EXPORT cleanFlushCacheRegion

flushICacheRegion
CACHEBYREGION IcacheFlush

flushDCacheRegion
CACHEBYREGION DcacheFlush

flushCacheRegion
CACHEBYREGION IDcacheFlush

cleanDCacheRegion
CACHEBYREGION DcacheClean

cleanFlushDCacheRegion
CACHEBYREGION DcacheCleanFlush

cleanFlushCacheRegion
CACHEBYREGION IDcacheCleanFlush

ENDIF
ENDIF

Finally, using the CACHEBYREGION macro, we either create three procedures if the core
is an Intel StrongARM, which has a limited command set, or all six procedures for the
remainder of the processors that have split caches. ■

12.6 Cache Lockdown
Cache lockdown is a feature that enables a program to load time-critical code and data into
cache memory and mark it as exempt from eviction. Code or data in lockdown provides
faster system response because it is held in the cache memory. Cache lockdown avoids the
problem of unpredictable execution times that result from the cache line eviction process,
a normal part of cache operation.

The purpose of locking information in cache is to avoid the cache miss penalty. However,
because any cache memory used for lockdown is unavailable for caching other parts of main
memory, the useful cache size is reduced.

The ARM core allocates fixed units of the cache for lockdown. The unit size that ARM
cores allocate in lockdown is a way. For example, a four-way set associative cache allows
locking code or data in units that are 1/4th of the cache size. The cached core always reserves
at least one way for normal cache operation.

Some instructions that are candidates for locking in cache are the vector interrupt table,
interrupt service routines, or code for a critical algorithm that the system uses extensively.
On the data side, frequently used global variables are good candidates for lockdown.

444 Chapter 12 Caches

Data or code locked in an ARM cache core is immune from replacement. However, when
the cache is flushed, the information in lockdown is lost and the area remains unavailable
as cache memory. The cache lockdown routine must be rerun to restore the lockdown
information.

12.6.1 Locking Code and Data in Cache

This section presents a procedure to lock code and data in cache. A typical sequence of C
calls to lock code and data in cache is the following:

int interrupt_state; /* saves the state of the FIQ and IRQ bits */
int globalData[16];
unsigned int *vectortable = (unsigned int *)0x0;
int wayIndex;
int vectorCodeSize = 212; /* vector table & FIQ handler in bytes*/

interrupt_state = disable_interrupts(); /* no code provided */
enableCache(); /* see Chapters 13(MPU) and 14(MMU) */
flushCache(); /* see code Example 12.2 */

/* Lock Global Data Block */
wayIndex = lockDcache((globalData, sizeof globalData);
/* Lock Vector table and FIQ Handler */
wayIndex = lockIcache((vectortable, vectorCodeSize);}

enable_interrupts(interrupt_state); /* no code provided */

To begin, interrupts are disabled and the cache enabled. The procedure that disables
interrupts is not shown. The flushCache procedure is one selected from the previous
examples; the actual call used depends on the cache configuration and may also include
cleaning the cache.

The function lockDCache locks a block of data in the D-cache; similarly, the function
lockIcache locks a code block in the I-cache.

The lockdown software routines themselves must be located in noncached main mem-
ory. The code and data locked in cache must be located in cached main memory. It is
important that the code and data locked in cache does not exist elsewhere in cache; in other
words, if the contents of the cache are unknown, then flush the cache before loading. If
the core is using a writeback D-cache, then clean the D-cache. Once the code and data are
loaded in cache, reenable interrupts.

We present the code for the two functions lockDCache and lockIcache three different
times because there are three different lockdown methods used to lock code in cache,
depending on the architectural implementation. The first method locks code and data in
the cache using way addressing techniques. The second uses a set of lock bits. In the third,

12.6 Cache Lockdown 445

Table 12.9 Methods of cache lockdown.

Example Procedural method Processor core

Example 12.7 way addressing ARM920T, ARM926EJ-S, ARM940T,
ARM946E-S, ARM1022E, ARM1026EJ-S

Example 12.8 lock bits ARM926EJ-S, ARM1026EJ-S
Example 12.9 special allocate command XScale

code and data are locked in cache using a combination of a special allocate command and
reading a dedicated block of main memory.

Table 12.9 lists the three examples that implement the two procedures lockDcache and
lockIcache, the methods used, and the associated processors.

12.6.2 Locking a Cache by Incrementing the Way Index

The ARM920T, ARM926EJ-S, ARM940T, ARM946E-S, ARM1022E, and ARM1026EJ-S use
way and set index addressing for lockdown. Two CP15:c9:c0 registers contain the victim
counter reset registers described in Section 12.3.2. One of the registers controls the I-cache,
and the other controls the D-cache. These registers are used to select the cache line within
the way in which to lock the code or data.

The value written to the CP15:c7 register sets the victim reset value—the value that the
victim counter is reset to when it increments beyond the number of ways in the core. The
reset value is zero at power-up and is only changed by software if some portion of the cache
is used for lockdown. When a portion of the cache is used for lockdown, the number of
cache lines for caching information decreases by the number of cache lines locked down.
Reading the register returns the current victim reset value. The MRC and MCR instructions to
read and write to the two registers are shown in Table 12.10.

Table 12.10 Commands that lock data in cache by referencing its way.

MRC and
Command MCR instructions Processor core

Read D-cache lockdown base MRC p15, 0, Rd, c9, c0, 0 ARM920T, ARM926EJ-S, ARM940T,
ARM946E-S, ARM1022E, ARM1026EJ-S

Write D-cache lockdown base MCR p15, 0, Rd, c9, c0, 0 ARM920T, ARM926EJ-S, ARM940T,
ARM946E-S, ARM1022E, ARM1026EJ-S

Read I-cache lockdown base MRC p15, 0, Rd, c9, c0, 1 ARM920T, ARM926EJ-S, ARM940T,
ARM946E-S, ARM1022E, ARM1026EJ-S

Write I-cache lockdown base MCR p15, 0, Rd, c9, c0, 1 ARM920T, ARM926EJ-S, ARM940T,
ARM946E-S, ARM1022E, ARM1026EJ-S

446 Chapter 12 Caches

ARM920T, ARM1022E
31 26 25

SBZWay

ARM940T
31 6 5 0

SBZ WayL

ARM946E-S
31 2 1 0

SBZ WayL

Figure 12.13 CP15:c9 register format used when locking data in cache by reference to its way.

When reading or writing the lockdown base address, the format of the core register Rd
used in the MCR and MRC instructions varies slightly from processor to processor. For
each processor that uses these instructions, the format of the processor core Rd register is
shown in Figure 12.13. To ensure that the command executes properly, be sure that the Rd
register format matches that shown in the figure.

A special load command is also needed to lock instructions in cache. This special load
command copies a cache-line-sized block of main memory to a cache line in the I-cache.
The command and the format for the Rd register used in the instruction are shown in Table
12.11 and Figure 12.14.

The following example shows lockDCache and lockICache routines for processors
supporting lockdown using incremented way addressing. The return value for the two
routines is the next available victim pointer base address.

Example

12.7
The first part of the routine defines the registers used in the macro CACHELOCKBYWAY. The
macro also uses constants in the header file cache.h shown in Figure 12.10.

Table 12.11 Command to lock a cache line in the I-cache.

Command MCR instruction Processor core

Prefetch I-cache
line by address

MCR p15, 0, Rd, c7, c13, 1 ARM920T, ARM922T, ARM926EJ-S,
ARM940T, ARM946E-S, ARM1022E,
ARM1026EJ-S, StrongARM, XScale

12.6 Cache Lockdown 447

ARM940T
31 4 3 0

SBZPhysical address

ARM920T, ARM922T, ARM926EJ-S, ARM1026EJ-S
31 5 4 0

SBZModified virtual address

ARM946E-S
31 5 4 0

SBZPhysical address

ARM1022E
31 5 4 3 2 0

SBZWBModified virtual address

Intel StrongARM, Intel XScale
31 5 4 0

SBZModified virtual address

Figure 12.14 CP15:c7:c13 register format to lock a cache line in I-cache.

The first line in the macro aligns the address (adr) to a cache line. The next three lines
use the code size in bytes to determine the number of ways it takes to hold the code. Then
the I-cache or D-cache current victim pointer is read from CP15:c9:c0.

The next few lines do some error checking to test for overfilling the cache and if the size
of the code to load is zero.

To lock code or data in the cache of an ARM940T or ARM946E-S, there is a lock bit
that must be set before locking a memory block in a cache line. The next instruction sets
this bit and writes the data back to CP15:c9:c0.

At this point the code enters a nested loop, the outer loop selects the way, and the inner
loop increments the cache lines within the way.

At the center of the two loops a prefetch instruction or load data command is used
to lock a cache line in cache memory. To lock instructions, the macro writes to a special
CP15:c7:c13 register that preloads the code segment from main memory. To lock data, a
read of the data using an LDR instruction is all that is required.

The macro exits by clearing the lock bit in the CP15:c9:c0 register if it is an ARM940T
or ARM946E-S. On all cores it sets the victim pointer to the next available way after the
locked code or data.

448 Chapter 12 Caches

IF {CPU} = "ARM920T" :LOR: \
{CPU} = "ARM922T" :LOR: \
{CPU} = "ARM940T" :LOR: \
{CPU} = "ARM946E-S" :LOR: \
{CPU} = "ARM1022E"

EXPORT lockDCache
EXPORT lockICache
INCLUDE cache.h

adr RN 0 ; current address of code or data
size RN 1 ; memory size in bytes
nw RN 1 ; memory size in ways
count RN 2
tmp RN 2 ; scratch register
tmp1 RN 3 ; scratch register
c9f RN 12 ; CP15:c9 register format

MACRO
CACHELOCKBYWAY $op

BIC adr, adr, #(1 << CLINE)-1 ; align to cline
LDR tmp, =(1 << SWAY)-1 ; scratch = size of way
TST size, tmp ; way end fragment ?
MOV nw, size, lsr #SWAY ; convert bytes to ways
ADDNE nw, nw, #1 ; add way if fragment
CMP nw, #0 ; no lockdown requested
BEQ %FT2 ; exit return victim base

IF "$op" = "Icache"
MRC p15, 0, c9f, c9, c0, 1 ; get i-cache victim

ENDIF
IF "$op" = "Dcache"

MRC p15, 0, c9f, c9, c0, 0 ; get d-cache victim
ENDIF

AND c9f, c9f, tmp ; mask high bits c9f = victim
ADD tmp, c9f, nw ; temp = victim + way count
CMP tmp, #(1 << NWAY)-1 ; > total ways ?
MOVGT r0, #-1 ; return -1 if to many ways
BGT %FT1 ; Error: cache way overrun

IF {CPU} = "ARM940T" :LOR: {CPU} = "ARM946E-S"
ORR c9f, c9f, #1 << 31 ; put cache in lockdown mode

12.6 Cache Lockdown 449

ENDIF
10

IF "$op" = "Icache"
MCR p15, 0, c9f, c9, c0, 1 ; set victim

ENDIF
IF "$op" = "Dcache"

MCR p15, 0, c9f, c9, c0, 0 ; set victim
ENDIF

MOV count, #(1 << NSET)-1
5

IF "$op" = "Icache"
MCR p15, 0, adr, c7, c13, 1 ; load code cacheline
ADD adr, adr, #1 << CLINE ; cline addr =+ 1
ENDIF
IF "$op" = "Dcache"

LDR tmp1, [adr], #1 << CLINE ; load data cacheline
ENDIF

SUBS count, count, #1
BNE %BT5
ADD c9f, c9f, #1 << I9WAY ; victim pointer =+ 1
SUBS nw, nw, #1 ; way counter =- 1
BNE %BT10 ; repeat for # of ways

2
IF {CPU} = "ARM940T" :LOR: {CPU} = "ARM946E-S"

BIC r0, c9f, #1 << 31 ; clear lock bit & r0=victim
ENDIF
IF "$op" = "Icache"

MCR p15, 0, r0, c9, c0, 1 ; set victim counter
ENDIF
IF "$op" = "Dcache"

MCR p15, 0, r0, c9, c0, 0 ; set victim counter
ENDIF

1
MOV pc, lr
MEND

lockDCache
CACHELOCKBYWAY Dcache

lockICache
CACHELOCKBYWAY Icache
ENDIF

Finally, the macro is used twice to create the lockDCache and lockICache functions. ■

450 Chapter 12 Caches

12.6.3 Locking a Cache Using Lock Bits

The ARM926EJ-S and ARM1026EJ-S lock code and data in cache using a set of lock bits,
as shown in Figure 12.15. These two processors have a different Rd format for the CP15:c9
instructions, shown in Table 12.12. The four bits from zero to three represent each way in
the four-way set associative cache in the two processors. If the bit’s set, the way is locked
and contains either code if it is the I-cache or data if it is the D-cache. A locked way does
not evict a cache line until it is unlocked. Clearing one of the L bits unlocks its way. This
form of locking the cache allows the system code to individually select the way to lock or
unlock.

The ability to individually select a way to lock allows code to be more easily locked and
unlocked in a system. The example code in this section implements a procedure that has
the same programming interface used to lock data in the other cached cores.

The example lockDCache and lockICache procedures for the ARM926EJ-S and
ARM1026EJ-S processors have the same input parameters. However, the code size is lim-
ited to a maximum of the way size, and it can be called up to three times. In the example,
L bit 3 is always dedicated to cache. This is not a limitation of the processor hardware,
but simply a limit placed on the procedure call to meet the needs of the programming
interface.

The example procedure returns the L bit of the locked way if the size argument is one
byte or greater. The procedure returns the next available L bit if the size is zero, and eight
if there are no available ways for lockdown.

ARM926EJ-S, ARM1026EJ-S
31 16 15 4 3 0

SBZ SBO L bits

Figure 12.15 CP15:c9 register format when locking cache using lockdown bits.

Table 12.12 CP15:c9 Commands to lock cache using lockdown bits.

Command MRC and MCR instructions

Read I-cache lock page register MRC p15, 0, c9f, c9, c0, 1
Read D-cache lock page register MRC p15, 0, c9f, c9, c0, 0
Write I-cache lock page register MCR p15, 0, c9f, c9, c0, 1
Write I-cache lock page register MCR p15, 0, c9f, c9, c0, 0
Load code cache line at address MCR p15, 0, Rd, c7, c13, 1

12.6 Cache Lockdown 451

Example

12.8
A macro called CACHELOCKBYLBIT generates both the lockDCache and lockICache
functions.The macro also uses constants in the header file cache.h shown in Figure 12.10.

The macro starts by checking if the number of bytes to lock in cache is zero. Then it
aligns the address adr to a cache line while determining the number of cache lines it takes
to contain the code.

If the procedure is locking data in the D-cache, then it reads the lock register
CP15:c9:c0:0. If the procedure is locking code in the I-cache, then it reads the lock register
CP15:c9:c0:1. The resulting value is placed in the core c9f register. The L bits are also stored
in the tmp register for later use.

IF {CPU} = "ARM926EJ-S" :LOR: \
{CPU} = "ARM1026EJ-S"

EXPORT lockDCache
EXPORT lockICache
EXPORT bittest
INCLUDE cache.h

adr RN 0 ; current address of code or data
size RN 1 ; memory size in bytes
tmp RN 2 ; scratch register
tmp1 RN 3 ; scratch register
c9f RN 12 ; CP15:c9 register format

MACRO
CACHELOCKBYLBIT $op

ADD size, adr, size ; size = end address
BIC adr, adr, #(1 << CLINE)-1 ; align to CLINE
MOV tmp, #(1 << CLINE)-1 ; scratch CLINE mask
TST size, tmp ; CLINE end fragment ?
SUB size, size, adr ; add alignment bytes
MOV size, size, lsr #CLINE ; convert size 2 # CLINE
ADDNE size, size, #1 ; add CLINE for fragment
CMP size, #(1 << NSET)-1 ; size to large ?
BHI %FT1 ; exit return victim base

IF "$op" = "Icache"
MRC p15, 0, c9f, c9, c0, 1 ; get i-cache lock bits

ENDIF
IF "$op" = "Dcache"

MRC p15, 0, c9f, c9, c0, 0 ; get d-cache lock bits
ENDIF

AND tmp, c9f, #0xf ; tmp = state of Lbits

452 Chapter 12 Caches

MOV tmp1, #1
TST c9f, tmp1 ; test lock bit 0
MOVNE tmp1, tmp1, LSL #1
TSTNE c9f, tmp1 ; test lock bit 1
MOVNE tmp1, tmp1, LSL #1
TSTNE c9f, tmp1 ; test lock bit 2
MOVNE tmp1, tmp1, LSL #1
BNE %FT1 ; ERROR: no available ways
CMP size, #0 ; no lockdown requested
BEQ %FT1 ; exit return size =0

MVN tmp1, tmp1 ; select L bit
AND tmp1, tmp1, #0xf ; mask off non L bits
BIC c9f, c9f, #0xf ; construct c9f
ADD c9f, c9f, tmp1

IF "$op" = "Icache"
MCR p15, 0, c9f, c9, c0, 1 ; set lock I page

ENDIF
IF "$op" = "Dcache"

MCR p15, 0, c9f, c9, c0, 0 ; set lock D page
ENDIF

5
IF "$op" = "Icache"
MCR p15, 0, adr, c7, c13, 1 ; load code cacheline
ADD adr, adr, #1 << CLINE ; cline addr =+ 1

ENDIF
IF "$op" = "Dcache"

LDR tmp1, [adr], #1 << CLINE ; load data cacheline
ENDIF

SUBS size, size, #1 ; cline =- 1
BNE %BT5 ; loop thru clines

MVN tmp1, c9f ; lock selected L-bit
AND tmp1, tmp1, #0xf ; mask off non L-bits
ORR tmp, tmp, tmp1 ; merge with orig L-bits
BIC c9f, c9f, #0xf ; clear all L-bits
ADD c9f, c9f, tmp ; set L-bits in c9f

IF "$op" = "Icache"
MCR p15, 0, adr, c9, c0, 1 ; set i-cache lock bits

ENDIF

12.6 Cache Lockdown 453

IF "$op" = "Dcache"
MCR p15, 0, adr, c9, c0, 0 ; set d-cache lock bits

ENDIF
1

MOV r0, tmp1 ; return allocated way
MOV pc, lr
MEND

lockDCache
CACHELOCKBYLBIT Dcache

lockICache
CACHELOCKBYLBIT Icache
ENDIF

The next seven lines check the c9f register to see if there is a way available to store code
or data; if not, the routine exits. If there is an available way, then the c9f format is modified
in the next four lines to select the way in which to lock data. The c9f register is then used in
the MCR instruction to select the way.

At this point the code enters a loop that fills the cache with locked code or data. If the
procedure is locking code in the I-cache, it executes a prefetch I-cache line command. If
locking data from external memory, it cleans, flushes, and loads a new cache line into the
D-cache.

The macro exits by merging the saved L bits with the newly locked page and uses the
result to create a new c9f register. The macro uses the c9f register in an MCR instruction to
set the L bits in the CP15:c9:c0 cache lockdown register.

Finally, the CACHELOCKBYLBIT macro is used twice to create the lockDCache and
lockICache functions. ■

12.6.4 Locking Cache Lines in the Intel XScale SA-110

The Intel XScale processor also has the capability to lock code and data into cache.
This method requires the use of a set of CP15:c9 cache lockdown commands, shown in
Table 12.13. The format of the CP15:c9:c2 register is shown in Figure 12.16. It also requires
the CP15:c7 allocate D-cache line command we used to clean the D-cache in Example 12.5;
this command is shown in Table 12.7.

In the Intel XScale processor, each set in the cache has a dedicated round-robin pointer
that is increased sequentially each time an additional cache line in the cache is locked.
Up to 28 of the 32 cache lines within a set can be locked in cache. Attempting to lock
more than 28 cache lines in a set results in the line being allocated but not locked in
cache.

The Intel XScale processor supports two uses for locking data in the D-cache. The first
use simply locks main memory locations into the D-cache. In the second use, the allocate
cache line command is used to reconfigure a portion of the cache as data RAM; in that case,

454 Chapter 12 Caches

Table 12.13 Fetch and Allocate commands to lock code or data in cache on an
Intel XScale processor.

Command MRC and MCR instructions

Fetch and lock I-cache line VA MCR p15, 0, Rd, c9, c1, 0
Unlock instruction cache MCR p15, 0, Rd, c9, c1, 1
Read data cache lock register MRC p15, 0, Rd, c9, c2, 0
Write data cache lock register and

set/clear lock mode
MCR p15, 0, Rd, c9, c2, 0

Unlock D-cache MCR p15, 0, Rd, c9, c2, 1

31 1 0

SBZ L

Figure 12.16 Format of the CP15:c9:c2 D-cache lock register.

the portion of cache allocated is not initialized and needs a write from the processor core
to contain valid data. In our example we initialize the memory to zero.

Example

12.9
The first part of the routine defines the registers used in the macro CACHELOCKREGION. The
macro also uses constants in the header file cache.h shown in Figure 12.10.

The macro starts by aligning the address (adr) to a cache line and determining the
number of cache lines it takes to contain the code.

If the procedure is locking data in the D-cache, then the next few lines drain the write
buffer and unlock the D-cache. Locking data in the D-cache requires an unlock command
that must be issued prior to locking a D-cache line. The macro sets this bit by writing a one
to the CP15:c9:c2:0 register.

At this point the code enters a loop that fills the cache with locked code or data. If the
procedure is locking code in the I-cache, it executes a lock I-cache line command. If it
is locking data from external memory, it cleans, flushes, and loads a new cache line into
the D-cache. If creating data RAM, it allocates a D-cache line and drains the write buffer
to protect against errors that might result from trying to lock more than 28 sets. It then
initializes the cache line to zero using STRD instructions.

The macro exits by clearing the lock bit on cache load CP15 register if it is locking
D-cache data.

12.6 Cache Lockdown 455

IF {CPU} = "XSCALE"
EXPORT lockICache
EXPORT lockDCache
EXPORT lockDCacheRAM
INCLUDE cache.h

adr RN 0 ; current address of code or data
size RN 1 ; memory size in bytes
tmp RN 2 ; cpc15:c9 31 (load 5:0 victim pointer)
tmp1 RN 3 ; scratch register for LDR instruction

MACRO
CACHELOCKREGION $op

ADD size, adr, size ; size = end address
BIC adr, adr, #(1 << CLINE)-1 ; align to CLINE
MOV tmp, #(1 << CLINE)-1 ; scratch CLINE mask
TST size, tmp ; CLINE end fragment ?
SUB size, size, adr ; add alignment bytes
MOV size, size, lsr #CLINE ; convert size 2 # CLINE
ADDNE size, size, #1 ; add CLINE to hold fragment

CMP size, #0 ; no lockdown requested
BEQ %FT1 ; exit return size =0

IF "$op" = "Dcache" :LOR: "$op" = "DcacheRAM"
MCR p15, 0, adr, c7, c10, 4 ; drain write buffer
MOV tmp, #1
MCR p15, 0, tmp, c9, c2, 0 ; unlock data cache
CPWAIT
MOV tmp, #0 ; even words to zero

ENDIF
IF "$op" = "DcacheRAM"

MOV tmp1, #0 ; init odd words to zero
ENDIF

5
IF "$op" = "Icache"

MCR p15, 0, adr, c9, c1, 0; lock ICache line
ADD adr, adr, #1 << CLINE

ENDIF
IF "$op" = "Dcache"

MCR p15, 0, adr, c7, c10, 1 ; clean dirty line
MCR p15, 0, adr, c7, c6, 1 ; Flush d-cache line
LDR tmp, [adr], #1 << CLINE ; load data cache line

456 Chapter 12 Caches

ENDIF

IF "$op" = "DcacheRAM"
MCR p15, 0, adr, c7, c2, 5 ; Allocate d-cache line
MCR p15, 0, adr, c7, c10, 4 ; drain write buffer
STRD tmp, [adr], #8 ; init 2 zero & adr=+2
STRD tmp, [adr], #8 ; init 2 zero & adr=+2
STRD tmp, [adr], #8 ; init 2 zero & adr=+2
STRD tmp, [adr], #8 ; init 2 zero & adr=+2

ENDIF
SUBS size, size, #1
BNE %BT5

IF "$op" = "Dcache" :LOR: "$op" = "DcacheRAM"
MCR p15, 0, adr, c7, c10, 4 ; drain write buffer
MCR p15, 0, tmp, c9, c2, 0 ; lock data cache
CPWAIT

ENDIF
1

MOV r0, #0
MOV pc, lr
MEND

lockICache
CACHELOCKREGION Icache

lockDCache
CACHELOCKREGION Dcache

lockDCacheRAM
CACHELOCKREGION DcacheRAM

ENDIF

Finally, the macro is used three times to create the lockICache, lockDCache, and
lockDCacheRAM functions. ■

12.7 Caches and Software Performance
Here are a few simple rules to help write code that takes advantage of cache architecture.

Most regions in a memory system are configured to have both the caches and write
buffer enabled, taking maximum advantage of the cache architecture to reduce average
memory access time. For more information on regions and the configuration of cache and
write buffers operation within them, refer to Chapter 13 if you are using an ARM processor
core with a memory protection unit and Chapter 14 if you are using an ARM processor
core with a memory management unit.

12.8 Summary 457

Memory-mapped peripherals frequently fail if they are configured to use cache or the
write buffer. It is best to configure them as noncached and nonbuffered memory, which
forces the processor to read the peripheral device on every memory access, rather than use
what would be stale data from cache.

Try to place frequently accessed data sequentially in memory, remembering that the
cost of fetching a new data value from main memory requires a cache line fill. If the data in
the cache line is used only once before it is evicted, performance will be poor. Placing data
in the same cache line has the effect of actively forcing more cache hits by packing data close
together to take advantage of spatial locality. It is most important to keep the data accessed
by a common routine close together in main memory.

Try to organize data so reading, processing, and writing is done in cache-line-sized
blocks whose lower main memory address matches the starting address of the cache line.

The best general approach is to keep code routines small and to group related data close
together. The smaller the code, the more likely it is to be cache efficient.

Linked lists can reduce program performance when using a cache because searching
the list results in a high number of cache misses. When accessing data from a linked list, a
program fetches data in a more random fashion than it would if it were accessing the data
from a sequential array. This hint really applies to searching any unordered list. The way
you choose to search for data may require a performance analysis of your system.

However, it is important to remember that there are other factors that play a greater
role in system performance than writing code to efficiently use cache. See Chapters 5 and 6
for efficient programming techniques.

12.8 Summary
A cache is a small, fast array of memory placed between the processor and main memory. It
is a holding buffer that stores portions of recently referenced system memory. The processor
uses cache memory in preference to system memory whenever possible to increase average
system performance.

A write buffer is a very small FIFO memory placed between the processor core and main
memory, which helps free the processor core and cache memory from the slow write time
associated with writing to main memory.

The principle of locality of reference states that computer software programs frequently
run small loops of code that repeatedly operate on local sections of data memory and
explains why the average system performance increases significantly when using a cached
processor core.

There are many terms used by the ARM community to describe features of cache
architecture. As a convenience we have created Table 12.14, which lists the features of all
current ARM cached cores.

The cache line is a fundamental component in a cache and contains three parts: a
directory store, a data section, and status information. The cache-tag is a directory entry

458 Chapter 12 Caches

Table 12.14 ARM cached core features.

Cache Cache Write
Cache Cache size line size lockdown buffer size

Core type (kilobytes) (words) Associativity Location support (words)

ARM720T unified 8 4 4-way logical no 8
ARM740T unified 4 or 8 4 4-way yes 1/4 8
ARM920T split 16/16 D + I 8 64-way logical yes 1/64 16
ARM922T split 8/8 D + I 8 64-way logical yes 1/64 16
ARM940T split 4/4 D + I 4 64-way yes 1/64 8
ARM926EJ-S split 4–128/4–128 D + I 8 4-way logical yes 1/4 16
ARM946E-S split 4–128/4–128 D + I 4 4-way yes 1/4 4
ARM1022E split 16/16 D + I 8 64-way logical yes 1/64 16
ARM1026EJ-S split 4–128/4–128 D + I 8 4-way logical yes 1/4 8
Intel StrongARM split 16/16 D + I 4 32-way logical no 32
Intel XScale split 32/32 D + I 8 32-way logical yes 1/32 32

2 D 8 2-way logical no

indicating where a cache line was loaded from main memory. There are two common status
bits within the cache: the valid bit and the dirty bit. The valid bit is set when the associated
cache line contains active memory. The dirty bit is active when the cache is using a writeback
policy and new data has been written to cache memory.

The placement of a cache before or after the MMU is either physical or logical. A logical
cache is placed between the processor core and the MMU, and references code and data in
a virtual address space. A physical cache is placed between the MMU and main memory,
and references code and data memory using physical addresses.

A direct-mapped cache is a very simple cache architecture where there is a single location
in cache for a given main memory location. A direct-mapped cache is subject to thrashing.
To reduce thrashing, a cache is divided into smaller equal units called ways. The use of
ways provides multiple storage locations in cache for a single main memory address. These
caches are known as set associative caches.

The core bus architecture helps determine the design of a cached system. A Von
Neumann architecture uses a unified cache to store code and data. A Harvard architecture
uses a split cache: it has one cache for instructions and a separate cache for data.

The cache replacement policy determines which cache line is selected for replacement
on a cache miss. The configured policy defines the algorithm a cache controller uses to select
a cache line from the available set in cache memory. The cache line selected for replacement
is a victim. The two replacement policies available in ARM cached cores are pseudorandom
and round-robin.

12.8 Summary 459

There are two policies available when writing data to cache memory. If the controller
only updates cache memory, it is a writeback policy. If the cache controller writes to both
the cache and main memory, it is a writethrough policy.

There are two policies a cache controller uses to allocate a cache line on a cache
miss. A read-allocate policy allocates a cache line when data is read from main memory.
A write-allocate policy allocates a cache line on a write to main memory.

ARM uses the term clean to mean forcing a copyback of data in the D-cache to main
memory. ARM uses the term flush to mean invalidating the contents of a cache.

Cache lockdown is a feature provided by some ARM cores. The lockdown feature allows
code and data to be loaded into cache and marked as exempt from eviction.

We also provided example code showing how to clean and flush ARM cached cores, and
to lock code and data in cache.

13.1 Protected Regions
13.1.1 Overlapping Regions

13.1.2 Background Regions

13.2 Initializing the MPU, Caches, and Write Buffer
13.2.1 Defining Region Size and Location

13.2.2 Access Permission

13.2.3 Setting Region Cache and Write Buffer Attributes

13.2.4 Enabling Regions and the MPU

13.3 Demonstration of an MPU system
13.3.1 System Requirements

13.3.2 Assigning Regions Using a Memory Map

13.3.3 Initializing the MPU

13.3.4 Initializing and Configuring a Region

13.3.5 Putting It All Together, Initializing the MPU

13.3.6 A Protected Context Switch

13.3.7 mpuSLOS

13.4 Summary

C h a p t e r

Memory
Protection

Units

13

Some embedded systems use a multitasking operating or control system and must ensure
that a running task does not disrupt the operation of other tasks. The shielding of system
resources and other tasks from unwanted access is called protection and is the subject of
this chapter.

There are two methods to control access to system resources, unprotected and protected.
An unprotected system relies solely on software to protect the system resources. A protected
system relies on both hardware and software to protect the system resources. The choice
of method used by the control system depends on the capability of the processor and the
requirements of the control system.

An unprotected embedded system has no hardware dedicated to enforcing the use
of memory and peripheral devices during operation. In these systems, each task must
cooperate with all other tasks when accessing system resources because any task could
corrupt the state of another task. This cooperative scheme may result in task failure when
one task ignores the access limits of another task’s environment.

An example of a task failure that might occur in an unprotected system involves reading
and writing to a serial port register for communication. If one task is using the port, there
is no way to prevent another task from using the same port. Successful use of the port must
be coordinated through a system call that provides access to the port. An unauthorized
access by a task working around these calls can easily disrupt communications through

461

462 Chapter 13 Memory Protection Units

the port. The undesirable use of the resource could be unintentional, or it could be hostile in
nature.

In contrast, a protected system has dedicated hardware to check and restrict access to
system resources. It can enforce resource ownership. Tasks are required to behave by a set
of rules defined by the operating environment and enforced by hardware, which grants
special privileges to the programs that monitor and control resources at the hardware
level. A protected system is proactive in preventing one task from using the resources of
another. The use of hardware to actively monitor the system provides better protection
than cooperatively enforced software routines.

ARM provides several processors equipped with hardware that actively protects system
resources, either through a memory protection unit (MPU) or a memory management
unit (MMU). A processor core with an MPU, the subject of this chapter, provides hardware
protection over several software-designated regions. A processor core with an MMU, the
subject of the next chapter, provides hardware protection and adds a virtual memory
capability.

In a protected system, there are two major classes of resource that need monitoring:
the memory system and peripheral devices. Since ARM peripherals are generally memory
mapped, the MPU uses the same method to protect both resources.

An ARM MPU uses regions to manage system protection. A region is a set of attributes
associated with an area of memory. The processor core holds these attributes in several
CP15 registers and identifies each region by a number, which ranges between zero and
seven.

A region’s memory boundaries are configured using two attributes, the starting address
and its length, which can be any power of two between 4 KB and 4 GB. In addition, the
operation system assigns additional attributes to these regions: access rights and the cache
and write buffer policies. The access to a region in memory is set as read-write, read-only,
or no access and is subject to additional rights based on the current processor mode, which
is either privileged or user. A region also has a cache write policy, which controls cache
and write buffer attributes. For example, one region can be set to access memory using a
writethrough policy, while another operates as noncached and nonbuffered.

When the processor accesses a region in main memory, the MPU compares the region’s
access permission attributes with the current processor mode to determine what action it
will take. If the request satisfies the region access criteria, the core is allowed to read or write
to main memory. However, if the memory request results in a memory access violation,
the MPU will generate an abort signal.

The abort signal is routed to the processor core, where it responds to the abort signal by
taking an exception and vectoring to the abort handler. The abort handler then determines
the abort type as either a prefetch or data abort, and based on the abort type the handler
branches to the appropriate service routine.

To implement a protected system, the control system defines several regions to different
areas in main memory. A region may be created once and last for the life of the embedded
system or may be created temporarily to satisfy the needs of a specific operation and then
removed. How to assign and create regions is the subject of the next section.

13.1 Protected Regions 463

13.1 Protected Regions
There are currently four ARM cores that contain an MPU; the ARM740T, ARM940T,
ARM946E-S, and the ARM1026EJ-S. The ARM740T, ARM946E-S, and ARM1026EJ-S each
contain 8 protection regions; the ARM940T contains 16 (see Table 13.1).

The ARM740T, ARM946E-S, and ARM1026EJ-S have unified instruction and data
regions—the data region and instruction region are defined using the same register that sets
the size and starting address. The memory access permission and cache policies are config-
ured independently for instruction and data access in the ARM946E-S and ARM1026EJ-S
cores; in the ARM740T the same access permission and cache policies are assigned to
both instruction and data memory. Regions are independent of whether the core has a
Von Neumann or Harvard architecture. Each region is referenced by an identifying number
between zero and seven.

Because the ARM940T has separate regions to control instruction and data memory,
the core can maintain different region sizes and starting addresses for instruction and data
regions. The separation of instruction and data regions results in eight additional regions
in this cached core. Although the identifying region numbers in an ARM940T still range
from zero to seven, each region number has a pair of regions, one data region and one
instruction region.

There are several rules that govern regions:

1. Regions can overlap other regions.

2. Regions are assigned a priority number that is independent of the privilege assigned to
the region.

3. When regions overlap, the attributes of the region with the highest priority number take
precedence over the other regions. The priority only applies over the addresses within
the areas that overlap.

4. A region’s starting address must be a multiple of its size.

5. A region’s size can be any power of two between 4 KB and 4 GB—in other words, any
of the following values: 4 KB, 8 KB, 16 KB, 32 KB, 64 KB, . . . , 2 GB, 4 GB.

Table 13.1 Summary of ARM cores with protection units.

Number of Separate instruction Separate configuration of
ARM core regions and data regions instruction and data regions

ARM740T 8 no no
ARM940T 16 yes yes
ARM946E-S 8 no yes
ARM1026EJ-S 8 no yes

464 Chapter 13 Memory Protection Units

6. Accessing an area of main memory outside of a defined region results in an abort. The
MPU generates a prefetch abort if the core was fetching an instruction or a data abort
if the memory request was for data.

13.1.1 Overlapping Regions

Overlapping regions occur when some portion of the memory space assigned to one region
is also in the memory space assigned to another region. Overlapping regions provide a
greater flexibility when assigning access permission than nonoverlapping regions.

For an example of overlapping regions, suppose a small embedded system has 256 KB of
available memory starting at address 0x00000000 and must protect a privileged system area
from user mode reads and writes. The privileged area code, data, and stacks fit in a 32 KB
region starting, with the vector table, at 0x00000000. The remaining memory is assigned
to user space.

With overlapping regions, the system uses two regions, a 256 KB user region and a
32 KB privileged region (see Figure 13.1). The privileged region 1 is given the higher
number because its attributes must take precedence over the user region 0.

13.1.2 Background Regions

Another useful feature provided by overlapping regions is a background region—a low-
priority region used to assign the same attributes to a large memory area. Other regions with
higher priority are then placed over this background region to change the attributes of a
smaller subset of the defined background region. So the higher-priority region is changing a
subset of the background region attributes. A background region can shield several dormant

256 KB

32 KB
0x0000

Region 0

Region 1 (Privileged access)

(User access)

Figure 13.1 Creating regions that overlap.

13.2 Initializing the MPU, Caches, and Write Buffer 465

Task 3

Task 2

Task 1
Region 3

Region 0

Task 1
running

Task 2
running

Task 3
running

Task 3

Task 2

Task 1

Region 3

Region 0

Task 3

Task 2

Task 1

Region 3

Region 0

(Privileged access)

(User access)

Figure 13.2 Using a background region to control task access.

memory areas from unwanted access while another part of the background region is active
under a different region’s control.

For example, if an embedded system defines a large privileged background region, it
can lay a smaller unprivileged region over this background. The location of the smaller
region can be moved over different areas of the background region to reveal different user
spaces. When the system moves the smaller user region from one location to another, the
previously covered area becomes protected by the background region. So the user region is
acting as a window allowing access to different parts of the privileged background but has
user-level attributes (see Figure 13.2).

Figure 13.2 shows a simple three-task protection scheme. Region 3 defines the protection
attributes of the active task, and the background region 0 controls access to the other tasks
when they are dormant. When task 1 is running, the background region protects tasks 2
and 3 from task 1. When task 2 is running, tasks 1 and 3 are protected. Finally, when Task 3
is running, tasks 1 and 2 are protected. The reason this works is that region 3 has higher
priority than region 0, even though region 0 has higher privilege.

We use a background region in the example code at the end of this chapter to
demonstrate a simple multitasking protection scheme.

13.2 Initializing the MPU, Caches, and Write
Buffer

In order to initialize the MPU, caches, and write buffer, the control system must define the
protection regions required during the target operation.

466 Chapter 13 Memory Protection Units

Table 13.2 Coprocessor registers that control the MPU.

Function Primary register Secondary registers

System control c1 c0
Region cache attributes c2 c0
Region write buffer attributes c3 c0
Region access permissions c5 c0
Region size and location c6 c0 to c7

At a minimum the control system must define at least one data region and one instruc-
tion region before it can enable the protection unit. The protection unit must be enabled
before or at the same time as the caches and write buffer are enabled.

The control system configures the MPU by setting primary CP15 registers c1, c2, c3, c5,
and c6. Table 13.2 lists the primary registers needed to control the operation of the MPU.
Register c1 is the primary control register.

Configuring registers c2 and c3 sets the cache and write buffer attributes of regions.
Register c5 controls region access permissions. There are 8 or 16 secondary registers in
register c6 that define the location and size of each region. There are other configuration
registers in the ARM740T, ARM940T, ARM946E-S, and ARM1026EJ-S, but their use does
not involve the basic operation of the MPU. To review the use of coprocessor 15 registers,
refer to Section 3.5.2.

The following steps are required to initialize the MPU, caches, and write buffer:

1. Define the size and location of the instruction and data regions using CP15:c6.

2. Set the access permission for each region using CP15:c5.

3. Set the cache and write buffer attributes for each region using CP15:c2 for cache and
CP15:c3 for the write buffer.

4. Enable the caches and the MPU using CP15:c1.

For each of these steps, there is a chapter section that follows describing the coprocessor
15 commands needed to configure each register. There is also example code showing the
commands used in a routine that completes the step in the initialization process.

13.2.1 Defining Region Size and Location

To define the size and address range of each region, the embedded system writes to one
of the eight secondary registers, CP15:c6:c0:0 to CP15:c6:c7:0. Each secondary coprocessor
register number maps to the corresponding region number identifier.

13.2 Initializing the MPU, Caches, and Write Buffer 467

0156111231

Base address NSBZ E

Figure 13.3 CP15:c6 register format setting size and location of a region.

Table 13.3 Bit field description of registers CP15:c6:c0 to CP15:c6:c7.

Field name Bit fields Comments

Base address [31:12] Address greater than 4 KB must be a
multiple of the size represented in [5:1]

SBZ [11:6] Value “should be zero”
N [5:1] Size of region is 2N+1, where 11 ≤ N ≤ 31
E [0] Region enable, 1 = enable, 0 = disable

The starting address for each region must be aligned on an address that is a multiple
of its size. For example, if a region is 128 KB in size, it can start at any address multiple of
0x20000. The size of a region can be any power of two from 4 KB to 4 GB.

The bit fields and the format of the eight secondary registers CP15:c6:c0 to CP15:c6:c7
are shown in Figure 13.3 and Table 13.3. The starting address is stored in the top bit field
[31:20] and must be a multiple of the size bit field [5:1]. The E field bit [0] enables or
disables the region; that is, a region can be defined and disabled so that its attributes are
not enforced until the enable bit is set. The unused bits in the CP15:c6 secondary registers
should be set to zero.

To define the size of a region, you can use the formula, size = 2N+1 or look up the
value in Table 13.4 . To set the size, place the exponent value N in the size bit field of the
CP15:c6 register. The value of N is limited by the hardware design to be any integer between
11 and 31, representing 4 KB to 4 GB. The binary value provides the exact bit field for the
size entry. Once you have determined the size of a region, the starting address of the region
can be any integer value times the size calculated from the formula, or if you like, taken
from Table 13.4. The region size and starting address are determined by the memory map
of your system and the areas the control system must protect. The demonstration system
at the end of this chapter shows how to set up regions given a system memory map.

The ARM740T, ARM946E-S, and ARM1026EJ-S processors each have eight regions. To
set the size and location of a region requires a write to a secondary register in CP15:c6:cX.
For example, the instruction syntax needed to set the location and size of region 3 to start

468 Chapter 13 Memory Protection Units

Table 13.4 Region size encoding.

Size Decimal value Binary value

4 KB 11 01011
8 KB 12 01100
16 KB 13 01101
32 KB 14 01110
64 KB 15 01111
128 KB 16 10000
256 KB 17 10001
512 KB 18 10010
1 MB 19 10011
2 MB 20 10100
4 MB 21 10101
8 MB 22 10110
16 MB 23 10111
32 MB 24 11000
64 MB 25 11001
128 MB 26 11010
256 MB 27 11011
512 MB 28 11100
1 GB 29 11101
2 GB 30 11110
4 GB 31 11111

at 0x300000 with a size of 256 KB is

MOV r1, #0x300000 ; set starting address
ORR r1, r1, #0x11 << 1 ; set size to 256 KB
MCR p15, 0, r1, c6, c3, 0

The core register r1 is filled with the required bit field data; then it is written to the CP15
secondary register using an MCR instruction.

The ARM940T has eight instruction regions and eight data regions. The regions require
an additional opcode2 modifier to select either the instruction or data region. Opcode2 is
zero for data regions and one for instruction regions.

For example, to read the size and location of data and instruction region 5 requires
two MRC instructions, one for the instruction region and one for the data region. The
instructions needed to read the size and starting location of the regions are

MRC p15, 0, r2, c6, c5, 0 ; r2 = base/size Data Region 5
MRC p15, 0, r3, c6, c5, 1 ; r3 = base/size Inst Region 5

13.2 Initializing the MPU, Caches, and Write Buffer 469

The first instruction loads core register r2 with the size and starting address of data
region 5, and the second instruction loads core register r3 with the size and starting
address of instruction region 5. The ARM940T is the only processor core that has separate
instruction and data regions.

Example

13.1
The following example code shows how to set the starting address, size of a region, and the
enable bit. The routine regionSet has the following C prototype:

void regionSet(unsigned region, unsigned address,
unsigned sizeN, unsigned enable);

The routine has four unsigned integer inputs: the region to configure, the starting address
of the region, the encodedsizeNof the region, and whether the region is enabled or disabled.
It is a good idea to disable a region while changing its attributes and then reenabling it when
the changes are complete.

To make the routine work for all four available versions of an MPU processor, we unified
the ARM940T region space by configuring the instruction and data regions with the size
and starting address information. To do this, we wrote a macro called SET_REGION with
two parts, one for the ARM940T and one for the other cores. This allows the same routine
to support the four MPU cores.

#if defined(__TARGET_CPU_ARM940T)
#define SET_REGION(REGION) \

/* set Data region base & size */ \
__asm{MCR p15, 0, c6f, c6, c ## REGION, 0 } \

/* set Instruction region base & size */ \
__asm{MCR p15, 0, c6f, c6, c ## REGION, 1 }

#endif

#if defined(__TARGET_CPU_ARM946E_S) | \
defined(__TARGET_CPU_ARM1026EJ_S)

#define SET_REGION(REGION_NUMBER) \
/* set region base & size */ \

__asm{MCR p15, 0, c6f, c6, c ## REGION_NUMBER, 0 }
#endif

void regionSet(unsigned region, unsigned address,
unsigned sizeN, unsigned enable)

{
unsigned int c6f;
c6f = enable | (sizeN << 1) | address;
switch (region)

470 Chapter 13 Memory Protection Units

{
case 0: { SET_REGION(0); break;}
case 1: { SET_REGION(1); break;}
case 2: { SET_REGION(2); break;}
case 3: { SET_REGION(3); break;}
case 4: { SET_REGION(4); break;}
case 5: { SET_REGION(5); break;}
case 6: { SET_REGION(6); break;}
case 7: { SET_REGION(7); break;}
default: { break; }

}
}

The code starts by merging the region attributes of starting address, sizeN, and
enable into an unsigned integer named c6f. The routine then branches to one of eight
regionSet routines created using the macro SET_REGION, which sets the region’s starting
address, size, and enable state by writing to CP15:c6 secondary register for the region
defined. ■

13.2.2 Access Permission

There are two sets of access permission schemes available, a standard set and an extended
set. All four cores support the standard set, which provides four levels of permission. The
newer ARM946E-S and ARM1026EJ-S support an extended set, which adds an additional
two levels of permission (see Table 13.5). The extended set AP (access permission) bit
field encoding supports 12 additional permission values. Only two of these bits have been
allocated to date. Using an undefined encoding results in unpredictable behavior.

Table 13.5 CP15 register 5 access permissions.

Supervisor User Standard AP value encoding Extended AP value encoding

No access no access 00 0000
Read/write no access 01 0001
Read/write read only 10 0010
Read/write read/write 11 0011
Unpredictable unpredictable — 0100
Read only no access — 0101
Read only read only — 0110
Unpredictable unpredictable — 0111
Unpredictable unpredictable — 1000 to 1111

13.2 Initializing the MPU, Caches, and Write Buffer 471

Table 13.6 Bit field assignments for the standard and extended access permission registers CP15:c5.

Standard AP Extended AP

Region Field name Bit field Field name Bit field

0 AP0 [1:0] eAP0 [3:0]
1 AP1 [3:2] eAP1 [7:4]
2 AP2 [5:4] eAP2 [11:8]
3 AP3 [7:6] eAP3 [15:12]
4 AP4 [9:8] eAP4 [19:16]
5 AP5 [11:10] eAP5 [23:20]
6 AP6 [13:12] eAP6 [27:24]
7 AP7 [15:14] eAP7 [31:28]

156111231

AP0

2347891013141516 0

AP7 AP6 AP5 AP4 AP3 AP2 AP1

CP15:c5:c0 standard instruction region AP
CP15:c5:c1 standard data region AP

111231

eAP0

34781516 0

eAP7 eAP6 eAP5 eAP4 eAP3 eAP2 eAP1

1920232428 27

CP15:c5:c2 extended instruction region AP
CP15:c5:c3 extended data region AP

Figure 13.4 CP15 register 5 access permission register formats.

To assign access permission to a region requires a write to a secondary register in
CP15:c5. Secondary registers CP15:c5:c0:0 and CP15:c5:c0:1 configure standard AP, and
secondary registers CP15:c5:c0:2 or CP15:c5:c0:3 configure extended AP. Table 13.6 and
Figure 13.4 show the register’s permission bit assignments for the AP registers.

Processors that support extended permission can also run software written for standard
permission. The type of permission in effect depends on the last write to a CP15 AP register:
If the last written AP register was a standard AP register, then the core is using standard
permission; if the last written AP register was an extended AP register, then the core uses
extended permission. This works because a write to the standard AP registers also updates
the extended AP registers, meaning that the high bits [2:3] of the extended AP region entry
are cleared.

472 Chapter 13 Memory Protection Units

When using standard AP, each region has two bits in registers CP15:c5:c0:0 and
CP15:c5:c0:1. CP15:c5:c0:0 sets the AP for data, and CP15:c5:c0:1 sets the instruction
region.

To read the standard AP for instruction and data memory requires reading two registers.
The following two MRC instruction sequence places AP information for data region memory
in core register r1 and AP information for instruction region in register r2:

MRC p15, 0, r1, c5, c0, 0 ; Std AP Data Regions
MRC p15, 0, r2, c5, c0, 1 ; Std AP Inst Regions

When using extended AP, each region uses four bits in registers CP15:c5:c0:2 and
CP15:c5:c0:3. The core stores instruction information for the eight regions in a single
register and the data information in another register. CP15:c5:c0:2 sets the AP for the data
region, and CP15:c5:c0:3 sets the AP for the instruction region.

Obtaining the instruction and data region extended AP requires reading two registers.
The following two-instruction sequence places region data AP in core register r3 and region
instruction AP in register r4:

MRC p15, 0, r3, c5, c0, 2 ; Extended AP Data Regions
MRC p15, 0, r4, c5, c0, 3 ; Extended AP Inst Regions

We supply two examples to demonstrate using access permissions, one for standard AP
and the other for extended AP. These examples use the inline assembler to read and write
to the CP15 registers.

We provide two standard AP routines, regionSetISAP and regionSetDSAP, to set the
standard AP bits for a region. They are called from C using the following function prototype:

void regionSetISAP(unsigned region, unsigned ap);
void regionSetDSAP(unsigned region, unsigned ap);

The first parameter is the region number, and the second is the two-bit value defining the
standard AP for the instruction or data memory controlled by the region.

Example

13.2
The two routines are identical with the exception that they read and write to different
CP15:c5 secondary registers; one writes to the instruction register, and the other to the data
register. The routine does a simple read-modify-write operation on the CP15:c5 register to
set the AP of the specified region, leaving the remaining regions intact.

void regionSetISAP(unsigned region, unsigned ap)
{

unsigned c5f, shift;

shift = 2*region;
__asm{ MRC p15, 0, c5f, c5, c0, 1 } /* load standard D AP */

13.2 Initializing the MPU, Caches, and Write Buffer 473

c5f = c5f &∼ (0x3 << shift); /* clear old AP bits */
c5f = c5f | (ap << shift); /* set new AP bits */
__asm{ MCR p15, 0, c5f, c5, c0, 1 } /* store standard D AP */

}

void regionSetDSAP(unsigned region, unsigned ap)
{

unsigned c5f, shift;

shift = 2*region; /* set bit field width */
__asm { MRC p15, 0, c5f, c5, c0, 0 } /* load standard I AP */
c5f = c5f &∼ (0x3 << shift); /* clear old AP bits */
c5f = c5f | (ap << shift); /* set new AP bits */
__asm { MCR p15, 0, c5f, c5, c0, 0 } /* store standard I AP */

}

The routine sets the specified region permissions by clearing its AP bits using a shifted
mask value and then setting the AP bit field with the ap input parameter. The AP bit field
location is calculated as the region size times the number of bits in the permission bit field;
this is the shift variable. The value of the bit field is set by shifting the ap value and using
an OR to modify the c5f core register. ■

We provide two extended AP routines, regionSetIEAP and regionSetDEAP, to set the
extended AP bits for a region. They have the following C function prototypes:

void regionSetIEAP(unsigned region, unsigned ap);
void regionSetDEAP(unsigned region, unsigned ap);

The first parameter is the region number, and the second is the four-bit value representing
the extended AP for the instruction or data memory controlled by the region.

Example

13.3
The two routines are identical to the standard AP routines with the exception that they
read and write to different CP15:c5 secondary registers and they have a four-bit-wide AP
bit field.

void regionSetIEAP(unsigned region, unsigned ap)
{

unsigned c5f, shift;

shift = 4*region; /* set bit field width */
__asm{ MRC p15, 0, c5f, c5, c0, 3 } /* load extended D AP */
c5f = c5f &∼ (0xf�shift); /* clear old AP bits */
c5f = c5f | (ap�shift); /* set new AP bits */
__asm{ MCR p15, 0, c5f, c5, c0, 3 } /* store extended D AP */

}

474 Chapter 13 Memory Protection Units

void regionSetDEAP(unsigned region, unsigned ap)
{

unsigned c5f, shift;

shift = 4*region; /* set bit field width */
__asm{ MRC p15, 0, c5f, c5, c0, 2 } /* load extended I AP */
c5f = c5f &∼ (0xf << shift); /* clear old AP bits */
c5f = c5f | (ap << shift); /* set new AP bits */
__asm{ MCR p15, 0, c5f, c5, c0, 2 } /* store extended I AP */

}

Each routine sets the specified region permissions by clearing its AP bits using a shifted
mask value and then setting the AP bit field with the ap input parameter. The AP bit field
location is calculated as the region size times the number of bits in the permission bit field;
this is the shift variable. The value of the bit field is set by shifting the ap value and using
an OR to modify the c5f core register. ■

13.2.3 Setting Region Cache and Write Buffer
Attributes

Three CP15 registers control the cache and write buffer attributes for each core. Two
registers, CP15:c2:c0:0 and CP15:c2:c0:1, hold the D-cache and I-cache region attributes.
A third, CP15:c3:c0:0, holds the region write buffer attributes and applies to memory data
regions. (Refer to Figure 13.5 and Table 13.7 for details.)

Register CP15:c2:c0:1 contains the cache configuration data for all eight instruction
regions, and register CP15:c2:c0:0 contains all eight data regions. Both registers use the
same bit field encoding.

The cache bit determines if the cache is enabled for a given address within the region.
In the ARM740T and ARM940T, the cache is always searched, regardless of the state of the

c0c7 c6 c5 c4 c3 c2 c1

CP15:c2:c0:0—D-cache

b0b7 b6 b5 b4 b3 b2 b1

CP15:c3:c0:0—write buffer

15631 2347 0

SBZ

SBZ

SBZ = “should be zero”

CP15:c2:c0:1—I-cache

15631 2347 0

Figure 13.5 CP15:c2 cache and CP15:c3 write buffer region registers.

13.2 Initializing the MPU, Caches, and Write Buffer 475

Table 13.7 Bit field assignments for CP15:c2 and CP15:c3 registers.

Region cache fields Region write buffer fields

Region Field name Bit fields Field name Bit fields

0 c0 [0] b0 [0]
1 c1 [1] b1 [1]
2 c2 [2] b2 [2]
3 c3 [3] b3 [3]
4 c4 [4] b4 [4]
5 c5 [5] b5 [5]
6 c6 [6] b6 [6]
7 c7 [7] b7 [7]

cache bit. If the controller finds a valid cache entry, it will use the cached data over data in
external memory.

Because of this cache behavior, you need to flush and possibly clean the cache in a region
where the cache policy changes from cached to noncached. Consequently, the MPU control
system must always flush the cache when changing the cache policy from writethrough to
noncached. It must always clean and flush the cache when changing the cache policy
from writeback to noncached. It must also clean the cache when changing the cache policy
from writeback to writethrough. See Chapter 12 for routines to clean and/or flush the cache.

In the ARM946E-S, if the cache bit is clear, information physically in cache will not be
returned from the cache, and an external memory access is performed instead. This design
lightens the requirement to flush the cache when it is disabled. However, the cleaning rules
for the old region still apply.

The eight region write buffer bits in the register CP15:c3:c0:0 enable or disable the write
buffer for each region (again see Figure 13.5).

When configuring data regions, the region cache and write buffer bits together deter-
mine the policy of the region. The write buffer bit has two uses; it enables or disables the
write buffer for a region and sets the region cache write policy. The region cache bit controls
the purpose of the write buffer bit. When the cache bit is zero, the buffer bit enables the
write buffer when its value is one and disables the write buffer when its value is zero. When
the cache bit is set to one, the cache and write buffer are both enabled and the buffer bit
determines the cache write policy. The region uses a writethrough policy if the buffer bit
is zero and a writeback policy if the buffer bit is set. Table 13.8 gives a tabular view of the
various states of the cache and write buffer bits and their meanings. For more details on
writeback and writethrough policies, see Section 12.3.1.

We supply two routines to demonstrate enabling and disabling the caches and write
buffer. The two routines use the inline assembler to read and write to the CP15 registers.

We combine control of the cache and write buffer into a single routine call to simplify
system configuration. We reference both the data cache and write buffer bits by the write

476 Chapter 13 Memory Protection Units

Table 13.8 Control of the cache and write buffer.

Instruction cache Data cache

Cache bit Region Cache bit Buffer bit Region attribute
CP15:c2:c0:1 attribute CP15:c2:c0:0 CP15:c3:c0:0

0 not cached 0 0 NCNB (not cached, not buffered)
1 cached 0 1 NCB (not cached, buffered)

1 0 WT (cached, writethrough)
1 1 WB (cached, writeback)

policy they control, and the instruction cache bit stands alone. From a system view, merging
the state of the caches and write buffer into a single value for each region makes it easier to
group region information into a region control block (discussed in Section 13.3.3).

The set cache and buffer routine, called regionSetCB, is shown in Example 13.4 and
has the following C function prototype:

void regionSetCB(unsigned region, unsigned CB);

The routine has two input parameters. The first parameter, region, is the region number,
and the second, CB, combines the region instruction cache attributes and the data cache
and write buffer attributes. The second parameter has a format that uses the lower three
bits of the unsigned integer: the instruction cache bit in bit [3], the data cache bit in bit [1],
and the data buffer bit in bit [0].

Example

13.4
The routine sequentially sets the data write buffer bit, the data cache bit, and the instruction
cache bit. To do this, for each bit it reads the CP15 register, clears the old bit value, sets the
new bit value, and writes the value back into the CP15 register.

void regionSetCB(unsigned region, unsigned CB)
{

unsigned c3f, tempCB;

tempCB = CB;
__asm{MRC p15, 0, c3f, c3, c0, 0 } /* load buffer register */
c3f = c3f &∼ (0x1 << region); /* clear old buffer bit */
c3f = c3f | ((tempCB & 0x1) << region); /* set new buffer bit */
__asm{MCR p15, 0, c3f, c3, c0, 0 } /* store buffer info */

tempCB = CB >> 0x1; /* shift to D-cache bit */
__asm{MRC p15, 0, c3f, c2, c0, 0 } /* load D-cache register */

13.2 Initializing the MPU, Caches, and Write Buffer 477

c3f = c3f &∼ (0x1 << region); /* clear old D-cache bit */
c3f = c3f | ((tempCB & 0x1) << region); /* set new D-cache bit */
__asm{MCR p15, 0, c3f, c2, c0, 0 } /* store D-cache info */

tempCB = CB >> 0x2; /* shift to I-cache bit */
__asm{MRC p15, 0, c3f, c2, c0, 1 } /* load I-cache register */
c3f = c3f &∼ (0x1 << region); /* clear old I-cache bit */
c3f = c3f | ((tempCB & 0x1) << region); /* set new I-cache bit */
__asm{MCR p15, 0, c3f, c2, c0, 1 } /* store I-cache info */

} ■

13.2.4 Enabling Regions and the MPU

There are two steps left in the initialization process. The first is to enable active regions, and
the second is to turn on the protection unit hardware by enabling the MPU, caches, and
write buffer.

To enable a region, the control system can reuse the routine regionSet presented in
Section 13.2.1. The multiple use of regionSet is shown in Example 13.6 at the end of the
chapter.

To enable the MPU, caches, and write buffer requires modifying bit values in
CP15:c1:c0:0, the system control register. The location of the MPU, cache, and write
buffer bits in CP15:c1:c0 are the same in the ARM940T, ARM946E-S, and ARM1026EJ-S
processors, which makes enabling a configured MPU the same for the three cores. The
enable bit locations are shown in Figure 13.6 and Table 13.9. The CP15:c1:c0 register has
configuration bits not shown in Figure 13.6; the purpose and location of these bits are
processor specific and are not a part of the protection system.

We use the routine changeControl, shown in Example 13.5, to enable the MPU
and caches. However, the routine changeControl can change any set of values in the
CP15:c1:c0:0 register. It has the following C function prototype:

void controlSet(unsigned value, unsigned mask);

The first parameter passed is an unsigned integer containing the bit values to change. The
second parameter is used to select the bits you want changed: A bit value of 1 changes the

156111231 23478910 0

I MC

Figure 13.6 Memory protection unit control bits in the CP15:c1:c0 control register.

478 Chapter 13 Memory Protection Units

Table 13.9 Protection unit enable bits in CP15 control register 1.

Bit Function enabled Value

0 MPU 0 = disabled, 1 = enabled
2 data cache 0 = disabled, 1 = enabled
12 instruction cache 0 = disabled, 1 = enabled

bit in the control register, and a 0 leaves the bit value unchanged, regardless of the bit state
in the first parameter.

For example, to enable the MPU and I-cache, and disable the D-cache, set bit [12] to 1,
bit [2] to 0, and bit [0] to 1. The value of the first parameter should be 0x00001001; the
remaining unchanged bits should be zero. To select only bit [12], bit [2], and bit [0] as the
values to change, set the mask value to 0x00001005.

Example

13.5
This routine reads the control register and places the value in a holding register. Then it
clears all the changing bits using the mask input and assigns them the desired state using
the value input. The routine completes by writing the new control values to the CP15:c1:c0
register.

void controlSet(unsigned value, unsigned mask)
{

unsigned int c1f;

__asm{ MRC p15, 0, c1f, c1, c0, 0 } /* read control register */
c1f = c1f &∼ mask; /* mask off bit that change */
c1f = c1f | value; /* set bits that change */
__asm{ MCR p15, 0, c1f, c1, c0, 0 } /* write control register */

} ■

13.3 Demonstration of an MPU system
We have provided a set of routines to use as building blocks to initialize and control a
protected system. This section uses the routines described to initialize and control a simple
protected system using a fixed memory map.

Here is a demonstration that uses the examples presented in the previous sections of this
chapter to create a functional protection system. It provides an infrastructure that enables
the running of three tasks in a simple protected multi-tasking system. We believe it provides
a suitable demonstration of the concepts underlying the ARM MPU hardware. It is written
in C and uses standard access permission.

13.3 Demonstration of an MPU system 479

13.3.1 System Requirements

The demonstration system has the following hardware characteristics:

■ An ARM core with an MPU

■ 256 KB of physical memory starting at 0x0 and ending at 0x40000

■ Several memory-mapped peripherals spaced over several megabytes from 0x10000000
to 0x12000000

In this demonstration, all the memory-mapped peripherals are considered a single area of
memory that needs protection (see Table 13.10).

The demonstration system has the following software components:

■ The system software is less than 64 KB in size. It includes the vector table, exception
handlers, and data stacks to support the exceptions. The system software must be
inaccessible from user mode; that is, a user mode task must make a system call to run
code or access data in this region.

■ There is shared software that is less than 64 KB in size. It contains commonly used
libraries and data space for messaging between user tasks.

■ There are three user tasks that control independent functions in the system. These tasks
are less than 32 KB in size. When these tasks are running, they must be protected from
access by the other two tasks.

The software is linked to place the software components within the regions assigned to
them. Table 13.10 shows the software memory map for the example. The system software
has system-level access permission. The shared software area is accessible by the entire
system. The task software areas contain user-level tasks.

Table 13.10 Memory map of example protection system.

Function Access level Starting address Size Region

Protect memory-mapped peripheral devices system 0x10000000 2 MB 4
Protected system system 0x00000000 4 GB 1
Shared system user 0x00010000 64 KB 2
User task 1 user 0x00020000 32 KB 3
User task 2 user 0x00028000 32 KB 3
User task 3 user 0x00030000 32 KB 3

480 Chapter 13 Memory Protection Units

Task 3

Devices
I/O

Region 4

Task 2 Region 3
Running task is

assigned region 3

Task 1

System
protected

System
shared

Region 2

Region 1

FIQ stack base
IRQ stack base
Supervisor stack base
Undef stack base
Abort stack base

Task 1 stack base

Task 2 stack base

Task 3 stack base

Privileged access

User access

0x00000000

0x00010000

0x00020000

0x00028000

0x00030000

0x00038000

0x10000000

0x11000000
0xFFFFFFFF

Figure 13.7 Region assignment and memory map of demonstration protection system.

13.3.2 Assigning Regions Using a Memory Map

The last column of Table 13.10 shows the four regions we assigned to the memory areas.
The regions are defined using the starting address listed in the table and the size of the code
and data blocks. A memory map showing the region layout is provided in Figure 13.7.

Region 1 is a background region that covers the entire addressable memory space. It is a
privileged region (i.e., no user mode access is permitted). The instruction cache is enabled,
and the data cache operates with a writethrough policy. This region has the lowest region
priority because it is the region with the lowest assigned number.

The primary function of region 1 is to restrict access to the 64 KB space between 0x0
and 0x10000, the protected system area. Region 1 has two secondary functions: it acts as
a background region and as a protection region for dormant user tasks. As a background
region it ensures the entire memory space by default is assigned system-level access; this is
done to prevent a user task from accessing spare or unused memory locations. As a user

13.3 Demonstration of an MPU system 481

task protection region, it protects dormant tasks from misconduct by the running task
(see Figure 13.7).

Region 2 controls access to shared system resources. It has a starting address of 0x10000
and is 64 KB in length. It maps directly over the shared memory space of the shared system
code. Region 2 lies on top of a portion of protected region 1 and will take precedence over
protected region 1 because it has a higher region number. Region 2 permits both user and
system level memory access.

Region 3 controls the memory area and attributes of a running task. When control
transfers from one task to another, as during a context switch, the operating system redefines
region 3 so that it overlays the memory area of the running task. When region 3 is relocated
over the new task, it exposes the previous task to the attributes of region 1. The previous
task becomes part of region 1, and the running task is a new region 3. The running task
cannot access the previous task because it is protected by the attributes of region 1.

Region 4 is the memory-mapped peripheral system space. The primary purpose of this
region is to establish the area as not cached and not buffered. We don’t want input, output,
or control registers subject to the stale data issues caused by caching, or the time or sequence
issues involved when using buffered writes (see Chapter 12 for details on using I/O devices
with caches and write buffers).

13.3.3 Initializing the MPU

To organize the initialization process we created a datatype called Region; it is a structure
whose members hold the attributes of a region used during system operation. This Region
structure is not required when using the MPU; it is simply a design convenience created to
support the demonstration software. For this demonstration, we call the set of these data
structures a region control block (RCB).

The initialization software uses the information stored in the RCB to configure the
regions in the MPU. Note that there can be more Region structures defined in the RCB
than physical regions. For example, region 3 is the only region used for tasks, yet there
are three Region structures that use region 3, one for each user task. The typedef for the
structure is

typedef struct {
unsigned int number;
unsigned int type;
unsigned int baseaddress;
unsigned int size;
unsigned int IAP;
unsigned int DAP;
unsigned int CB;

} Region;

482 Chapter 13 Memory Protection Units

There are eight values in the Region structure. The first two values describe character-
istics of the Region itself: they are the MPU region number assigned to the Region, and
the type of access permission used, either STANDARD or EXTENDED. The remaining four
members of the structure are attributes of the specified region: the region starting address,
baseaddress; region size, SIZE; access permissions, IAP and DAP; and cache and buffer
configuration, CB.

The six Region structures in the RCB are

/* REGION NUMBER, APTYPE */
/* START ADDRESS, SIZE, IAP, DAP, CB */

Region peripheralRegion = {PERIPH, STANDARD,
0x10000000, SIZE_1M, RONA, RWNA, ccb};

Region kernelRegion = {KERNEL, STANDARD,
0x00000000, SIZE_4G, RONA, RWNA, CWT};

Region sharedRegion = {SHARED, STANDARD,
0x00010000, SIZE_64K, RORO, RWRW, CWT};

Region task1Region = {TASK, STANDARD,
0x00020000, SIZE_32K, RORO, RWRW, CWT};

Region task2Region = {TASK, STANDARD,
0x00028000, SIZE_32K, RORO, RWRW, CWT};

Region task3Region = {TASK, STANDARD,
0x00030000, SIZE_32K, RORO, RWRW, CWT};

We created a set of macros to make entries in the RCB more humanly readable; they
are shown in Figure 13.8. Most notably, we enter access permission to data and instruction
memory using a simple combination of four letters. The first two letters represent system
access permission, and the second two letters represent user access. The two letters for
system and user access can be read/write (RW), read-only (RO), or no access (NA).

We also mapped the cache and buffer information to an instruction cache and a data
cache policy attribute. The first letter is C or c and enables or disables the instruction cache
for the region. The last two letters determine the data cache policy and write buffer control.
The values can be WT for writethrough or WB for writeback. The letters c and b are also
supported and are manual configurations of the cache and buffer bits. Cb is an alias of WT,
and CB is an alias of WB. cB means not cached and buffered, and finally cb means not cached
and not buffered.

13.3.4 Initializing and Configuring a Region

Next we provide the routine configRegion, which takes a single Region structure entry in
the RCB to populate the CP15 registers with data describing the region.

The routine follows the initialization steps listed in Section 13.3.3. The input to the
routine is a pointer to the RCB of a region. Within the routine, members of the Region are

13.3 Demonstration of an MPU system 483

/* Region Number Assignment */
#define BACKGROUND 0
#define KERNEL 1
#define TASK 2
#define SHARED 3
#define PERIPH 4

/* Region Type Assignment */
#define STANDARD 0
#define EXTENDED 1
#define DISABLE 0

/* Access Permissions */
#define NANA 0
#define RWNA 1
#define RWRO 2
#define RWRW 3
#define RONA 5
#define RORO 6

/* Region Size */
#define SIZE_4G 31
#define SIZE_2G 30
#define SIZE_1G 29
#define SIZE_512M 28
#define SIZE_256M 27
#define SIZE_128M 26
#define SIZE_64M 25
#define SIZE_32M 24
#define SIZE_16M 23
#define SIZE_8M 22
#define SIZE_4M 21
#define SIZE_2M 20
#define SIZE_1M 19
#define SIZE_512K 18
#define SIZE_256K 17
#define SIZE_128K 16
#define SIZE_64K 15
#define SIZE_32K 14

Figure 13.8 Defined macros used in the demonstration example.

484 Chapter 13 Memory Protection Units

#define SIZE_16K 13
#define SIZE_8K 12
#define SIZE_4K 11

/* CB = ICache[2], DCache[1], Write Buffer[0] */
/* ICache[2], WB[1:0] = writeback, WT[1:0] = writethrough */
#define CCB 7
#define CWB 7
#define CCb 6
#define CWT 6
#define CcB 5
#define Ccb 4
#define cCB 3
#define cWB 3
#define cCb 2
#define cWT 2
#define ccB 1
#define ccb 0

/* Region enable */
#define R_ENABLE 1
#define R_DISABLE 0

Figure 13.8 Defined macros used in the demonstration example. (Continued.)

used as data inputs in the initialization process. The routine has the following C function
prototype:

void configRegion(Region *region);

Example

13.6
This example initializes the MPU, caches, and write buffer for the protected system. The
routines presented earlier in this chapter are used in the initialization process. We imple-
ment the steps first listed in Section 13.2 to initialize the MPU, caches, and write buffer.
The steps are labeled as comments in the example code. Executing this example initializes
the MPU.

void configRegion(Region *region)
{
/* Step 1 - Define the size and location of the instruction */
/* and data regions using CP15:c6 */

13.3 Demonstration of an MPU system 485

regionSet(region->number, region->baseaddress,
region->size, R_DISABLE);

/* Step 2 - Set access permission for each region using CP15:c5 */

if (region->type == STANDARD)
{

regionSetISAP(region->number, region->IAP);
regionSetDSAP(region->number, region->DAP);

}
else if (region->type == EXTENDED)
{

regionSetIEAP(region->number, region->IAP);
regionSetDEAP(region->number, region->DAP);

}

/* Step 3 - Set the cache and write buffer attributes */
/* for each region using CP15:c2 for cache */
/* and CP15:c3 for the write buffer. */

regionSetCB(region->number, region->CB);

/* Step 4 - Enable the caches, write buffer and the MPU */
/* using CP15:c6 and CP15:c1 */

regionSet(region->number, region->baseaddress,
region->size, region->enable);

} ■

13.3.5 Putting It All Together, Initializing the MPU

For the demonstration, we use the RCB to store data describing all regions. To initialize the
MPU we use a top-level routine named initActiveRegions. The routine is called once
for each active region when the system starts up. To complete the initialization, the routine
also enables the MPU. The routine has the following C function prototype:

void initActiveRegions();

The routine has no input parameters.

Example

13.7
The routine first calls configRegion once for each region that is active at system startup:
the kernelRegion, the sharedRegion, the peripheralRegion, and the task1Region.
In this demonstration task 1 is the first task entered. The last routine called is controlSet,
which enables the caches and MPU.

486 Chapter 13 Memory Protection Units

#define ENABLEMPU (0x1)
#define ENABLEDCACHE (0x1 << 2)
#define ENABLEICACHE (0x1 << 12)
#define MASKMPU (0x1)
#define MASKDCACHE (0x1 << 2)
#define MASKICACHE (0x1 << 12)

void initActiveRegions()
{

unsigned value,mask;
configRegion(&kernelRegion);
configRegion(&sharedRegion);
configRegion(&peripheralRegion);
configRegion(&task1Region);

value = ENABLEMPU | ENABLEDCACHE | ENABLEICACHE;
mask = MASKMPU | MASKDCACHE | MASKICACHE;
controlSet(value, mask);

} ■

13.3.6 A Protected Context Switch

The demonstration system is now initialized, and the control system has launched its first
task. At some point, the system will make a context switch to run another task. The RCB
contains the current task’s region context information, so there is no need to save region
data from the CP15 registers during the context switch.

To switch to the next task, for example task 2, the operating system would move
region 3 over the task 2 memory area (see Figure 13.7). We reuse the routine configRegion
to perform this function as part of the setup just prior to executing the code that per-
forms the context switch between the current task and the next task. The input to
configRegion would be a pointer to the task2Region. See the following assembly code
sample:

STMFD sp!, {r0-r3,r12,lr}
BL configRegion
LDMFD sp!, {r0-r3,r12,pc} ; return

The same call in C is

configRegion(&task2Region);

13.4 Summary 487

13.3.7 mpuSLOS

Many of the concepts and the code examples have been incorporated into a functional
control system we call mpuSLOS.

mpuSLOS is the memory protection unit variant of SLOS that was described in
Chapter 11. It can be found on the publisher’s Web site and implements the same functions
as the base SLOS with a number of important differences.

■ mpuSLOS takes full advantage of the MPU.

■ Applications are compiled and built separately from the kernel and then combined as a
single binary file. Each application is linked to execute out of a different memory area.

■ Each of the three applications are loaded into separate fixed regions 32 KB in size by a
routine called the Static Application Loader. This address is the execution address of
the application. The stack pointer is set at the top of the 32 KB since each region is 32
KB in size.

■ Applications can only access hardware via a device driver call. If an application attempts
to access hardware directly, a data abort is raised. This differs from the base SLOS
variant since a data abort will not be raised when a device is accessed directly from an
application.

■ Jumping to an application involves setting up the spsr and then changing the pc to point
to the entry point to task 1 using a MOVS instruction.

■ Each time the scheduler is called, the active region 2 is changed to reflect the new
executing application.

13.4 Summary
There are two methods to handle memory protection. The first method is known as unpro-
tected and uses voluntarily enforced software control routines to manage rules for task
interaction. The second method is known as protected and uses hardware and software
to enforce rules for task interaction. In a protected system the hardware protects areas of
memory by generating an abort when access permission is violated and software responds
to handle the abort routines and manage control to memory-based resources.

An ARM MPU uses regions as the primary construct for system protection. A region is
a set of attributes associated with an area of memory. Regions can overlap, allowing the use
of a background region to shield a dormant task’s memory areas from unwanted access by
the current running task.

Several steps are required to initialize the MPU, included are routines to set various
region attributes. The first step sets the size and location of the instruction and data regions
using CP15:c6. The second step sets the access permission for each region using CP15:c5.
The third step sets the cache and write buffer attributes for each region using CP15:c2 for

488 Chapter 13 Memory Protection Units

cache and CP15:c3 for the write buffer. The last step enables active regions using CP15:c6
and the caches, write buffer, and MPU using CP15:c1.

In closing, a demonstration system showed three tasks, each protected from the other, in
a simple multitasking environment. The demonstration system defined a protected system
and then showed how to initialize it. After initialization, the last step needed to run a
protected system is to change the region assignments to the next task during a task switch.
This demonstration system is incorporated into mpuSLOS to provide a functional example
of a protected operating system.

This Page Intentionally Left Blank

14.1 Moving from an MPU to an MMU
14.2 How Virtual Memory Works

14.2.1 Defining Regions Using Pages

14.2.2 Multitasking and the MMU

14.2.3 Memory Organization in a Virtual Memory System

14.3 Details of the ARM MMU
14.4 Page Tables

14.4.1 Level 1 Page Table Entries

14.4.2 The L1 Translation Table Base Address

14.4.3 Level 2 Page Table Entries

14.4.4 Selecting a Page Size for Your Embedded System

14.5 The Translation Lookaside Buffer
14.5.1 Single-Step Page Table Walk

14.5.2 Two-Step Page Table Walk

14.5.3 TLB Operations

14.5.4 TLB Lockdown

14.6 Domains and Memory Access Permission
14.6.1 Page-Table-Based Access Permissions

14.7 The Caches and Write Buffer
14.8 Coprocessor 15 and MMU Configuration
14.9 The Fast Context Switch Extension

14.9.1 How the FCSE Uses Page Tables and Domains

14.9.2 Hints for Using the FCSE

14.10 Demonstration: A Small Virtual Memory System
14.10.1 Step 1: Define the Fixed System Software Regions

14.10.2 Step 2: Define Virtual Memory Maps for Each Task

14.10.3 Step 3: Locate Regions in Physical Memory

14.10.4 Step 4: Define and Locate the Page Tables

14.10.5 Step 5: Define Page Table and Region Data Structures

14.10.6 Step 6: Initialize the MMU, Caches, and Write Buffer

14.10.7 Step 7: Establish a Context Switch Procedure

14.11 The Demonstration as mmuSLOS
14.12 Summary

C h a p t e r

Memory
Management

Units

14

When creating a multitasking embedded system, it makes sense to have an easy way to
write, load, and run independent application tasks. Many of today’s embedded systems
use an operating system instead of a custom proprietary control system to simplify this
process. More advanced operating systems use a hardware-based memory management
unit (MMU).

One of the key services provided by an MMU is the ability to manage tasks as indepen-
dent programs running in their own private memory space. A task written to run under
the control of an operating system with an MMU does not need to know the memory
requirements of unrelated tasks. This simplifies the design requirements of individual tasks
running under the control of an operating system.

In Chapter 13 we introduced processor cores with memory protection units. These
cores have a single addressable physical memory space. The addresses generated by the
processor core while running a task are used directly to access main memory, which
makes it impossible for two programs to reside in main memory at the same time if
they are compiled using addresses that overlap. This makes running several tasks in an
embedded system difficult because each task must run in a distinct address block in main
memory.

The MMU simplifies the programming of application tasks because it provides the
resources needed to enable virtual memory—an additional memory space that is indepen-
dent of the physical memory attached to the system. The MMU acts as a translator, which
converts the addresses of programs and data that are compiled to run in virtual memory

491

492 Chapter 14 Memory Management Units

to the actual physical addresses where the programs are stored in physical main memory.
This translation process allows programs to run with the same virtual addresses while being
held in different locations in physical memory.

This dual view of memory results in two distinct address types: virtual addresses and
physical addresses. Virtual addresses are assigned by the compiler and linker when locating a
program in memory. Physical addresses are used to access the actual hardware components
of main memory where the programs are physically located.

ARM provides several processor cores with integral MMU hardware that efficiently
support multitasking environments using virtual memory. The goal of this chapter is to
learn the basics of ARM memory management units and some basic concepts that underlie
the use of virtual memory.

We begin with a review of the protection features of an MPU and then present the
additional features provided by an MMU. We introduce relocation registers, which hold
the conversion data to translate virtual memory addresses to physical memory addresses,
and the Translation Lookaside Buffer (TLB), which is a cache of recent address relocations.
We then explain the use of pages and page tables to configure the behavior of the relocation
registers.

We then discuss how to create regions by configuring blocks of pages in virtual memory.
We end the overview of the MMU and its support of virtual memory by showing how to
manipulate the MMU and page tables to support multitasking.

Next we present the details of configuring the MMU hardware by presenting a section for
each of the following components in an ARM MMU: page tables, the Translation Lookaside
Buffer (TLB), access permission, caches and write buffer, the CP15:c1 control register, and
the Fast Context Switch Extension (FCSE).

We end the chapter by providing demonstration software that shows how to set up an
embedded system using virtual memory. The demonstration supports three tasks running in
a multitasking environment and shows how to protect each task from the others running in
the system by compiling the tasks to run at a common virtual memory execution address and
placing them in different locations in physical memory. The key part of the demonstration
is showing how to configure the MMU to translate the virtual address of a task to the
physical address of a task, and how to switch between tasks.

The demonstration has been integrated into the SLOS operating system presented in
Chapter 11 as a variant known as mmuSLOS.

14.1 Moving from an MPU to an MMU
In Chapter 13, we introduced the ARM cores with a memory protection unit (MPU). More
importantly, we introduced regions as a convenient way to organize and protect memory.
Regions are either active or dormant: An active region contains code or data in current use
by the system; a dormant region contains code or data that is not in current use, but is likely
to become active in a short time. A dormant region is protected and therefore inaccessible
to the current running task.

14.2 How Virtual Memory Works 493

Table 14.1 Region attributes from the MPU example.

Region attributes Configuration options

Type instruction, data
Start address multiple of size
Size 4 KB to 4 GB
Access permissions read, write, execute
Cache copyback, writethrough
Write buffer enabled, disabled

The MPU has dedicated hardware that assigns attributes to regions. The attributes
assigned to a region are shown in Table 14.1.

In this chapter, we assume the concepts introduced in Chapter 13 regarding memory
protection are understood and simply show how to configure the protection hardware on
an MMU.

The primary difference between an MPU and an MMU is the addition of hardware to
support virtual memory. The MMU hardware also expands the number of available regions
by moving the region attributes shown in Table 14.1 from CP15 registers to tables held in
main memory.

14.2 How Virtual Memory Works
In Chapter 13 we introduced the MPU and showed a multitasking embedded system that
compiled and ran each task at distinctly different, fixed address areas in main memory. Each
task ran in only one of the process regions, and none of the tasks could have overlapping
addresses in main memory. To run a task, a protection region was placed over the fixed
address program to enable access to an area of memory defined by the region. The placement
of the protection region allowed the task to execute while the other tasks were protected.

In an MMU, tasks can run even if they are compiled and linked to run in regions with
overlapping addresses in main memory. The support for virtual memory in the MMU
enables the construction of an embedded system that has multiple virtual memory maps
and a single physical memory map. Each task is provided its own virtual memory map for
the purpose of compiling and linking the code and data, which make up the task. A kernel
layer then manages the placement of the multiple tasks in physical memory so they have a
distinct location in physical memory that is different from the virtual location it is designed
to run in.

To permit tasks to have their own virtual memory map, the MMU hardware performs
address relocation, translating the memory address output by the processor core before it
reaches main memory. The easiest way to understand the translation process is to imagine
a relocation register located in the MMU between the core and main memory.

494 Chapter 14 Memory Management Units

Task 1
region

Virtual
memory

Page

Offset

Virtual
address

Physical
address

Base Offset

0x0400

0x0800

Translated
address

00e3

00e3

MMU
relocation

register

0x04000000
0x040000e3

Task 1

Physical
memory

Page
frame

0x08000000
0x080000e3

0x0800

Figure 14.1 Mapping a task in virtual memory to physical memory using a relocation register.

When the processor core generates a virtual address, the MMU takes the upper bits of
the virtual address and replaces them with the contents of the relocation register to create
a physical address, shown in Figure 14.1

The lower portion of the virtual address is an offset that translates to a specific address
in physical memory. The range of addresses that can be translated using this method is
limited by the maximum size of this offset portion of the virtual address.

Figure 14.1 shows an example of a task compiled to run at a starting address of
0x4000000 in virtual memory. The relocation register translates the virtual addresses of
Task 1 to physical addresses starting at 0x8000000.

A second task compiled to run at the same virtual address, in this case 0x400000, can
be placed in physical memory at any other multiple of 0x10000 (64 KB) and mapped to
0x400000 simply by changing the value in the relocation register.

A single relocation register can only translate a single area of memory, which is set by
the number of bits in the offset portion of the virtual address. This area of virtual memory
is known as a page. The area of physical memory pointed to by the translation process is
known as a page frame.

The relationship between pages, the MMU, and page frames is shown in Figure 14.2.
The ARM MMU hardware has multiple relocation registers supporting the translation
of virtual memory to physical memory. The MMU needs many relocation registers to
effectively support virtual memory because the system must translate many pages to many
page frames.

14.2 How Virtual Memory Works 495

Virtual
memory

Page
tables

Relocation
register

Page

MMU

Translation
lookaside

buffer

Physical
memory

Page
frame

PTE

.

.

.

Figure 14.2 The components of a virtual memory system.

The set of relocation registers that temporarily store the translations in an ARM MMU
are really a fully associative cache of 64 relocation registers. This cache is known as a
Translation Lookaside Buffer (TLB). The TLB caches translations of recently accessed pages.

In addition to having relocation registers, the MMU uses tables in main memory to store
the data describing the virtual memory maps used in the system. These tables of translation
data are known as page tables. An entry in a page table represents all the information needed
to translate a page in virtual memory to a page frame in physical memory.

A page table entry (PTE) in a page table contains the following information about a virtual
page: the physical base address used to translate the virtual page to the physical page frame,
the access permission assigned to the page, and the cache and write buffer configuration for
the page. If you refer to Table 14.1, you can see that most of the region configuration data
in an MPU is now held in a page table entry. This means access permission and cache and
write buffer behavior are controlled at a granularity of the page size, which provides finer
control over the use of memory. Regions in an MMU are created in software by grouping
blocks of virtual pages in memory.

14.2.1 Defining Regions Using Pages

In Chapter 13 we explained the use of regions to organize and control areas of memory
used for specific functions such as task code and data, or memory input/output. In that

496 Chapter 14 Memory Management Units

explanation we showed regions as a hardware component of the MPU architecture. In an
MMU, regions are defined as groups of page tables and are controlled completely in software
as sequential pages in virtual memory.

Since a page in virtual memory has a corresponding entry in a page table, a block of
virtual memory pages map to a set of sequential entries in a page table. Thus, a region can
be defined as a sequential set of page table entries. The location and size of a region can be
held in a software data structure while the actual translation data and attribute information
is held in the page tables.

Figure 14.3 shows an example of a single task that has three regions: one for text, one
for data, and a third to support the task stack. Each region in virtual memory is mapped
to different areas in physical memory. In the figure, the executable code is located in flash
memory, and the data and stack areas are located in RAM. This use of regions is typical of
operating systems that support sharing code between tasks.

With the exception of the master level 1 (L1) page table, all page tables represent 1 MB
areas of virtual memory. If a region’s size is greater than 1 MB or crosses over the 1 MB
boundary addresses that separate page tables, then the description of a region must also

Virtual
memory

Page
tables

Stack
Region 3

Region 2

Region 1

Data

Text

Physical
memory

RAM

Flash
Page

Page
frame

PTE

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 14.3 An example mapping pages to page frames in an ARM with an MMU.

14.2 How Virtual Memory Works 497

include a list of page tables. The page tables for a region will always be derived from
sequential page table entries in the master L1 page table. However, the locations of the L2
page tables in physical memory do not need to be located sequentially. Page table levels are
explained more fully in Section 14.4.

14.2.2 Multitasking and the MMU

Page tables can reside in memory and not be mapped to MMU hardware. One way to build
a multitasking system is to create separate sets of page tables, each mapping a unique virtual
memory space for a task. To activate a task, the set of page tables for the specific task and
its virtual memory space are mapped into use by the MMU. The other sets of inactive page
tables represent dormant tasks. This approach allows all tasks to remain resident in physical
memory and still be available immediately when a context switch occurs to activate it.

By activating different page tables during a context switch, it is possible to execute
multiple tasks with overlapping virtual addresses. The MMU can relocate the execution
address of a task without the need to move it in physical memory. The task’s physical
memory is simply mapped into virtual memory by activating and deactivating page tables.
Figure 14.4 shows three views of three tasks with their own sets of page tables running at a
common execution virtual address of 0x0400000.

In the first view, Task 1 is running, and Task 2 and Task 3 are dormant. In the second
view, Task 2 is running, and Task 1 and Task 3 are dormant. In the third view, Task 3 is
running, and Task 1 and Task 2 are dormant. The virtual memory in each of the three views
represents memory as seen by the running task. The view of physical memory is the same
in all views because it represents the actual state of real physical memory.

The figure also shows active and dormant page tables where only the running task
has an active set of page tables. The page tables for the dormant tasks remain resident in
privileged physical memory and are simply not accessible to the running task. The result is
that dormant tasks are fully protected from the active task because there is no mapping to
the dormant tasks from virtual memory.

When the page tables are activated or deactivated, the virtual-to-physical address map-
pings change. Thus, accessing an address in virtual memory may suddenly translate to a
different address in physical memory after the activation of a page table. As mentioned in
Chapter 12, the ARM processor cores have a logical cache and store cached data in virtual
memory. When this translation occurs, the caches will likely contain invalid virtual data
from the old page table mapping. To ensure memory coherency, the caches may need
cleaning and flushing. The TLB may also need flushing because it will have cached old
translation data.

The effect of cleaning and flushing the caches and the TLB will slow system operation.
However, cleaning and flushing stale code or data from cache and stale translated physical
addresses from the TLB keep the system from using invalid data and breaking.

During a context switch, page table data is not moved in physical memory; only pointers
to the locations of the page tables change.

498
C

h
apter

14
M

em
ory

M
anagem

entU
nits

Virtual
memory

Page
tables

Physical
memory

Task 1

Task 3

Task 2

Task 1

0x400000

Task 3

Task 2

Task 1

Virtual
memory

Page
tables

Physical
memory

Task 2

Task 3

Task 2

Task 1

Task 3

Task 2

Task 1

Virtual
memory

Page
tables

Task 1 running Task 2 running Task 3 running

Physical
memory

Task 3

Task 3

Task 2

Active Dormant

Task 1

Task 3

Task 2

Task 1

0x400000 0x400000

Figure 14.4 Virtual memory from a user task context.

14.2 How Virtual Memory Works 499

To switch between tasks requires the following steps:

1. Save the active task context and place the task in a dormant state.

2. Flush the caches; possibly clean the D-cache if using a writeback policy.

3. Flush the TLB to remove translations for the retiring task.

4. Configure the MMU to use new page tables translating the virtual memory execution
area to the awakening task’s location in physical memory.

5. Restore the context of the awakening task.

6. Resume execution of the restored task.

Note: to reduce the time it takes to perform a context switch, a writethrough cache
policy can be used in the ARM9 family. Cleaning the data cache can require hundreds of
writes to CP15 registers. By configuring the data cache to use a writethrough policy, there is
no need to clean the data cache during a context switch, which will provide better context
switch performance. Using a writethrough policy distributes these writes over the life of
the task. Although a writeback policy will provide better overall performance, it is simply
easier to write code for small embedded systems using a writethrough policy.

This simplification applies because most systems use flash memory for nonvolatile
storage, and copy programs to RAM during system operation. If your system has a file
system and uses dynamic paging then it is time to switch to a write-back policy because the
access time to file system storage are tens to hundreds of thousands of times slower than
access to RAM memory.

If, after some performance analysis, the efficiency of a writethrough system is not
adequate, then performance can be improved using a writeback cache. If you are using a
disk drive or other very slow secondary storage, a writeback policy is almost mandatory.

This argument only applies to ARM cores that use logical caches. If a physical cache
is present, as in the ARM11 family, the information in cache remains valid when the
MMU changes its virtual memory map. Using a physical cache eliminates the need to
perform cache management activities when changing virtual memory addresses. For further
information on caches, refer to Chapter 12.

14.2.3 Memory Organization in a Virtual Memory System

Typically, page tables reside in an area of main memory where the virtual-to-physical
address mapping is fixed. By “fixed,” we mean data in a page table doesn’t change during
normal operation, as shown in Figure 14.5. This fixed area of memory also contains the
operating system kernel and other processes. The MMU, which includes the TLB shown
in Figure 14.5, is hardware that operates outside the virtual or physical memory space; its
function is to translate addresses between the two memory spaces.

The advantage of this fixed mapping is seen during a context switch. Placing system
software at a fixed virtual memory location eliminates some memory management tasks

500 Chapter 14 Memory Management Units

Physical
memory

System
software

Page
tables

Task 1

Task 3

Task 2

Virtual
memory

Fixed address
memory area

Dynamic address
memory area

System
software

Task

MMU
hardware

(TLB)

Figure 14.5 A general view of memory organization in a system using an MMU.

and the pipeline effects that result if a processor is executing in a region of virtual memory
that is suddenly remapped to a different location in physical memory.

When a context switch occurs between two application tasks, the processor in reality
makes many context switches. It changes from a user mode task to a kernel mode task to
perform the actual movement of context data in preparation for running the next applica-
tion task. It then changes from the kernel mode task to the new user mode task of the next
context.

By sharing the system software in a fixed area of virtual memory that is seen across all
user tasks, a system call can branch directly to the system area and not worry about needing
to change page tables to map in a kernel process. Making the kernel code and data map to
the same virtual address in all tasks eliminates the need to change the memory map and the
need to have an independent kernel process that consumes a time slice.

Branching to a fixed kernel memory area also eliminates an artifact inherent in the
pipeline architecture. If the processor core is executing code in a memory area that changes
addresses, the core will have prefetched several instructions from the old physical memory
space, which will be executed as the new instructions fill the pipeline from the newly mapped
memory space. Unless special care is taken, executing the instructions still in the pipeline
from the old memory map may corrupt program execution.

14.4 Page Tables 501

We recommend activating page tables while executing system code at a fixed address
region where the virtual-to-physical memory mapping never changes. This approach
ensures a safe switch between user tasks.

Many embedded systems do not use complex virtual memory but simply create a “fixed”
virtual memory map to consolidate the use of physical memory. These systems usually
collect blocks of physical memory spread over a large address space into a contiguous block
of virtual memory. They commonly create a “fixed” map during the initialization process,
and the map remains the same during system operation.

14.3 Details of the ARM MMU
The ARM MMU performs several tasks: It translates virtual addresses into physical
addresses, it controls memory access permission, and it determines the individual behav-
ior of the cache and write buffer for each page in memory. When the MMU is disabled,
all virtual addresses map one-to-one to the same physical address. If the MMU is unable
to translate an address, it generates an abort exception. The MMU will only abort on
translation, permission, and domain faults.

The main software configuration and control components in the MMU are

■ Page tables

■ The Translation Lookaside Buffer (TLB)

■ Domains and access permission

■ Caches and write buffer

■ The CP15:c1 control register

■ The Fast Context Switch Extension

We provide the details of operation and how to configure these components in the following
sections.

14.4 Page Tables
The ARM MMU hardware has a multilevel page table architecture. There are two levels of
page table: level 1 (L1) and level 2 (L2).

There is a single level 1 page table known as the L1 master page table that can contain
two types of page table entry. It can hold pointers to the starting address of level 2 page
tables, and page table entries for translating 1 MB pages. The L1 master table is also known
as a section page table.

The master L1 page table divides the 4 GB address space into 1 MB sections; hence the
L1 page table contains 4096 page table entries. The master table is a hybrid table that acts

502 Chapter 14 Memory Management Units

Table 14.2 Page tables used by the MMU.

Memory consumed Number of page
Name Type by page table (KB) Page sizes supported (KB) table entries

Master/section level 1 16 1024 4096
Fine level 2 4 1, 4, or 64 1024
Coarse level 2 1 4 or 64 256

as both a page directory of L2 page tables and a page table translating 1 MB virtual pages
called sections. If the L1 table is acting as a directory, then the PTE contains a pointer to
either an L2 coarse or L2 fine page table that represents 1 MB of virtual memory. If the L1
master table is translating a 1 MB section, then the PTE contains the base address of the
1 MB page frame in physical memory. The directory entries and 1 MB section entries can
coexist in the master page table.

A coarse L2 page table has 256 entries consuming 1 KB of main memory. Each PTE in
a coarse page table translates a 4 KB block of virtual memory to a 4 KB block in physical
memory. A coarse page table supports either 4 or 64 KB pages. The PTE in a coarse page
contains the base address to either a 4 or 64 KB page frame; if the entry translates a 64 KB
page, an identical PTE must be repeated in the page table 16 times for each 64 KB page.

A fine page table has 1024 entries consuming 4 KB of main memory. Each PTE in a fine
page translates a 1 KB block of memory. A fine page table supports 1, 4, or 64 KB pages
in virtual memory. These entries contain the base address of a 1, 4, or 64 KB page frame
in physical memory. If the fine table translates a 4 KB page, then the same PTE must be
repeated 4 consecutive times in the page table. If the table translates a 64 KB page, then the
same PTE must be repeated 64 consecutive times in the page table.

Table 14.2 summarizes the characteristics of the three kinds of page table used in ARM
memory management units.

14.4.1 Level 1 Page Table Entries

The level 1 page table accepts four types of entry:

■ A 1 MB section translation entry

■ A directory entry that points to a fine L2 page table

■ A directory entry that points to a coarse L2 page table

■ A fault entry that generates an abort exception

The system identifies the type of entry by the lower two bits [1:0] in the entry field. The
format of the PTE requires the address of an L2 page table to be aligned on a multiple of its
page size. Figure 14.6 shows the format of each entry in the L1 page table.

14.4 Page Tables 503

Section entry

15111231 23489101920 0

Base address 1 1 0AP Domain0SBZ C B

Fine page table Base address 1 1 1

15111231 23489 0

DomainSBZ SBZ

Coarse page table

1531 2348910 0

Base address 1 0 10 Domain SBZ

131 2 0

0 0Fault

SBZ = should be zero

Figure 14.6 L1 page table entries.

A section page table entry points to a 1 MB section of memory. The upper 12 bits of
the page table entry replace the upper 12 bits of the virtual address to generate the physical
address. A section entry also contains the domain, cached, buffered, and access permission
attributes, which we discuss in Section 14.6.

A coarse page entry contains a pointer to the base address of a second-level coarse page
table. The coarse page table entry also contains domain information for the 1 MB section
of virtual memory represented by the L1 table entry. For coarse pages, the tables must be
aligned on an address multiple of 1 KB.

A fine page table entry contains a pointer to the base address of a second-level fine page
table. The fine page table entry also contains domain information for the 1 MB section of
virtual memory represented by the L1 table entry. Fine page tables must be aligned on an
address multiple of 4 KB.

A fault page table entry generates a memory page fault. The fault condition results in
either a prefetch or data abort, depending on the type of memory access attempted.

The location of the L1 master page table in memory is set by writing to the CP15:c2
register.

14.4.2 The L1 Translation Table Base Address

The CP15:c2 register holds the translation table base address (TTB)—an address pointing
to the location of the master L1 table in virtual memory. Figure 14.7 shows the format of
CP15:c2 register.

504 Chapter 14 Memory Management Units

31 14 13 0

TTB SBZ

SBZ = should be zero

Figure 14.7 Translation table base address CP15 register 2.

Example

14.1
Here is a routine named ttbSet that sets the TTB of the master L1 page table. The ttbSet
routine uses an MRC instruction to write to CP15:c2:c0:0. The routine is defined using the
following function prototype:

void ttbSet(unsigned int ttb);

The only argument passed to the procedure is the base address of the translation table. The
TTB address must be aligned on a 16 KB boundary in memory.

void ttbSet(unsigned int ttb)
{

ttb &= 0xffffc000;
__asm{MRC p15, 0, ttb, c2, c0, 0 } /* set translation table base */

} ■

14.4.3 Level 2 Page Table Entries

There are four possible entries used in L2 page tables:

■ A large page entry defines the attributes for a 64 KB page frame.

■ A small page entry defines a 4 KB page frame.

■ A tiny page entry defines a 1 KB page frame.

■ A fault page entry generates a page fault abort exception when accessed.

Figure 14.8 shows the format of the entries in an L2 page table. The MMU identifies the
type of L2 page table entry by the value in the lower two bits of the entry field.

A large PTE includes the base address of a 64 KB block of physical memory. The entry
also has four sets of permission bit fields, as well as the cache and write buffer attributes
for the page. Each set of access permission bit fields represents one-fourth of the page in
virtual memory. These entries may be thought of as 16 KB subpages providing finer control
of access permission within the 64 KB page.

14.4 Page Tables 505

Large page

15111231 23489101516 0

Base physical address SBZ

7 6

AP3 AP2 AP1 AP0 C B 0 1

Small page

15111231 2348910 0

Base physical address

7 6

AP3 AP2 AP1AP0 C B 1 0

Tiny page

1531 2348910 0

Base physical address SBZ

7 6

AP C B 1 1

131 2 0

Page fault 0 0

SBZ = should be zero

Figure 14.8 L2 page table entries.

A small PTE holds the base address of a 4 KB block of physical memory. The entry
also includes four sets of permission bit fields and the cache and write buffer attributes
for the page. Each set of permission bit fields represents one-fourth of the page in virtual
memory. These entries may be thought of as 1 KB subpages providing finer control of access
permission within the 4 KB page.

A tiny PTE provides the base address of a 1 KB block of physical memory. The entry
also includes a single access permission bit field and the cache and write buffer attributes
for the page. The tiny page has not been incorporated in the ARMv6 architecture. If you are
planning to create a system that is easily portable to future architectures, we recommend
avoiding the use of tiny 1 KB pages in your system.

A fault PTE generates a memory page access fault. The fault condition results in either
a prefetch or data abort, depending on the type of memory access.

14.4.4 Selecting a Page Size for Your Embedded System

Here are some tips and suggestions for setting the page size in your system:

■ The smaller the page size, the more page frames there will be in a given block of physical
memory.

506 Chapter 14 Memory Management Units

■ The smaller the page size, the less the internal fragmentation. Internal fragmentation is
the unused memory area in a page. For example, a task 9 KB in size can fit in three 4 KB
pages or one 64 KB page. In the first case, using 4 KB pages, there are 3 KB of unused
space. In the case using 64 KB pages, there are 55 KB of unused page space.

■ The larger the page size, the more likely the system will load referenced code and data.

■ Large pages are more efficient as the access time to secondary storage increases.

■ As the page size increases, each TLB entry represents more area in memory. Thus,
the system can cache more translation data, and the faster the TLB is loaded with all
translation data for a task.

■ Each page table consumes 1 KB of memory if you use L2 coarse pages. Each L2 fine
page table consumes 4 KB. Each L2 page table translates 1 MB of address space. Your
maximum page table memory use, per task, is

((task size/1 megabyte) + 1) ∗ (L2 page table size) (14.1)

14.5 The Translation Lookaside Buffer
The TLB is a special cache of recently used page translations. The TLB maps a virtual page
to an active page frame and stores control data restricting access to the page. The TLB is
a cache and therefore has a victim pointer and a TLB line replacement policy. In ARM
processor cores the TLB uses a round-robin algorithm to select which relocation register to
replace on a TLB miss.

The TLB in ARM processor cores does not have many software commands available to
control its operation. The TLB supports two types of commands: you can flush the TLB,
and you can lock translations in the TLB.

During a memory access, the MMU compares a portion of the virtual address to all the
values cached in the TLB. If the requested translation is available, it is a TLB hit, and the
TLB provides the translation of the physical address.

If the TLB does not contain a valid translation, it is a TLB miss. The MMU automatically
handles TLB misses in hardware by searching the page tables in main memory for valid
translations and loading them into one of the 64 lines in the TLB. The search for valid
translations in the page tables is known as a page table walk. If there is a valid PTE, the
hardware copies the translation address from the PTE to the TLB and generates the physical
address to access main memory. If, at the end of the search, there is a fault entry in the page
table, then the MMU hardware generates an abort exception.

During a TLB miss, the MMU may search up to two page tables before loading data
to the TLB and generating the needed address translation. The cost of a miss is generally
one or two main memory access cycles as the MMU translation table hardware searches
the page tables. The number of cycles depends on which page table the translation data is
found in. A single-stage page table walk occurs if the search ends with the L1 master page
table; there is a two-stage page table walk if the search ends with an L2 page table.

14.5 The Translation Lookaside Buffer 507

A TLB miss may take many extra cycles if the MMU generates an abort exception. The
extra cycles result as the abort handler maps in the requested virtual memory. The ARM720T
has a single TLB because it has a unified bus architecture. The ARM920T, ARM922T,
ARM926EJ-S, and ARM1026EJ-S have two Translation Lookaside Buffers because they
use a Harvard bus architecture: one TLB for instruction translation and one TLB for data
translation.

14.5.1 Single-Step Page Table Walk

If the MMU is searching for a 1 MB section page, then the hardware can find the entry in a
single-step search because 1 MB page table entries are found in the master L1 page table.

Figure 14.9 shows the table walk of an L1 table for a 1 MB section page translation. The
MMU uses the base portion of the virtual address, bits [31:20], to select one of the 4096

Virtual
address

L1 master page table

Page
table
entry

Translation table
base address

4095

0
1
2
3 01

4
5

Base

.

.

.

Offset

31 20 19 0

Physical
address

Base Offset

Copied to TLB

Selects
physical
memory

31 20 19 0

Figure 14.9 L1 Page table virtual-to-physical memory translation using 1 MB sections.

508 Chapter 14 Memory Management Units

entries in the L1 master page table. If the value in bits [1:0] is binary 10, then the PTE has a
valid 1 MB page available. The data in the PTE is transferred to the TLB, and the physical
address is translated by combining it with the offset portion of the virtual address.

If the lower two bits are 00, then a fault is generated. If it is either of the other two values,
the MMU performs a two-stage search.

14.5.2 Two-Step Page Table Walk

If the MMU ends its search for a page that is 1, 4, 16, or 64 KB in size, then the page
table walk will have taken two steps to find the address translation. Figure 14.10 details

Coarse
L2 page table

L2 page
table entry

L2 page table
base addressTranslation table

base address

255

0
1
2

L2 offset

.

.

.

Page offset

19 12 11 0

Virtual
address

L1 offset

31 20

Physical
address

Physical base Page offset

Copied to TLB

Selects
physical
memory

31 12 11 0

L1 master page table

Step 1

Step 2
L1 page

table entry

4095

0
1
2
3 0 1
4
5

.

.

.

Figure 14.10 Two-level virtual-to-physical address translation using coarse page tables and 4 KB pages.

14.5 The Translation Lookaside Buffer 509

the two-stage process for a translation held in a coarse L2 page table. Note that the virtual
address is divided into three parts.

In the first step, the L1 offset portion is used to index into the master L1 page table
and find the L1 PTE for the virtual address. If the lower two bits of the PTE contain the
binary value 01, then the entry contains the L2 page table base address to a coarse page
(see Figure 14.6).

In the second step, the L2 offset is combined with the L2 page table base address found
in the first stage; the resulting address selects the PTE that contains the translation for
the page. The MMU transfers the data in the L2 PTE to the TLB, and the base address is
combined with the offset portion of the virtual address to generate the requested address
in physical memory.

14.5.3 TLB Operations

If the operating system changes data in the page tables, translation data cached in the TLB
may no longer be valid. To invalidate data in the TLB, the core has CP15 commands to
flush the TLB. There are several commands available (see Table 14.3): one to flush all TLB
data, one to flush the Instruction TLB, and another to flush the Data TLB. The TLB can
also be flushed a line at a time.

Table 14.3 CP15:c7 commands to flush the TLB.

Command MCR instruction Value in Rd Core support

Invalidate all
TLBs

MCR p15, 0, Rd, c8, c7, 0 should be zero ARM720T, ARM920T, ARM922T,
ARM926EJ-S, ARM1022E,
ARM1026EJ-S, StrongARM, XScale

Invalidate
TLB by line

MCR p15, 0, Rd, c8, c7, 1 virtual address
to invalidate

ARM720T

Invalidate I
TLB

MCR p15, 0, Rd, c8, c5, 0 virtual address
to invalidate

ARM920T, ARM922T, ARM926EJ-S,
ARM1022E, ARM1026EJ-S,
StrongARM, XScale

Invalidate I
TLB by line

MCR p15, 0, Rd, c8, c5, 1 virtual address
to invalidate

ARM920T, ARM922T, ARM926EJ-S,
ARM1022E, ARM1026EJ-S,
StrongARM, XScale

Invalidate D
TLB

MCR p15, 0, Rd, c8, c6, 0 virtual address
to invalidate

ARM920T, ARM922T, ARM926EJ-S,
ARM1022E, ARM1026EJ-S,
StrongARM, XScale

Invalidate D
TLB by line

MCR p15, 0, Rd, c8, c6, 1 virtual address
to invalidate

ARM920T, ARM922T, ARM926EJ-S,
ARM1022E, ARM1026EJ-S,
StrongARM, XScale

510 Chapter 14 Memory Management Units

Example

14.2
Here is a small C routine that invalidates the TLB.

void flushTLB(void)
{

unsigned int c8format = 0;
__asm{MCR p15, 0, c8format, c8, c7, 0 } /* flush TLB */

} ■

14.5.4 TLB Lockdown

The ARM920T, ARM922T, ARM926EJ-S, ARM1022E, and ARM1026EJ-S support locking
translations in the TLB. If a line is locked in the TLB, it remains in the TLB when a TLB
flush command is issued. We list the available lockdown commands for the various ARM
cores in Table 14.4. The format of the core register Rd used in the MCR instruction that locks
data in the TLB in shown in Figure 14.11.

14.6 Domains and Memory Access Permission
There are two different controls to manage a task’s access permission to memory: The
primary control is the domain, and a secondary control is the access permission set in the
page tables.

Domains control basic access to virtual memory by isolating one area of memory from
another when sharing a common virtual memory map. There are 16 different domains that

Table 14.4 Commands to access the TLB lockdown registers.

Command MCR instruction Value in Rd Core support

Read D TLB
lockdown

MRC p15,0,Rd,c10,c0,0 TLB lockdown ARM920T, ARM922T, ARM926EJ-S,
ARM1022E, ARM1026EJ-S, StrongARM,
XScale

Write D TLB
lockdown

MCR p15,0,Rd,c10,c0,0 TLB lockdown ARM920T, ARM922T, ARM926EJ-S,
ARM1022E, ARM1026EJ-S, StrongARM,
XScale

Read I TLB
lockdown

MRC p15,0,Rd,c10,c0,1 TLB lockdown ARM920T, ARM922T, ARM926EJ-S,
ARM1022E, ARM1026EJ-S, StrongARM,
XScale

Write I TLB
lockdown

MCR p15,0,Rd,c10,c0,1 TLB lockdown ARM920T, ARM922T,ARM926EJ-S,
ARM1022E,ARM1026EJ-S, StrongARM,
XScale

14.6 Domains and Memory Access Permission 511

1 0

P

31

ARM920T, ARM922T, ARM926EJ-S, ARM1022E

Base Victim

26 25 20 19

SBZ

1 0

P

31

ARM1026EJ-S

SBZ Victim

29 28 26 25

SBZ

SBZ = should be zero

Figure 14.11 Format of the CP15:c10:c0 register.

can be assigned to 1 MB sections of virtual memory and are assigned to a section by setting
the domain bit field in the master L1 PTE (see Figure 14.6).

When a domain is assigned to a section, it must obey the domain access rights assigned
to the domain. Domain access rights are assigned in the CP15:c3 register and control the
processor core’s ability to access sections of virtual memory.

The CP15:c3 register uses two bits for each domain to define the access permitted for
each of the 16 available domains. Table 14.5 shows the value and meaning of a domain
access bit field. Figure 14.12 gives the format of the CP15:c3:c0 register, which holds the
domain access control information. The 16 available domains are labeled from D0 to D15
in the figure.

Even if you don’t use the virtual memory capabilities provided by the MMU, you can
still use these cores as simple memory protection units: first, by mapping virtual memory
directly to physical memory, assigning a different domain to each task, then using domains
to protect dormant tasks by assigning their domain access to “no access.”

Table 14.5 Domain access bit assignments.

Access Bit field value Comments

Manager 11 access is uncontrolled, no permission aborts generated
Reserved 10 unpredictable
Client 01 access controlled by permission values set in PTE
No access 00 generates a domain fault

512 Chapter 14 Memory Management Units

612

D0

248101416 0

D7 D6 D5 D4 D3 D2 D1D8D15 D14 D13 D12 D11 D10 D9

20 18222428 2630

Figure 14.12 Format of the domain access control register CP15:c3.

Table 14.6 Access permission and control bits.

Privileged mode User mode AP bit field System bit Rom bit

Read and write read and write 11 ignored ignored
Read and write read only 10 ignored ignored
Read and write no access 01 ignored ignored
No access no access 00 0 0
Read only read only 00 0 1
Read only no access 00 1 0
Unpredictable unpredictable 00 1 1

14.6.1 Page-Table-Based Access Permissions

The AP bits in a PTE determine the access permission for a page. The AP bits are shown in
Figures 14.6 and 14.8. Table 14.6 shows how the MMU interprets the two bits in the AP bit
field.

In addition to the AP bits located in the PTE, there are two bits in the CP15:c1 control
register that act globally to modify access permission to memory: the system (S) bit and the
rom (R) bit. These bits can be used to reveal large blocks of memory from the system at
different times during operation.

Setting the S bit changes all pages with “no access” permission to allow read access for
privileged mode tasks. Thus, by changing a single bit in CP15:c1, all areas marked as no
access are instantly available without the cost of changing every AP bit field in every PTE.

Changing the R bit changes all pages with “no access” permission to allow read access
for both privileged and user mode tasks. Again, this bit can speed access to large blocks of
memory without needing to change lots of PTEs.

14.7 The Caches and Write Buffer
We presented the basic operation of caches and write buffers in Chapter 12. You configure
the caches and write buffer for each page in memory using two bits in a PTE (see Figures 14.6
and 14.8). When configuring a page of instructions, the write buffer bit is ignored and the

14.8 Coprocessor 15 and MMU Configuration 513

Table 14.7 Configuring the cache and write buffer for a page.

Instruction cache Data cache

Cache bit Page attribute Cache bit Buffer bit Page attribute

0 not cached 0 0 not cached, not buffered
1 cached 0 1 not cached, buffered

1 0 cached, writethrough
1 1 cached, writeback

cache bit determines cache operation. When the bit is set, the page is cached, and when the
bit is clear, the page is not cached.

When configuring data pages, the write buffer bit has two uses: it enables or disables the
write buffer for a page, and it sets the page cache write policy. The page cache bit controls
the meaning of the write buffer bit. When the cache bit is zero, the buffer bit enables the
write buffer when the buffer bit value is one, and disables the write buffer when the buffer
bit value is zero. When the cache bit is set to one, the write buffer is enabled, and the state of
the buffer bit determines the cache write policy. The page uses a writethrough policy if the
buffer bit is zero and a writeback policy if the buffer bit is set; refer to Table 14.7, which gives
a tabular view of the various states of the cache and write buffer bits and their meaning.

14.8 Coprocessor 15 and MMU Configuration
We first introduced the procedure changeControl in Chapter 12. Example 14.3 revisits the
procedure changeControl, which we use to enable the MMU, caches, and write buffer.

The control register values that control MMU operation are shown in Table 14.8 and
Figure 14.13. The ARM720T, ARM920T, and the ARM926EJ-S all have the MMU enable
bit[0] and cache enable bit[2] in the same location in the control register. The ARM720T and
ARM1022E have a write buffer enable, bit[3]. The ARM920T, ARM922T, and ARM926EJS
have split instruction and data caches, requiring an extra bit to enable the I-cache, bit[12].
All processor cores with an MMU support changing the vector table to high memory at
address 0xffff0000, bit[13].

Enabling a configured MMU is very similar for the three cores. To enable the MMU,
caches, and write buffer, you need to change bit[12], bit[3], bit[2], and bit[0] in the control
register.

The procedure, changeControl, operates on register CP15:c1:c0:0 to change the values
in the control register c1. Example 14.3 gives a small C routine that sets bits in the control
register; it is called using the following function prototype:

void controlSet(unsigned int value, unsigned int mask)

514 Chapter 14 Memory Management Units

Table 14.8 Description of the bit fields in the control register CP15:c1 that control MMU operation.

Bit Letter designator Function enabled Control

0 M MMU 0 = disabled, 1 = enabled
2 C (data) cache 0 = disabled, 1 = enabled
3 W write buffer 0 = disabled, 1 = enabled
8 S system shown in Table 14.6
9 R rom shown in Table 14.6
12 I instruction cache 0 = disabled, 1 = enabled
13 V high vector table 0 = vector table at 0x00000000

1 = vector table at 0xFFFF0000

15612 23478910 0

MCWR S

31

ARM720T

161112 2378910 0

I MCR S

31

ARM920T, ARM922T, ARM926EJ-S, ARM1026EJ-S

13

V

14

13

V

14 5 4

11

161112 2378910 0

I MCR S

31

ARM1022E

13

V

14 5 4

W

Figure 14.13 CP15:c1 register control bits in the MMU.

The first parameter passed to the procedure is an unsigned integer containing the state of
the control values you want to change. The second parameter, mask, is a bit pattern that
selects the bits that need changing. A bit set to one in the mask variable changes the bit in
the CP15:c1c0 register to the value of the same bit in the value input parameter. A zero
leaves the bit in the control register unchanged, regardless of the bit state in the value
parameter.

14.9 The Fast Context Switch Extension 515

Example

14.3
The routine controlSet sets the control bits register in CP15:c1. The routine first reads
the CP15:r3 register and places it in the variable c1format. The routine then uses the input
mask value to clear the bits in c1format that need updating. The update is done by ORing
c1format with the value input parameter. The updated c1format is finally written back
out to the CP15:c1 register to enable the MMU, caches, and write buffer.

void controlSet(unsigned int value, unsigned int mask)
{

unsigned int c1format;

__asm{MRC p15, 0, c1format, c1, c0, 0 } /* read control register */
c1format &= ∼mask; /* clear bits that change */
c1format |= value; /* set bits that change */
__asm{MCR p15, 0, c1format, c1, c0, 0 } /* write control register */

}

Here is a code sequence that calls the controlSet routine to enable the I-cache, D-cache,
and the MMU in an ARM920T:

#define ENABLEMMU 0x00000001
#define ENABLEDCACHE 0x00000004
#define ENABLEICACHE 0x00001000

#define CHANGEMMU 0x00000001
#define CHANGEDCACHE 0x00000004
#define CHANGEICACHE 0x00001000

unsigned int enable, change;
#if defined(__TARGET_CPU_ARM920T)

enable = ENABLEMMU | ENABLEICACHE | ENABLEDCACHE;
change = CHANGEMMU | CHANGEICACHE | CHANGEDCACHE;

#endif
controlSet(enable, change); ■

14.9 The Fast Context Switch Extension
The Fast Context Switch Extension (FCSE) is additional hardware in the MMU that is
considered an enhancement feature, which can improve system performance in an ARM
embedded system. The FCSE enables multiple independent tasks to run in a fixed overlap-
ping area of memory without the need to clean or flush the cache, or flush the TLB during
a context switch. The key feature of the FCSE is the elimination of the need to flush the
cache and TLB.

516 Chapter 14 Memory Management Units

Without the FCSE, switching from one task to the next requires a change in virtual
memory maps. If the change involves two tasks with overlapping address ranges, the infor-
mation stored in the caches and TLB become invalid, and the system must flush the caches
and TLB. The process of flushing these components adds considerable time to the task
switch because the core must not only clear the caches and TLB of invalid data, but it must
also reload data to the caches and TLB from main memory.

With the FCSE there is an additional address translation when managing virtual mem-
ory. The FCSE modifies virtual addresses before it reaches the cache and TLB using a special
relocation register that contains a value known as the process ID. ARM refers to the addresses
in virtual memory before the first translation as a virtual address (VA), and those addresses
after the first translation as a modified virtual address(MVA), shown in Figure 14.4. When
using the FCSE, all modified virtual addresses are active. Tasks are protected by using the
domain access facilities to block access to dormant tasks. We discuss this in more detail in
the next section.

Switching between tasks does not involve changing page tables; it simply requires writing
the new task’s process ID into the FCSE process ID register located in CP15. Because a task
switch does not require changing the page tables, the caches and TLB remain valid after the
switch and do not need flushing.

When using the FCSE, each task must execute in the fixed virtual address range from
0x00000000 to 0x1FFFFFFF and must be located in a different 32 MB area of modified virtual
memory. The system shares all memory addresses above 0x2000000, and uses domains to
protect tasks from each other. The running task is identified by its current process ID.

To utilize the FCSE, compile and link all tasks to run in the first 32 MB block of virtual
memory (VA) and assign a unique process ID. Then place each task in a different 32 MB
partition of modified virtual memory using the following relocation formula:

MVA = VA + (0x2000000 ∗ process ID) (14.2)

To calculate the starting address of a task partition in modified virtual memory, take a value
of zero for the VA and the task’s process ID, and use these values in Equation (14.2).

The value held in the CP15:c13:c0 register contains the current process ID. The process
ID bit field in the register is seven bits wide and supports 128 process IDs. The format of
the register is shown in Figure 14.15.

0242531

Process ID SBZ

SBZ = should be zero

Figure 14.15 Fast context switch register CP15 register 13.

14.9 The Fast Context Switch Extension 517

Virtual
memory FCSE

Domain
access

Kernel

Task 2
alias

Task 2
running

Kernel

Task 3

Task 2

Task 1
Process

ID

Special
relocation

register

0x6000000

0x4000000

0x2000000
(32 MB)

Kernel
client
access

Task 3
no access

Task 2
client
access

Task 1
no access

Modified
virtual
memory

Caches
and TLB

Physical
memory

Task 3

Kernel

Task 2

Task 1

Task 1 running

Task 2 running

Kernel

Task 3

Task 1

Task 2

Virtual
memory FCSE

Domain
access

Kernel

Task 1
alias

Task 1
running

Kernel

Task 3

Task 2

Task 1
Process

ID

Special
relocation

register

0x6000000

0x4000000

0x2000000
(32 MB)

Kernel
client
access

Task 3
no access

Task 1
client
access

Task 2
no access

Modified
virtual
memory

Caches
and TLB

Physical
memory

Task 3

Kernel

Task 2

Task 1

Kernel

Task 3

Task 1

Task 2

Figure 14.14 Fast Context Switch Extension example showing task 1 before a context switch and task 2
running after a context switch in a three-task multitasking environment.

Example 14.4 shows a small routine processIDSet that sets the process ID in the FCSE.
It can be called using the following function prototype:

void processIDSet(unsigned value);

518 Chapter 14 Memory Management Units

Example

14.4
This routine takes an unsigned integer as an input, clips it to seven bits, mod 128, by
multiplying the value by 0x20000000 (32 MB), and then writing the result to the process
ID register using an MCR instruction.

void processIDSet(unsigned int value)
{

unsigned int PID;
PID = value << 25;
__asm{MCR p15, 0, PID, c13, c0, 0 } /* write Process ID register */

} ■

14.9.1 How the FCSE Uses Page Tables and Domains

To use the FCSE efficiently, the system uses page tables to control region configuration
and operation, and domains to isolate tasks from each other. Refer again to Figure 14.14,
which shows the memory layout before and after a context switch from Task 1 to Task 2.
Table 14.9 shows the numerical details used to create Figure 14.14.

Figure 14.16 shows how to change the value in the domain access register of CP15:c3:c0
to switch from Task 1 to Task 2. Switching between tasks requires a change in the process
ID and a new entry in the domain access register.

Table 14.9 shows that Task 1 is assigned Domain 1, and Task 2 is assigned Domain 2.
When changing from Task 1 to Task 2, change the domain access register to allow client
access to Domain 2, and no access to Domain 1. This prevents Task 2 from accessing the
memory space of Task 1. Note that client access remains the same for the kernel, Domain 0.
This allows the page tables to control access to the system area of memory.

Sharing memory between tasks can be accomplished by using a “sharing” domain,
shown as Domain 15 in Figure 14.16 and Table 14.9. The sharing domain is not shown
in Figure 14.15. Tasks can share a domain that allows client access to a partition in modified

Table 14.9 Domain assignment in a simple three-task multiprogramming environment using the
FSCE.

Partition starting address in
Region Domain Privileged AP User AP modified virtual memory Process ID

Kernel 0 read write no access 0xFE000000 not assigned
Task 3 3 read write read write 0x06000000 0x03
Task 2 2 read write read write 0x04000000 0x02
Task 1 1 read write read write 0x02000000 0x01
Shared 15 read write read write 0xF8000000 not assigned

14.9 The Fast Context Switch Extension 519

D0D7 D6 D5 D4 D3 D2 D1D8D15 D14 D13 D12 D11 D10 D9

0100 00 00 00 00 01 000001 00 00 00 00 00 00

D0D7 D6 D5 D4 D3 D2 D1D8D15 D14 D13 D12 D11 D10 D9

0100 00 00 00 00 00 010001 00 00 00 00 00 00

Pre

Post

Task 1
running

Task 2
running

Figure 14.16 Pre- and post-view of CP15 register 3 changing from Task 1 to Task 2 in a three-task
multiprogramming environment.

virtual memory. This shared memory can be seen by both tasks, and access is determined
by the page table entries that map the memory space.

Here are the steps needed to perform a context switch when using the FCSE:

1. Save the active task context and place the task in a dormant state.

2. Write the awakening task’s process ID to CP15:c13:c0.

3. Set the current task’s domain to no access, and the awakening task’s domain to client
access, by writing to CP15:c3:c0.

4. Restore the context of the awakening task.

5. Resume execution of the restored task.

14.9.2 Hints for Using the FCSE

■ A task has a fixed 32 MB maximum limit on size.

■ The memory manager must use fixed 32 MB partitions with a fixed starting address
that is a multiple of 32 MB.

■ Unless you want to manage an exception vector table for each task, place the exception
vector table at virtual address 0xffff0000, using the V bit in CP15 register 1.

■ You must define and use an active domain control system.

■ The core fetches the two instructions following a change in process ID from the previous
process space, if execution is taking place in the first 32 MB block. Therefore, it is wise
to switch tasks from a “fixed” region in memory.

520 Chapter 14 Memory Management Units

■ If you use domains to control task access, the running task also appears as an alias at
VA + (0x2000000 ∗ process ID) in virtual memory.

■ If you use domains to protect tasks from each other, you are limited to a maximum of
16 concurrent tasks, unless you are willing to modify the domain fields in the level 1
page table and flush the TLB on a context switch.

14.10 Demonstration: A Small Virtual Memory
System

Here is a little demonstration that shows the fundamentals of a small embedded system
using virtual memory. It is designed to run on an ARM720T or ARM920T core. The
demonstration provides a static multitasking system showing the infrastructure needed to
run three concurrent tasks. We wrote the demonstration using the ARM ADS1.2 developer
suite. There are many ways to improve the demonstration, but its primary purpose is as
an aid in understanding the underlying ARM MMU hardware. Paging or swapping to
secondary storage is not demonstrated.

The demonstration uses the same execution region for all user tasks, which simplifies
the compiling and linking of those tasks. Each task is compiled as a standalone program
containing text, data, and stack information in a single region.

The hardware requirements are an ARM-based evaluation board, which includes an
ARM720T or ARM920T processor core. The example requires 256 KB of RAM starting at
address 0x00000000 and a method of loading code and data into memory. In addition there
are also several memory-mapped peripherals spread over 256 MB from address 0x10000000
to 0x20000000.

The software requirements are an operating system infrastructure such as SLOS,
provided in earlier chapters. The system must support fixed partition multitasking.

The example uses only 1 MB and 4 KB pages. However, the coded examples support all
page sizes. Tasks are limited to less than 1 MB and therefore fit in a single L2 page table.
Thus, a task switch can be performed by changing a single L2 PTE in the master L1 page table.

This approach is much simpler than trying to create and maintain a full sets of page
tables for each task, and changing the TTB address during each context switch. Changing
the TTB to change between task memory maps would require creating a master table and all
the L2 system tables in three different sets of page tables. This would also require additional
memory to store these additional page tables. The purpose for swapping out a single L2
table is to eliminate the duplication of system information in the multiple sets of page tables.
The reduction in the number of duplicated page tables reduces the required memory to run
the system.

We use seven steps to set up the MMU for the demonstration:

1. Define the fixed system software regions; this fixed area is shown in Figure 14.5.

2. Define the three virtual memory maps for the three tasks; the general layout of these
maps is shown in Figure 14.4.

14.10 Demonstration: A Small Virtual Memory System 521

3. Locate the regions listed in steps 1 and 2 into the physical memory map; this is an
implementation of what is shown on the right side of Figure 14.5.

4. Define and locate the page tables within the page table region.

5. Define the data structures needed to create and manage the regions and page tables.
These structures are implementation dependent and are defined specifically for the
example. However, the general form of the structures is a good starting point for most
simple systems.

6. Initialize the MMU, caches, and write buffer.

7. Set up a context switch routine to gracefully transition from one task to the next.

We present these steps in detail in the following sections.

14.10.1 Step 1: Define the Fixed System Software
Regions

There are four fixed system software regions used by the operating system: a dedicated 32 KB
kernel region at 0x00000, a 32 KB shared memory region at 0x8000, a dedicated 32 KB page
table region at 0x10000, and a 256 MB peripheral region at 0x10000000 (see Figure 14.17).
We define these regions during the initialization process and never change their page tables
again.

The privileged kernel region stores the system software; it contains the operating system
kernel code and data. The region uses fixed addressing to avoid the complexity of remapping
when changing to a system mode context. It also contains the vector table and the stacks
for handling FIQ, IRQ, SWI, UND, and ABT exceptions.

The shared memory region is located at a fixed address in virtual memory. All tasks use
this region to access shared system resources. The shared memory region contains shared
libraries and the transition routines for switching from privileged mode to user mode during
a context switch.

The page table region contains five page tables. Although the page table region is 32 KB
in size, the system uses only 20 KB: 16 KB for the master table and 1 KB each for the four
L2 tables.

The peripheral region controls the system device I/O space. The primary purpose of
this region is to establish this area as a noncached, nonbuffered region. You don’t want to
have input, output, or control registers subject to the stale data issues of caching or the time
sequence delays involved in using the write buffer.

This region also prevents user mode access to peripheral devices; thus, access to the
devices must be made through device drivers. This region permits privileged access only;
no user access is allowed. In the demonstration, this is a single region, but in a more refined
system, there would be more regions defined to provide finer control over individual
devices.

522 Chapter 14 Memory Management Units

Virtual
memory

Peripherals
region

Page table
region

Shared
region

Kernel
region

0x10000000

0x00018000

0x00010000

0x00000000

Figure 14.17 Fixed regions in virtual memory.

14.10.2 Step 2: Define Virtual Memory Maps for Each
Task

There are three user tasks that run during three time slice intervals. Each task has an identical
virtual memory map.

Each task sees two regions in its memory map: a dedicated 32 KB task region at 0x400000,
and a 32 KB shared memory region at 0x8000 (see Figure 14.18).

The task region contains the text, data, and stack of the running user task. When the
scheduler transfers control from one task to another, it must remap the task region by
changing the L1 page table entry to point to the upcoming task’s L2 page table. After the
entry is made, the task region points to the physical location of the next running task.

The shared region is a fixed system software region. Its function is described in
Section 14.10.1.

14.10.3 Step 3: Locate Regions in Physical Memory

The regions we defined for the demonstration must be located in physical memory at
addresses that do not overlap or conflict. Table 14.10 shows where we located all the

14.10 Demonstration: A Small Virtual Memory System 523

Virtual
memory

Task
region

Shared
region

0x4000000

0x00010000

Figure 14.18 Virtual memory as seen by the running task.

Table 14.10 Region placement in the MMU example.

Region Virtual base Page Number Physical
Region Addressing size address size of pages base address

Kernel fixed 64 KB 0x00000000 4 KB 16 0x00000000
Shared fixed 32 KB 0x00010000 4 KB 8 0x00010000
Page table fixed 32 KB 0x00018000 4 KB 8 0x00018000
Peripheral fixed 256 MB 0x10000000 1 MB 256 0x10000000
Task 1 dynamic 32 KB 0x00400000 4 KB 8 0x00020000
Task 2 dynamic 32 KB 0x00400000 4 KB 8 0x00028000
Task 3 dynamic 32 KB 0x00400000 4 KB 8 0x00030000

regions in physical memory as well as their virtual addresses and size. The table also lists
our choice of page size for each region and the number of pages that need to be translated
to support the size of each region.

Table 14.10 lists the four regions that use fixed page tables during system operation: the
kernel, shared memory, page table, and peripheral regions.

524 Chapter 14 Memory Management Units

The task region dynamically changes page tables during system operation. The task
region translates the same virtual address to a different physical address that depends on
the running task.

Figure 14.19 shows the placement of the regions in virtual and physical memory graph-
ically. The kernel, shared and page table regions map directly to physical memory as blocks

Virtual
memory

Physical
memory

User access

Fault

Operating
system
access

Peripheral
devices

Not used

Task 3

Task 2

Task 1

Task 3
Task 2
Task 1
System

MasterFixed
addresses

Dynamic
addresses

Fixed
addresses

Page table
region

Shared region Shared code
and data

Page tables

System code
and data

Task physical
location

Input/output
devices

Kernel region

0x10000000

0x20000000

0xFFFFFFFF

0x00020000
0x00028000

0x00030000

0x00038000

0x00040000

0x00018000
0x0001c000
0x0001c400
0x0001c800
0x0001cc00

0x00010000

0x0000000

0x00400000

Peripherals
region

Task region

Figure 14.19 Memory map of simple virtual memory example.

14.10 Demonstration: A Small Virtual Memory System 525

of sequential page frames. Above this area are the page frames dedicated to the three user
tasks. The tasks in physical memory are 32 KB fixed partitions, also sequential page frames.
Sparsely scattered over 256 MB of physical memory are the memory-mapped peripheral
I/O devices.

14.10.4 Step 4: Define and Locate the Page Tables

We previously dedicated a region to hold the page tables in the system. The next step is
to locate the actual page table within the region to physical memory. Figure 14.20 shows
a close-up detail of where the page table region maps to physical memory. It is a blow-up
of the page tables shown in Figure 14.19. We spread the memory out a little to show the
relationship between the L1 master page table and the four L2 page tables. We also show
where the translation data is located in the page tables.

The one master L1 page table locates the L2 tables and translates the 1 MB sections of
the peripheral region.The system L2 page table contains translation address data for three
system regions: the kernel region, shared memory region, and page table region. There are
three task L2 page tables that map to the physical addresses of the three concurrent tasks.

Only three of the five page tables are active simultaneously during run time: the L1
master table, the L2 system table, and one of the three L2 task page tables.

The scheduler controls which task is active and which tasks are dormant by remapping
the task region during a context switch. Specifically, the master L1 page table entry at
address 0x18010 is changed during the context switch to point to the L2 page table base
address of the next active task.

14.10.5 Step 5: Define Page Table and Region Data
Structures

For the example, we define two data structures used to configure and control the system.
These two data structures represent the actual code used to define and initialize the page
tables and regions discussed in previous sections. We define two data types, a Pagetable
type that contains the page table data, and a Region type that defines and controls each
region in the system.

The type definition for the Pagetable structure, with a description of the members in
the Pagetable structure, is:

typedef struct {
unsigned int vAddress;
unsigned int ptAddress;
unsigned int masterPtAddress;
unsigned int type;
unsigned int dom;

} Pagetable;

526 Chapter 14 Memory Management Units

Master L1 page table L2 page tables

Task 3 page table

0x01cc00

0x18000

0x18010

0x18100

0x181fc

0x1bffc Fault

Fault

Fault

Fault

Fault

Fault

Fault

Peripheral

Peripheral

Task

System

.

.

.

.

.

.

.

.

.

Task 3

Task 2 page table

0x01c800Task 2

Task 1 page table

0x01c400Task 1

System page table

0x01c000
Kernel

Shared
Page table

L2 page table base address

Fault generates Abort exception

Region translation data

Figure 14.20 Page table content in the simple virtual memory demonstration.

■ vAddress identifies the starting address of a 1 MB section of virtual memory controlled
by either a section entry or an L2 page table.

■ ptAddress is the address where the page table is located in virtual memory.

■ masterPtAddress is the address of the parent master L1 page table. If the table is an
L1 table, then the value is the same as ptAddress.

14.10 Demonstration: A Small Virtual Memory System 527

■ type identifies the type of the page table, it can be COARSE, FINE, or MASTER.

■ dom sets the domain assigned to the 1 MB memory blocks of an L1 table entry.

We use the Pagetable type to define the five page tables used in the system. Together
the Pagetable structures form a block of page table data that we use to manage, fill, locate,
identify, and set the domain for all active and nonactive page tables. We refer to this block of
Pagetables as the page table control block (PTCB) for the remainder of this demonstration.

The five Pagetables described in previous sections and shown in Figure 14.20 with
their initialization values, are

#define FAULT 0
#define COARSE 1
#define MASTER 2
#define FINE 3

/* Page Tables */
/* VADDRESS, PTADDRESS, PTTYPE, DOM */
Pagetable masterPT = {0x00000000, 0x18000, 0x18000, MASTER, 3};
Pagetable systemPT = {0x00000000, 0x1c000, 0x18000, COARSE, 3};
Pagetable task1PT = {0x00400000, 0x1c400, 0x18000, COARSE, 3};
Pagetable task2PT = {0x00400000, 0x1c800, 0x18000, COARSE, 3};
Pagetable task3PT = {0x00400000, 0x1cc00, 0x18000, COARSE, 3};

The type definition for the Region structure, with a description of the members in the
Region structure, is

typedef struct {
unsigned int vAddress;
unsigned int pageSize;
unsigned int numPages;
unsigned int AP;
unsigned int CB;
unsigned int pAddress;
Pagetable *PT;

} Region;

■ vAddress is the starting address of the region in virtual memory.

■ pageSize is the size of a virtual page.

■ numPages is the number of pages in the region.

■ AP is the region access permissions.

■ CB is the cache and write buffer attributes for the region.

■ pAddress is the starting address of the region in virtual memory.

■ *PT is a pointer to the Pagetable in which the region resides.

528 Chapter 14 Memory Management Units

All of the Region data structures together form a second block of data that we use to
define the size, location, access permission, cache and write buffer operation, and page table
location for the regions used in the system. We refer to this block of regions as the region
control block (RCB) for the remainder of this demonstration.

There are the seven Region structures that define the regions described in previous
sections and shown in Figure 14.19. Here are the initialization values for each of the four
system software and three task Regions in the RCB:

#define NANA 0x00
#define RWNA 0x01
#define RWRO 0x02
#define RWRW 0x03
/* NA = no access, RO = read only, RW = read/write */

#if defined(__TARGET_CPU_ARM920T)
#define cb 0x0
#define cB 0x1
#define WT 0x2
#define WB 0x3

#endif
/* 720 */
#if defined(__TARGET_CPU_ARM720T)

#define cb 0x0
#define cB 0x1
#define Cb 0x2
#define WT 0x3

#endif
/* cb = not cached/not buffered */
/* cB = not Cached/Buffered */
/* Cb = Cached/not Buffered */
/* WT = write through cache */
/* WB = write back cache */

/* REGION TABLES */
/* VADDRESS, PAGESIZE, NUMPAGES, AP, CB, PADDRESS, &PT */
Region kernelRegion

= {0x00000000, 4, 16, RWNA, WT, 0x00000000, &systemPT};
Region sharedRegion

= {0x00010000, 4, 8, RWRW, WT, 0x00010000, &systemPT};
Region pageTableRegion

= {0x00018000, 4, 8, RWNA, WT, 0x00018000, &systemPT};
Region peripheralRegion

= {0x10000000, 1024, 256, RWNA, cb, 0x10000000, &masterPT};

14.10 Demonstration: A Small Virtual Memory System 529

/* Task Process Regions */
Region t1Region

= {0x00400000, 4, 8, RWRW, WT, 0x00020000, &task1PT};
Region t2Region

= {0x00400000, 4, 8, RWRW, WT, 0x00028000, &task2PT};
Region t3Region

= {0x00400000, 4, 8, RWRW, WT, 0x00030000, &task3PT}

14.10.6 Step 6: Initialize the MMU, Caches, and Write
Buffer

Before the MMU and the caches and write buffer are activated, they must be initialized.
The PTCB and RCB hold the configuration data for the three components. There are five
parts to initialize the MMU:

1. Initialize the page tables in main memory by filling them with FAULT entries.

2. Fill in the page tables with translations that map regions to physical memory.

3. Activate the page tables.

4. Assign domain access rights.

5. Enable the memory management unit and cache hardware.

The first four parts configure the system and the last part enables it. In the following sections
we provide routines to perform the five parts to the initialization process; the routines are
listed by function and example number in Figure 14.21.

14.10.6.1 Initializing the Page Tables in Memory

The first part in initializing the MMU is to set the page tables to a known state. The easiest
way to do this is to fill the page tables with FAULT page table entries. Using a FAULT entry
makes sure that no valid translations exist outside those defined by the PTCB. By setting all
the page table entries in all the active page tables to a FAULT, the system will generate an
abort exception for an entry not later filled in using the PTCB.

Example

14.5
The routine mmuInitPT initializes a page table by taking the memory area allocated for
a page table and setting it with FAULT values. It is called using the following function
prototype:

void mmuInitPT(Pagetable *pt);

The routine takes a single argument, which is a pointer to a Pagetable in the PTCB.

530 Chapter 14 Memory Management Units

1. Initialize the page tables in memory by filling them with FAULT entries.

mmuInitPT(Pagetable *); Example 14.5

2. Fill in the page tables with translations that map regions to physical memory.

mmuMapRegion(Region *); Example 14.6
 mmuMapSectionTableRegion(Region *region); Example 14.7
 mmuMapCoarseTableRegion(Region *region); Example 14.8
 mmuMapFineTableRegion(Region *region); Example 14.9

3. Activate the page tables.

int mmuAttachPT(Pagetable *pt); Example 14.10

4. Assign domain access rights.

domainAccessSet(unsigned int value, unsigned int mask); Example 14.11

5. Enable the memory management unit and cache hardware.

controlSet (unsigned int, unsigned int); Example 14.3

Figure 14.21 List of MMU initialization routines.

void mmuInitPT(Pagetable *pt)
{

int index; /* number of lines in PT/entries written per loop*/
unsigned int PTE, *PTEptr; /* points to page table entry in PT */
PTEptr = (unsigned int *)pt->ptAddress; /* set pointer base PT */
PTE = FAULT;

switch (pt->type)
{

case COARSE: {index = 256/32; break;}
case MASTER: {index = 4096/32; break;}
#if defined(__TARGET_CPU_ARM920T)
case FINE: {index = 1024/32; break;} /* no FINE PT in 720T */
#endif
default:
{

printf("mmuInitPT: UNKNOWN pagetable type\n");

14.10 Demonstration: A Small Virtual Memory System 531

return -1;
}

}
__asm
{

mov r0, PTE
mov r1, PTE
mov r2, PTE
mov r3, PTE

}
for (; index != 0; index--)
{

__asm
{

STMIA PTEptr!, {r0-r3} /* write 32 entries to table */
STMIA PTEptr!, {r0-r3}
STMIA PTEptr!, {r0-r3}
STMIA PTEptr!, {r0-r3}
STMIA PTEptr!, {r0-r3}
STMIA PTEptr!, {r0-r3}
STMIA PTEptr!, {r0-r3}
STMIA PTEptr!, {r0-r3}

}
}
return 0;
}

mmuInitPT starts with the base page table address PTEptr and fills the page table with
FAULT entries. The size of the table is determined by reading the type of Pagetable defined
in pt->type. The table type can be the master L1 page table with 4096 entries, a coarse L2
page table with 256 entries, or a fine L2 page table with 1024 entries.

The routine fills the table by writing small blocks to memory using a loop. The routine
determines the number of blocks to write index from the number of entries in the page table
divided by the number of entries written per loop. A switch statement selects the Pagetable
type and branches to the case that sets the index size for the table. The procedure completes
by executing the loop that fills the table. Note the __asm keyword to invoke the inline
assembler; this reduces the execution time of the loop by using the stmia store multiple
instruction. ■

14.10.6.2 Filling Page Tables with Translations

The second part in initializing the MMU is to convert the data held in the RCB into
page table entries and to copy them into the page tables. We provide several routines

532 Chapter 14 Memory Management Units

to convert the data in the RCB to entries in a page table. The first high-level routine
mmuMapRegion determines the type of page table and then calls one of three routines to
create the page table entries: mmuMapSectionTableRegion, mmuMapCoarseTableRegion,
or mmuMapFineTableRegion.

To ease future porting of code, we advise not using tiny pages and the
mmuMapFineTableRegion routine because the ARMv6 architecture doesn’t use the tiny
page. The fine page table type has also been removed in the ARMv6 architecture because
the need for it disappears without tiny pages.

Here is a description of the four routines:

■ The mmuMapRegion routine determines the page table type and branches to one of the
routines listed below; it is presented in Example 14.6.

■ mmuMapSectionTableRegionfills an L1 master table with section entries; it is presented
in Example 14.7.

■ mmuMapCoarseTableRegion fills an L2 coarse page table with region entries; it is
presented in Example 14.8 .

■ mmuMapFineTableRegion fills an L2 fine page table with region entries; it is presented
in Example 14.9.

Here is a list of the C function prototypes for the four routines:

int mmuMapRegion(Region *region);
void mmuMapSectionTableRegion(Region *region);
int mmuMapCoarseTableRegion(Region *region);
int mmuMapFineTableRegion(Region *region);

The four procedures all have a single input parameter, which is a pointer to a Region
structure that contains the configuration data needed to generate page table entries.

Example

14.6
Here is the high-level routine that selects the page table type:

int mmuMapRegion(Region *region)
{

switch (region->PT->type)
{

case SECTION: /* map section in L1 PT */
{

mmuMapSectionTableRegion(region);
break;

}
case COARSE: /* map PTE to point to COARSE L2 PT */

14.10 Demonstration: A Small Virtual Memory System 533

{
mmuMapCoarseTableRegion(region);
break;

}
#if defined(__TARGET_CPU_ARM920T)
case FINE: /* map PTE to point to FINE L2 PT */
{

mmuMapFineTableRegion(region);
break;

}
#endif
default:
{

printf("UNKNOWN page table type\n");
return -1;

}
}
return 0;

}

Within the Region is a pointer to a Pagetable in which the region translation data
resides. The routine determines the page table type region->PT->type and calls a routine
that maps the Region into the page table in the format of the specified page table type.

There is a separate procedure for each of the three types of page table, section
(L1 master), coarse, and fine (refer to Section 14.4). ■

Example

14.7
Here is the first of the three routines that convert the region data to page table entries:

void mmuMapSectionTableRegion(Region *region)
{

int i;
unsigned int *PTEptr, PTE;

PTEptr = (unsigned int *)region->PT->ptAddress; /* base addr PT */
PTEptr += region->vAddress >> 20; /* set to first PTE in region */
PTEptr += region->numPages - 1; /* set to last PTE in region */

PTE = region->pAddress & 0xfff00000; /* set physical address */
PTE |= (region->AP & 0x3) << 10; /* set Access Permissions */
PTE |= region->PT->dom << 5; /* set Domain for section */
PTE |= (region->CB & 0x3) << 2; /* set Cache & WB attributes */
PTE |= 0x12; /* set as section entry */

for (i =region->numPages - 1; i >= 0; i--) /* fill PTE in region */

534 Chapter 14 Memory Management Units

{
PTEptr-- = PTE + (i << 20); / i = 1 MB section */

}
}

The mmuMapSectionTableRegion procedure begins by setting a local pointer variable
PTEptr to the base address of the master L1 page table. It then uses the virtual starting
address of the region to create an index into the page table where the region page table
entries begin. This index is added to the variable PTEptr. The variable PTEptr now points
to the start of the region entries in the page table. The next line calculates the size of the
region and adds this value to PTEptr. The variable PTEptr now points to the last PTE for
the region. The PTEptr variable is set to the end of the region so we can use a count-down
counter in the loop that fills the page table with entries.

Next the routine constructs a section page table entry using the values in the Region
structure; the entry is held in the local variable PTE. A series of ORs constructs this PTE
from the starting physical address, the access permission, the domain, and cache and write
buffer attributes. The format of the PTE is shown in Figure 14.6.

The PTE now contains a pointer to the first physical address of the region and its
attributes. The counter variable i is used for two purposes: It is an offset into the page table,
and it is added to the PTE variable to increment the physical address translation for the
page frame. Remember, all regions in the demonstration map to sequential page frames in
physical memory. The procedure concludes by writing all the PTEs for the region into the
page table. It starts from the last translation entry and counts down to the first translation
entry. ■

Example

14.8
The next two routines, mmuMapCoarseTableRegion and mmuMapFineTableRegion, are
very similar, which makes the descriptive text of the routines very similar; after reading the
coarse page table example, you can skip the other example if you are not using tiny pages.

int mmuMapCoarseTableRegion(Region *region)
{

int i,j;
unsigned int *PTEptr, PTE;
unsigned int tempAP = region->AP & 0x3;

PTEptr = (unsigned int *)region->PT->ptAddress; /* base addr PT */

switch (region->pageSize)
{

case LARGEPAGE:
{

PTEptr += (region->vAddress & 0x000ff000) >> 12; /* 1st PTE */
PTEptr += (region->numPages*16) - 1; /* region last PTE */

14.10 Demonstration: A Small Virtual Memory System 535

PTE = region->pAddress & 0xffff0000; /* set physical address */
PTE |= tempAP << 10; /* set Access Permissions subpage 3 */
PTE |= tempAP << 8; /* subpage 2 */
PTE |= tempAP << 6; /* subpage 1 */
PTE |= tempAP << 4; /* subpage 0 */
PTE |= (region->CB & 0x3) << 2; /* set cache & WB attributes */
PTE |= 0x1; /* set as LARGE PAGE */

/* fill in table entries for region */
for (i = region->numPages-1; i >= 0; i--)
{

for (j = 15 ; j >= 0; j--)
PTEptr-- = PTE + (i << 16); / i = 64 KB large page */

}
break;

}
case SMALLPAGE:
{

PTEptr += (region->vAddress & 0x000ff000) >> 12; /* first */
PTEptr += (region->numPages - 1); /* last PTEptr */

PTE = region->pAddress & 0xfffff000; /* set physical address */
PTE |= tempAP << 10; /* set Access Permissions subpage 3 */
PTE |= tempAP << 8; /* subpage 2 */
PTE |= tempAP << 6; /* subpage 1 */
PTE |= tempAP << 4; /* subpage 0 */
PTE |= (region->CB & 0x3) << 2; /* set cache & WB attrib */
PTE |= 0x2; /* set as SMALL PAGE */

/* fill in table entries for region */
for (i = region->numPages - 1; i >= 0; i--)
{

PTEptr-- = PTE + (i << 12); / i = 4 KB small page */
}
break;

}
default:
{

printf("mmuMapCoarseTableRegion: Incorrect page size\n");
return -1;

}
}
return 0;

}

536 Chapter 14 Memory Management Units

The routine begins by setting a local variable tempAP that holds the access permission
for pages or subpages in the region. Next, it sets the variable PTEptr to point to the base
address of the page table that will hold the mapped region.

The procedure then switches to handle either the case of a large or small page. The
algorithms for the two cases are the same; only the format of the PTE and the way values are
written into the page table are different.

At this point the variable PTEptr contains the starting address of the L2 page table. The
routine then uses the starting address of the region region->vAddress to calculate an index
to the first entry of the region in the page table. This index value is added to the PTEptr.
The next line calculates the size of the region and adds this value to PTEptr. PTEptr now
points to the last PTE for the region.

Next the routine constructs a page table entry variable PTE for either a large or a small
entry from the values in the region passed into the routine. The routine uses a series of ORs
to construct the PTE from the starting physical address, the access permission, and cache
and write buffer attributes. See Figure 14.8 to review the formats of a large and small PTE.

The PTE now contains a pointer to the physical address of the first page frame for the
region. The counter variable i is used for two purposes: First, it is an offset into the page
table. Second it is added to the PTE variable to modify the address translation bit field to
point to the next lower page frame in physical memory. The routine finishes by writing all
the PTEs for the region into the page table. Note that there is a nested loop in the LARGEPAGE
case: the j loop writes the required identical PTE to map a large page in a coarse page table
(refer to Section 14.4 for details). ■

Example

14.9
This example fills a fine page table with region translation information. Fine page tables
are not available in the ARM720T and have been discontinued in the v6 architecture. For
compatibility with these changes we would advise avoiding their use in new projects.

#if defined(__TARGET_CPU_ARM920T)
int mmuMapFineTableRegion(Region *region)
{

int i,j;
unsigned int *PTEptr, PTE;
unsigned int tempAP = region->AP & 0x3;

PTEptr = (unsigned int *)region->PT->ptAddress; /* base addr PT */

switch (region->pageSize)
{

case LARGEPAGE:
{

PTEptr += (region->vAddress & 0x000ffc00) >> 10; /* first PTE*/
PTEptr += (region->numPages*64) - 1; /* last PTE */

14.10 Demonstration: A Small Virtual Memory System 537

PTE = region->pAddress & 0xffff0000; /* get physical address */
PTE |= tempAP << 10; /* set Access Permissions subpage 3 */
PTE |= tempAP << 8; /* subpage 2 */
PTE |= tempAP << 6; /* subpage 1 */
PTE |= tempAP << 4; /* subpage 0 */
PTE |= (region->CB & 0x3) << 2; /* set cache & WB attrib */
PTE |= 0x1; /* set as LARGE PAGE */

/* fill in table entries for region */
for (i = region->numPages-1; i >= 0; i--)
{

for (j = 63 ; j >= 0; j--)
PTEptr-- = PTE + (i << 16); / i = 64 KB large page */

}
break;

}
case SMALLPAGE:
{

PTEptr += (region->vAddress & 0x000ffc00) >> 10; /* first PTE*/
PTEptr += (region->numPages*4) - 1; /* last PTE */

PTE = region->pAddress & 0xfffff000; /* get physical address */
PTE |= tempAP << 10; /* set Access Permissions subpage 3 */
PTE |= tempAP << 8; /* subpage 2 */
PTE |= tempAP << 6; /* subpage 1 */
PTE |= tempAP << 4; /* subpage 0 */
PTE |= (region->CB & 0x3) << 2; /* set cache & WB attrib */
PTE |= 0x2; /* set as SMALL PAGE */

/* fill in table entries for region */
for (i = region->numPages-1; i >= 0; i--)
{

for (j = 3 ; j >= 0; j--)
PTEptr-- = PTE + (i << 12); / i = 4 KB small page */

}
break;

}
case TINYPAGE:
{

PTEptr += (region->vAddress & 0x000ffc00) >> 10; /* first */
PTEptr += (region->numPages - 1); /* last PTEptr */

PTE = region->pAddress & 0xfffffc00; /* get physical address */
PTE |= tempAP << 4; /* set Access Permissions */

538 Chapter 14 Memory Management Units

PTE |= (region->CB & 0x3) << 2; /* set cache & WB attribu */
PTE |= 0x3; /* set as TINY PAGE */

/* fill table with PTE for region; from last to first */
for (i =(region->numPages) - 1; i >= 0; i--)
{

PTEptr-- = PTE + (i << 10); / i = 1 KB tiny page */
}
break;

}
default:
{

printf("mmuMapFineTableRegion: Incorrect page size\n");
return -1;

}
}
return 0;

}
#endif

The routine begins by setting a local variable tempAP that holds the access permission
for pages or subpages in the region. This routine does not support subpages with different
access permissions. Next, the routine sets the variable PTEptr to point to the base of the
page table that will hold the mapped fine-paged region.

The routine then switches to handle the three cases of a large, small, or tiny page. The
algorithm for each of the three cases is the same; only the format of the PTE and the way
values are written into the page table differ.

At this point the variable PTEptr contains the starting address of the L2 page table. The
routine then takes the starting address of the region region->vAddress and calculates an
index to the first region entry in the page table. This index value is added to the PTEptr.
The next line determines the size of the region and adds this value to PTEptr. PTEptr now
points to the last PTE for the region.

Next the routine constructs the PTE for a either a large, small, or tiny entry from the
values in the region. A series of ORs constructs the PTE from the starting physical address,
the access permission, and cache and write buffer attributes. Figure 14.8 shows the formats
for large, small, and tiny page table entries.

The PTE now contains a pointer to the physical address of the first page frame and
attributes for the region. A counter variable i is used for two purposes: It is an offset into
the page table, and it is added to the PTE variable to change the address translation so
it points to the next lower page frame in physical memory. The procedure concludes by
looping until all the PTEs for the region are mapped in the page table. Note the nested
loop in the LARGEPAGE and SMALLPAGE cases: the j loop writes the required identical PTE
to properly map the given page in a fine page table. ■

14.10 Demonstration: A Small Virtual Memory System 539

14.10.6.3 Activating a Page Table

A page table can reside in memory and not be used by the MMU hardware. This happens
when a task is dormant and its page tables are mapped out of active virtual memory.
However, the task remains resident in physical memory, so it is immediately available for
use when a context switch occurs to activate it.

The third part in initializing the MMU is to activate the page tables needed to execute
code located in the fixed regions.

Example

14.10
The routine mmuAttachPT either activates an L1 master page table by placing its address
into the TTB in the CP15:c2:c0 register, or activates an L2 page table by placing its base
address into an L1 master page table entry.

It can be called using the following function prototype:

int mmuAttachPT(Pagetable *pt);

The procedure takes a single argument, a pointer to the Pagetable to activate and add
new translations from virtual to physical virtual memory.

int mmuAttachPT(Pagetable *pt) /* attach L2 PT to L1 master PT */
{
unsigned int *ttb, PTE, offset;

ttb = (unsigned int *)pt->masterPtAddress; /* read ttb from PT */
offset = (pt->vAddress) >> 20; /* determine PTE from vAddress */

switch (pt->type)
{

case MASTER:
{

__asm{ MCR p15, 0, ttb, c2, c0, 0 } ; /* TTB -> CP15:c2:c0 */
break;

}
case COARSE:
{

/* PTE = addr L2 PT | domain | COARSE PT type*/
PTE = (pt->ptAddress & 0xfffffc00);
PTE |= pt->dom << 5;
PTE |= 0x11;
ttb[offset] = PTE;
break;

}

540 Chapter 14 Memory Management Units

#if defined(__TARGET_CPU_ARM920T)
case FINE:
{

/* PTE = addr L2 PT | domain | FINE PT type*/
PTE = (pt->ptAddress & 0xfffff000);
PTE |= pt->dom << 5;
PTE |= 0x13;
ttb[offset] = PTE;
break;

}
#endif
default:
{

printf("UNKNOWN page table type\n");
return -1;

}
}
return 0;

}

The first thing the routine does is prepare two variables, the base address of the master
L1 page table, ttb, and an offset into the L1 page table, offset. The offset variable is created
from the virtual address of the page table. To calculate the offset, it takes the virtual address
and divides it by 1 MB by shifting the virtual address right by 20 bits. Adding this offset
to the master L1 base address generates a pointer to the address within the L1 master table
that represents the translation for the 1 MB section.

The procedure attaches the page table to the MMU hardware using the Pagetable type
pt->type variable to switch to the case that attaches the page table. The three possible cases
are described below.

The Master case attaches the master L1 page table. The routine attaches this special table
using an assembly language MCR instruction to set the CP15:c2:c0 register.

The Coarse case attaches a coarse page table to the master L1 page table. This case takes
the address of the L2 page table stored in the Pagetable structure and combines it with
the Domain and the coarse table type, to build a PTE. The PTE is then written into the L1
page table using the previously calculated offset. The format of the coarse PTE is shown in
Figure 14.6.

The Fine case attaches a fine L2 page table to the master L1 page table. This routine takes
the address of the L2 page table stored in the Pagetable structure and combines it with the
Domain and fine table type to build a PTE. The PTE is then written into the L1 page table
using the previously calculated offset. ■

The previous sections presented the routines that condition, load, and activate the page
tables while initializing the MMU. The last two parts set the domain access rights and enable
the MMU.

14.10 Demonstration: A Small Virtual Memory System 541

14.10.6.4 Assigning Domain Access and Enabling the MMU

The fourth part in initializing the MMU is to configure the domain access for the system.
The demonstration does not use the FCSE, nor does it need to quickly expose and hide
large blocks of memory, which eliminates the need to use the S and R access control bits in
the CP:c1:c0 register. This means that the access permissions defined in the page tables are
enough to protect the system, and there is reason to use Domains.

However, the hardware requires all active memory areas to have a domain assignment
and be granted domain access privileges. The minimum domain configuration places all
regions in the same domain and sets the domain access to client access. This domain
configuration makes the access permission entries in the page tables the only permission
system active.

In this demo, all regions are assigned Domain 3 and have client domain access. The
other domains are unused and masked by the fault entry in the unused page table entries
of the L1 master page table. Domains are assigned in the master L1 page table, and domain
access is defined in the CP15:c3:c0 register.

Example

14.11
domainAccessSet is a routine that sets the access rights for the 16 domains in the domain
access control register CP15:c3:c0:0. It can be called from C using the following function
prototype:

void domainAccessSet(unsigned int value, unsigned int mask);

The first argument passed to the procedure is an unsigned integer containing bit fields
that set the Domain access for the 16 domains. The second parameter defines which domains
need their access rights changed. The routine first reads the CP15:r3 register and places it in
the variable c3format. The routine then uses the input mask value to clear the bits in c3format
that need updating. The update is done by ORing c3format with value input parameter. The
updated c3format is finally written back out to the CP15:c3 register to set the domain
access.

void domainAccessSet(unsigned int value, unsigned int mask)
{

unsigned int c3format;

__asm{MRC p15, 0, c3format, c3, c0, 0 } /* read domain register */
c3format &= ∼mask; /* clear bits that change */
c3format |= value; /* set bits that change */
__asm{MCR p15, 0, c3format, c3, c0, 0 } /* write domain register */

} ■

542 Chapter 14 Memory Management Units

Enabling the MMU is the fifth and final last part in the MMU initialization process. The
routine controlSet, shown as Example 14.3, enables the MMU. It is advisable to call the
controlSet procedure from a “fixed” address area.

14.10.6.5 Putting It All Together: Initializing the MMU for the
Demonstration.

The routine mmuInit calls the routines described in previous sections to initialize the MMU
for the demonstration. While reading this section of code it will be helpful to review the
control blocks shown in Section 14.10.5.

The routine can be called using the following C function prototype:

void mmuInit(void)

Example

14.12
This example calls the routines previously described as the five parts in the process of
initializing the MMU. The five parts are labeled as comments in the example code.

The mmuInit begins by initializing the page tables and mapping regions in the privileged
system area. The first part initalizes the fixed system area with calls to the routinemmuInitPT.
These calls fill the L1 master and the L2 page tables with FAULT values. The routine calls
mmuInitPT five times: once to initialize the L1 master page table, once to initialize the
system L2 page table, and then calls mmuInitPT three more time to initialize the three task
page tables:

#define DOM3CLT 0x00000040
#define CHANGEALLDOM 0xffffffff

#define ENABLEMMU 0x00000001
#define ENABLEDCACHE 0x00000004
#define ENABLEICACHE 0x00001000
#define CHANGEMMU 0x00000001
#define CHANGEDCACHE 0x00000004
#define CHANGEICACHE 0x00001000
#define ENABLEWB 0x00000008
#define CHANGEWB 0x00000008

void mmuInit()
{

unsigned int enable, change;

/* Part 1 Initialize system (fixed) page tables */
mmuInitPT(&masterPT); /* init master L1 PT with FAULT PTE */

14.10 Demonstration: A Small Virtual Memory System 543

mmuInitPT(&systemPT); /* init system L2 PT with FAULT PTE */
mmuInitPT(&task3PT); /* init task 3 L2 PT with FAULT PTE */
mmuInitPT(&task2PT); /* init task 2 L2 PT with FAULT PTE */
mmuInitPT(&task1PT); /* init task 1 L2 PT with FAULT PTE */

/* Part 2 filling page tables with translation & attribute data */
mmuMapRegion(&kernelRegion); /* Map kernelRegion SystemPT */
mmuMapRegion(&sharedRegion); /* Map sharedRegion SystemPT */
mmuMapRegion(&pageTableRegion); /* Map pagetableRegion SystemPT */
mmuMapRegion(&peripheralRegion);/* Map peripheralRegion MasterPT */
mmuMapRegion(&t3Region); /* Map task3 PT with Region data */
mmuMapRegion(&t2Region); /* Map task3 PT with Region data */
mmuMapRegion(&t1Region); /* Map task3 PT with Region data */

/* Part 3 activating page tables */
mmuAttachPT(&masterPT); /* load L1 TTB to cp15:c2:c0 register */
mmuAttachPT(&systemPT); /* load L2 system PTE into L1 PT */
mmuAttachPT(&task1PT); /* load L2 task 1 PTE into L1 PT */

/* Part 4 Set Domain Access */
domainAccessSet(DOM3CLT , CHANGEALLDOM); /* set Domain Access */

/* Part 5 Enable MMU, caches and write buffer */
#if defined(__TARGET_CPU_ARM720T)

enable = ENABLEMMU | ENABLECACHE | ENABLEWB ;
change = CHANGEMMU | CHANGECACHE | CHANGEWB ;

#endif
#if defined(__TARGET_CPU_ARM920T)

enable = ENABLEMMU | ENABLEICACHE | ENABLEDCACHE ;
change = CHANGEMMU | CHANGEICACHE | CHANGEDCACHE ;

#endif
controlSet(enable, change); /* enable cache and MMU */

}

The second part then maps the seven Regions in the system into their page tables by
calling mmuMapRegion seven times: four times to map the kernel, shared, page table, and
peripheral regions, and three times to map the three task regions. mmuMapRegion converts
the data from the control blocks into page table entries that are then written to a page
table.

The third part in initalizing the MMU is to activate the page tables necessary to start
the system. This is done by calling mmuAttachPT three times. First, it activates the master
L1 page table by loading its base address into the TTB entry in CP15:c2:c0. The routine
then activates the L2 system page table. The peripheral region is comprised of 1 MB pages

544 Chapter 14 Memory Management Units

residing in the L1 master page table and is activated when the master L1 table is actived.
The third part is completed by activating the first task that runs after the system is enabled
with a call to mmuAttachPT. In the demo, the first task to run is Task 1.

The fourth part in initializing the MMU is to set domain access by calling
domainAccessSet. All regions are assigned to Domain 3 and the domain access for Domain
3 set to client access.

The mmuInit completes part five by calling controlSet to enable the MMU and
caches. ■

When the routine mmuInit completes, the MMU is initialized and enabled. The final
task in setting up the multitasking demonstration system is to define the procedural steps
needed to perform a context switch between two tasks.

14.10.7 Step 7: Establish a Context Switch Procedure

A context switch in the demonstration system is relatively simple. There are six parts to
performing a context switch:

1. Save the active task context and place the task in a dormant state.

2. Flush the caches; possibly clean the D-cache if using a writeback policy.

3. Flush the TLB to remove translations for the retiring task.

4. Configure the MMU to use new page tables translating the common virtual memory
execution area to the awakening task’s location in physical memory.

5. Restore the context of the awakening task.

6. Resume execution of the restored task.

The routines to perform all the parts just listed have been presented in previous sections.
We list the procedure here. Parts 1, 5, and 6 were provided in Chapter 11; refer to that
chapter for more details. Parts 2, 3, and 4 are the additions needed to support a context
switch using an MMU and are shown here with the arguments needed to switch from task
1 to task 2 in the demonstration.

SAVE retiring task context; /* part 1 shown in Chapter 11 */

flushCache(); /* part 2 shown in Chapter 12 */

flushTLB(); /* part 3 shown in Example 14.2 */

mmuAttachPT(&task2PT); /* part 4 shown in Example 14.10 */

RESTORE awakening task context /* part 5 shown in Chapter 11 */

RESUME execution of restored task /* part 6 shown in Chapter 11 */

14.12 Summary 545

14.11 The Demonstration as mmuSLOS
Many of the concepts and the examples from the MMU demonstration code have been
incorporated into a functional control system we call mmuSLOS. It is an extension of the
control system called SLOS presented in Chapter 11.

mpuSLOS is the memory protection unit extension to SLOS, and was described in
Chapter 13. We use the mpuSLOS variant as the base source code for mmuSLOS. All three
variants can be found on the publisher’s Web site. We changed three major parts of the
mpuSLOS code:

■ The MMU tables are created during the mmuSLOS initialization stage.

■ The application tasks are built to execute at 0x400000, but are loaded at a different
physical addresses. Each application task executes in a virtual memory starting at the
execution address. The top of the stack is located as an 32 KB offset from the execution
address.

■ Each time the scheduler is called, the active 32 KB page in the MMU table is changed
to reflect the new active application/task.

14.12 Summary
The chapter presented the basics of memory management and virtual memory systems.
A key service of an MMU is the ability to manage tasks as independent programs running
in their own private virtual memory space.

An important feature of a virtual memory system is address relocation. Address reloca-
tion is the translation of the address issued by the processor core to a different address in
main memory. The translation is done by the MMU hardware.

In a virtual memory system, virtual memory is commonly divided into parts as fixed
areas and dynamic areas. In fixed areas the translation data mapped in a page table does not
change during normal operation; in dynamic areas the memory mapping between virtual
and physical memory frequently changes.

Page tables contain descriptions of virtual page information. A page table entry (PTE)
translates a page in virtual memory to a page frame in physical memory. Page table entries
are organized by virtual address and contain the translation data to map a page to a page
frame.

The functions of an ARM MMU are to:

■ read level 1 and level 2 page tables and load them into the TLB

■ store recent virtual-to-physical memory address translations in the TLB

■ perform virtual-to-physical address translation

■ enforce access permission and configure the cache and write buffer

546 Chapter 14 Memory Management Units

An additional special feature in an ARM MMU is the Fast Context Switch Extension.
The Fast Context Switch Extension improves performance in a multitasking environment
because it does not require flushing the caches or TLB during a context switch.

A working example of a small virtual memory system provided in-depth details to set up
the MMU to support multitasking. The steps in setting up the demonstration are to define
the regions used in the fixed system software of virtual memory, define the virtual memory
maps for each task, locate the fixed and task regions into the physical memory map, define
and locate the page tables within the page table region, define the data structures needed
to create and manage the regions and page tables, initialize the MMU by using the defined
region data to create page table entries and write them to the page tables, and establish a
context switch procedure to transition from one task to the next.

This Page Intentionally Left Blank

15.1 Advanced DSP and SIMD Support in ARMv6
15.1.1 SIMD Arithmetic Operations

15.1.2 Packing Instructions

15.1.3 Complex Arithmetic Support

15.1.4 Saturation Instructions

15.1.5 Sum of Absolute Differences Instructions

15.1.6 Dual 16-Bit Multiply Instructions

15.1.7 Most Significant Word Multiplies

15.1.8 Cryptographic Multiplication Extensions

15.2 System and Multiprocessor Support Additions to ARMv6
15.2.1 Mixed-Endianness Support

15.2.2 Exception Processing

15.2.3 Multiprocessing Synchronization Primitives

15.3 ARMv6 Implementations
15.4 Future Technologies beyond ARMv6

15.4.1 TrustZone

15.4.2 Thumb-2

15.5 Summary

C h a p t e r

The Future
of the

Architecture

15
John Rayfield

In October 1999, ARM began to consider the future direction of the architecture that would
eventually become ARMv6, first implemented in a new product called ARM1136J-S. By this
time, ARM already had designs for many different applications, and the future requirements
of each of those designs needed to be evaluated, as well as the new application areas for
which ARM would be used in the future.

As system-on-chip designs have become more sophisticated, ARM processors have
become the central processors in systems with multiple processing elements and subsystems.
In particular, the portable and mobile computing markets were introducing new software
and performance challenges for ARM. Areas that needed addressing were digital signal
processing (DSP) and video performance for portable devices, interworking mixed-endian
systems such as TCP/IP, and efficient synchronization in multiprocessing environments.
The challenge for ARM was to address all of these market requirements and yet maintain
its competitive advantage in computational efficiency (computing power per mW) as the
best in the industry.

This chapter describes the components within ARMv6 introduced by ARM to address
these market requirements, including enhanced DSP support and support for a multi-
processing environment. The chapter also introduces the first high-performance ARMv6
implementations and, in addition to the ARMv6 technologies, one of ARM’s latest
technologies—TrustZone.

549

550 Chapter 15 The Future of the Architecture

15.1 Advanced DSP and SIMD Support in ARMv6
Early in the ARMv6 project, ARM considered how to improve the DSP and media processing
capabilities of the architecture beyond the ARMv5E extensions described in Section 3.7. This
work was carried out very closely with the ARM1136J-S engineering team, which was in the
early stages of developing the microarchitecture for the product. SIMD (Single Instruction
Multiple Data) is a popular technique used to garner considerable data parallelism and is
particularly effective in very math-intensive routines that are commonly used in DSP, video
and graphics processing algorithms. SIMD is attractive for high code density and low power
since the number of instructions executed (and hence memory system accesses) is kept low.
The price for this efficiency is the reduced flexibility of having to compute things arranged
in certain blocked data patterns; this, however, works very well in many image and signal
processing algorithms.

Using the standard ARM design philosophy of computational efficiency with very low
power, ARM came up with a simple and elegant way of slicing up the existing ARM 32-bit
datapath into four 8-bit and two 16-bit slices. Unlike many existing SIMD architectures
that add separate datapaths for the SIMD operations, this method allows the SIMD to be
added to the base ARM architecture with very little extra hardware cost.

The ARMv6 architecture includes this “lightweight” SIMD approach that costs virtually
nothing in terms of extra complexity (gate count) and therefore power. At the same time the
new instructions can improve the processing throughput of some algorithms by up to two
times for 16-bit data or four times for 8-bit data. In common with most operations in the
ARM instruction set architecture, all of these new instructions are executed conditionally,
as described in Section 2.2.6.

You can find a full description of all ARMv6 instructions in the instruction set tables of
Appendix A.

15.1.1 SIMD Arithmetic Operations

Table 15.1 shows a summary of the 8-bit SIMD operations. Each byte result is formed
from the arithmetic operation on each of the corresponding byte slices through the source
operands.

The results of these 8-bit operations may require that up to 9 bits be represented, which
either causes a wraparound or a saturation to take place, depending on the particular
instruction used.

In addition to the 8-bit SIMD operations, there are an extensive range of dual 16-bit
operations, shown in Table 15.2. Each halfword (16-bit) result is formed from the arithmetic
operation on each of the corresponding 16-bit slices through the source operands.

The results may need 17 bits to be stored, and in this case they can either wrap around
or are saturated to within the range of a 16-bit signed result with the saturating version of
the instruction.

15.1 Advanced DSP and SIMD Support in ARMv6 551

Table 15.1 8-bit SIMD arithmetic operations.

Instruction Description

SADD8{<cond>} Rd, Rn, Rm Signed 8-bit SIMD add
SSUB8{<cond>} Rd, Rn, Rm Signed 8-bit SIMD subtract
UADD8{<cond>} Rd, Rn, Rm Unsigned 8-bit SIMD add
USUB8{<cond>} Rd, Rn, Rm Unsigned 8-bit SIMD subtract
QADD8{<cond>} Rd, Rn, Rm Signed saturating 8-bit SIMD add
QSUB8{<cond>} Rd, Rn, Rm Signed saturating 8-bit SIMD subtract
UQADD8{<cond>} Rd, Rn, Rm Unsigned saturating 8-bit SIMD add
UQSUB8{<cond>} Rd, Rn, Rm Unsigned saturating 8-bit SIMD subtract

Table 15.2 16-bit SIMD arithmetic operations.

Instruction Description

SADD16{<cond>} Rd, Rn, Rm Signed add of the 16-bit pairs
SSUB16{<cond>} Rd, Rn, Rm Signed subtract of the 16-bit pairs
UADD16{<cond>} Rd, Rn, Rm Unsigned add of the 16-bit pairs
USUB16{<cond>} Rd, Rn, Rm Unsigned subtract of the 16-bit pairs
QADD16{<cond>} Rd, Rn, Rm Signed saturating add of the 16-bit pairs
QSUB16{<cond>} Rd, Rn, Rm Signed saturating subtract of the 16-bit pairs
UQADD16{<cond>} Rd, Rn, Rm Unsigned saturating add of the 16-bit pairs
UQSUB16{<cond>} Rd, Rn, Rm Unsigned saturating subtract of the 16-bit pairs

Operands for the SIMD instructions are not always found in the correct order within the
source registers; to improve the efficiency of dealing with these situations, there are 16-bit
SIMD operations that perform swapping of the 16-bit words of one operand register. These
operations allow a great deal of flexibility in dealing with halfwords that may be aligned in
different ways in memory and are particularly useful when working with 16-bit complex
number pairs that are packed into 32-bit registers. There are signed, unsigned, saturating
signed, and saturating unsigned versions of these operations, as shown in Table 15.3.

The X in the instruction mnemonic signifies that the two halfwords in Rm are swapped
before the operations are applied so that operations like the following take place:

Rd[15:0] = Rn[15:0] - Rm[31:16]
Rd[31:16] = Rn[31:16] + Rm[15:0]

The addition of the SIMD operations means there is now a need for some way of showing
an overflow or a carry from each SIMD slice through the datapath. The cpsr as originally

552 Chapter 15 The Future of the Architecture

Table 15.3 16-bit SIMD arithmetic operations with swap.

Instruction Description

SADDSUBX{<cond>} Rd, Rn, Rm Signed upper add, lower subtract, with a swap of
halfwords in Rm

UADDSUBX{<cond>} Rd, Rn, Rm Unsigned upper add, lower subtract, with swap of
halfwords in Rm

QADDSUBX{<cond>} Rd, Rn, Rm Signed saturating upper add, lower subtract, with
swap of halfwords in Rm

UQADDSUBX{<cond>} Rd, Rn, Rm Unsigned saturating upper add, lower subtract, with
swap of halfwords in Rm

SSUBADDX{<cond>} Rd, Rn, Rm Signed upper subtract, lower add, with a swap of
halfwords in Rm

USUBADDX{<cond>} Rd, Rn, Rm Unsigned upper subtract, lower add, with swap of
halfwords in Rm

QSUBADDX{<cond>} Rd, Rn, Rm Signed saturating upper subtract, lower add, with
swap of halfwords in Rm

UQSUBADDX{<cond>} Rd, Rn, Rm Unsigned saturating upper subtract, lower add, with
swap of halfwords in Rm

described in Section 2.2.5 is modified by adding four additional flag bits to represent each
8-bit slice of the data path. The newly modified cpsr register with the GE bits is shown in
Figure 15.1 and Table 15.4. The functionality of each GE bit is that of a “greater than or
equal” flag for each slice through the datapath.

Operating systems already save the cpsr register on a context switch. Adding these bits
to the cpsr has little effect on OS support for the architecture.

In addition to basic arithmetic operations on the SIMD data slices, there is considerable
use for operations that allow the picking of individual data elements within the datapath and
forming new ensembles of these elements. A select instruction SEL can independently select
each eight-bit field from one source register Rn or another source register Rm, depending
on the associated GE flag.

31 030 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

N Z C V modeQ JRes Res Res E A I F TGE [3:0]

Figure 15.1 cpsr layout for ARMv6.

15.1 Advanced DSP and SIMD Support in ARMv6 553

Table 15.4 cpsr fields for ARMv6.

Field Use

N Negative flag. Records bit 31 of the result of flag-setting operations.
Z Zero flag. Records if the result of a flag-setting operation is zero.
C Carry flag. Records unsigned overflow for addition, not-borrow for

subtraction, and is also used by the shifting circuit. See Table A.3.
V Overflow flag. Records signed overflows for flag-setting operations.
Q Saturation flag. Certain saturating operations set this flag on saturation. See for

example QADD in Appendix A (ARMv5E and above).
J J = 1 indicates Java execution (must have T = 0). Use the BXJ instruction to

change this bit (ARMv5J and above).
Res These bits are reserved for future expansion. Software should preserve the

values in these bits.
GE[3:0] The SIMD greater-or-equal flags. See SADD in Appendix A (ARMv6).
E Controls the data endianness. See SETEND in Appendix A (ARMv6).
A A = 1 disables imprecise data aborts (ARMv6).
I I = 1 disables IRQ interrupts.
F F = 1 disables FIQ interrupts.
T T = 1 indicates Thumb state. T = 0 indicates ARM state. Use the BX or BLX

instructions to change this bit (ARMv4T and above).
mode The current processor mode. See Table B.4.

SEL Rd, Rn, Rm
Rd[31:24] = GE[3] ? Rn[31:24] : Rm[31:24]
Rd[23:16] = GE[2] ? Rn[23:16] : Rm[23:16]
Rd[15:08] = GE[1] ? Rn[15:08] : Rm[15:08]
Rd[07:00] = GE[0] ? Rn[07:00] : Rm[07:00]

These instructions, together with the other SIMD operations, can be used very effec-
tively to implement the core of the Viterbi algorithm, which is used extensively for symbol
recovery in communication systems. Since the Viterbi algorithm is essentially a statistical
maximum likelihood selection algorithm, it is also used in such areas as speech and hand-
writing recognition engines. The core of Viterbi is an operation that is commonly known as
add-compare-select (ACS), and in fact many DSP processors have customized ACS instruc-
tions. With its parallel (SIMD) add, subtract (which can be used to compare), and selection
instructions, ARMv6 can implement an extremely efficient add-compare-select:

ADD8 Rp1, Rs1, Rb1 ; path 1 = state 1 + branch 1 (metric update)
ADD8 Rp2, Rs2, Rb2 ; path 2 = state 2 + branch 2 (mteric update)

554 Chapter 15 The Future of the Architecture

Table 15.5 Packing instructions.

Instruction Description

PKHTB{<cond>} Rd, Rn, Rm {, ASR #<shift_imm>} Pack the top 16 bits of Rn with the bottom
16 bits of the shifted Rm into the
destination Rd

PKHBT{<cond>} Rd, Rn, Rm {, LSL #<shift_imm>} Pack the top 16 bits of the shifted Rm with
the bottom 16 bits of Rn into the
destination Rd

USUB8 Rt, Rp1, Rp2 ; compare metrics - setting the SIMD flags
SEL Rd, Rp2, Rp1 ; choose best (smallest) metric

This kernel performs the ACS operation on four paths in parallel and takes a total
of 4 cycles on the ARM1136J-S. The same sequence coded for the ARMv5TE instruction
set must perform each of the operations serially, taking at least 16 cycles. Thus the add-
compare-select function is four times faster on ARM1136J-S for eight-bit metrics.

15.1.2 Packing Instructions

The ARMv6 architecture includes a new set of packing instructions, shown in Table 15.5,
that are used to construct new 32-bit packed data from pairs of 16-bit values in different
source registers. The second operand can be optionally shifted. Packing instructions are
particularly useful for pairing 16-bit values so that you can make use of the 16-bit SIMD
processing instructions described earlier.

15.1.3 Complex Arithmetic Support

Complex arithmetic is commonly used in communication signal processing, and in partic-
ular in the implementations of transform algorithms such as the Fast Fourier Transform as
described in Chapter 8. Much of the implementation detail examined in that chapter con-
cerns the efficient implementation of the complex multiplication using ARMv4 or ARMv5E
instruction sets.

ARMv6 adds new multiply instructions to accelerate complex multiplication, shown in
Table 15.6. Both of these operations optionally swap the order of the two 16-bit halves of
source operand Rs if you specify the X suffix.

Example

15.1
In this example Ra and Rb hold complex numbers with 16-bit coefficients packed with
their real parts in the lower half of a register and their imaginary part in the upper half.

15.1 Advanced DSP and SIMD Support in ARMv6 555

Table 15.6 Instructions to support 16-bit complex multiplication.

Instruction Description

SMUAD{X}{<cond>} Rd, Rm, Rs Dual 16-bit signed multiply and add
SMUSD{X}{<cond>} Rd, Rm, Rs Dual 16-bit signed multiply and subtract

We multiply Ra and Rb to produce a new complex number Rc. The code assumes that the
16-bit values represent Q15 fractions. Here is the code for ARMv6:

SMUSD Rt, Ra, Rb ; real*real–imag*imag at Q30
SMUADX Rc, Ra, Rb ; real*imag+imag*real at Q30
QADD Rt, Rt, Rt ; convert to Q31 & saturate
QADD Rc, Rc, Rc ; convert to Q31 & saturate
PKHTB Rc, Rc, Rt, ASR #16 ; pack results

Compare this with an ARMv5TE implementation:

SMULBB Rc, Ra, Rb ; real*real
SMULTT Rt, Ra, Rb ; imag*imag
QSUB Rt, Rc, Rt ; real*real-imag*imag at Q30
SMULTB Rc, Ra, Rb ; imag*real
SMLABT Rc, Ra, Rb ; + real*imag at Q30
QADD Rt, Rt, Rt ; convert to Q31 & saturate
QADD Rc, Rc, Rc ; convert to Q31 & saturate
MOV Rc, Rc, LSR #16
MOV Rt, Rt, LSR #16
ORR Rt, Rt, Rc, LSL#16 ; pack results

There are 10 cycles for ARMv5E versus 5 cycles for ARMv6. Clearly with any algorithm
doing very intense complex maths, a two times improvement in performance can be gained
for the complex multiply. ■

15.1.4 Saturation Instructions

Saturating arithmetic was first addressed with the E extensions that were added to the
ARMv5TE architecture, which was introduced with the ARM966E and ARM946E products.
ARMv6 takes this further with individual and more flexible saturation instructions that can
operate on 32-bit words and 16-bit halfwords. In addition to these instructions, shown in
Table 15.7, there are the new saturating arithmetic SIMD operations that have already been
described in Section 15.1.1.

556 Chapter 15 The Future of the Architecture

Table 15.7 Saturation instructions.

Instruction Description

SSAT Rd, #<BitPosition>, Rm,{<Shift>} Signed 32-bit saturation at an arbitrary bit
position. Shift can be an LSL or ASR.

SSAT16{<cond>} Rd, #<immed>, Rm Dual 16-bit saturation at the same position in
both halves.

USAT Rd, #<BitPosition>, Rm,{<Shift>} Unsigned 32-bit saturation at an arbitrary bit
position. Shift can be LSL or ASR.

USAT16{<cond>} Rd, #<immed>, Rm Unsigned dual 16-bit saturation at the same
position in both halves.

Note that in the 32-bit versions of these saturation operations there is an optional
arithmetic shift of the source register Rm before saturation, allowing scaling to take place
in the same instruction.

15.1.5 Sum of Absolute Differences Instructions

These two new instructions are probably the most application specific within the ARMv6
architecture—USAD8 and USADA8. They are used to compute the absolute difference
between eight-bit values and are particularly useful in motion video compression algorithms
such as MPEG or H.263, including motion estimation algorithms that measure motion by
comparing blocks using many sum-of-absolute-difference operations (see Figure 15.2).
Table 15.8 lists these instructions.

Table 15.8 Sum of absolute differences.

Instruction Description

USAD8{<cond>} Rd, Rm, Rs Sum of absolute differences
USADA8{<cond>} Rd, Rm, Rs, Rn Accumulated sum of absolute differences

To compare an N ×N square at (x , y) in image p1 with an N ×N square p2, we calculate
the accumulated sum of absolute differences:

a(x , y) =
N−1∑
i=0

N−1∑
j=0

∣∣p1(x + i, y + j) − p2(i, j)
∣∣

15.1 Advanced DSP and SIMD Support in ARMv6 557

Rn

Rm Rs

Rd

absdiff absdiff absdiff absdiff

+

Figure 15.2 Sum-of-absolute-differences operation.

To implement this using the new instructions, use the following sequence to compute the
sum-of-absolute differences of four pixels:

LDR p1,[p1Ptr],#4 ; load 4 pixels from p1
LDR p2,[p2Ptr],#4 ; load 4 pixels from p2
;load delay-slot
;load delay-slot
USADA8 acc, p1, p2 ; accumlate sum abs diff

There is a tremendous performance advantage for this algorithm over an ARMv5TE
implementation. There is a four times improvement in performance from the eight-bit
SIMD alone. Additionally the USADA8 operation includes the accumulation operation. The
USAD8 operation will typically be used to carry out the setup into the loop before there is an
existing accumulated value.

15.1.6 Dual 16-Bit Multiply Instructions

ARMv5TE introduced considerable DSP performance to ARM, but ARMv6 takes this much
further. Implementations of ARMv6 (such as ARM1136J) have a dual 16 × 16 multiply
capability, which is comparable with many high-end dedicated DSP devices. Table 15.9 lists
these instructions.

558 Chapter 15 The Future of the Architecture

Table 15.9 Dual 16-bit multiply operations.

Instruction Description

SMLAD{X}{<cond>} Rd, Rm, Rs, Rn Dual signed multiply accumulate with
32-bit accumulation

SMLALD{X}{<cond>} RdLo, RdHi, Rm, Rs Dual signed multiply accumulate with
64-bit accumulation

SMLSD{X}{<cond>} Rd, Rm, Rs, Rn Dual signed multiply subtract with
32-bit accumulation

SMLSLD{X}{<cond>} RdLo, RdHi, Rm, Rs Dual signed multiply subtract with
64-bit accumulation

We demonstrate the use of SMLAD as a signed dual multiply in a dot-product inner
loop:

MOV R0, #0 ; zero accumulator
Loop

LDMIA R2!,{R4,R5,R6,R7} ; load 8 16-bit data items
LDMIA R1!,{R8,R9,R10,R11} ; load 8 16-bit coefficients
SUBS R3,R3,#8 ; subtract 8 from the loop counter
SMLAD R0,R4,R8,R0 ; 2 multiply accumulates
SMLAD R0,R5,R9,R0
SMLAD R0,R6,R10,R0
SMLAD R0,R7,R11,R0
BGT Loop ; loop if more coefficients

This loop delivers eight 16 × 16 multiply accumulates in 10 cycles without using any data-
blocking techniques. If a set of the operands for the dot-product is stored in registers, then
performance approaches the true dual multiplies per cycle.

15.1.7 Most Significant Word Multiplies

ARMv5TE added arithmetic operations that are used extensively in a very broad range
of DSP algorithms including control and communications and that were designed to use
the Q15 data format. However, in audio processing applications it is common for 16-bit
processing to be insufficient to describe the quality of the signals. Typically 32-bit values
are used in these cases, and ARMv6 adds some new multiply instructions that operate on
Q31 formatted values. (Recall that Q-format arithmetic is described in detail in Chapter 8.)
These new instructions are listed in Table 15.10.

15.1 Advanced DSP and SIMD Support in ARMv6 559

Table 15.10 Most significant word multiplies.

Instruction Description

SMMLA{R}{<cond>} Rd, Rm, Rs, Rn Signed 32 × 32 multiply with accumulation of
the high 32 bits of the product to the
32-bit accumulator Rn

SMMLS{R}{<cond>} Rd, Rm, Rs, Rn Signed 32 × 32 multiply subtracting from
(Rn << 32) and then taking the high 32 bits
of the result

SMMUL{R}{<cond>} Rd, Rm, Rs Signed 32 × 32 multiply with upper 32 bits of
product only

The optional {R} in the mnemonic allows the addition of the fixed constant 0x80000000
to the 64-bit product before producing the upper 32 bits. This allows for biased rounding
of the result.

15.1.8 Cryptographic Multiplication Extensions

In some cryptographic algorithms, very long multiplications are quite common. In order
to maximize their throughput, a new 64 + 32 × 32 → 64 multiply accumulate operation
has been added to complement the already existing 32 × 32 multiply operation UMULL
(see Table 15.11).

Here is an example of a very efficient 64-bit × 64-bit multiply using the new instructions:

; inputs: First 64-bit multiply operand in (RaHi,RaLo)
; Second 64-bit multiply operand in (RbHi, RbLo)

umull64x64
UMULL R0, R2, RaLo, RbLo
UMULL R1, R3, RaHi, RbLo
UMAAL R1, R2, RaLo, RbHi
UMAAL R2, R3, RaHi, RbHi

; output: 128-bit result in (R3, R2, R1, R0)

Table 15.11 Cryptographic multiply.

UMAAL{<cond>} RdLo, RdHi, Rm, Rs Special crypto multiply (RdHi : RdLo) = Rm ∗
Rs + RdHi + RdLo

560 Chapter 15 The Future of the Architecture

15.2 System and Multiprocessor Support
Additions to ARMv6

As systems become more complicated, they incorporate multiple processors and processing
engines. These engines may share different views of memory and even use different endi-
annesses (byte order). To support communication in these systems, ARMv6 adds support
for mixed-endian systems, fast exception processing, and new synchronization primitives.

15.2.1 Mixed-Endianness Support

Traditionally the ARM architecture has had a little-endian view of memory with a big-
endian mode that could be switched at reset. This big-endian mode sets the memory system
up as big-endian ordered instructions and data.

As mentioned in the introduction to this chapter, ARM has found its cores integrated
into very sophisticated system-on-chip devices dealing with mixed endianess, and often has
to deal with both little- and big-endian data in software. ARMv6 adds a new instruction
to set the data endianness for large code sequences (see Table 15.12), and also some indi-
vidual manipulation instructions to increase the efficiency of dealing with mixed-endian
environments.

The endian_specifier is either BE for big-endian or LE for little endian. A program
would typically use SETEND when there is a considerable chunk of code that is carrying
out operations on data with a particular endianness. Figure 15.3 shows individual byte
manipulation instructions.

Table 15.12 Setting data-endianness operation.

SETEND <endian_specifier> Change the default data endianness based on the
<endian_specifier> argument.

15.2.2 Exception Processing

It is common for operating systems to save the return state of an interrupt or exception
on a stack. ARMv6 adds the instructions in Table 15.13 to improve the efficiency of this
operation, which can occur very frequently in interrupt/scheduler driven systems.

15.2.3 Multiprocessing Synchronization Primitives

As system-on-chip (SoC) architectures have become more sophisticated, ARM cores are
now often found in devices with many processing units that compete for shared resources.

15.2 System and Multiprocessor Support Additions to ARMv6 561

REV {<cond>} Rd, Rm Reverse order of all four bytes in a 32-bit word

REV16 {<cond>} Rd, Rm Reverse order of byte pairs in upper and
lower half

REVSH {<cond>} Rd, Rm Reverse byte order of the signed halfword

B3 B2 B1 B0

B0 B1 B2 B3

31 24 16 8 0

31 24 16 8 0

31 24 16 8 0

31 24 16 8 0

31 24 16 8 0

31 24 16 8 0

B3 B2 B1 B0

B3B2 B1B0

B3 B2 B1 B0

S B1B0S

Rm

Rd

Rm

Rd

Rm

Rd

Figure 15.3 Reverse instructions in ARMv6.

562 Chapter 15 The Future of the Architecture

Table 15.13 Exception processing operations.

Instruction Description

SRS<addressing_mode>, #mode{!} Save return state (lr and spsr) on the stack
addressed by sp in the specified mode.

RFE <addressing_mode>, Rn{!} Return from exception. Loads the pc and cpsr
from the stack pointed to by Rn.

CPS<effect> <iflags> {,#<mode>} Change processor state with interrupt enable
or disable.

CPS #<mode> Change processor state only.

The ARM architecture has always had the SWP instruction for implementing semaphores to
ensure consistency in such environments. As the SoC has become more complex, however,
certain aspects of SWP cause a performance bottleneck in some instances. Recall that SWP is
basically a “blocking” primitive that locks the external bus of the processor and uses most of
its bandwidth just to wait for a resource to be released. In this sense the SWP instruction is
considered “pessimistic”—no computation can continue until SWP returns with the freed
resource.

New instructions LDREX and STREX (load and store exclusive) were added to the
ARMv6 architecture to solve this problem. These instructions, listed in Table 15.14, are
very straightforward in use and are implemented by having a system monitor out in the
memory system. LDREX optimistically loads a value from memory into a register assuming
that nothing else will change the value in memory while we are working on it. STREX stores
a value back out to memory and returns an indication of whether the value in memory
was changed or not between the original LDREX operation and this store. In this way the
primitives are “optimistic”—you continue processing the data you loaded with LDREX
even though some external device may also be modifying the value. Only if a modification
actually took place externally is the value thrown away and reloaded.

The big difference for the system is that the processor no longer waits around on the
system bus for a semaphore to be free, and therefore leaves most of the system bus bandwidth
available for other processes or processors.

Table 15.14 Load and store exclusive operations.

Instructions Description

LDREX{<cond>} Rd, [Rn] Load from address in Rn and set memory monitor
STREX{<cond>} Rd, Rm, [Rn] Store to address in Rn and flag if successful in Rd

(Rd = 0 if successful)

15.4 Future Technologies beyond ARMv6 563

15.3 ARMv6 Implementations
ARM completed development of ARM1136J in December 2002, and at this writing con-
sumer products are being designed with this core. The ARM1136J pipeline is the most
sophisticated ARM implementation to date. As shown in Figure 15.4, it has an eight-stage
pipeline with separate parallel pipelines for load/store and multiply/accumulate.

The parallel load/store unit (LSU) with hit-under-miss capability allows load and store
operations to be issued and execution to continue while the load or store is completing with
the slower memory system. By decoupling the execution pipeline from the completion of
loads or stores, the core can gain considerable extra performance since the memory system
is typically many times slower than the core speed. Hit-under-miss extends this decoupling
out to the L1-L2 memory interface so that an L1 cache miss can occur and an L2 transaction
can be completing while other L1 hits are still going on.

Another big change in microarchitecture is the move from virtually tagged caches to
physically tagged caches. Traditionally, ARM has used virtually tagged caches where the
MMU is between the caches and the outside L2 memory system. With ARMv6, this changes
so that the MMU is now between the core and the L1 caches, so that all cache memory
accesses are using physical (already translated) addresses. One of the big benefits of this
approach is considerably reduced cache flushing on context switches when the ARM is
running large operating systems. This reduced flushing will also reduce power consumption
in the end system since cache flushing directly implies more external memory accesses. In
some cases it is expected that this architectural change will deliver up to a 20% performance
improvement.

15.4 Future Technologies beyond ARMv6
In 2003, ARM made further technology announcements including TrustZone and
Thumb-2. While these technologies are very new, at this writing, they are being included
in new microprocessor cores. The next sections briefly introduce these new technologies.

15.4.1 TrustZone

TrustZone is an architectural extension targeting the security of transactions that may be
carried out using consumer products such as cell phones and, in the future, perhaps online
transactions to download music or video for example. It was first introduced in October
2003 when ARM announced the ARM1176JZ-S.

The fundamental idea is that operating systems (even on embedded devices) are now
so complex that it is very hard to verify security and correctness in the software. The ARM
solution to this problem is to add new operating “states” to the architecture where only a
small verifiable software kernel will run, and this will provide services to the larger operating
system. The microprocessor core then takes a role in controlling system peripherals that

564
C

h
apter

15
T

he
Future

ofthe
A

rchitecture

1st fetch
stage

2nd fetch
stage

Instruction
decode

Register
read and

instruction
issue

Common decode pipeline

Fe1 Fe2 De Iss

A
L

U
pipeline

Sh ALU Sat

MAC1 MAC2 MAC3

Ex1 Ex2 Ex3

Shifter
operation

1st multiply
stage

2nd multiply
stage

3rd multiply
stage

Calculate
writeback

value
Saturation

Base
register

writeback

Writeback
from LSU

ADD DC1 DC2

M
ultiply

pipeline

WBex

WBIs

L
oad/store
pipeline

Data
address

calculation

First stage
of data
cache
access

Second
stage of data

 cache
access

H
it under
m

iss

Load miss
waits

Figure 15.4 ARM1136J pipeline.
Source: ARM Limited, ARM 1136J, Technical Reference Manual, 2003.

15.4 Future Technologies beyond ARMv6 565

may be only available to the secure “state” through some new exported signals on the bus
interface. The system states are shown in Figure 15.5.

TrustZone is most useful in devices that will be carrying out content downloads such as
cell phones or other portable devices with network connections. Details of this architecture
are not public at the time of writing.

Platform
OS

Secure
kernel

Privileged

User

Normal Secure

Trusted code base

S
-
A
p
p

S
-
A
p
p

A
p
p

A
p
p

A
p
p

A
p
p

A
p
p

Monitor
Fixed entry

points
Fixed entry

points

Figure 15.5 Modified security structure using TrustZone technology.
Source: Richard York, A New Foundation for CPU Systems Security: Security Extensions to
the ARM Architecture, 2003.

15.4.2 Thumb-2

Thumb-2 is an architectural extension designed to increase performance at high code
density. It allows for a blend of 32-bit ARM-like instructions with 16-bit Thumb instruc-
tions. This combination enables you to have the code density benefits of Thumb with the
additional performance benefits of access to 32-bit instructions.

Thumb-2 was announced in October 2003 and will be implemented in the
ARM1156T2-S processor. Details of this architecture are not public at the time of writing.

566 Chapter 15 The Future of the Architecture

15.5 Summary
The ARM architecture is not a static constant but is being developed and improved to suit the
applications required by today’s consumer devices. Although the ARMv5TE architecture
was very successful at adding some DSP support to the ARM, the ARMv6 architecture
extends the DSP support as well as adding support for large multiprocessor systems.
Table 15.15 shows how these new technologies map to different processor cores.

ARM still concentrates on one of its key benefits—code density—and has recently
announced the Thumb-2 extension to its popular Thumb architecture. The new focus on
security with TrustZone gives ARM a leading edge in this area.

Expect many more innovations over the years to come!

Table 15.15 Recently announced cores.

Processor core Architecture version

ARM1136J-S ARMv6J
ARM1156T2-S ARMv6 + Thumb-2
ARM1176JZ-S ARMv6J + TrustZone

This Page Intentionally Left Blank

A.1 Using This Appendix
A.2 Syntax

A.2.1 Optional Expressions

A.2.2 Register Names

A.2.3 Values Stored as Immediates

A.2.4 Condition Codes and Flags

A.2.5 Shift Operations

A.3 Alphabetical List of ARM and Thumb Instructions
A.4 ARM Assembler Quick Reference

A.4.1 ARM Assembler Variables

A.4.2 ARM Assembler Labels

A.4.3 ARM Assembler Expressions

A.4.4 ARM Assembler Directives

A.5 GNU Assembler Quick Reference
A.5.1 GNU Assembler Directives

A p p e n d i x

ARM and Thumb
Assembler

Instructions

A

This appendix lists the ARM and Thumb instructions available up to, and including, ARM
architecture ARMv6, which was just released at the time of writing. We list the operations
in alphabetical order for easy reference. Sections A.4 and A.5 give quick reference guides to
the ARM and GNU assemblers armasm and gas.

We have designed this appendix for practical programming use, both for writing
assembly code and for interpreting disassembly output. It is not intended as a definitive
architectural ARM reference. In particular, we do not list the exhaustive details of each
instruction bitmap encoding and behavior. For this level of detail, see the ARM Architecture
Reference Manual, edited by David Seal, published by Addison Wesley. We do give a
summary of ARM and Thumb instruction set encodings in Appendix B.

A.1 Using This Appendix
Each appendix entry begins by enumerating the available instructions formats for the given
instruction class. For example, the first entry for the instruction class ADD reads

1. ADD<cond>{S} Rd, Rn, #<rotated_immed> ARMv1

The fields <cond> and <rotated_immed> are two of a number of standard fields described
in Section A.2. Rd and Rn denote ARM registers. The instruction is only executed if the

569

570 Appendix A ARM and Thumb Assembler Instructions

Table A.1 Instruction types.

Type Meaning

ARMvX 32-bit ARM instruction first appearing in ARM architecture version X
THUMBvX 16-bit Thumb instruction first appearing in Thumb architecture version X
MACRO Assembler pseudoinstruction

condition <cond> is passed. Each entry also describes the action of the instruction if it is
executed.

The {S} denotes that you may apply an optional S suffix to the instruction. Finally,
the right-hand column specifies that the instruction is available from the listed ARM
architecture version onwards. Table A.1 shows the entries possible for this column.

Note that there is no direct correlation between the Thumb architecture number and
the ARM architecture number. The THUMBv1 architecture is used in ARMv4T processors;
the THUMBv2 architecture, in ARMv5T processors; and the THUMBv3 architecture, in
ARMv6 processors.

Each instruction definition is followed by a notes section describing restrictions on the
use of the instruction. When we make a statement such as “Rd must not be pc,” we mean
that the description of the function only applies when this condition holds. If you break
the condition, then the instruction may be unpredictable or have predictable effects that we
haven’t had space to describe here. Well-written programs should not need to break these
conditions.

A.2 Syntax
We use the following syntax and abbreviations throughout this appendix.

A.2.1 Optional Expressions

■ {<expr>} is an optional expression. For example, LDR{B} is shorthand for LDR or LDRB.

■ {<exp1>|<exp2>|…|<expN>}, including at least one “|” divider, is a list of expressions.
One of the listed expressions must appear. For example LDR{B|H} is shorthand for
LDRB or LDRH. It does not include LDR. We would represent these three possibilities by
LDR{|B|H}.

A.2.2 Register Names

■ Rd, Rn, Rm, Rs, RdHi, RdLo represent ARM registers in the range r0 to r15.

■ Ld, Ln, Lm, Ls represent low-numbered ARM registers in the range r0 to r7.

A.2 Syntax 571

■ Hd, Hn, Hm, Hs represent high-numbered ARM registers in the range r8 to r15.

■ Cd, Cn, Cm represent coprocessor registers in the range c0 to c15.

■ sp, lr, pc are names for r13, r14, r15, respectively.

■ Rn[a] denotes bit a of register Rn. Therefore Rn[a] = (Rn � a) & 1.

■ Rn[a:b] denotes the a + 1 − b bit value stored in bits a to b of Rn inclusive.

■ RdHi:RdLo represents the 64-bit value with high 32 RDHi bits and low 32 bits RdLo.

A.2.3 Values Stored as Immediates

■ <immedN> is any unsigned N-bit immediate. For example, <immed8> represents any
integer in the range 0 to 255. <immed5>*4 represents any integer in the list 0, 4, 8, …, 124.

■ <addressN> is an address or label stored as a relative offset. The address must be in the
range pc − 2N ≤ address < pc + 2N . Here, pc is the address of the instruction plus
eight for ARM state, or the address of the instruction plus four for Thumb state. The
address must be four-byte aligned if the destination is an ARM instruction or two-byte
aligned if the destination is a Thumb instruction.

■ <A-B> represents any integer in the range A to B inclusive.

■ <rotated_immed> is any 32-bit immediate that can be represented as an eight-
bit unsigned value rotated right (or left) by an even number of bit positions. In
other words, <rotated_immed> = <immed8> ROR (2*<immed4>). For example0xff,
0x104, 0xe0000005, and0x0bc00000 are possible values for<rotated_immed>. How-
ever, 0x101 and 0x102 are not. When you use a rotated immediate, <shifter_C> is
set according to Table A.3 (discussed in Section A.2.5). A nonzero rotate may cause
a change in the carry flag. For this reason, you can also specify the rotation explicitly,
using the assembly syntax <immed8>, 2*<immed4>.

A.2.4 Condition Codes and Flags

■ <cond> represents any of the standard ARM condition codes. Table A.2 shows the
possible values for <cond>.

■ <SignedOverflow> is a flag indicating that the result of an arithmetic operation suf-
fered from a signed overflow. For example, 0x7fffffff + 1 = 0x80000000 produces
a signed overflow because the sum of two positive 32-bit signed integers is a negative
32- bit signed integer. The V flag in the cpsr typically records signed overflows.

■ <UnsignedOverflow> is a flag indicating that the result of an arithmetic operation
suffered from an unsigned overflow. For example, 0xffffffff + 1 = 0 produces an
overflow in unsigned 32-bit arithmetic. The C flag in the cpsr typically records unsigned
overflows.

572 Appendix A ARM and Thumb Assembler Instructions

Table A.2 ARM condition mnemonics.

<cond> Instruction is executed when cpsr condition

{|AL} ALways TRUE
EQ EQual (last result zero) Z==1
NE Not Equal (last result nonzero) Z==0
{CS|HS} Carry Set, unsigned Higher or Same (following a compare) C==1
{CC|LO} Carry Clear, unsigned LOwer (following a comparison) C==0
MI MInus (last result negative) N==1
PL PLus (last result greater than or equal to zero) N==0
VS V flag Set (signed overflow on last result) V==1
VC V flag Clear (no signed overflow on last result) V==0
HI unsigned HIgher (following a comparison) C==1 && Z==0
LS unsigned Lower or Same (following a comparison) C==0 || Z==1
GE signed Greater than or Equal N==V
LT signed Less Than N!=V
GT signed Greater Than N==V && Z==0
LE signed Less than or Equal N!=V || Z==1
NV NeVer—ARMv1 and ARMv2 only—DO NOT USE FALSE

■ <NoUnsignedOverflow> is the same as 1 − <UnsignedOverflow>.

■ <Zero> is a flag indicating that the result of an arithmetic or logical operation is zero.
The Z flag in the cpsr typically records the zero condition.

■ <Negative> is a flag indicating that the result of an arithmetic or logical operation is
negative. In other words, <Negative> is bit 31 of the result. The N flag in the cpsr
typically records this condition.

A.2.5 Shift Operations

■ <imm_shift> represents a shift by an immediate specified amount. The possible shifts
are LSL #<0-31>, LSR #<1-32>, ASR #<1-32>, ROR #<1-31>, and RRX. See Table A.3
for the actions of each shift.

■ <reg_shift> represents a shift by a register-specified amount. The possible shifts are
LSL Rs, LSR Rs, ASR Rs, and ROR Rs. Rs must not be pc . The bottom eight bits of Rs
are used as the shift value k in Table A.3. Bits Rs[31:8] are ignored.

■ <shift> is shorthand for <imm_shift> or <reg_shift>.

■ <shifted_Rm> is shorthand for the value of Rm after the specified shift has been applied.
See Table A.3.

A.3 Alphabetical List of ARM and Thumb Instructions 573

Table A.3 Barrel shifter circuit outputs for different shift types.

Shift k range <shifted_Rm> <shifter_C>

LSL k k = 0 Rm C (from cpsr)
LSL k 1 ≤ k ≤ 31 Rm << k Rm[32-k]
LSL k k = 32 0 Rm[0]
LSL k k ≥ 33 0 0
LSR k k = 0 Rm C
LSR k 1 ≤ k ≤ 31 (unsigned)Rm >> k Rm[k-1]
LSR k k = 32 0 Rm[31]
LSR k k ≥ 33 0 0
ASR k k = 0 Rm C
ASR k 1 ≤ k ≤ 31 (signed)Rm >> k Rm[k-1]
ASR k k ≥ 32 −Rm[31] Rm[31]
ROR k k = 0 Rm C
ROR k 1 ≤ k ≤ 31 ((unsigned)Rm >> k)|(Rm << (32-k)) Rm[k-1]
ROR k k ≥ 32 Rm ROR (k & 31) Rm[(k-1)&31]
RRX (C << 31) | ((unsigned)Rm >> 1) Rm[0]

■ <shifter_C> is shorthand for the carry value output by the shifting circuit. See
Table A.3.

A.3 Alphabetical List of ARM
and Thumb Instructions

Instructions are listed in alphabetical order. However, where signed and unsigned variants
of the same operation exist, the main entry is under the signed variant.

ADC Add two 32-bit values and carry

1. ADC<cond>{S} Rd, Rn, #<rotated_immed> ARMv1

2. ADC<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1

3. ADC Ld, Lm THUMBv1

Action Effect on the cpsr

1. Rd = Rn + <rotated_immed> + C Updated if S suffix specified

574 Appendix A ARM and Thumb Assembler Instructions

2. Rd = Rn + <shifted_Rm> + C Updated if S suffix specified

3. Ld = Ld + Lm + C Updated (see Notes below)

Notes

■ If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = <Zero>,
C = <UnsignedOverflow>, V = <SignedOverflow>.

■ If Rd is pc, then the instruction effects a jump to the calculated address. If the operation
updates the cpsr, then the processor mode must have an spsr; in this case, the cpsr is set
to the value of the spsr.

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

Examples

ADDS r0, r0, r2 ; first half of a 64-bit add
ADC r1, r1, r3 ; second half of a 64-bit add
ADCS r0, r0, r0 ; shift r0 left, inserting carry (RLX)

ADD Add two 32-bit values

1. ADD<cond>S Rd, Rn, #<rotated_immed> ARMv1

2. ADD<cond>S Rd, Rn, Rm {, <shift>} ARMv1

3. ADD Ld, Ln, #<immed3> THUMBv1

4. ADD Ld, #<immed8> THUMBv1

5. ADD Ld, Ln, Lm THUMBv1

6. ADD Hd, Lm THUMBv1

7. ADD Ld, Hm THUMBv1

8. ADD Hd, Hm THUMBv1

9. ADD Ld, pc, #<immed8>*4 THUMBv1

10. ADD Ld, sp, #<immed8>*4 THUMBv1

11. ADD sp, #<immed7>*4 THUMBv1

Action Effect on the cpsr

1. Rd = Rn + <rotated_immed> Updated if S suffix specified

A.3 Alphabetical List of ARM and Thumb Instructions 575

2. Rd = Rn + <shifted_Rm> Updated if S suffix specified

3. Ld = Ln + <immed3> Updated (see Notes below)

4. Ld = Ld + <immed8> Updated (see Notes below)

5. Ld = Ln + Lm Updated (see Notes below)

6. Hd = Hd + Lm Preserved

7. Ld = Ld + Hm Preserved

8. Hd = Hd + Hm Preserved

9. Ld = pc + 4*<immed8> Preserved

10. Ld = sp + 4*<immed8> Preserved

11. sp = sp + 4*<immed7> Preserved

Notes

■ If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = <Zero>,
C = <UnsignedOverflow>, V = <SignedOverflow>.

■ If Rd or Hd is pc, then the instruction effects a jump to the calculated address. If the
operation updates the cpsr, then the processor mode must have an spsr; in this case, the
cpsr is set to the value of the spsr.

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

■ If Hd or Hm is pc, then the value used is the address of the instruction plus four bytes.

Examples

ADD r0, r1, #4 ; r0 = r1 + 4
ADDS r0, r2, r2 ; r0 = r2 + r2 and flags updated
ADD r0, r0, r0, LSL #1 ; r0 = 3*r0
ADD pc, pc, r0, LSL #2 ; skip r0+1 instructions
ADD r0, r1, r2, ROR r3 ; r0 = r1 + ((r2 >> r3)|(r2 << (32-r3))
ADDS pc, lr, #4 ; jump to lr+4, restoring the cpsr

ADR Address relative

1. ADR{L}<cond> Rd, <address> MACRO

This is not an ARM instruction, but an assembler macro that attempts to set Rd to the value
<address> using a pc-relative calculation. The ADR instruction macro always uses a single
ARM (or Thumb) instruction. The long-version ADRL always uses two ARM instructions

576 Appendix A ARM and Thumb Assembler Instructions

and so can access a wider range of addresses. If the assembler cannot generate an instruction
sequence reaching the address, then it will generate an error.

The following example shows how to call the function pointed to by r9. We use ADR to
set lr to the return address; in this case, it will assemble to ADD lr, pc, #4. Recall that pc
reads as the address of the current instruction plus eight in this case.

ADR lr, return_address ; set return address
MOV r0, #0 ; set a function argument
BX r9 ; call the function

return_address ; resume

AND Logical bitwise AND of two 32-bit values

1. AND<cond>{S} Rd, Rn, #<rotated_immed> ARMv1

2. AND<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1

3. AND Ld, Lm THUMBv1

Action Effect on the cpsr

1. Rd = Rn & <rotated_immed> Updated if S suffix specified

2. Rd = Rn & <shifted_Rm> Updated if S suffix specified

3. Ld = Ld & Lm Updated (see Notes below)

Notes

■ If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = <Zero>,
C = <shifter_C> (see Table A.3), V is preserved.

■ If Rd is pc, then the instruction effects a jump to the calculated address. If the operation
updates the cpsr, then the processor mode must have an spsr; in this case, the cpsr is set
to the value of the spsr.

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

Examples

AND r0, r0, #0xFF ; extract the lower 8 bits of a byte
ANDS r0, r0, #1 << 31 ; extract sign bit

ASR Arithmetic shift right for Thumb (see MOV for the ARM equivalent)

1. ASR Ld, Lm, #<immed5> THUMBv1

2. ASR Ld, Ls THUMBv1

A.3 Alphabetical List of ARM and Thumb Instructions 577

Action Effect on the cpsr

1. Ld = Lm ASR #<immed5> Updated (see Notes below)

2. Ld = Ld ASR Ls[7:0] Updated

Note

■ The cpsr is updated: N = <Negative>, Z = <Zero>, C = <shifter_C> (see Table A.3).

B Branch relative

1. B<cond> <address25> ARMv1

2. B<cond> <address8> THUMBv1

3. B <address11> THUMBv1

Branches to the given address or label. The address is stored as a relative offset.
Examples

B label ; branch unconditionally to a label
BGT loop ; conditionally continue a loop

BIC Logical bit clear (AND NOT) of two 32-bit values

1. BIC<cond>{S} Rd, Rn, #<rotated_immed> ARMv1

2. BIC<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1

3. BIC Ld, Lm THUMBv1

Action Effect on the cpsr

1. Rd = Rn & ∼<rotated_immed> Updated if S suffix specified

2. Rd = Rn & ∼<shifted_Rm> Updated if S suffix specified

3. Ld = Ld & ∼Lm Updated (see Notes below)

Notes

■ If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = <Zero>,
C = <shifter_C> (see Table A.3), V is preserved.

578 Appendix A ARM and Thumb Assembler Instructions

■ If Rd is pc, then the instruction effects a jump to the calculated address. If the operation
updates the cpsr, then the processor mode must have an spsr; in this case, the cpsr is set
to the value of the spsr.

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

Examples

BIC r0, r0, #1 << 22 ; clear bit 22 of r0

BKPT Breakpoint instruction

1. BKPT <immed16> ARMv5

2. BKPT <immed8> THUMBv2

The breakpoint instruction causes a prefetch data abort, unless overridden by debug
hardware. The ARM ignores the immediate value. This immediate can be used to hold
debug information such as the breakpoint number.

BL Relative branch with link (subroutine call)

1. BL<cond> <address25> ARMv1

2. BL <address22> THUMBv1

Action Effect on the cpsr

1. lr = ret+0; pc = <address25> None

2. lr = ret+1; pc = <address22> None

Note

■ These instructions set lr to the address of the following instruction ret plus the current
cpsr T-bit setting. Therefore you can return from the subroutine using BX lr to resume
execution address and ARM or Thumb state.

Examples

BL subroutine ; call subroutine (return with MOV pc,lr)
BLVS overflow ; call subroutine on an overflow

A.3 Alphabetical List of ARM and Thumb Instructions 579

BLX Branch with link and exchange (subroutine call with possible state switch)

1. BLX <address25> ARMv5

2. BLX<cond> Rm ARMv5

3. BLX <address22> THUMBv2

4. BLX Rm THUMBv2

Action Effect on the cpsr

1. lr = ret+0; pc = <address25> T=1 (switch to Thumb state)

2. lr = ret+0; pc = Rm & 0xfffffffe T=Rm & 1

3. lr = ret+1; pc = <address22> T=0 (switch to ARM state)

4. lr = ret+1; pc = Rm & 0xfffffffe T=Rm & 1

Notes

■ These instructions set lr to the address of the following instruction ret plus the current
cpsr T-bit setting. Therefore you can return from the subroutine using BX lr to resume
execution address and ARM or Thumb state.

■ Rm must not be pc.

■ Rm & 3 must not be 2. This would cause a branch to an unaligned ARM instruction.

Example

BLX thumb_code ; call a Thumb subroutine from ARM state
BLX r0 ; call the subroutine pointed to by r0

; ARM code if r0 even, Thumb if r0 odd

BX
BXJ

Branch with exchange (branch with possible state switch)

1. BX<cond> Rm ARMv4T

2. BX Rm THUMBv1

3. BXJ<cond> Rm ARMv5J

Action Effect on the cpsr

1. pc = Rm & 0xfffffffe T=Rm & 1

580 Appendix A ARM and Thumb Assembler Instructions

2. pc = Rm & 0xfffffffe T=Rm & 1

3. Depends on JE configuration bit J,T affected

Notes

■ If Rm is pc and the instruction is word aligned, then Rm takes the value of the current
instruction plus eight in ARM state or plus four in Thumb state.

■ Rm & 3 must not be 2. This would cause a branch to an unaligned ARM instruction.

■ If the JE (Java Enable) configuration bit is clear, then BXJ behaves as a BX. Otherwise,
the behavior is defined by the architecture of the Java Extension hardware. Typically
it sets J = 1 in the cpsr and starts executing Java instructions from a general purpose
register designated as the Java program counter jpc.

Examples

BX lr ; return from ARM or Thumb subroutine
BX r0 ; branch to ARM or Thumb function pointer r0

CDP Coprocessor data processing operation

1. CDP<cond> <copro>, <op1>, Cd, Cn, Cm, <op2> ARMv2

2. CDP2 <copro>, <op1>, Cd, Cn, Cm, <op2> ARMv5

These instructions initiate a coprocessor-dependent operation. <copro> is the number
of the coprocessor in the range p0 to p15. The core takes an undefined instruction trap
if the coprocessor is not present. The coprocessor operation specifiers <op1> and <op2>,
and the coprocessor register numbers Cd, Cn, Cm, are interpreted by the coprocessor and
ignored by the ARM. CDP2 provides an additional set of coprocessor instructions.

CLZ Count leading zeros

1. CLZ<cond> Rd, Rm ARMv5

Rn is set to the maximum left shift that can be applied to Rm without unsigned overflow.
Equivalently, this is the number of zeros above the highest one in the binary representation
of Rm. If Rm = 0, then Rn is set to 32. The following example normalizes the value in r0 so
that bit 31 is set.

CLZ r1, r0 ; find normalization shift
MOV r0, r0, LSL r1 ; normalize so bit 31 is set (if r0!=0)

CMN Compare negative

1. CMN<cond> Rn, #<rotated_immed> ARMv1

A.3 Alphabetical List of ARM and Thumb Instructions 581

2. CMN<cond> Rn, Rm {, <shift>} ARMv1

3. CMN Ln, Lm THUMBv1

Action

1. cpsr flags set on the result of (Rn + <rotated_immed>)

2. cpsr flags set on the result of (Rn + <shifted_Rm>)

3. cpsr flags set on the result of (Ln + Lm)

Notes

■ In the cpsr: N = <Negative>, Z = <Zero>, C = <Unsigned-Overflow>,
V = <SignedOverflow>. These are the same flags as generated by CMP with the second
operand negated.

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

Example

CMN r0, #3 ; compare r0 with -3
BLT label ; if (r0 <- 3) goto label

CMP Compare two 32-bit integers

1. CMP<cond> Rn, #<rotated_immed> ARMv1

2. CMP<cond> Rn, Rm {, <shift>} ARMv1

3. CMP Ln, #<immed8> THUMBv1

4. CMP Rn, Rm THUMBv1

Action

1. cpsr flags set on the result of (Rn - <rotated_immed>)

2. cpsr flags set on the result of (Rn - <shifted_Rm>)

3. cpsr flags set on the result of (Ln - <immed8>)

4. cpsr flags set on the result of (Rn - Rm)

Notes

■ In the cpsr: N = <Negative>, Z = <Zero>, C = <NoUnsigned-Overflow>,
V = <SignedOverflow>. The carry flag is set this way because the subtract x − y is

582 Appendix A ARM and Thumb Assembler Instructions

implemented as the add x +∼y + 1. The carry flag is one if x +∼y + 1 overflows. This
happens when x ≥ y (equivalently when x − y doesn’t overflow).

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes
for ARM instructions, or plus four bytes for Thumb instructions.

Example

CMP r0, r1, LSR#2 ; compare r0 with (r1/4)
BHS label ; if (r0 >= (r1/4)) goto label;

CPS Change processor state; modifies selected bits in the cpsr

1. CPS #<mode> ARMv6

2. CPSID <flags> {, #<mode>} ARMv6

3. CPSIE <flags> {, #<mode>} ARMv6

4. CPSID <flags> THUMBv3

5. CPSIE <flags> THUMBv3

Action

1. cpsr[4:0] = <mode>

2. cpsr = cpsr | mask; { cpsr[4:0]=<mode> }

3. cpsr = cpsr & ∼mask; { cpsr[4:0]=<mode> }

4. cpsr = cpsr | mask

5. cpsr = cpsr & ∼mask

Bits are set in mask according to letters in the <flags> value as in Table A.4. The ID
(interrupt disable) variants mask interrupts by setting cpsr bits. The IE (interrupt enable)
variants unmask interrupts by clearing cpsr bits.

Table A.4 CPS flags characters.

Character cpsr bit affected Bit set in mask

a imprecise data Abort mask bit 0x100 = 1 << 8
i IRQ mask bit 0x080 = 1 << 7
f FIQ mask bit 0x040 = 1 << 6

A.3 Alphabetical List of ARM and Thumb Instructions 583

CPY Copy one ARM register to another without affecting the cpsr.

1. CPY<cond> Rd, Rm ARMv6

2. CPY Rd, Rm THUMBv3

This assembles to MOV<cond> Rd, Rm except in the case of Thumb where Rd and Rm
are low registers in the range r0 to r7. Then it is a new operation that sets Rd=Rm without
affecting the cpsr.

EOR Logical exclusive OR of two 32-bit values

1. EOR<cond>{S} Rd, Rn, #<rotated_immed> ARMv1

2. EOR<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1

3. EOR Ld, Lm THUMBv1

Action Effect on the cpsr

1. Rd = Rn ˆ <rotated_immed> Updated if S suffix specified

2. Rd = Rn ˆ <shifted_Rm> Updated if S suffix specified

3. Ld = Ld ˆ Lm Updated (see Notes below)

Notes

■ If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = <Zero>,
C = <shifter_C> (see Table A.3), V is preserved.

■ If Rd is pc, then the instruction effects a jump to the calculated address. If the operation
updates the cpsr, then the processor mode must have an spsr; in this case, the cpsr is set
to the value of the spsr.

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

Example

EOR r0, r0, #1 << 16 ; toggle bit 16

LDC Load to coprocessor single or multiple 32-bit values

1. LDC<cond>{L} <copro>, Cd, [Rn {, #{-}<immed8>∗4}]{!} ARMv2

2. LDC<cond>{L} <copro>, Cd, [Rn], #{-}<immed8>∗4 ARMv2

3. LDC<cond>{L} <copro>, Cd, [Rn], <option> ARMv2

584 Appendix A ARM and Thumb Assembler Instructions

Table A.5 LDC addressing modes.

Addressing format Address accessed Value written back to Rn

[Rn {,# {-}<immed>}] Rn + {{-}<immed>} Rn preserved
[Rn {,# {-}<immed>}]! Rn + {{-}<immed>} Rn + {{-}<immed>}
[Rn], # {-}<immed> Rn Rn + {-}<immed>
[Rn], <option> Rn Rn preserved

4. LDC2{L} <copro>, Cd, [Rn {, #{-}<immed8>∗4}]{!} ARMv5

5. LDC2{L} <copro>, Cd, [Rn], #{-}<immed8>∗4 ARMv5

6. LDC2{L} <copro>, Cd, [Rn], <option> ARMv5

These instructions initiate a memory read, transferring data to the given coprocessor.
<copro> is the number of the coprocessor in the range p0 to p15. The core takes an undefined
instruction trap if the coprocessor is not present. The memory read consists of a sequence
of words from sequentially increasing addresses. The initial address is specified by the
addressing mode in Table A.5. The coprocessor controls the number of words transferred,
up to a maximum limit of 16 words. The fields {L} and Cd are interpreted by the coprocessor
and ignored by the ARM. Typically Cd specifies the destination coprocessor register for the
transfer. The <option> field is an eight-bit integer enclosed in {}. Its interpretation is
coprocessor dependent.

If the address is not a multiple of four, then the access is unaligned. The restrictions on
unaligned accesses are the same as for LDM.

LDM Load multiple 32-bit words from memory to ARM registers

1. LDM<cond><amode> Rn{!}, <register_list>{∧} ARMv1

2. LDMIA Rn!, <register_list> THUMBv1

These instructions load multiple words from sequential memory addresses. The
<register_list> specifies a list of registers to load, enclosed in curly brackets{}. Although
the assembler allows you to specify the registers in the list in any order, the order is not
stored in the instruction, so it is good practice to write the list in increasing order of register
number because this is the usual order of the memory transfer.

The following pseudocode shows the normal action of LDM. We use <register_
list>[i] to denote the register appearing at position i in the list, starting at 0 for the
first register. This assumes that the list is in order of increasing register number.

A.3 Alphabetical List of ARM and Thumb Instructions 585

Table A.6 LDM addressing modes.

Addressing Lowest address Highest address Value written back
mode accessed accessed to Rn if ! specified

{IA|FD} Rn Rn + N*4 - 4 Rn + N*4
{IB|ED} Rn + 4 Rn + N*4 Rn + N*4
{DA|FA} Rn - N*4 + 4 Rn Rn - N*4
{DB|EA} Rn - N*4 Rn - 4 Rn - N*4

N = the number of registers in <register_list>
start = the lowest address accessed given in Table A.6
for (i=0; i<N; i++)

<register_list>[i] = memory(start+i*4, 4);
if (! specified) then update Rn according to Table A.6

Note that memory(a, 4) returns the four bytes at address a packed according to the
current processor data endianness. If a is not a multiple of four, then the load is unaligned.
Because the behavior of an unaligned load depends on the architecture revision, memory
system, and system coprocessor (CP15) configuration, it’s best to avoid unaligned loads if
possible. Assuming that the external memory system does not abort unaligned loads, then
the following rules usually apply:

■ If the core has a system coprocessor and bit 1 (A-bit) or bit 22 (U-bit) of CP15:c1:c0:0
is set, then unaligned load multiples cause an alignment fault data abort exception.

■ Otherwise the access ignores the bottom two address bits.

Table A.6 lists the possible addressing modes specified by <amode>. If you specify the !,
then the base address register is updated according to Table A.6; otherwise it is preserved.
Note that the lowest register number is always read from the lowest address.

The first half of the addressing mode mnemonics stands for Increment After, Increment
Before, Decrement After, and Decrement Before, respectively. Increment modes load
the registers sequentially forward, starting from address Rn (increment after) or Rn + 4
(increment before). Decrement modes have the same effect as if you loaded the regis-
ter list backwards from sequentially descending memory addresses, starting from address
Rn (decrement after) or Rn − 4 (decrement before).

The second half of the addressing mode mnemonics stands for the stack type you can
implement with that address mode: Full Descending, Empty Descending, Full Ascending,
and Empty Ascending, With a full stack, Rn points to the last stacked value; with an empty
stack, Rn points to the first unused stack location. ARM stacks are usually full descending.

586 Appendix A ARM and Thumb Assembler Instructions

You should use full descending or empty ascending stacks by preference, since LDC also
supports these addressing modes.

Notes

■ For Thumb (format 2), Rn and the register list registers must be in the range r0 to r7.

■ The number of registers N in the list must be nonzero.

■ Rn must not be pc.

■ Rn must not appear in the register list if ! (writeback) is specified.

■ If pc appears in the register list, then on ARMv5 and above the processor performs a BX
to the loaded address. For ARMv4 and below, the processor branches to the loaded
address.

■ If ∧ is specified, then the operation is modified. The processor must not be in user or
system mode. If pc is not in the register list, then the registers appearing in the register
list refer to the user mode versions of the registers and writeback must not be specified.
If pc is in the register list, then the spsr is copied to the cpsr in addition to the standard
operation.

■ The time order of the memory accesses may depend on the implementation. Be careful
when using a load multiple to access I/O locations where the access order matters. If
the order matters, then check that the memory locations are marked as I/O in the page
tables, do not cross page boundaries, and do not use pc in the register list.

Examples

LDMIA r4!, {r0, r1} ; r0=∗r4, r1=∗(r4+4), r4+=8
LDMDB r4!, {r0, r1} ; r1=∗(r4-4), r0=∗(r4-8), r4-=8
LDMEQFD sp!, {r0, pc} ; if (result zero) then unstack r0, pc
LDMFD sp, {sp}∧ ; load sp_usr from sp_current
LDMFD sp!, {r0-pc}∧ ; return from exception, restore cpsr

LDR Load a single value from a virtual address in memory

1. LDR<cond>{|B} Rd, [Rn {, #{-}<immed12>}]{!} ARMv1

2. LDR<cond>{|B} Rd, [Rn, {-}Rm {,<imm_shift>}]{!} ARMv1

3. LDR<cond>{|B}{T} Rd, [Rn], #{-}<immed12> ARMv1

4. LDR<cond>{|B}{T} Rd, [Rn], {-}Rm {,<imm_shift>} ARMv1

5. LDR<cond>{H|SB|SH} Rd, [Rn, {, #{-}<immed8>}]{!} ARMv4

6. LDR<cond>{H|SB|SH} Rd, [Rn, {-}Rm]{!} ARMv4

7. LDR<cond>{H|SB|SH} Rd, [Rn], #{-}<immed8> ARMv4

A.3 Alphabetical List of ARM and Thumb Instructions 587

8. LDR<cond>{H|SB|SH} Rd, [Rn], {-}Rm ARMv4

9. LDR<cond>D Rd, [Rn, {, #{-}<immed8>}]{!} ARMv5E

10. LDR<cond>D Rd, [Rn, {-}Rm]{!} ARMv5E

11. LDR<cond>D Rd, [Rn], #{-}<immed8> ARMv5E

12. LDR<cond>D Rd, [Rn], {-}Rm ARMv5E

13. LDREX<cond> Rd, [Rn] ARMv6

14. LDR{|B|H} Ld, [Ln, #<immed5>*<size>] THUMBv1

15. LDR{|B|H|SB|SH} Ld, [Ln, Lm] THUMBv1

16. LDR Ld, [pc, #<immed8>*4] THUMBv1

17. LDR Ld, [sp, #<immed8>*4] THUMBv1

18. LDR<cond><type> Rd, <label> MACRO

19. LDR<cond> Rd, =<32-bit-value> MACRO

Formats 1 to 17 load a single data item of the type specified by the opcode suffix, using
a preindexed or postindexed addressing mode. Tables A.7 and A.8 show the different
addressing modes and data types.

In Table A.8memory(a, n) readsn sequential bytes from addressa. The bytes are packed
according to the configured processor data endianness. The function memoryT(a, n) per-
forms the same access but with user mode privileges, regardless of the current processor
mode. The function memoryEx(a, n) used by LDREX performs the access and marks the
access as exclusive. If address a has the shared TLB attribute, then this marks address a as
exclusive to the current processor and clears any other exclusive addresses for this processor.

Table A.7 LDR Addressing Modes.

Addressing format Address a accessed Value written back to Rn

[Rn {,#{-}<immed>}] Rn + {{-}<immed>} Rn preserved
[Rn {,#{-}<immed>}]! Rn + {{-}<immed>} Rn + {{-}<immed>}
[Rn, {-}Rm {,<shift>}] Rn + {-}<shifted_Rm> Rn preserved
[Rn, {-}Rm {,<shift>}]! Rn + {-}<shifted_Rm> Rn + {-}<shifted_Rm>
[Rn], #{-}<immed> Rn Rn + {-}<immed>
[Rn], {-}Rm {,<shift>} Rn Rn + {-}<shifted_Rm>

588 Appendix A ARM and Thumb Assembler Instructions

Table A.8 LDR datatypes.

Load Datatype <size> (bytes) Action

LDR word 4 Rd = memory(a, 4)
LDRB unsigned Byte 1 Rd = (zero-extend)memory(a, 1)
LDRBT Byte Translated 1 Rd = (zero-extend)memoryT(a, 1)
LDRD Double word 8 Rd = memory(a, 4)

R(d+1) = memory(a+4, 4)
LDREX word EXclusive 4 Rd = memoryEx(a, 4)
LDRH unsigned Halfword 2 Rd = (zero-extend)memory(a, 2)
LDRSB Signed Byte 1 Rd = (sign-extend)memory(a, 1)
LDRSH Signed Halfword 2 Rd = (sign-extend)memory(a, 2)
LDRT word Translated 4 Rd = memoryT(a, 4)

Otherwise the processor remembers that there is an outstanding exclusive access. Exclusivity
only affects the action of the STREX instruction.

If address a is not a multiple of <size>, then the load is unaligned. Because the behavior
of an unaligned load depends on the architecture revision, memory system, and system
coprocessor (CP15) configuration, it’s best to avoid unaligned loads if possible. Assuming
that the external memory system does not abort unaligned loads, then the following rules
usually apply. In the rules, A is bit 1 of system coprocessor register CP15:c1:c0:0, and U
is bit 22 of CP15:c1:c0:0, introduced in ARMv6. If there is no system coprocessor, then
A = U = 0.

■ If A = 1, then unaligned loads cause an alignment fault data abort exception except
that word-aligned double-word loads are supported if U = 1.

■ If A = 0 and U = 1, then unaligned loads are supported for LDR{|T|H|SH}. Word-
aligned loads are supported for LDRD. A non-word-aligned LDRD generates an alignment
fault data abort.

■ If A = 0 and U = 0, then LDR and LDRT return the value memory(a & ∼3, 4) ROR
((a&3)*8). All other unaligned operations are unpredictable but do not generate an
alignment fault.

Format 18 generates a pc-relative load accessing the address specified by <label>.
In other words, it assembles to LDR<cond><type> Rd, [pc, #<offset>] whenever this
instruction is supported and <offset>=<label>-pc is in range.

Format 19 generates an instruction to move the given 32-bit value to the register Rd.
Usually the instruction is LDR<cond> Rd, [pc, #<offset>], where the 32-bit value is
stored in a literal pool at address pc+<offset>.

A.3 Alphabetical List of ARM and Thumb Instructions 589

Notes

■ For double-word loads (formats 9 to 12), Rd must be even and in the range r0 to r12.

■ If the addressing mode updates Rn, then Rd and Rn must be distinct.

■ If Rd is pc, then <size> must be 4. Up to ARMv4, the core branches to the loaded
address. For ARMv5 and above, the core performs a BX to the loaded address.

■ If Rn is pc, then the addressing mode must not update Rn . The value used for Rn is the
address of the instruction plus eight bytes for ARM or four bytes for Thumb.

■ Rm must not be pc.

■ For ARMv6 use LDREX and STREX to implement semaphores rather than SWP.

Examples

LDR r0, [r0] ; r0 = *(int*)r0;
LDRSH r0, [r1], #4 ; r0 = *(short*)r1; r1 += 4;
LDRB r0, [r1, #-8]! ; r1 -= 8; r0 = *(char*)r1;
LDRD r2, [r1] ; r2 =* (int*)r1; r3 =* (int*)(r1+4);
LDRSB r0, [r2, #55] ; r0 = *(signed char*)(r2+55);
LDRCC pc, [pc, r0, LSL #2] ; if (C==0) goto *(pc+4*r0);
LDRB r0, [r1], -r2, LSL #8 ; r0 = *(char*)r1; r1 -= 256*r2;
LDR r0, =0x12345678 ; r0 = 0x12345678;

LSL Logical shift left for Thumb (see MOV for the ARM equivalent)

1. LSL Ld, Lm, #<immed5> THUMBv1

2. LSL Ld, Ls THUMBv1

Action Effect on the cpsr

1. Ld = Lm LSL #<immed5> Updated (see Note below)

2. Ld = Ld LSL Ls[7:0] Updated

Note

■ The cpsr is updated: N = <Negative>, Z = <Zero>, C = <shifter_C> (see Table A.3).

LSR Logical shift right for Thumb (see MOV for the ARM equivalent)

1. LSR Ld, Lm, #<immed5> THUMBv1

2. LSR Ld, Ls THUMBv1

590 Appendix A ARM and Thumb Assembler Instructions

Action Effect on the cpsr

1. Ld = Lm LSR #<immed5> Updated (see Note below)

2. Ld = Ld LSR Ls[7:0] Updated

Note

■ The cpsr is updated: N = <Negative>, Z = <Zero>, C = <shifter_C> (see Table A.3).

MCR
MCRR

Move to coprocessor from an ARM register

1. MCR<cond> <copro>, <op1>, Rd, Cn, Cm {, <op2>} ARMv2

2. MCR2 <copro>, <op1>, Rd, Cn, Cm {, <op2>} ARMv5

3. MCRR<cond> <copro>, <op1>, Rd, Rn, Cm ARMv5E

4. MCRR2 <copro>, <op1>, Rd, Rn, Cm ARMv6

These instructions transfer the value of ARM register Rd to the indicated coprocessor.
Formats 3 and 4 also transfer a second register Rn. <copro> is the number of the coprocessor
in the range p0 to p15. The core takes an undefined instruction trap if the coprocessor is
not present. The coprocessor operation specifiers <op1> and <op2>, and the coprocessor
register numbers Cn, Cm, are interpreted by the coprocessor, and ignored by the ARM.
Rd and Rn must not be pc. Coprocessor p15 controls memory management options. See
Chapters 13 and 14 for descriptions of the MPU and MMU memory management units.
For example, the following code sequence enables alignment fault checking:

MRC p15, 0, r0, c1, c0, 0 ; read the MMU register, c1
ORR r0, r0, #2 ; set the A bit
MCR p15, 0, r0, c1, c0, 0 ; write the MMU register, c1

MLA Multiply with accumulate

1. MLA<cond>{S} Rd, Rm, Rs, Rn ARMv2

Action Effect on the cpsr

1. Rd = Rn + Rm*Rs Updated if S suffix supplied

Notes

■ Rd is set to the lower 32 bits of the result.

■ Rd, Rm, Rs, Rn must not be pc.

A.3 Alphabetical List of ARM and Thumb Instructions 591

■ Rd and Rm must be different registers.

■ Implementations may terminate early on the value of the Rs operand. For this reason
use small or constant values for Rs where possible. See Appendix D.

■ If the cpsr is updated, then N = <Negative>, Z = <Zero>, C is unpredictable, and V
is preserved. Avoid using the instruction MLAS because implementations often impose
penalty cycles for this operation. Instead use MLA followed by a compare, and schedule
the compare to avoid multiply result use interlocks.

MOV Move a 32-bit value into a register

1. MOV<cond>{S} Rd, #<rotated_immed> ARMv1

2. MOV<cond>{S} Rd, Rm {, <shift>} ARMv1

3. MOV Ld, #<immed8> THUMBv1

4. MOV Ld, Ln THUMBv1

5. MOV Hd, Lm THUMBv1

6. MOV Ld, Hm THUMBv1

7. MOV Hd, Hm THUMBv1

Action Effect on the cpsr

1. Rd = <rotated_immed> Updated if S suffix specified

2. Rd = <shifted_Rm> Updated if S suffix specified

3. Ld = <immed8> Updated (see Notes below)

4. Ld = Ln Updated (see Notes below)

5. Hd = Lm Preserved

6. Ld = Hm Preserved

7. Hd = Hm Preserved

Notes

■ If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = <Zero>,
C= <shifter_C> (see Table A.3), and V is preserved.

■ If Rd or Hd is pc, then the instruction effects a jump to the calculated address. If the
operation updates the cpsr, then the processor mode must have an spsr; in this case, the
cpsr is set to the value of the spsr.

592 Appendix A ARM and Thumb Assembler Instructions

■ If Rm is pc, then the value used is the address of the instruction plus eight bytes.

■ If Hm is pc, then the value used is the address of the instruction plus four bytes.

Examples

MOV r0, #0x00ff0000 ; r0 = 0x00ff0000
MOV r0, r1, LSL#2 ; r0 = 4*r1
MOV pc, lr ; return from subroutine (pc=lr)
MOVS pc, lr ; return from exception (pc=lr, cpsr=spsr)

MRC
MRRC

Move to ARM register from a coprocessor

1. MRC<cond> <copro>, <op1>, Rd, Cn, Cm , <op2> ARMv2

2. MRC2 <copro>, <op1>, Rd, Cn, Cm , <op2> ARMv5

3. MRRC<cond> <copro>, <op1>, Rd, Rn, Cm ARMv5E

4. MRRC2 <copro>, <op1>, Rd, Rn, Cm ARMv6

These instructions transfer a 32-bit value from the indicated coprocessor to the ARM register
Rd. Formats 3 and 4 also transfer a second 32-bit value to Rn. <copro> is the number of
the coprocessor in the range p0 to p15. The core takes an undefined instruction trap if the
coprocessor is not present. The coprocessor operation specifiers <op1> and <op2>, and the
coprocessor register numbers Cn, Cm, are interpreted by the coprocessor and ignored by
the ARM. For formats 1 and 2, if Rd is pc, then the top four bits of the cpsr (the NZCV
condition code flags) are set from the top four bits of the 32-bit value transferred; pc is not
affected. For other formats, Rd and Rn must be distinct and not pc.

Coprocessor p15 controls memory management options (see Chapters 12 and 13). For
example, the following instruction reads the main ID register from p15:

MRC p15, 0, r0, c0, c0 ; read the MMU ID register, c0

MRS Move to ARM register from status register (cpsr or spsr)

1. MRS<cond> Rd, cpsr ARMv3

2. MRS<cond> Rd, spsr ARMv3

These instructions set Rd = cpsr and Rd = spsr, respectively. Rd must not be pc.

MSR Move to status register (cpsr or spsr) from an ARM register

1. MSR<cond> cpsr_<fields>, #<rotated_immed> ARMv3

A.3 Alphabetical List of ARM and Thumb Instructions 593

Table A.9 Format of the <fields> specifier.

<fields> letter Meaning Bits set in <mask>

c Control byte 0x000000ff
x eXtension byte 0x0000ff00
s Status byte 0x00ff0000
f Flags byte 0xff000000

2. MSR<cond> cpsr_<fields>, Rm ARMv3

3. MSR<cond> spsr_<fields>, #<rotated_immed> ARMv3

4. MSR<cond> spsr_<fields>, Rm ARMv3

Action

1. cpsr = (cpsr & ∼<mask>) | (<rotated_immed> & <mask>)

2. cpsr = (cpsr & ∼<mask>) | (Rm & <mask>)

3. spsr = (spsr & ∼<mask>) | (<rotated_immed> & <mask>)

4. spsr = (spsr & ∼<mask>) | (Rm & <mask>)

These instructions alter selected bytes of the cpsr or spsr according to the value of <mask>.
The <fields> specifier is a sequence of one or more letters, determining which bytes of
<mask> are set. See Table A.9.

Some old ARM toolkits allowed cpsr or cpsr_all in place of cpsr_fsxc. They also used
cpsr_flg and cpsr_ctl in place of cpsr_f and cpsr_c, respectively. These formats, and the spsr
equivalents, are obsolete, so you should not use them. The following example changes to
system mode and enables IRQ, which is useful in a reentrant interrupt handler:

MRS r0, cpsr ; read cpsr state
BIC r0, r0, #0x9f ; clear IRQ disable and mode bits
ORR r0, r0, #0x1f ; set system mode
MSR cpsr_c, r0 ; update control byte of the cpsr

MUL Multiply

1. MUL<cond>{S} Rd, Rm, Rs ARMv2

2. MUL Ld, Lm THUMBv1

594 Appendix A ARM and Thumb Assembler Instructions

Action Effect on the cpsr

1. Rd = Rm*Rs Updated if S suffix supplied

2. Ld = Lm*Ld Updated

Notes

■ Rd or Ld is set to the lower 32 bits of the result.

■ Rd, Rm, Rs must not be pc.

■ Rd and Rm must be different registers. Similarly Ld and Lm must be different.

■ Implementations may terminate early on the value of the Rs or Ld operand. For this
reason use small or constant values for Rs or Ld where possible.

■ If the cpsr is updated, then N = <Negative>, Z = <Zero>, C is unpredictable, and V
is preserved. Avoid using the instruction MULS because implementations often impose
penalty cycles for this operation. Instead use MUL followed by a compare, and schedule
the compare, to avoid multiply result use interlocks.

MVN Move the logical not of a 32-bit value into a register

1. MVN<cond>{S} Rd, #<rotated_immed> ARMv1

2. MVN<cond>{S} Rd, Rm {, <shift>} ARMv1

3. MVN Ld, Lm THUMBv1

Action Effect on the cpsr

1. Rd = ∼<rotated_immed> Updated if S suffix specified

2. Rd = ∼<shifted_Rm> Updated if S suffix specified

3. Ld = ∼Lm Updated (see Notes below)

Notes

■ If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = <Zero>,
C = <shifter_C> (see Table A.3), and V is preserved.

■ If Rd is pc, then the instruction effects a jump to the calculated address. If the operation
updates the cpsr, then the processor mode must have an spsr; in this case, the cpsr is set
to the value of the spsr.

■ If Rm is pc, then the value used is the address of the instruction plus eight bytes.

A.3 Alphabetical List of ARM and Thumb Instructions 595

Examples

MVN r0, #0xff ; r0 = 0xffffff00
MVN r0, #0 ; r0 = -1

NEG Negate value in Thumb (use RSB to negate in ARM state)

1. NEG Ld, Lm THUMBv1

Action Effect on the cpsr

1. Ld = -Lm Updated (see Notes below)

Notes

■ The cpsr is updated: N = <Negative>, Z = <Zero>, C = <NoUnsignedOverflow>, V =
<SignedOverflow>. Note that Z = C and V = (Ld==0x80000000).

■ This is the same as the operation RSBS Ld, Lm, #0 in ARM state.

NOP No operation

1. NOP MACRO

This is not an ARM instruction. It is an assembly macro that produces an instruction having
no effect other than advancing the pc as normal. In ARM state it assembles to MOV r0,r0.
In Thumb state it assembles to MOV r8,r8. The operation is not guaranteed to take one
processor cycle. In particular, if you use NOP after a load of r0, then the operation may cause
pipeline interlocks.

ORR Logical bitwise OR of two 32-bit values

1. ORR<cond>{S} Rd, Rn, #<rotated_immed> ARMv1

2. ORR<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1

3. ORR Ld, Lm THUMBv1

Action Effect on the cpsr

1. Rd = Rn | <rotated_immed> Updated if S suffix specified

2. Rd = Rn | <shifted_Rm> Updated if S suffix specified

3. Ld = Ld | Lm Updated (see Notes below)

596 Appendix A ARM and Thumb Assembler Instructions

Notes

■ If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = <Zero>,
C = <shifter_C> (see Table A.3), and V is preserved.

■ If Rd is pc, then the instruction effects a jump to the calculated address. If the operation
updates the cpsr, then the processor mode must have an spsr, in this case, the cpsr is set
to the value of the spsr.

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

Example

ORR r0, r0,#1 << 13 ; set bit 13 of r0

PKH Pack 16-bit halfwords into a 32-bit word

1. PKHBT<cond> Rd, Rn, Rm {, LSL #<0-31>} ARMv6

2. PKHTB<cond> Rd, Rn, Rm {, ASR #<1-32>} ARMv6

Action

1. Rd[15:00] = Rn[15:00]; Rd[31:16]=<shifted_Rm>[31:16]

2. Rd[31:16] = Rn[31:16]; Rd[15:00]=<shifted_Rm>[15:00]

Note

■ Rd, Rn, Rm must not be pc. cpsr is not affected.

Examples

PKHBT r0, r1, r2, LSL#16 ; r0 = (r2[15:00] << 16) | r1[15:00]
PKHTB r0, r2, r1, ASR#16 ; r0 = (r2[31:15] << 16) | r1[31:15]

PLD Preload hint instruction

1. PLD [Rn {, #{-}<immed12>}] ARMv5E

2. PLD [Rn, {-}Rm {,<imm_shift>}] ARMv5E

Action

1. Preloads from address (Rn + {{-}<immed12>})

2. Preloads from address (Rn + {-}<shifted_Rm>)

A.3 Alphabetical List of ARM and Thumb Instructions 597

This instruction does not affect the processor registers (other than advancing pc). It merely
hints that the programmer is likely to read from the given address in future. A cached
processor may take this as a hint to load the cache line containing the address into the
cache. The instruction should not generate a data abort or any other memory system error.
If Rn is pc, then the value used for Rn is the address of the instruction plus eight. Rm
must not be pc.

Examples

PLD [r0, #7] ; Preload from r0+7
PLD [r0, r1, LSL#2] ; Preload from r0+4*r1

POP Pops multiple registers from the stack in Thumb state (for ARM state use LDM)

1. POP <regster_list> THUMBv1

Action

1. equivalent to the ARM instruction LDMFD sp!, <register_list>

The <register_list> can contain registers in the range r0 to r7 and pc. The following
example restores the low-numbered ARM registers and returns from a subroutine:

POP {r0-r7,pc}

PUSH Pushes multiple registers to the stack in Thumb state (for ARM state use STM)

1. PUSH <regster_list> THUMBv1

Action

1. equivalent to the ARM instruction STMFD sp!, <register_list>

The <register_list> can contain registers in the range r0 to r7 and lr. The following
example saves the low-numbered ARM registers and link register.

PUSH {r0-r7,lr}

QADD
QDADD
QDSUB
QSUB

Saturated signed and unsigned arithmetic

1. QADD<cond> Rd, Rm, Rn ARMv5E

2. QDADD<cond> Rd, Rm, Rn ARMv5E

598 Appendix A ARM and Thumb Assembler Instructions

3. QSUB<cond> Rd, Rm, Rn ARMv5E

4. QDSUB<cond> Rd, Rm, Rn ARMv5E

5. {U}QADD16<cond> Rd, Rn, Rm ARMv6

6. {U}QADDSUBX<cond> Rd, Rn, Rm ARMv6

7. {U}QSUBADDX<cond> Rd, Rn, Rm ARMv6

8. {U}QSUB16<cond> Rd, Rn, Rm ARMv6

9. {U}QADD8<cond> Rd, Rn, Rm ARMv6

10. {U}QSUB8<cond> Rd, Rn, Rm ARMv6

Action

1. Rd = sat32(Rm+Rn)

2. Rd = sat32(Rm+sat32(2*Rn))

3. Rd = sat32(Rm-Rn)

4. Rd = sat32(Rm-sat32(2*Rn))

5. Rd[31:16] = sat16(Rn[31:16] + Rm[31:16]);

Rd[15:00] = sat16(Rn[15:00] + Rm[15:00])

6. Rd[31:16] = sat16(Rn[31:16] + Rm[15:00]);

Rd[15:00] = sat16(Rn[15:00] - Rm[31:16])

7. Rd[31:16] = sat16(Rn[31:16] - Rm[15:00]);

Rd[15:00] = sat16(Rn[15:00] + Rm[31:16])

8. Rd[31:16] = sat16(Rn[31:16] - Rm[31:16]);

Rd[15:00] = sat16(Rn[15:00] - Rm[15:00])

9. Rd[31:24] = sat8(Rn[31:24] + Rm[31:24]);

Rd[23:16] = sat8(Rn[23:16] + Rm[23:16]);

Rd[15:08] = sat8(Rn[15:08] + Rm[15:08]);

Rd[07:00] = sat8(Rn[07:00] + Rm[07:00])

10. Rd[31:24] = sat8(Rn[31:24] - Rm[31:24]);

Rd[23:16] = sat8(Rn[23:16] - Rm[23:16]);

A.3 Alphabetical List of ARM and Thumb Instructions 599

Rd[15:08] = sat8(Rn[15:08] - Rm[15:08]);

Rd[07:00] = sat8(Rn[07:00] - Rm[07:00])

Notes

■ The operations are signed unless the U prefix is present. For signed operations, satN(x)
saturates x to the range −2N−1 ≤ x < 2N−1. For unsigned operations, satN(x)
saturates x to the range 0 ≤ x < 2N .

■ The cpsr Q-flag is set if saturation occurred; otherwise it is preserved.

■ Rd, Rn, Rm must not be pc.

■ The X operations are useful for packed complex numbers. The following examples
assume bits [15:00] hold the real part and [31:16] the imaginary part.

Examples

QDADD r0, r0, r2 ; add Q30 value r2 to Q31 accumulator r0
QADD16 r0, r1, r2 ; SIMD saturating add
QADDSUBX r0, r1, r2 ; r0=r1+i*r2 in packed complex arithmetic
QSUBADDX r0, r1, r2 ; r0=r1-i*r2 in packed complex arithmetic

REV Reverse bytes within a word or halfword.

1. REV<cond> Rd, Rm ARMv6/THUMBv3

2. REV16<cond> Rd, Rm ARMv6/THUMBv3

3. REVSH<cond> Rd, Rm ARMv6/THUMBv3

Action

1. Rd[31:24] = Rm[07:00]; Rd[23:16] = Rm[15:08];

Rd[15:08] = Rm[23:16]; Rd[07:00] = Rm[31:24]

2. Rd[31:24] = Rm[23:16]; Rd[23:16] = Rm[31:24];

Rd[15:08] = Rm[07:00]; Rd[07:00] = Rm[15:08]

3. Rd[31:08] = sign-extend(Rm[07:00]); Rd[07:00] = Rm[15:08]

Notes

■ Rd and Rm must not be pc.

■ For Thumb, Rd, Rm must be in the range r0 to r7 and <cond> cannot be specified.

600 Appendix A ARM and Thumb Assembler Instructions

■ These instructions are useful to convert big-endian data to little-endian and vice
versa.

Examples

REV r0, r0 ; switch endianness of a word
REV16 r0, r0 ; switch endianness of two packed halfwords
REVSH r0, r0 ; switch endianness of a signed halfword

RFE Return from exception

1. RFE<amode> Rn! ARMv6

This performs the operation that LDM<amode> Rn{!}, {pc, cpsr} would perform if LDM
allowed a register list of {pc, cpsr}. See the entry for LDM.

ROR Rotate right for Thumb (see MOV for the ARM equivalent)

1. ROR Ld, Ls THUMBv1

Action Effect on the cpsr

1. Ld = Ld ROR Ls[7:0] Updated

Notes

■ The cpsr is updated: N = <Negative>, Z = <Zero>, C = <shifter_C> (see Table A.3).

RSB Reverse subtract of two 32-bit integers

1. RSB<cond>{S} Rd, Rn, #<rotated_immed> ARMv1

2. RSB<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1

Action Effect on the cpsr

1. Rd = <rotated_immed> - Rn Updated if S suffix present

2. Rd = <shifted_Rm> - Rn Updated if S suffix present

Notes

■ If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = <Zero>,
C = <NoUnsignedOverflow>, and V = <SignedOverflow>. The carry flag is set this way

A.3 Alphabetical List of ARM and Thumb Instructions 601

because the subtract x − y is implemented as the add x + ∼y + 1. The carry flag is one
if x + ∼y + 1 overflows. This happens when x ≥ y , when x − y doesn’t overflow.

■ If Rd is pc, then the instruction effects a jump to the calculated address. If the operation
updates the cpsr, then the processor mode must have an spsr in this case, the cpsr is set
to the value of the spsr.

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

Examples

RSB r0, r0, #0 ; r0 = -r0
RSB r0, r1, r1, LSL#3 ; r0 = 7*r1

RSC Reverse subtract with carry of two 32-bit integers

1. RSC<cond>{S} Rd, Rn, #<rotated_immed> ARMv1

2. RSC<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1

Action Effect on the cpsr

1. Rd = <rotated_immed> - Rn - (∼C) Updated if S suffix present

2. Rd = <shifted_Rm> - Rn - (∼C) Updated if S suffix present

Notes

■ If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = <Zero>, C =
<NoUnsignedOverflow>, V = <SignedOverflow>. The carry flag is set this way because
the subtract x − y − ∼C is implemented as the add x + ∼y + C . The carry flag is one if
x + ∼y + C overflows. This happens when x − y − ∼C doesn’t overflow.

■ If Rd is pc, then the instruction effects a jump to the calculated address. If the operation
updates the cpsr, then the processor mode must have an spsr; in this case the cpsr is set
to the value of the spsr.

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

The following example negates a 64-bit integer where r0 is the low 32 bits and r1 the high
32 bits.

RSBS r0, r0, #0 ; r0 = -r0 C=NOT(borrow)
RSC r1, r1, #0 ; r1 = -r1-borrow

SADD Parallel modulo add and subtract operations

1. {S|U}ADD16<cond> Rd, Rn, Rm ARMv6

602 Appendix A ARM and Thumb Assembler Instructions

2. {S|U}ADDSUBX<cond> Rd, Rn, Rm ARMv6

3. {S|U}SUBADDX<cond> Rd, Rn, Rm ARMv6

4. {S|U}SUB16<cond> Rd, Rn, Rm ARMv6

5. {S|U}ADD8<cond> Rd, Rn, Rm ARMv6

6. {S|U}SUB8<cond> Rd, Rn, Rm ARMv6

Action Effect on the cpsr

1. Rd[31:16]=Rn[31:16]+Rm[31:16]; GE3=GE2=cmn(Rn[31:16],Rm[31:16])

Rd[15:00]=Rn[15:00]+Rm[15:00] GE1=GE0=cmn(Rn[15:00],Rm[15:00])

2. Rd[31:16]=Rn[31:16]+Rm[15:00]; GE3=GE2=cmn(Rn[31:16],Rm[15:00])

Rd[15:00]=Rn[15:00]-Rm[31:16] GE1=GE0=(Rn[15:00] >= Rm[31:16])

3. Rd[31:16]=Rn[31:16]-Rm[15:00]; GE3=GE2=(Rn[31:16] >= Rm[15:00])

Rd[15:00]=Rn[15:00]+Rm[31:16] GE1=GE0=cmn(Rn[15:00],Rm[31:16])

4. Rd[31:16]=Rn[31:16]-Rm[31:16]; GE3=GE2=(Rn[31:16] >= Rm[31:16])

Rd[15:00]=Rn[15:00]-Rm[15:00] GE1=GE0=(Rn[15:00] >= Rm[15:00])

5. Rd[31:24]=Rn[31:24]+Rm[31:24]; GE3 = cmn(Rn[31:24],Rm[31:24])

Rd[23:16]=Rn[23:16]+Rm[23:16]; GE2 = cmn(Rn[23:16],Rm[23:16])

Rd[15:08]=Rn[15:08]+Rm[15:08]; GE1 = cmn(Rn[15:08],Rm[15:08])

Rd[07:00]=Rn[07:00]+Rm[07:00] GE0 = cmn(Rn[07:00],Rm[07:00])

6. Rd[31:24]=Rn[31:24]-Rm[31:24]; GE3 = (Rn[31:24] >= Rm[31:24])

Rd[23:16]=Rn[23:16]-Rm[23:16]; GE2 = (Rn[23:16] >= Rm[23:16])

Rd[15:08]=Rn[15:08]-Rm[15:08]; GE1 = (Rn[15:08] >= Rm[15:08])

Rd[07:00]=Rn[07:00]-Rm[07:00] GE0 = (Rn[07:00] >= Rm[07:00])

Notes

■ If you specify the S prefix, then all comparisons are signed. The cmn(x,y) function
returns x ≥ −y or equivalently x + y ≥ 0.

■ If you specify the U prefix, then all comparisons are unsigned. The cmn(x,y) function
returns x ≥ (unsigned)(−y) or equivalently if the x + y operation produces a carry.

■ Rd, Rn, and Rm must not be pc.

A.3 Alphabetical List of ARM and Thumb Instructions 603

■ The X operations are useful for packed complex numbers. The following examples
assume bits [15:00] hold the real part and [31:16] the imaginary part.

Examples

SADD16 r0, r1, r2 ; Signed 16-bit SIMD add
SADDSUBX r0, r1, r2 ; r0=r1+i*r2 in packed complex arithmetic
SSUBADDX r0, r1, r2 ; r0=r1-i*r2 in packed complex arithmetic

SBC Subtract with carry

1. SBC<cond>{S} Rd, Rn, #<rotated_immed> ARMv1

2. SBC<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1

3. SBC Ld, Lm THUMBv1

Action Effect on the cpsr

1. Rd = Rn - <rotated_immed> - (∼C) Updated if S suffix specified

2. Rd = Rn - <shifted_Rm> - (∼C) Updated if S suffix specified

3. Ld = Ld - Lm - (∼C) Updated (see Notes below)

Notes

■ If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = <Zero>,
C = <NoUnsignedOverflow>, V = <SignedOverflow>. The carry flag is set this way
because the subtract x − y − ∼C is implemented as the add x + ∼y + C. The carry flag
is one if x + ∼y + C overflows. This happens when x − y − ∼C doesn’t overflow.

■ If Rd is pc, then the instruction effects a jump to the calculated address. If the operation
updates the cpsr, then the processor mode must have an spsr. In this case the cpsr is set
to the value of the spsr.

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

The following example implements a 64-bit subtract:

SUBS r0, r0, r2 ; subtract low words, C=NOT(borrow)
SBC r1, r1, r3 ; subtract high words and borrow

SEL Select between two source operands based on the GE flags

1. SEL<cond> Rd, Rn, Rm ARMv6

604 Appendix A ARM and Thumb Assembler Instructions

Action

1. Rd[31:24] = GE3 ? Rn[31:24] : Rm[31:24];

Rd[23:16] = GE2 ? Rn[23:16] : Rm[23:16];

Rd[15:08] = GE1 ? Rn[15:08] : Rm[15:08];

Rd[07:00] = GE0 ? Rn[07:00] : Rm[07:00]

Notes

■ Rd, Rn, Rm must not be pc.

■ See SADD for instructions that set the GE flags in the cpsr.

SETEND Set the endianness for data accesses

1. SETEND BE ARMv6/THUMBv3

2. SETEND LE ARMv6/THUMBv3

Action

1. In the cpsr E=1 so data accesses will be big-endian

2. In the cpsr E=0 so data accesses will be little-endian

Note

■ ARMv6 uses a byte-invariant endianness model. This means that byte loads and stores
are not affected by the configured endianess. For little-endian data access the byte at the
lowest address appears in the least significant byte of the loaded word. For big-endian
data accesses the byte at the lowest address appears in the most significant byte of the
loaded word.

SHADD Parallel halving add and subtract operations

1. {S|U}HADD16<cond> Rd, Rn, Rm ARMv6

2. {S|U}HADDSUBX<cond> Rd, Rn, Rm ARMv6

3. {S|U}HSUBADDX<cond> Rd, Rn, Rm ARMv6

4. {S|U}HSUB16<cond> Rd, Rn, Rm ARMv6

5. {S|U}HADD8<cond> Rd, Rn, Rm ARMv6

6. {S|U}HSUB8<cond> Rd, Rn, Rm ARMv6

A.3 Alphabetical List of ARM and Thumb Instructions 605

Action

1. Rd[31:16] = (Rn[31:16] + Rm[31:16]) >> 1;

Rd[15:00] = (Rn[15:00] + Rm[15:00]) >> 1

2. Rd[31:16] = (Rn[31:16] + Rm[15:00]) >> 1;

Rd[15:00] = (Rn[15:00] - Rm[31:16]) >> 1

3. Rd[31:16] = (Rn[31:16] - Rm[15:00]) >> 1;

Rd[15:00] = (Rn[15:00] + Rm[31:16]) >> 1

4. Rd[31:16] = (Rn[31:16] - Rm[31:16]) >> 1;

Rd[15:00] = (Rn[15:00] - Rm[15:00]) >> 1

5. Rd[31:24] = (Rn[31:24] + Rm[31:24]) >> 1;

Rd[23:16] = (Rn[23:16] + Rm[23:16]) >> 1;

Rd[15:08] = (Rn[15:08] + Rm[15:08]) >> 1;

Rd[07:00] = (Rn[07:00] + Rm[07:00]) >> 1

6. Rd[31:24] = (Rn[31:24] - Rm[31:24]) >> 1;

Rd[23:16] = (Rn[23:16] - Rm[23:16]) >> 1;

Rd[15:08] = (Rn[15:08] - Rm[15:08]) >> 1;

Rd[07:00] = (Rn[07:00] - Rm[07:00]) >> 1

Notes

■ If you use the S prefix, then all operations are signed and values are sign-extended
before the addition.

■ If you use the U prefix, then all operations are unsigned and values are zero-extended
before the addition.

■ Rd, Rn, and Rm must not be pc.

■ These operations provide parallel arithmetic that cannot overflow, which is useful for
DSP processing of normalized signals.

SMLA
SMLS

Signed multiply accumulate instructions

1. SMLA<x><y><cond> Rd, Rm, Rs, Rn ARMv5E

2. SMLAW<y><cond> Rd, Rm, Rs, Rn ARMv5E

3. SMLAD{X}<cond> Rd, Rm, Rs, Rn ARMv6

606 Appendix A ARM and Thumb Assembler Instructions

4. SMLSD{X}<cond> Rd, Rm, Rs, Rn ARMv6

5. {U|S}MLAL<cond>{S} RdLo, RdHi, Rm, Rs ARMv3M

6. SMLAL<x><y><cond> RdLo, RdHi, Rm, Rs ARMv5E

7. SMLALD{X}<cond> RdLo, RdHi, Rm, Rs ARMv6

8. SMLSLD{X}<cond> RdLo, RdHi, Rm, Rs ARMv6

Action

1. Rd = Rn + (Rm.<x> * Rs.<y>)

2. Rd = Rn + (((signed)Rm * Rs.<y>) >> 16)

3. Rd = Rn + Rm.B*<rotated_Rs>.B + Rm.T*<rotated_Rs>.T

4. Rd = Rn + Rm.B*<rotated_Rs>.B - Rm.T*<rotated_Rs>.T

5. RdHi:RdLo = RdHi:RdLo + (Rm * Rs)

6. RdHi:RdLo = RdHi:RdLo + (Rm.<x> * Rm.<y>)

7. RdHi:RdLo = RdHi:RdLo + Rm.B*<rotated_Rs>.B + Rm.T*<rotated_Rs>.T

8. RdHi:RdLo = RdHi:RdLo + Rm.B*<rotated_Rs>.B - Rm.T*<rotated_Rs>.T

Notes

■ <x> and <y> can be B or T.

■ Rm.B is shorthand for (sign-extend)Rm[15:00], the bottom 16 bits of Rm.

■ Rm.T is shorthand for (sign-extend)Rm[31:16], the top 16 bits of Rm.

■ <rotated_Rs> is Rs if you do not specify the X suffix or Rs ROR 16 if you do specify the
X suffix.

■ RdHi and RdLo must be different registers. For format 5, Rm must be a different register
from RdHi and RdLo.

■ Formats 1 to 4 update the cpsr Q-flag: Q = Q| <SignedOverflow>.

■ Format 5 implements an unsigned multiply with the U prefix or a signed multiply with
the S prefix.

■ Format 5 updates the cpsr if the S suffix is present: N = RdHi[31], Z = (RdHi==0
&& RdLo==0); the C and V flags are unpredictable. Avoid using {U|S}MLALS because
implementations often impose penalty cycles for this operation.

A.3 Alphabetical List of ARM and Thumb Instructions 607

■ Implementations may terminate early on the value of Rs. For this reason use small or
constant values for Rs where possible.

■ The X suffix and multiply subtract versions are useful for packed complex numbers.
The following examples assume bits [15:00] hold the real part and [31:16] the imaginary
part.

Examples

SMLABB r0, r1, r2, r0 ; r0 += (short)r1 * (short)r2
SMLABT r0, r1, r2, r0 ; r0 += (short)r1 * ((signed)r2 >> 16)
SMLAWB r0, r1, r2, r0 ; r0 += (r1*(short)r2) >> 16
SMLAL r0, r1, r2, r3 ; acc += r2*r3, acc is 64 bits [r1:r0]
SMLALTB r0, r1, r2, r3 ; acc += ((signed)r2 >> 16)*((short)r3)
SMLSD r0, r1, r2, r0 ; r0 += real(r1*r2) in complex maths
SMLADX r0, r1, r2, r0 ; r0 += imag(r1*r2) in complex maths

SMMUL
SMMLA
SMMLS

Signed most significant word multiply instructions

1. SMMUL{R}<cond> Rd, Rm, Rs ARMv6

2. SMMLA{R}<cond> Rd, Rm, Rs, Rn ARMv6

3. SMMLS{R}<cond> Rd, Rm, Rs, Rn ARMv6

Action

1. Rd = ((signed)Rm*(signed)Rs + round) >> 32

2. Rd = ((Rn << 32) + (signed)Rm*(signed)Rs + round) >> 32

3. Rd = ((Rn << 32) - (signed)Rm*(signed)Rs + round) >> 32

Notes

■ If you specify the R suffix then round = 231; otherwise, round = 0.

■ Rd, Rm, Rs, and Rn must not be pc.

■ Implementations may terminate early on the value of Rs.

■ For 32-bit DSP algorithms these operations have several advantages over using the
high result register from SMLAL: They often take fewer cycles than SMLAL. They also
implement rounding, multiply subtract, and don’t require a temporary scratch register
for the low 32 bits of result.

Example

SMMULR r0, r1, r2 ; r0=r1*r2/2 using Q31 arithmetic

608 Appendix A ARM and Thumb Assembler Instructions

SMUL
SMUA
SMUS

Signed multiply instructions

1. SMUL<x><y><cond> Rd, Rm, Rs ARMv5E

2. SMULW<y><cond> Rd, Rm, Rs ARMv5E

3. SMUAD{X}<cond> Rd, Rm, Rs ARMv6

4. SMUSD{X}<cond> Rd, Rm, Rs ARMv6

5. {U|S}MULL<cond>{S} RdLo, RdHi, Rm, Rs ARMv3M

Action

1. Rd = Rm.<x> * Rs.<y>

2. Rd = (Rm * Rs.<y>) >> 16

3. Rd = Rm.B*<rotated_Rs>.B + Rm.T*<rotated_Rs>.T

4. Rd = Rm.B*<rotated_Rs>.B - Rm.T*<rotated_Rs>.T

5. RdHi:RdLo = Rm*Rs

Notes

■ <x> and <y> can be B or T.

■ Rm.B is shorthand for (sign-extend)Rm[15:00], the bottom 16 bits of Rm.

■ Rm.T is shorthand for (sign-extend)Rm[31:16], the top 16 bits of Rm.

■ <rotated_Rs> is Rs if you do not specify the X suffix or Rs ROR 16 if you do specify the
X suffix.

■ RdHi and RdLo must be different registers. For format 5, Rm must be a different register
from RdHi and RdLo.

■ Format 4 updates the cpsr Q-flag: Q = Q | <SignedOverflow>.

■ Format 5 implements an unsigned multiply with the U prefix or a signed multiply with
the S prefix.

■ Format 5 updates the cpsr if the S suffix is present: N = RdHi[31], Z = (RdHi==0
&& RdLo==0); the C and V flags are unpredictable. Avoid using {S|U}MULLS because
implementations often impose penalty cycles for this operation.

■ Implementations may terminate early on the value of Rs. For this reason use small or
constant values for Rs where possible.

■ The X suffix and multiply subtract versions are useful for packed complex num-
bers. The following examples assume bits [15:00] hold the real part and [31:16] the
imaginary part.

A.3 Alphabetical List of ARM and Thumb Instructions 609

Examples

SMULBB r0, r1, r2 ; r0 = (short)r1 * (short)r2
SMULBT r0, r1, r2 ; r0 = (short)r1 * ((signed)r2 >> 16)
SMULWB r0, r1, r2 ; r0 = (r1*(short)r2) >> 16
SMULL r0, r1, r2, r3 ; acc = r2*r3, acc is 64 bits [r1:r0]
SMUADX r0, r1, r2 ; r0 = imag(r1*r2) in complex maths

SRS Save return state

1. SRS<amode> #<mode>{!} ARMv6

This performs the operation that STM<amode> sp_<mode>{!}, {lr, spsr} would perform
if STM allowed a register list of {lr, spsr} and allowed you to reference the stack pointer of
a different mode. See the entry for STM.

SSAT Saturate to n bits

1. {S|U}SAT<cond> Rd, #<n>, Rm {, LSL#<0-31>}

2. {S|U}SAT<cond> Rd, #<n>, Rm {, ASR#<1-32>}

3. {S|U}SAT16<cond> Rd, #<n>, Rm

Action Effect on the cpsr

1. Rd = sat(<shifted_Rm>, n); Q=Q | 1 if saturation occurred

2. Rd = sat(<shifted_Rm>, n); Q=Q | 1 if saturation occurred

2. Rd[31:16] = sat(Rm[31:16], n); Q=Q | 1 if saturation occurred

Rd[15:00] = sat(Rm[15:00], n)

Notes

■ If you specify the S prefix, then sat (x , n) saturates the signed value x to a signed n-bit
value in the range −2n−1 ≤ x < 2n−1. n is encoded as 1 + <immed5> for SAT and 1 +
<immed4> for SAT16.

■ If you specify the U prefix, then sat (x , n) saturates the signed value x to an unsigned
n-bit value in the range 0 ≤ x < 2n . n is encoded as <immed5> for SAT and <immed4>
for SAT16.

■ Rd and Rm must not be pc.

SSUB Signed parallel subtract (see SADD)

610 Appendix A ARM and Thumb Assembler Instructions

STC Store to coprocessor single or multiple 32-bit values

1. STC<cond>{L} <copro>, Cd, [Rn {, #{-}<immed8>*4}]{!} ARMv2

2. STC<cond>{L} <copro>, Cd, [Rn], #{-}<immed8>*4 ARMv2

3. STC<cond>{L} <copro>, Cd, [Rn], <option> ARMv2

4. STC2{L} <copro>, Cd, [Rn {, #{-}<immed8>*4}]{!} ARMv5

5. STC2{L} <copro>, Cd, [Rn], #{-}<immed8>*4 ARMv5

6. STC2{L} <copro>, Cd, [Rn], <option> ARMv5

These instructions initiate a memory write, transferring data to memory from the given
coprocessor. <copro> is the number of the coprocessor in the range p0 to p15. The core
takes an undefined instruction trap if the coprocessor is not present. The memory write
consists of a sequence of words to sequentially increasing addresses. The initial address
is specified by the addressing mode in Table A.10. The coprocessor controls the number
of words transferred, up to a maximum limit of 16 words. The fields {L} and Cd are
interpreted by the coprocessor and ignored by the ARM. Typically Cd specifies the source
coprocessor register for the transfer. The <option> field is an eight-bit integer enclosed in
{}. Its interpretation is coprocessor dependent.

If the address is not a multiple of four, then the access is unaligned. The restrictions on
an unaligned access are the same as for STM.

Table A.10 STC addressing modes.

Addressing format Address accessed Value written back to Rn

[Rn {,#{-}<immed>}] Rn + {{-}<immed>} Rn preserved
[Rn {,#{-}<immed>}]! Rn + {{-}<immed>} Rn + {{-}<immed>}
[Rn], #{-}<immed> Rn Rn + {-}<immed>
[Rn], <option> Rn Rn preserved

STM Store multiple 32-bit registers to memory

1. STM<cond><a mode> Rn{!}, <register_list>{∧} ARMv1

2. STMIA Rn!, <register_list> THUMBv1

These instructions store multiple words to sequential memory addresses. The
<register_list> specifies a list of registers to store, enclosed in curly brackets {}. Although the

A.3 Alphabetical List of ARM and Thumb Instructions 611

Table A.11 STM addressing modes.

Addressing Lowest address Highest address Value written back
mode accessed accessed to Rn if ! specified

{IA|EA} Rn Rn + N*4 - 4 Rn + N*4
{IB|FA} Rn + 4 Rn + N*4 Rn + N*4
{DA|ED} Rn - N*4 + 4 Rn Rn - N*4
{DB|FD} Rn - N*4 Rn - 4 Rn - N*4

assembler allows you to specify the registers in the list in any order, the order is not stored in
the instruction, so it is good practice to write the list in increasing order of register number
since this is the usual order of the memory transfer.

The following pseudocode shows the normal action ofSTM. We use<register_list>[i]
to denote the register appearing at position i in the list starting at 0 for the first register.
This assumes that the list is in order of increasing register number.

N = the number of registers in <register_list>
start = the lowest address accessed given in Table A.11
for (i=0; i<N; i++)

memory(start+i*4, 4) = <register_list>[i];
if (! specified) then update Rn according to Table A.11

Note that memory(a, 4) refers to the four bytes at address a packed according to the
current processor data endianness. If a is not a multiple of four, then the store is unaligned.
Because the behavior of an unaligned store depends on the architecture revision, memory
system, and system coprocessor (CP15) configuration, it is best to avoid unaligned stores if
possible. Assuming that the external memory system does not abort unaligned stores, then
the following rules usually apply:

■ If the core has a system coprocessor and bit 1 (A-bit) or bit 22 (U-bit) of CP15:c1:c0:0
is set, then unaligned store-multiples cause an alignment fault data abort exception.

■ Otherwise, the access ignores the bottom two address bits.

Table A.11 lists the possible addressing modes specified by <amode>. If you specify the !,
then the base address register is updated according to Table A.11; otherwise, it is preserved.
Note that the lowest register number is always written to the lowest address.

The first half of the addressing mode mnemonics stands for Increment After, Increment
Before, Decrement After, and Decrement Before, respectively. Increment modes store
the registers sequentially forward starting from address Rn (increment after) or Rn + 4
(increment before). Decrement modes have the same effect as if you stored the register

612 Appendix A ARM and Thumb Assembler Instructions

list backwards to sequentially descending memory addresses starting from address Rn
(decrement after) or Rn − 4 (decrement before).

The second half of the addressing mode mnemonics stands for the stack type you can
implement with that address mode: Full Descending, Empty Descending, Full Ascending,
and Empty Ascending. With a full stack, Rn points to the last stacked value. With an empty
stack, Rn points to the first unused stack location. ARM stacks are usually full descending.
You should use full descending or empty ascending stacks by preference, since STC also
supports these addressing modes.

Notes

■ For Thumb (format 2), Rn and the register list registers must be in the range r0 to r7.

■ The number of registers N in the list must be nonzero.

■ Rn must not be pc.

■ If Rn appears in the register list and ! (writeback) is specified, the behavior is as follows:
If Rn is the lowest register number in the list, then the original value is stored; otherwise,
the stored value is unpredictable.

■ If pc appears in the register list, then the value stored is implementation defined.

■ If ∧ is specified, then the operation is modified. The processor must not be in user or
system mode. The registers appearing in the register list refer to the user mode versions
of the registers and writeback must not be specified.

■ The time order of the memory accesses may depend on the implementation. Be careful
when using a store multiple to access I/O locations where the access order matters. If
the order matters, then check that the memory locations are marked as I/O in the page
tables. Do not cross page boundaries, and do not use pc in the register list.

Examples

STMIA r4!, {r0, r1} ; *r4=r0, *(r4+4)=r1, r4+=8
STMDB r4!, {r0, r1} ; *(r4-4)=r1, *(r4-8)=r0, r4-=8
STMEQFD sp!, {r0, lr} ; if (result zero) then stack r0, lr
STMFD sp, {sp}∧ ; store sp_usr on stack sp_current

STR Store a single value to a virtual address in memory

1. STR<cond>{|B} Rd, [Rn {, #{-}<immed12>}]{!} ARMv1

2. STR<cond>{|B} Rd, [Rn, {-}Rm {,<imm_shift>}]{!} ARMv1

3. STR<cond>{|B}{T} Rd, [Rn], #{-}<immed12> ARMv1

4. STR<cond>{|B}{T} Rd, [Rn], {-}Rm {,<imm_shift>} ARMv1

5. STR<cond>{H} Rd, [Rn, {, #{-}<immed8>}]{!} ARMv4

A.3 Alphabetical List of ARM and Thumb Instructions 613

6. STR<cond>{H} Rd, [Rn, {-}Rm]{!} ARMv4

7. STR<cond>{H} Rd, [Rn], #{-}<immed8> ARMv4

8. STR<cond>{H} Rd, [Rn], {-}Rm ARMv4

9. STR<cond>D Rd, [Rn, {, #{-}<immed8>}]{!} ARMv5E

10. STR<cond>D Rd, [Rn, {-}Rm]{!} ARMv5E

11. STR<cond>D Rd, [Rn], #{-}<immed8> ARMv5E

12. STR<cond>D Rd, [Rn], {-}Rm ARMv5E

13. STREX<cond> Rd, Rm, [Rn] ARMv6

14. STR{|B|H} Ld, [Ln, #<immed5>*<size>] THUMBv1

15. STR{|B|H} Ld, [Ln, Lm] THUMBv1

16. STR Ld, [sp, #<immed8>*4] THUMBv1

17. STR<cond><type> Rd, <label> MACRO

Formats 1 to 16 store a single data item of the type specified by the opcode suffix, using
a preindexed or postindexed addressing mode. Tables A.12 and A.13 show the different
addressing modes and data types.

In Table A.13, memory(a, n) refers to n sequential bytes at address a. The bytes are
packed according to the configured processor data endianness. memoryT(a, n) performs
the access with user mode privileges, regardless of the current processor mode. The act
of function IsExclusive(a) used by STREX depends on address a. If a has the shared
TLB attribute, then IsExclusive(a) is true if address a is marked as exclusive for this
processor. It then clears any exclusive accesses on this processor and any exclusive accesses
to address a on other processors in the system. If a does not have the shared TLB attribute,
then IsExclusive(a) is true if there is an outstanding exclusive access on this processor.
It then clears any such outstanding access.

Table A.12 STR addressing modes.

Addressing format Address a accessed Value written back to Rn

[Rn {,#{-}<immed>}] Rn + {{-}<immed>} Rn preserved
[Rn {,#{-}<immed>}]! Rn + {{-}<immed>} Rn + {{-}<immed>}
[Rn, {-}Rm {,<shift>}] Rn + {-}<shifted_Rm> Rn preserved
[Rn, {-}Rm {,<shift>}]! Rn + {-}<shifted_Rm> Rn + {-}<shifted_Rm>
[Rn], #{-}<immed> Rn Rn + {-}<immed>
[Rn], {-}Rm {,<shift>} Rn Rn + {-}<shifted_Rm>

614 Appendix A ARM and Thumb Assembler Instructions

Table A.13 STR data types.

Store Datatype <size> (bytes) Action

STR word 4 memory(a, 4) = Rd
STRB unsigned Byte 1 memory(a, 1) = (char)Rd
STRBT Byte Translated 1 memoryT(a, 1) = (char)Rd
STRD Double word 8 memory(a, 4) = Rd

memory(a+4, 4) = R(d+1)
STREX word EXclusive 4 if (IsExclsuive(a)) {

memory(a, 4) = Rm;
Rd = 0;

} else {
Rd = 1;

}
STRH unsigned Halfword 2 memory(a, 2) = (short) Rd
STRT word Translated 4 memoryT(a, 4) = Rd

If the address a is not a multiple of <size>, then the store is unaligned. Because the behav-
ior of an unaligned store depends on the architecture revision, memory system, and system
coprocessor (CP15) configuration, it is best to avoid unaligned stores if possible. Assuming
that the external memory system does not abort unaligned stores, then the following rules
usually apply. In the rules, A is bit 1 of system coprocessor register CP15:c1:c0:0, and U
is bit 22 of CP15:c1:c0:0, introduced in ARMv6. If there is no system coprocessor, then
A = U = 0.

■ If A = 1, then unaligned stores cause an alignment fault data abort exception except
that word-aligned double-word stores are supported if U = 1.

■ If A = 0 and U = 1, then unaligned stores are supported for STR{|T|H|SH}. Word-
aligned stores are supported forSTRD. A non-word-alignedSTRD generates an alignment
fault data abort.

■ If A = 0 and U = 0, then STR and STRTwrite to memory(a & ∼3, 4). All other unaligned
operations are unpredictable but do not cause an alignment fault.

Format 17 generates a pc -relative store accessing the address specified by <label> . In other
words it assembles to STR<cond><type> Rd, [pc, #<offset>] whenever this instruction is
supported and <offset>=<label>-pc is in range.

Notes

■ For double-word stores (formats 9 to 12), Rd must be even and in the range r0 to r12.

■ If the addressing mode updates Rn, then Rd and Rn must be distinct.

A.3 Alphabetical List of ARM and Thumb Instructions 615

■ If Rd is pc, then <size> must be 4. The value stored is implementation defined.

■ If Rn is pc, then the addressing mode must not update Rn . The value used for Rn is the
address of the instruction plus eight bytes.

■ Rm must not be pc.

Examples

STR r0, [r0] ; *(int*)r0 = r0;
STRH r0, [r1], #4 ; *(short*)r1 = r0; r1+=4;
STRD r2, [r1, #-8]! ; r1-=8; *(int*)r1=r2; *(int*)(r1+4)=r3
STRB r0, [r2, #55] ; *(char*)(r2+55) = r0;
STRB r0, [r1], -r2, LSL #8 ; *(char*)r1 = r0; r1-=256*r2;

SUB Subtract two 32-bit values

1. SUB<cond>{S} Rd, Rn, #<rotated_immed> ARMv1

2. SUB<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1

3. SUB Ld, Ln, #<immed3> THUMBv1

4. SUB Ld, #<immed8> THUMBv1

5. SUB Ld, Ln, Lm THUMBv1

6. SUB sp, #<immed7>*4 THUMBv1

Action Effect on the cpsr

1. Rd = Rn - <rotated_immed> Updated if S suffix specified

2. Rd = Rn - <shifted_Rm> Updated if S suffix specified

3. Ld = Ln - <immed3> Updated (see Notes below)

4. Ld = Ld - <immed8> Updated (see Notes below)

5. Ld = Ln - Lm Updated (see Notes below)

6. sp = sp - <immed7>*4 Preserved

Notes

■ If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = <Zero>,
C = <NoUnsignedOverflow>, and V = <SignedOverflow>. The carry flag is set this way
because the subtract x − y is implemented as the add x + ∼y + 1. The carry flag is one
if x + ∼y + 1 overflows. This happens when x ≥ y , when x − y doesn’t overflow.

616 Appendix A ARM and Thumb Assembler Instructions

■ If Rd is pc, then the instruction effects a jump to the calculated address. If the operation
updates the cpsr, then the processor mode must have an spsr; in this case, the cpsr is set
to the value of the spsr.

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

Examples

SUBS r0, r0, #1 ; r0-=1, setting flags
SUB r0, r1, r1, LSL #2 ; r0 = -3*r1
SUBS pc, lr, #4 ; jump to lr-4, set cpsr=spsr

SWI Software interrupt

1. SWI<cond> <immed24> ARMv1

2. SWI <immed8> THUMBv1

The SWI instruction causes the ARM to enter supervisor mode and start executing from
the SWI vector. The return address and cpsr are saved in lr_svc and spsr_svc, respectively.
The processor switches to ARM state and IRQ interrupts are disabled. The SWI vector is at
address 0x00000008, unless high vectors are configured; then it is at address 0xFFFF0008.

The immediate operand is ignored by the ARM. It is normally used by the SWI exception
handler as an argument determining which function to perform.

Example

SWI 0x123456 ; Used by the ARM tools to implement Semi-Hosting

SWP Swap a word in memory with a register, without interruption

1. SWP<cond> Rd, Rm, [Rn] ARMv2a

2. SWP<cond>B Rd, Rm, [Rn] ARMv2a

Action

1. temp=memory(Rn,4); memory(Rn,4)=Rm; Rd=temp;

2. temp=(zero extend)memory(Rn,1); memory(Rn,1)=(char)Rm; Rd=temp;

Notes

■ The operations are atomic. They cannot be interrupted partway through.

■ Rd, Rm, Rn must not be pc.

A.3 Alphabetical List of ARM and Thumb Instructions 617

■ Rn and Rm must be different registers. Rn and Rd must be different registers.

■ Rn should be aligned to the size of the memory transfer.

■ If a data abort occurs on the load, then the store does not occur. If a data abort occurs
on the store, then Rd is not written.

You can use the SWP instruction to implement 8-bit or 32-bit semaphores on ARMv5 and
below. For ARMv6 use LDREX and STREX in preference. As an example, suppose a byte
semaphore register pointed to by r1 can have the value 0xFF (claimed) or 0x00 (free).
The following example claims the lock. If the lock is already claimed, then the code loops,
waiting for an interrupt or task switch that will free the lock.

MOV r0, #0xFF ; value to claim the lock
loop SWPB r0, r0, [r1] ; try and claim the lock

CMP r0, #0xFF ; check to see if it was already claimed
BEQ loop ; if so wait for it to become free

SXT
SXTA

Byte or halfword extract or extract with accumulate

1. {S|U}XTB16<cond> Rd, Rm {, ROR#8*<rot> } ARMv6

2. {S|U}XTB<cond> Rd, Rm {, ROR#8*<rot> } ARMv6

3. {S|U}XTH<cond> Rd, Rm {, ROR#8*<rot> } ARMv6

4. {S|U}XTAB16<cond> Rd, Rn, Rm {, ROR#8*<rot> } ARMv6

5. {S|U}XTAB<cond> Rd, Rn, Rm {, ROR#8*<rot> } ARMv6

6. {S|U}XTAH<cond> Rd, Rn, Rm {, ROR#8*<rot> } ARMv6

7. {S|U}XTB Ld, Lm THUMBv3

8. {S|U}XTH Ld, Lm THUMBv3

Action

1. Rd[31:16] = extend(<shifted_Rm>[23:16]);

Rd[15:00] = extend(<shifted_Rm>[07:00])

2. Rd = extend(<shifted_Rm>[07:00])

3. Rd = extend(<shifted_Rm>[15:00])

4. Rd[31:16] = Rn[31:16] + extend(<shifted_Rm>[23:16]);

Rd[15:00] = Rn[15:00] + extend(<shifted_Rm>[07:00])

5. Rd = Rn + extend(<shifted_Rm>[07:00])

618 Appendix A ARM and Thumb Assembler Instructions

6. Rd = Rn + extend(<shifted_Rm>[15:00])

7. Ld = extend(Lm[07:00])

8. Ld = extend(Lm[15:00])

Notes

■ If you specify the S prefix, then extend(x) sign extends x.

■ If you specify the U prefix, then extend(x) zero extends x.

■ Rd and Rm must not be pc.

■ <rot> is an immediate in the range 0 to 3.

TEQ Test for equality of two 32-bit values

1. TEQ<cond> Rn, #<rotated_immed> ARMv1

2. TEQ<cond> Rn, Rm {, <shift>} ARMv1

Action

1. Set the cpsr on the result of (Rn ∧ <rotated_immed>)

2. Set the cpsr on the result of (Rn ∧ <shifted_Rm>)

Notes

■ The cpsr is updated: N = <Negative>, Z = <Zero>, C = <shifter_C> (see Table A.3).

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight
bytes.

■ Use this instruction instead of CMP when you want to check for equality and preserve
the carry flag.

Example

TEQ r0, #1 ; test to see if r0==1

TST Test bits of a 32-bit value

1. TST<cond> Rn, #<rotated_immed> ARMv1

A.3 Alphabetical List of ARM and Thumb Instructions 619

2. TST<cond> Rn, Rm {, <shift>} ARMv1

3. TST Ln, Lm THUMBv1

Action

1. Set the cpsr on the result of (Rn & <rotated_immed>)

2. Set the cpsr on the result of (Rn & <shifted_Rm>)

3. Set the cpsr on the result of (Ln & Lm)

Notes

■ The cpsr is updated: N = <Negative>, Z = <Zero>, C = <shifter_C> (see Table A.3).

■ If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

■ Use this instruction to test whether a selected set of bits are all zero.

Example

TST r0, #0xFF ; test if the bottom 8 bits of r0 are 0

UADD Unsigned parallel modulo add (see the entry for SADD)

UHADD
UHSUB

Unsigned halving add and subtract (see the entry for SHADD)

UMAAL Unsigned multiply accumulate accumulate long

1. UMAAL<cond> RdLo, RdHi, Rm, Rs ARMv6

Action

1. RdHi:RdLo = (unsigned)Rm*Rs + (unsigned)RdLo + (unsigned)RdHi

Notes

■ RdHi and RdLo must be different registers.

■ RdHi, RdLo, Rm, Rs must not be pc.

■ This operation cannot overflow because (232 − 1)(232 − 1) + (232 − 1) + (232 − 1) =
(264 − 1). You can use it to synthesize the multiword multiplications used by public
key cryptosystems.

620 Appendix A ARM and Thumb Assembler Instructions

UMLAL
UMULL

Unsigned long multiply and multiply accumulate (see the SMLAL and SMULL entries)

UQADD
UQSUB

Unsigned saturated add and subtract (see the QADD entry)

USAD Unsigned sum of absolute differences

1. USAD8<cond> Rd, Rm, Rs ARMv6

2. USADA8<cond> Rd, Rm, Rs, Rn ARMv6

Action

1. Rd = abs(Rm[31:24]-Rs[31:24]) + abs(Rm[23:16]-Rs[23:16])

+ abs(Rm[15:08]-Rs[15:08]) + abs(Rm[07:00]-Rs[07:00])

2. Rd = Rn + abs(Rm[31:24]-Rs[31:24]) + abs(Rm[23:16]-Rs[23:16])

+ abs(Rm[15:08]-Rs[15:08]) + abs(Rm[07:00]-Rs[07:00])

Notes

■ abs(x) returns the absolute value of x. Rm and Rs are treated as unsigned.

■ Rd, Rm, and Rs must not be pc.

■ The sum of absolute differences operation is common in video codecs where it provides
a metric to measure how similar two images are.

USAT Unsigned saturation instruction (see the SSAT entry)

USUB Unsigned parallel modulo subtracts (see the SADD entry)

UXT
UXTA

Unsigned extract, extract with accumulate (see the entry for SXT)

A.4 ARM Assembler Quick Reference

This section summarizes the more useful commands and expressions available with the
ARM assembler, armasm. Each assembly line has one of the following formats:

{<label>} {<instruction>} ; comment
{<symbol>} <directive> ; comment
{<arg_0>} <macro> {<arg_1>} {,<arg_2>} .. {,<arg_n>} ; comment

A.4 ARM Assembler Quick Reference 621

where

■ <instruction> is any ARM or Thumb instruction supported by the processor you are
assembling for. See Section A.3.

■ <label> is the name of a symbol to store the address of the instruction.

■ <directive> is an ARM assembler directive. See Section A.4.4.

■ <symbol> is the name of a symbol used by the <directive>.

■ <macro> is the name of a new directive defined using the MACRO directive.

■ <arg_k> is the kth macro argument.

You must use an AREA directive to define an area before any ARM or Thumb instructions
appear. All assembly files must finish with the END directive. The following example shows a
simple assembly file defining a functionadd that returns the sum of the two input arguments:

AREA maths_routines, CODE, READONLY
EXPORT add ; give the symbol add external linkage

add ADD r0, r0, r1 ; add input arguments
MOV pc, lr ; return from sub-routine

END

A.4.1 ARM Assembler Variables

The ARM assembler supports three types of assemble time variables (see Table A.14).
Variable names are case sensitive and must be declared before use with the directives GBLx
or LCLx.

You can use variables in expressions (see Section A.4.2), or substitute their value at
assembly time using the $ operator. Specifically, $name. expands to the value of the variable

Table A.14 ARM assembler variable types.

Declare Declare locally Example
Variable type globally to a macro Set value values

Unsigned 32-bit
integer

GBLA LCLA SETA 15, 0xab

ASCII string GBLS LCLS SETS "", "ADD"
Logical GBLL LCLL SETL {TRUE},

{FALSE}

622 Appendix A ARM and Thumb Assembler Instructions

name before the line is assembled. You can omit the final period if name is not followed by
an alphanumeric or underscore. Use $$ to produce a single $. Arithmetic variables expand
to an eight-digit hexadecimal string on substitution. Logical variables expand to T or F.

The following example code shows how to declare and substitute variables of each
type:

; arithmetic variables
GBLA count ; declare an integer variable count

count SETA 1 ; set count = 1
WHILE count<15

BL test$count ; call test00000001, test00000002 ...
count SETA count+1 ; test00000000E

WEND

; string variables
GBLS cc ; declare a string variable called cc

cc SETS "NE" ; set cc="NE"
ADD$cc r0, r0, r0 ; assembles as ADDNE r0,r0,r0
STR$cc.B r0, [r1] ; assembles as STRNEB r0,[r1]

; logical variable
GBLL debug ; declare a logical variable called debug

debug SETL {TRUE} ; set debug={TRUE}
IF debug ; if debug is TRUE then

BL print_debug ; print out some debug information
ENDIF

A.4.2 ARM Assembler Labels

A label definition must begin on the first character of a line. The assembler treats indented
text as an instruction, directive, or macro. It treats labels of the form <N><name> as a local
label, where <N> is an integer in the range 0 to 99 and <name> is an optional textual name.
Local labels are limited in scope by the ROUT directive. To reference a local label, you refer to
it as %{|F|B}{|A|T}<N>{<name>}. The extra prefix letters tell the assembler how to search
for the label:

■ If you specify F, the assembler searches forward; if B, then the assembler searches
backwards. Otherwise the assembler searches backwards and then forwards.

■ If you specify T, the assembler searches the current macro only; if A, then the assembler
searches all macro levels. Otherwise the assembler searches the current and higher
macro nesting levels.

A.4 ARM Assembler Quick Reference 623

A.4.3 ARM Assembler Expressions

The ARM assembler can evaluate a number of numeric, string, and logical expressions
at assembly time. Table A.15 shows some of the unary and binary operators you can use
within expressions. Brackets can be used to change the order of evaluation in the usual way.

Table A.15 ARM assembler unary and binary operators.

Expression Result Example

A+B, A-B A plus or minus B 1-2 = 0xffffffff
A*B, A/B A multiplied by or divided by B 2*3 = 6, 7/3 = 2
A:MOD:B A modulo B 7:MOD:3 = 1
:CHR:A string with ASCII code A :CHR:32 = " "
‘X’ the ASCII value of X ‘a’ = 0x61
:STR:A,
:STR:L

A or L converted to a string :STR:32 = "00000020"
:STR:{TRUE} = "T"

A <<B,
A:SHL:B

A shifted left by B bits 1 << 3 = 8

A >> B,
A:SHR:B

A shifted right by B bits (logical
shift)

0x80000000 >> 4 =
0x08000000

A:ROR:B,
A:ROL:B

A rotated right/left by B bits 1:ROR:1 = 0x80000000
0x80000000:ROL:1 = 1

A=B, A>B,
A>=B, A<B,
A<=B, A/=B,
A<>B

comparison of arithmetic or string
variables (/= and <> both mean
not equal)

(1=2) = {FALSE},
(1<2) = {TRUE},
("a"="c") = {FALSE},
("a"<"c") = {TRUE}

A:AND:B,
A:OR:B,
A:EOR:B,
:NOT:A

Bitwise AND, OR, exclusive OR of
A and B; bitwise NOT of A.

1:AND:3 = 1
1:OR:3 = 3
:NOT:0 = 0xFFFFFFFF

:LEN:S length of the string S :LEN:"ABC" = 3
S:LEFT:B,
S:RIGHT:B

leftmost or rightmost B characters
of S

"ABC":LEFT:2 = "AB",
"ABC":RIGHT:2 = "BC"

S:CC:T the concatenation of S, T "AB":CC:"C" = "ABC"
L:LAND:M,
L:LOR:M,
L:LEOR:M

logical AND, OR, exclusive OR of
L and M

{TRUE}:LAND:{FALSE} =
{FALSE}

:DEF:X returns TRUE if a variable called X is
defined

:BASE:A
:INDEX:A

see the MAP directive

624 Appendix A ARM and Thumb Assembler Instructions

Table A.16 Predefined expressions.

Variable Value

{ARCHITECURE} The ARM architecture of the CPU (“4T” for ARMv4T)
{ARMASM_VERSION} The assembler version number
{CONFIG} or
{CODESIZE}

The bit width of the instructions being assembled (32 for
ARM state, 16 for Thumb state)

{CPU} The name of the CPU being assembled for
{ENDIAN} The configured endianness, “big” or “little”
{INTER} {TRUE} if ARM/Thumb interworking is on
{PC} (alias .) The address of the current instruction being assembled
{ROPI}, {RWPI} {TRUE} if read-only/read-write position independent
{VAR} (alias @) The MAP counter (see the MAP directive)

In Table A.15, A and B represent arbitrary integers; S and T, strings; and L and M, logical
values. You can use labels and other symbols in place of integers in many expressions.

A.4.3.1 Predefined Variables

Table A.16 shows a number of special variables that can appear in expressions. These are
predefined by the assembler, and you cannot override them.

A.4.4 ARM Assembler Directives

Here is an alphabetical list of the more common armasm directives.

ALIGN

ALIGN {<expression>, {<offset>}}

Aligns the address of the next instruction to the form q*<expression>+<offset>. The
alignment is relative to the start of the ELF section so this must be aligned appropriately
(see the AREA directive). <expression> must be a power of two; the default is 4. <offset>
is zero if not specified.

AREA

AREA <section> {,<attr_1>} {,<attr_2>} ... {,<attr_k>}

Starts a new code or data section of name <section>. Table A.17 lists the possible attributes.

A.4 ARM Assembler Quick Reference 625

Table A.17 AREA attributes.

Attribute Meaning

ALIGN=<expression> Align the ELF section to a 2expression byte boundary.
ASSOC=<sectionname> If this section is linked, also link <sectionname>.
CODE The section contains instructions and is read only.
DATA The section contains data and is read write.
NOINIT The data section does not require initialization.
READONLY The section is read only.
READWRITE The section is read write.

ASSERT

ASSERT <logical-expression>

Assemble time assert. If the logical expression is false, then assembly terminates with an
error.

CN

<name> CN <numeric-expression>

Set <name> to be an alias for coprocessor register <numeric-expression>.

CODE16, CODE32

CODE16 tells the assembler to assemble the following instructions as 16-bit Thumb
instructions. CODE32 indicates 32-bit ARM instructions (the default for armasm).

CP

<name> CP <numeric-expression>

Set <name> to be an alias for coprocessor number <numeric-expression>.

DATA

<label> DATA

The DATA directive indicates that the label points to data rather than code. In Thumb
mode this prevents the linker from setting the bottom bit of the label. Bit 0 of a
function pointer or code label is 0 for ARM code and 1 for Thumb code (see the BX
instruction).

626 Appendix A ARM and Thumb Assembler Instructions

Table A.18 Memory initialization directives.

Directive Alias Data size (bytes) Initialization value

DCB = 1 byte or string
DCW 2 16-bit integer (aligned to 2 bytes)
DCD & 4 32-bit integer (aligned to 4 bytes)
DCQ 8 64-bit integer (aligned to 4 bytes)
DCI 2 or 4 integer defining an ARM or Thumb instruction

DCB, DCD{U}, DCI, DCQ{U}, DCW{U}

These directives allocate one or more bytes of initialized memory according to Table A.18.
Follow each directive with a comma-separated list of initialization values. If you specify the
optional U suffix, then the assembler does not insert any alignment padding.

Examples

hello DCB "hello", 0
powers DCD 1, 2, 4, 8, 10, 0x20, 0x40, 0x80

DCI 0xEA000000

ELSE (alias |)

See IF.

END

This directive must appear at the end of a source file. Assembler source after an END directive
is ignored.

ENDFUNC (alias ENDP), ENDIF (alias])

See FUNCTION and IF, respectively.

ENTRY

This directive specifies the program entry point for the linker. The entry point is usually
contained in the ARM C library.

EQU (alias *)

<name> EQU <numeric-expression>

A.4 ARM Assembler Quick Reference 627

This directive is similar to #define in C. It defines a symbol <name> with value defined by
the expression. This value cannot be redefined. See Section A.4.1 for the use of redefinable
variables.

EXPORT (alias GLOBAL)

EXPORT <symbol>{[WEAK]}

Assembler symbols are local to the object file unless exported using this command. You
can link exported symbols with other object and library files. The optional [WEAK] suffix
indicates that the linker should try and resolve references with other instances of this symbol
before using this instance.

EXTERN, IMPORT

EXTERN <symbol>{[WEAK]}
IMPORT <symbol>{[WEAK]}

Both of these directives declare the name of an external symbol, defined in another object
file or library. If you use this symbol, then the linker will resolve it at link time. For IMPORT,
the symbol will be resolved even if you don’t use it. For EXTERN, only used symbols are
resolved. If you declare the symbol as [WEAK], then no error is generated if the linker
cannot resolve the symbol; instead the symbol takes the value 0.

FIELD (alias #)

See MAP.

FUNCTION (alias PROC) and ENDFUNC (alias ENDP)

The FUNCTION and ENDFUNC directives mark the start and end of an ATPCS-compliant
function. Their main use is to improve the debug view and allow backtracking of function
calls during debugging. They also allow the profiler to more accurately profile assembly
functions. You must precede the function directive with the ATPCS function name. For
example:

sub FUNCTION
SUB r0, r0, r1
MOV pc, lr
ENDFUNC

GBLA, GBLL, GBLS

Directives defining global arithmetic, logic, and string variables, respectively. See
Section A.4.1.

628 Appendix A ARM and Thumb Assembler Instructions

GET

See INCLUDE.

GLOBAL

See EXPORT.

IF (alias [), ELSE (alias |), ENDIF (alias])

These directives provide for conditional assembly. They are similar to #if, #else, #endif,
available in C. The IF directive is followed by a logical expression. The ELSE directive may
be omitted. For example:

IF ARCHITECTURE="5TE"
SMULBB r0, r1, r1

ELSE
MUL r0, r1, r1

ENDIF

IMPORT

See EXTERN.

INCBIN

INCBIN <filename>

This directive includes the raw data contained in the binary file <filename> at the current
point in the assembly. For example, INCBIN table.dat.

INCLUDE (alias GET)

INCLUDE <filename>

Use this directive to include another assembly file. It is similar to the #include command in
C. For example, INCLUDE header.h.

INFO (alias !)

INFO <numeric_expression>, <string_expression>

If <numeric_expresssion> is nonzero, then assembly terminates with error <string_expresssion>.
Otherwise the assembler prints <string_expression> as an information message.

A.4 ARM Assembler Quick Reference 629

KEEP

KEEP {<symbol>}

By default the assembler does not include local symbols in the object file, only exported
symbols (see EXPORT). Use KEEP to include all local symbols or a specified local symbol.
This aids the debug view.

LCLA, LCLL, LCLS

These directives declare macro-local arithmetic, logical, and string variables, respectively.
See Section A.4.1.

LTORG

Use LTORG to insert a literal pool. The assembler uses literal pools to store the constants
appearing in the LDR Rd,=<value> instruction. See LDR format 19. Usually the assembler
inserts literal pools automatically, at the end of each area. However, if an area is too large,
then the LDR instruction cannot reach this literal pool using pc-relative addressing. Then
you need to insert a literal pool manually, near the LDR instruction.

MACRO, MEXIT, MEND

Use these directives to declare a new assembler macro or pseudoinstruction. The syntax is

MACRO
{$<arg_0>} <macro_name> {$<arg_1>} {,$<arg_2>} ... {,$<arg_k>}

<macro_code>
MEND

The macro parameters are stored in the dummy variables $<arg_i>. This argument is set
to the empty string if you don’t supply a parameter when calling the macro. The MEXIT
directive terminates the macro early and is usually used inside IF statements. For example,
the following macro defines a new pseudoinstruction SMUL, which evaluates to a SMULBB on
an ARMv5TE processor, and an MUL otherwise.

MACRO
$label SMUL $a, $b, $c

IF {ARCHITECTURE}="5TE"
$label SMULBB $a, $b, $c

MEXIT
ENDIF

$label MUL $a, $b, $c
MEND

630 Appendix A ARM and Thumb Assembler Instructions

MAP (alias ∧), FIELD (alias #)

These directives define objects similar to C structures. MAP sets the base address or offset of
a structure, and FIELD defines structure elements. The syntax is

MAP <base> {, <base_register>}
<name> FIELD <field_size_in_bytes>

The MAP directive sets the value of the special assembler variable {VAR} to the base
address of the structure. This is either the value <base> or the register relative value
<base_register>+<base>. Each FIELD directive sets <name> to the value VAR and incre-
ments VAR by the specified number of bytes. For register relative values, the expressions
:INDEX:<name> and :BASE:<name> return the element offset from base register, and base
register number, respectively.

In practice the base register form is not that useful. Instead you can use the plain
form and mention the base register explicitly in the instruction. This allows you to point
to a structure of the same type with different base registers. The following example sets up
a structure on the stack of two int variables:

MAP 0 ; structure elements offset from 0
count FIELD 4 ; define an int called count
type FIELD 4 ; define an int called type
size FIELD 0 ; record the struct size

SUB sp, sp, #size ; make room on the stack
MOV r0, #0
STR r0, [sp, #count] ; clear the count element
STR r0, [sp, #type] ; clear the type element

NOFP

This directive bans the use of floating-point instructions in the assembly file. We don’t
cover floating-point instructions and directives in this appendix.

OPT

The OPT directive controls the formatting of the armasm -list option. This is seldom used
now that source-level debugging is available. See the armasm documentation.

PROC

See FUNCTION.

RLIST, RN

<name> RN <numeric expression>
<name> RLIST <list of ARM register enclosed in {}>

A.5 GNU Assembler Quick Reference 631

These directives name a list of ARM registers or a single ARM register. For example, the
following code names r0 as arg and the ATPCS preserved registers as saved.

arg RN 0
saved RLIST {r4-r11}

ROUT

The ROUT directive defines a new local label area. See Section A.4.2.

SETA, SETL, SETS

These directives set the values of arithmetic, logical, and string variables, respectively.
See Section A.4.1.

SPACE (alias %)

{<label>} SPACE <numeric_expression>

This directive reserves<numeric_expression>bytes of space. The bytes are zero initialized.

WHILE, WEND

These directives supply an assemble-time looping structure. WHILE is followed by a logical
expression. While this expression is true, the assembler repeats the code between WHILE
and WEND. The following example shows how to create an array of powers of two from 1 to
65,536.

GBLA count
count SETA 1

WHILE count<=65536
DCD count

count SETA 2*count
WEND

A.5 GNU Assembler Quick Reference

This section summarizes the more useful commands and expressions available with the
GNU assembler, gas, when you target this assembler for ARM. Each assembly line has the
format

{<label>:} {<instruction or directive>} @ comment

632 Appendix A ARM and Thumb Assembler Instructions

Unlike the ARM assembler, you needn’t indent instructions and directives. Labels are
recognized by the following colon rather than their position at the start of the line. The
following example shows a simple assembly file defining a function add that returns the
sum of the two input arguments:

.section .text, "x"

.global add @ give the symbol add external linkage

add:
ADD r0, r0, r1 @ add input arguments
MOV pc, lr @ return from subroutine

A.5.1 GNU Assembler Directives

Here is an alphabetical list of the more common gas directives.

.ascii "<string>"

Inserts the string as data into the assembly, as for DCB in armasm.

.asciz "<string>"

As for .ascii but follows the string with a zero byte.

.balign <power_of_2> {,<fill_value> {,<max_padding>} }

Aligns the address to <power_of_2> bytes. The assembler aligns by adding bytes of value
<fill_value> or a suitable default. The alignment will not occur if more than <max_padding>
fill bytes are required. Similar to ALIGN in armasm.

.byte <byte1> {,<byte2>} ...

Inserts a list of byte values as data into the assembly, as for DCB in armasm.

.code <number_of_bits>

Sets the instruction width in bits. Use 16 for Thumb and 32 for ARM assembly. Similar to
CODE16 and CODE32 in armasm.

.else

Use with .if and .endif. Similar to ELSE in armasm.

A.5 GNU Assembler Quick Reference 633

.end

Marks the end of the assembly file. This is usually omitted.

.endif

Ends a conditional compilation code block. See .if, .ifdef, .ifndef. Similar to ENDIF
in armasm.

.endm

Ends a macro definition. See .macro. Similar to MEND in armasm.

.endr

Ends a repeat loop. See .rept and .irp. Similar to WEND in armasm.

.equ <symbol name>, <value>

This directive sets the value of a symbol. It is similar to EQU in armasm.

.err

Causes assembly to halt with an error.

.exitm

Exit a macro partway through. See .macro. Similar to MEXIT in armasm.

.global <symbol>

This directive gives the symbol external linkage. It is similar to EXPORT in armasm.

.hword <short1> {,<short2>} ...

Inserts a list of 16-bit values as data into the assembly, as for DCW in armasm.

.if <logical_expression>

Makes a block of code conditional. End the block using .endif. Similar to IF in armasm.
See also .else.

.ifdef <symbol>

Include a block of code if <symbol> is defined. End the block with .endif.

634 Appendix A ARM and Thumb Assembler Instructions

.ifndef <symbol>

Include a block of code if <symbol> is not defined. End the block with .endif.

.include "<filename>"

Includes the indicated source file. Similar to INCLUDE in armasm or #include in C.

.irp <param> {,<val_1>} {,<val_2>} ...

Repeats a block of code, once for each value in the value list. Mark the end of the block using
a .endr directive. In the repeated code block, use \<param> to substitute the associated
value in the value list.

.macro <name> {<arg_1>} {,<arg_1>} ... {,<arg_k>}

Defines an assembler macro called <name> with k parameters. The macro definition must
end with .endm. To escape from the macro at an earlier point, use .exitm. These directives
are similar to MACRO, MEND, and MEXIT in armasm. You must precede the dummy macro
parameters by \. For example:

.macro SHIFTLEFT a, b
.if \b < 0

MOV \a, \a, ASR #-\b
.exitm

.endif
MOV \a, \a, LSL #\b

.endm

.rept <number_of_times>

Repeats a block of code the given number of times. End the block with .endr.

<register_name> .req <register_name>

This directive names a register. It is similar to the RN directive in armasm except that you
must supply a name rather than a number on the right. For example, acc .req r0.

.section <section_name> {,"<flags>"}

Starts a new code or data section. Usually you should call a code section .text, an initialized
data section .data, and an uninitialized data section .bss . These have default flags,
and the linker understands these default names. The directive is similar to the armasm

A.5 GNU Assembler Quick Reference 635

Table A.19 .section flags for ELF format files.

Flag Meaning

a allocatable section
w writable section
x executable section

directive AREA. Table A.19 lists possible characters to appear in the <flags> string for ELF
format files.

.set <variable_name>, <variable_value>

This directive sets the value of a variable. It is similar to SETA in armasm.

.space <number_of_bytes> {,<fill_byte>}

Reserves the given number of bytes. The bytes are filled with zero or <fill_byte> if
specified. It is similar to SPACE in armasm.

.word <word1> {,<word2>} ...

Inserts a list of 32-bit word values as data into the assembly, as for DCD in armasm.

B.1 ARM Instruction Set Encodings
B.2 Thumb Instruction Set Encodings
B.3 Program Status Registers

A p p e n d i x

ARM and Thumb
Instruction

Encodings

B

This appendix gives tables for the instruction set encodings of the 32-bit ARM and 16-bit
Thumb instruction sets. We also describe the fields of the processor status registers cpsr
and spsr.

B.1 ARM Instruction Set Encodings
Table B.1 summarizes the bit encodings for the 32-bit ARM instruction set architec-
ture ARMv6. This table is useful if you need to decode an ARM instruction by hand.
We’ve expanded the table to aid quick manual decode. Any bitmaps not listed are either
unpredictable or undefined for ARMv6.

To use Table B.1 efficiently, follow this decoding procedure:

■ Look at the leading hex digit of the instruction, bits 28 to 31. If this has a value 0xF,
then jump to the end of Table B.1. Otherwise, the top hex digit represents a condition
cond. Decode cond using Table B.2.

■ Index through Table B.1 using the second hex digit, bits 24 to 27 (shaded).

■ Index using bit 4, then bit 7 or bit 23 of the instruction where these bits are shaded.

■ Once you have located the correct table entry, look at the bits named op. Concatenate
these to form a binary number that indexes the | separated instruction list on the left.

637

638 Appendix B ARM and Thumb Instruction Encodings

For example if there are two op bits value 1 and 0, then the binary value 10 indicates
instruction number 2 in the list (the third instruction).

■ The instruction operands have the same name as in the instruction description of
Appendix A.

The table uses the following abbreviations:

■ L is 1 if the L suffix applies for LDC and STC operations.

■ M is 1 if CPS changes processor mode. mode is defined in Table B.3.

■ op1 and op2 are the opcode extension fields in coprocessor instructions.

■ post indicates a postindexed addressing mode such as [Rn], Rm or [Rn], #immed.

■ pre indicates a preindexed addressing mode such as [Rn, Rm] or [Rn, #immed].

■ register_list is a bit field with bit k set if register Rk appears in the register list.

■ rot is a byte rotate. The second operand is Rm ROR (8*rot).

■ rotate is a bit rotate. The second operand is #immed ROR (2*rotate).

■ shift and sh encode a shift type and direction. See Table B.4.

■ U is the up/down select for addressing modes. If U = 1, then we add the offset to the
base address, as in [Rn],#4 or [Rn,Rm]. If U = 0, then we subtract the offset from the
base address, as in [Rn,#-4] or [Rn],-Rm.

■ unindexed indicates an addressing mode of the form [Rn],{option}.

■ R is 1 if the R (round) instruction suffix is present.

■ T is 1 if the T suffix is present on load and store instructions.

■ W is 1 if ! (writeback) is specified in the instruction mnemonic.

■ X is 1 if the X (exchange) instruction suffix is present.

■ x and y are 0 for the B suffix, 1 for the T suffix.

■ ∧ is 1 if the ∧ suffix is applied in LDM or STM instructions.

B.2 Thumb Instruction Set Encodings
Table B.5 summarizes the bit encodings for the 16-bit Thumb instruction set. This table is
useful if you need to decode a Thumb instruction by hand. We’ve expanded the table
to aid quick manual decode. The table contains instruction definitions up to archi-
tecture THUMBv3. Any bitmaps not listed are either unpredictable or undefined for
THUMBv3.

Table B.1 ARM instruction decode table.

Instruction classes (indexed by op) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AND | EOR | SUB | RSB |
cond 0 0 0 0 op S Rn Rd shift_size shift 0 Rm

ADD | ADC | SBC | RSC
AND | EOR | SUB | RSB |

cond 0 0 0 0 op S Rn Rd Rs 0 shift 1 RmADD | ADC | SBC | RSC
MUL cond 0 0 0 0 0 0 0 S Rd 0 0 0 0 Rs 1 0 0 1 Rm
MLA cond 0 0 0 0 0 0 1 S Rd Rn Rs 1 0 0 1 Rm
UMAAL cond 0 0 0 0 0 1 0 0 RdHi RdLo Rs 1 0 0 1 Rm
UMULL | UMLAL | SMULL | SMLAL cond 0 0 0 0 1 op S RdHi RdLo Rs 1 0 0 1 Rm
STRH | LDRH post cond 0 0 0 0 U 0 0 op Rn Rd 0 0 0 0 1 0 1 1 Rm

STRH | LDRH post cond 0 0 0 0 U 1 0 op Rn Rd
immed

1 0 1 1
immed

[7:4] [3:0]
LDRD | STRD | LDRSB | LDRSH post cond 0 0 0 0 U 0 0 op Rn Rd 0 0 0 0 1 1 op 1 Rm

LDRD | STRD | LDRSB | LDRSH post cond 0 0 0 0 U 1 0 op Rn Rd
immed

1 1 op 1
immed

[7:4] [3:0]
MRS Rd, cpsr | MRS Rd, spsr cond 0 0 0 1 0 op 0 0 1 1 1 1 Rd 0 0 0 0 0 0 0 0 0 0 0 0
MSR cpsr, Rm | MSR spsr, Rm cond 0 0 0 1 0 op 1 0 f s x c 1 1 1 1 0 0 0 0 0 0 0 0 Rm
BXJ cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 Rm
SMLAxy cond 0 0 0 1 0 0 0 0 Rd Rn Rs 1 y x 0 Rm
SMLAWy cond 0 0 0 1 0 0 1 0 Rd Rn Rs 1 y 0 0 Rm
SMULWy cond 0 0 0 1 0 0 1 0 Rd 0 0 0 0 Rs 1 y 1 0 Rm
SMLALxy cond 0 0 0 1 0 1 0 0 RdHi RdLo Rs 1 y x 0 Rm
SMULxy cond 0 0 0 1 0 1 1 0 Rd 0 0 0 0 Rs 1 y x 0 Rm
TST | TEQ | CMP | CMN cond 0 0 0 1 0 op 1 Rn 0 0 0 0 shift_size shift 0 Rm
ORR | BIC cond 0 0 0 1 1 op 0 S Rn Rd shift_size shift 0 Rm
MOV | MVN cond 0 0 0 1 1 op 1 S 0 0 0 0 Rd shift_size shift 0 Rm
BX | BLX cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 op 1 Rm
CLZ cond 0 0 0 1 0 1 1 0 1 1 1 1 Rd 1 1 1 1 0 0 0 1 Rm
QADD | QSUB | QDADD | QDSUB cond 0 0 0 1 0 op 0 Rn Rd 0 0 0 0 0 1 0 1 Rm

BKPT 1 1 1 0 0 0 0 1 0 0 1 0 immed[15:4] 0 1 1 1
immed

[3:0]
TST | TEQ | CMP | CMN cond 0 0 0 1 0 op 1 Rn 0 0 0 0 Rs 0 shift 1 Rm
ORR | BIC cond 0 0 0 1 1 op 0 S Rn Rd Rs 0 shift 1 Rm
MOV | MVN cond 0 0 0 1 1 op 1 S 0 0 0 0 Rd Rs 0 shift 1 Rm
SWP | SWPB cond 0 0 0 1 0 op 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm
STREX cond 0 0 0 1 1 0 0 0 Rn Rd 1 1 1 1 1 0 0 1 Rm
LDREX cond 0 0 0 1 1 0 0 1 Rn Rd 1 1 1 1 1 0 0 1 1 1 1 1

Table B.1 ARM instruction decode table. (Continued.)

Instruction classes (indexed by op) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STRH | LDRH pre cond 0 0 0 1 U 0 W op Rn Rd 0 0 0 0 1 0 1 1 Rm

STRH | LDRH pre cond 0 0 0 1 U 1 W op Rn Rd
immed

1 0 1 1
immed

[7:4] [3:0]
LDRD | STRD | LDRSB | LDRSH pre cond 0 0 0 1 U 0 W op Rn Rd 0 0 0 0 1 1 op 1 Rm

LDRD | STRD | LDRSB | LDRSH pre cond 0 0 0 1 U 1 W op Rn Rd
immed

1 1 op 1
immed

[7:4] [3:0]
AND | EOR | SUB | RSB |

cond 0 0 1 0 op S Rn Rd rotate immed
ADD | ADC | SBC | RSC

MSR cpsr, #imm | MSR spsr, #imm cond 0 0 1 1 0 op 1 0 f s x c 1 1 1 1 rotate immed
TST | TEQ | CMP | CMN cond 0 0 1 1 0 op 1 Rn 0 0 0 0 rotate immed
ORR | BIC cond 0 0 1 1 1 op 0 S Rn Rd rotate immed
MOV | MVN cond 0 0 1 1 1 op 1 S 0 0 0 0 Rd rotate immed
STR | LDR | STRB | LDRB post cond 0 1 0 0 U op T op Rn Rd immed12
STR | LDR | STRB | LDRB pre cond 0 1 0 1 U op W op Rn Rd immed12
STR | LDR | STRB | LDRB post cond 0 1 1 0 U op T op Rn Rd shift_size shift 0 Rm
{ |S|Q|SH| |U|UQ|UH}ADD16 cond 0 1 1 0 0 op Rn Rd 1 1 1 1 0 0 0 1 Rm
{ |S|Q|SH| |U|UQ|UH}ADDSUBX cond 0 1 1 0 0 op Rn Rd 1 1 1 1 0 0 1 1 Rm
{ |S|Q|SH| |U|UQ|UH}SUBADDX cond 0 1 1 0 0 op Rn Rd 1 1 1 1 0 1 0 1 Rm
{ |S|Q|SH| |U|UQ|UH}SUB16 cond 0 1 1 0 0 op Rn Rd 1 1 1 1 0 1 1 1 Rm
{ |S|Q|SH| |U|UQ|UH}ADD8 cond 0 1 1 0 0 op Rn Rd 1 1 1 1 1 0 0 1 Rm
{ |S|Q|SH| |U|UQ|UH}SUB8 cond 0 1 1 0 0 op Rn Rd 1 1 1 1 1 1 1 1 Rm
PKHBT | PKHTB cond 0 1 1 0 1 0 0 0 Rn Rd shift_size op 0 1 Rm
{S|U}SAT cond 0 1 1 0 1 op 1 immed5 Rd shift_size sh 0 1 Rm
{S|U}SAT16 cond 0 1 1 0 1 op 1 0 immed4 Rd 1 1 1 1 0 0 1 1 Rm
SEL cond 0 1 1 0 1 0 0 0 Rn Rd 1 1 1 1 1 0 1 1 Rm
REV | REV16 | | REVSH cond 0 1 1 0 1 op 1 1 1 1 1 1 Rd 1 1 1 1 op 0 1 1 Rm
{S|U}XTAB16 cond 0 1 1 0 1 op 0 0 Rn!=1111 Rd rot 0 0 0 1 1 1 Rm
{S|U}XTB16 cond 0 1 1 0 1 op 0 0 1 1 1 1 Rd rot 0 0 0 1 1 1 Rm
{S|U}XTAB cond 0 1 1 0 1 op 1 0 Rn!=1111 Rd rot 0 0 0 1 1 1 Rm
{S|U}XTB cond 0 1 1 0 1 op 1 0 1 1 1 1 Rd rot 0 0 0 1 1 1 Rm
{S|U}XTAH cond 0 1 1 0 1 op 1 1 Rn!=1111 Rd rot 0 0 0 1 1 1 Rm
{S|U}XTH cond 0 1 1 0 1 op 1 1 1 1 1 1 Rd rot 0 0 0 1 1 1 Rm
STR | LDR | STRB | LDRB pre cond 0 1 1 1 U op W op Rn Rd shift_size shift 0 Rm
SMLAD | SMLSD cond 0 1 1 1 0 0 0 0 Rd Rn!=1111 Rs 0 op X 1 Rm
SMUAD | SMUSD cond 0 1 1 1 0 0 0 0 Rd 1 1 1 1 Rs 0 op X 1 Rm
SMLALD | SMLSLD cond 0 1 1 1 0 1 0 0 RdHi RdLo Rs 0 op X 1 Rm

Table B.1 ARM instruction decode table. (Continued.)

Instruction classes (indexed by op) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMMLA | | | SMMLS cond 0 1 1 1 0 1 0 1 Rd Rn ! =1111 Rs op R 1 Rm
SMMUL cond 0 1 1 1 0 1 0 1 Rd 1 1 1 1 Rs 0 0 R 1 Rm
USADA8 cond 0 1 1 1 1 0 0 0 Rd Rn ! = 1111 Rs 0 0 0 1 Rm
USAD8 cond 0 1 1 1 1 0 0 0 Rd 1 1 1 1 Rs 0 0 0 1 Rm
Undefined and expected to stay so cond 0 1 1 1 1 1 1 1 x 1 1 1 1 x
STMDA | LDMDA | STMIA | LDMIA cond 1 0 0 0 op ^ W op Rn register_list
STMDB | LDMDB | STMIB | LDMIB cond 1 0 0 1 op ^ W op Rn register_list
B to instruction_address+8+4*offset cond 1 0 1 0 signed 24-bit branch offset
BL to instruction_address+8+4*offset cond 1 0 1 1 signed 24-bit branch offset
MCRR | MRRC cond 1 1 0 0 0 1 0 op Rn Rd copro op1 Cm
STC{L} | LDC{L} unindexed cond 1 1 0 0 1 L 0 op Rn Cd copro option
STC{L} | LDC{L} post cond 1 1 0 0 U L 1 op Rn Cd copro immed8
STC{L} | LDC{L} pre cond 1 1 0 1 U L W op Rn Cd copro immed8
CDP cond 1 1 1 0 op1 Cn Cd copro op2 0 Cm
MCR | MRC cond 1 1 1 0 op1 op Cn Rd copro op2 1 Cm
SWI cond 1 1 1 1 immed24
CPS | | CPSIE | CPSID 1 1 1 1 0 0 0 1 0 0 0 0 op M 0 0 0 0 0 0 0 0 a i f 0 mode
SETEND LE | SETEND BE 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 op 0 0 0 0 0 0 0 0 0
PLD pre 1 1 1 1 0 1 0 1 U 1 0 1 Rn 1 1 1 1 immed12
PLD pre 1 1 1 1 0 1 1 1 U 1 0 1 Rn 1 1 1 1 shift_size shift 0 Rm
RFEDA | RFEIA | RFEDB | RFEIB 1 1 1 1 1 0 0 op op 0 W 1 Rn 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
SRSDA | SRSIA | SRSDB | SRSIB 1 1 1 1 1 0 0 op op 1 W 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 mode
BLX instruction+8+4*offset+2*a 1 1 1 1 1 0 1 a signed 24-bit branch offset
MCRR2 | MRRC2 1 1 1 1 1 1 0 0 0 1 0 op Rn Rd copro op1 Cm
STC2{L} | LDC2{L} unindexed 1 1 1 1 1 1 0 0 1 L 0 op Rn Cd copro option
STC2{L} | LDC2{L} post 1 1 1 1 1 1 0 0 U L 1 op Rn Cd copro immed8
STC2{L} | LDC2{L} pre 1 1 1 1 1 1 0 1 U L W op Rn Cd copro immed8
CDP2 1 1 1 1 1 1 1 0 op1 Cn Cd copro op2 0 Cm
MCR2 | MRC2 1 1 1 1 1 1 1 0 op1 op Cn Cd copro op2 1 Cm

642 Appendix B ARM and Thumb Instruction Encodings

Table B.2 Decoding table for cond.

Binary Hex cond

0000 0 EQ
0001 1 NE
0010 2 CS/HS
0011 3 CC/LO
0100 4 MI
0101 5 PL
0110 6 VS
0111 7 VC

Binary Hex cond

1000 8 HI
1001 9 LS
1010 A GE
1011 B LT
1100 C GT
1101 D LE
1110 E {AL}

Table B.3 Decoding table for mode.

Binary Hex mode

10000 0x10 user mode (_usr)
10001 0x11 FIQ mode (_fiq)
10010 0x12 IRQ mode (_irq)
10011 0x13 supervisor mode (_svc)
10111 0x17 abort mode (_abt)
11011 0x1B undefined mode (_und)
11111 0x1F system mode

Table B.4 Decoding table for shift, shift_size, and Rs.

shift shift_size Rs Shift action

00 0 to 31 N/A LSL #shift_size
00 N/A Rs LSL Rs
01 0 N/A LSR #32
01 1 to 31 N/A LSR #shift_size
01 N/A Rs LSR Rs
10 0 N/A ASR #32
10 1 to 31 N/A ASR #shift_size
10 N/A Rs ASR Rs
11 0 N/A RRX
11 1 to 31 N/A ROR #shift_size
11 N/A Rs ROR Rs
N/A 0 to 31 N/A The shift value is implicit: For PKHBT it is 00.

For PKHTB it is 10. For SAT it is 2*sh.

B.2 Thumb Instruction Set Encodings 643

To use the table efficiently, follow this decoding procedure:

■ Index through the table using the first hex digit of the instruction, bits 12 to 15 (shaded).

■ Index on any shaded bits from bits 0 to 11.

■ Once you have located the correct table entry, look at the bits named op. Concatenate
these to form a binary number that indexes the | separated instruction list on the left.
For example, if there are two op bits value 1 and 0, then the binary value 10 indicates
instruction number 2 in the list (the third instruction).

■ The instruction operands have the same name as in the instruction description of
Appendix A.

The table uses the following abbreviations:

■ register_list is a bit field with bit k set if register Rk appears in the register list.

■ R is 1 if lr is in the register list of PUSH or pc is in the register list of POP.

Table B.5 Thumb instruction decode table.

Instruction classes (indexed by op) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LSL | LSR 0 0 0 0 op immed5 Lm Ld
ASR 0 0 0 1 0 immed5 Lm Ld
ADD | SUB 0 0 0 1 1 0 op Lm Ln Ld
ADD | SUB 0 0 0 1 1 1 op immed3 Ln Ld
MOV | CMP 0 0 1 0 op Ld/Ln immed8
ADD | SUB 0 0 1 1 op Ld immed8
AND | EOR | LSL | LSR 0 1 0 0 0 0 0 0 op Lm/Ls Ld
ASR | ADC | SBC | ROR 0 1 0 0 0 0 0 1 op Lm/Ls Ld
TST | NEG | CMP | CMN 0 1 0 0 0 0 1 0 op Lm Ld/Ln
ORR | MUL | BIC | MVN 0 1 0 0 0 0 1 1 op Lm Ld
CPY Ld, Lm 0 1 0 0 0 1 1 0 0 0 Lm Ld
ADD | MOV Ld, Hm 0 1 0 0 0 1 op 0 0 1 Hm & 7 Ld
ADD | MOV Hd, Lm 0 1 0 0 0 1 op 0 1 0 Lm Hd & 7
ADD | MOV Hd, Hm 0 1 0 0 0 1 op 0 1 1 Hm & 7 Hd & 7
CMP 0 1 0 0 0 1 0 1 0 1 Hm & 7 Ln
CMP 0 1 0 0 0 1 0 1 1 0 Lm Hn & 7
CMP 0 1 0 0 0 1 0 1 1 1 Hm & 7 Hn & 7
BX | BLX 0 1 0 0 0 1 1 1 op Rm 0 0 0
LDR Ld, [pc, #immed*4] 0 1 0 0 1 Ld immed8
STR | STRH | STRB | LDRSB pre 0 1 0 1 0 op Lm Ln Ld
LDR | LDRH | LDRB | LDRSH pre 0 1 0 1 1 op Lm Ln Ld
STR | LDR Ld, [Ln, #immed*4] 0 1 1 0 op immed5 Ln Ld
STRB | LDRB Ld, [Ln, #immed] 0 1 1 1 op immed5 Ln Ld
STRH | LDRH Ld, [Ln, #immed*2] 1 0 0 0 op immed5 Ln Ld

644 Appendix B ARM and Thumb Instruction Encodings

Table B.5 Thumb instruction decode table. (Continued.)

Instruction classes (indexed by op) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STR | LDR Ld, [sp, #immed*4] 1 0 0 1 op Ld immed8
ADD Ld, pc, #immed*4 |

1 0 1 0 op Ld immed8
ADD Ld, sp, #immed*4

ADD sp, #immed*4 | SUB sp,
1 0 1 1 0 0 0 0 op immed7

#immed*4
SXTH | SXTB | UXTH | UXTB 1 0 1 1 0 0 1 0 op Lm Ld
REV | REV16 | | REVSH 1 0 1 1 1 0 1 0 op Lm Ld
PUSH | POP 1 0 1 1 op 1 0 R register_list
SETEND LE | SETEND BE 1 0 1 1 0 1 1 0 0 1 0 1 op 0 0 0
CPSIE | CPSID 1 0 1 1 0 1 1 0 0 1 1 op 0 a i f
BKPT immed8 1 0 1 1 1 1 1 0 immed8
STMIA | LDMIA Ln!,{register-list} 1 1 0 0 op Ln register_list
B<cond> instruction_address+

1 1 0 1 cond < 1110 signed 8-bit offset
4+offset*2

Undefined and expected to remain so 1 1 0 1 1 1 1 0 x
SWI immed8 1 1 0 1 1 1 1 1 immed8
B instruction_address+4+offset*2 1 1 1 0 0 signed 11-bit offset
BLX ((instruction+4+
(poff<<12)+offset*4) &~ 3) 1 1 1 0 1 unsigned 10-bit offset 0
This must be preceded by a branch prefix
instruction.

This is the branch prefix instruction. It must be
1 1 1 1 0 signed 11-bit prefix offset poff

followed by a relative BL or BLX instruction.
BL instruction+4+ (poff<<12)+
offset*2 This must be preceded by a 1 1 1 1 1 unsigned 11-bit offset
branch prefix instruction.

B.3 Program Status Registers 645

B.3 Program Status Registers
Table B.6 shows how to decode the 32-bit program status registers for ARMv6.

Table B.6 cpsr and spsr decode table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q Res J Res GE[3:0] Res E A I F T mode

Field Use

N Negative flag, records bit 31 of the result of flag-setting operations.
Z Zero flag, records if the result of a flag-setting operation is zero.
C Carry flag, records unsigned overflow for addition, not-borrow for subtraction, and is

also used by the shifting circuit. See Table A.3.
V Overflow flag, records signed overflows for flag-setting operations.
Q Saturation flag. Certain operations set this flag on saturation. See for example QADD in

Appendix A (ARMv5E and above).
J J = 1 indicates Java execution (must have T = 0). Use the BXJ instruction to change

this bit (ARMv5J and above).
Res These bits are reserved for future expansion. Software should preserve the values

in these bits.
GE[3:0] The SIMD greater-or-equal flags. See SADD in Appendix A (ARMv6).
E Controls the data endianness. See SETEND in Appendix A (ARMv6).
A A = 1 disables imprecise data aborts (ARMv6).
I I = 1 disables IRQ interrupts.
F F = 1 disables FIQ interrupts.
T T = 1 indicates Thumb state. T = 0 indicates ARM state. Use the BX or BLX instructions

to change this bit (ARMv4T and above).
mode The current processor mode. See Table B.4.

C.1 ARM Naming Convention
C.2 Core and Architectures

A p p e n d i x

Processors and
Architecture

C

This appendix lists ARM processor names together with their core name and Instruction
Set Architecture (ISA). We have omitted processors designed prior to the ARM7TDMI.

For example, Table C.3 shows that the ARM966E-S processor has a ARM9E core and
implements ARM architecture version 5TE. Any ARMv5TE binaries will execute on an
ARM966E-S processor.

C.1 ARM Naming Convention
All ARM processors share a common naming convention that has evolved over time. ARM
cores have the name ARM{x}{labels}, where x is the number of the core and labels are
letters representing extra features, described in Table C.1. ARM processors have the name
ARM{x}{y}{z}{labels}, where y and z are numbers defining the processor cache size and
memory management model. Table C.2 lists the rules for ARM processor numbering.

The labels, or attributes, are often subsumed into the architecture version over time.
For example, the T label indicates the inclusion of Thumb in ARMv4 processors. However,
Thumb is included in ARMv5 and later processors, so it is not necessary to specify the T
after this point.

C.2 Core and Architectures
Table C.3 shows each ARM processor together with the core and architecture versions that
the processor uses.

647

648 Appendix C Processors and Architecture

Table C.1 Label attributes.

Attribute Description

D The ARM core supports debug via the JTAG interface. The D is automatic for ARMv5 and
above.

E The ARM core supports the Enhanced DSP instruction additions to ARMv5. The E is
automatic for ARMv6 and above.

F The ARM core supports hardware floating point via the Vector Floating Point (VFP)
architecture.

I The ARM core supports hardware breakpoints and watchpoints via the EmbeddedICE cell.
The I is automatic for ARMv5 and above.

J The ARM core supports the Jazelle Java acceleration architecture.
M The ARM core supports the long multiply instructions for ARMv3. The M is automatic for

ARMv4 and above.
-S The ARM processor uses a synthesizable hardware design.
T The ARM core supports the Thumb instruction set for ARMv4 and above. The T is

automatic for ARMv6 and above.

Table C.2 ARM processor numbering: ARM{x}{y}{z}.

x y z Description Example

7 * * ARM7 processor core ARM7TDMI
9 * * ARM9 processor core ARM926EJ-S

10 * * ARM10 processor core ARM1026EJ-S
11 * * ARM11 processor core ARM1136J-S
* 2 * cache and MMU ARM920T
* 3 * cache and MMU with physical address tagging ARM1136J-S
* 4 * cache and an MPU ARM946E-S
* 6 * write buffer but no cache(s) ARM966E-S
* * 0 standard cache size ARM920T
* * 2 reduced cache size ARM922T
* * 6 includes tightly coupled SRAM memory (TCM) ARM946E-S

C.2 Core and Architectures 649

Table C.3 Processors, cores, and architecture versions.

Processor product Processor core ARM ISA Thumb ISA VFP ISA

ARM7TDMI ARM7TDMI v4T v1
ARM7TDMI-S ARM7TDMI-S v4T v1
ARM7EJ-S ARM7EJ v5TEJ v2
ARM740T ARM7TDMI v4T v1
ARM720T ARM7TDMI v4T v1
ARM920T ARM9TDMI v4T v1
ARM922T ARM9TDMI v4T v1
ARM940T ARM9TDMI v4T v1
Intel SA-110 StrongARM1 v4
ARM926EJ-S ARM9EJ v5TEJ v2
ARM946E-S ARM9E v5TE v2
ARM966E-S ARM9E v5TE v2
ARM1020E ARM10E v5TE v2
ARM1022E ARM10E v5TE v2
ARM1026EJ-S ARM10EJ v5TEJ v2
Intel XScaleTM XScale v5TE v2
ARM1136J-S ARM11 v6J v3
ARM1136JF-S ARM11 v6J v3 v2

D.1 Using the Instruction Cycle Timing Tables
D.2 ARM7TDMI Instruction Cycle Timings
D.3 ARM9TDMI Instruction Cycle Timings
D.4 StrongARM1 Instruction Cycle Timings
D.5 ARM9E Instruction Cycle Timings
D.6 ARM10E Instruction Cycle Timings
D.7 Intel XScale Instruction Cycle Timings
D.8 ARM11 Cycle Timings

A p p e n d i x

Instruction
Cycle Timings

D

This appendix lists the instruction cycle timings for some common ARM implementions.
Timings can vary between different revisions of an implementation and are also affected by
external events such as interrupts, memory speed, and cache misses. You should treat these
numbers as a guide only and verify performance measurements on real hardware. Refer to
the manufacturer’s data sheets for the latest timing information.

ARM cores use pipelined implementations. The number of cycles that an instruction
takes may depend on the previous and following instructions. When you optimize code,
you need to be aware of these interactions, described in the “Notes” column of the timing
tables.

D.1 Using the Instruction Cycle Timing Tables
Use the following steps to calculate the number of cycles taken by an instruction:

■ Use Table C.3 in Appendix C to find which ARM core you are using. For example,
ARM7xx parts usually contain an ARM7TDMI core; ARM9xx parts, an ARM9TDMI
core; and ARM9xxE, parts an ARM9E core.

■ Find the table in this appendix for the ARM core you are using.

■ Find the relevant instruction class in the left-hand column of the table. The class “ALU”
is shorthand for all of the arithmetic and logical instructions: ADD, ADC, SUB, RSB, SBC,
RSC, AND, ORR, BIC, EOR, CMP, CMN, TEQ, TST, MOV, MVN, CLZ.

651

652 Appendix D Instruction Cycle Timings

Table D.1 Standard cycle abbreviations.

Abbreviation Meaning

B The number of busy-wait cycles issued by a coprocessor. This depends
on the coprocessor design.

M The number of multiplier iteration cycles. This depends on the value in
register Rs. Each implementation section contains a table showing how
to calculate M from Rs for that implementation.

N The number of words to transfer in a load or store multiple. This includes
pc if it is in the register list. N must be at least one.

■ Read the value in the “Cycles” column. This is the number of cycles the instruction
usually takes, assuming the instruction passes its condition codes and there are no inter-
actions with other instructions. The cycle count may depend on one of the abbreviations
in Table D.1.

■ If the “Notes” column contains any notes of the form +k if condition, then add on to
your cycle count all the additions that apply.

■ Look for interlock conditions that will cause the processor to stall. These are occasions
where an instruction attempts to use the result of a previous instruction before it
is ready. Unless otherwise stated, input registers are required on the first cycle of the
instruction and output results are available at the end of the last cycle of the instruction.
However, implementations with multiple execute stage pipelines can require input
operands early and produce output operands later. Table D.2 defines the statements
we use in the “Notes” sections to describe this.

■ If your instruction fails its condition codes, then it is not executed. Usually this costs
one cycle. However, on some implementations, instructions may cost multiple cycles
even if they are not executed. Look for a note of the form “[k cycles if not executed].”

D.2 ARM7TDMI Instruction Cycle Timings 653

Table D.2 Pipeline behavior statements.

Statement Meaning

Rd is not available for k cycles. The result register Rd of the instruction is not available as the input to
another instruction for k cycles after the end of the instruction. If you
attempt to use Rd earlier, then the core will stall until the k cycles have
elapsed.

Rn is required k cycles early. The input register Rn of the instruction must be available k cycles before
the start of the instruction. If it was the result of a later operation,
then the core will stall until this condition is met.

Rn is not required until the
kth cycle.

The input register Rn is not read on the first cycle of the instruction.
Instead it is read on the kth cycle of the instruction. Therefore the core
will not stall if Rn is available by this point.

You cannot start a type X
instruction for k cycles.

The instruction uses a resource also used by type X instructions.
Moreover the instruction continues to use this resource for k cycles after
the last cycle of the instruction. If you attempt to execute a type X
instruction before k cycles have elapsed, then the core will stall until k
cycles have elapsed.

D.2 ARM7TDMI Instruction Cycle Timings
The ARM7TDMI core is based on a three-stage pipeline with a single execute stage. The
number of cycles an instruction takes does not usually depend on preceding or following
instructions. The multiplier circuit uses a 32-bit by 8-bit multiplier array with early ter-
mination. The number of multiply iteration cycles M depends on the value of register Rs
according to Table D.3. Table D.4 gives the ARM7TDMI instruction cycle timings.

Table D.3 ARM7TDMI multiplier early termination.

M Rs range (use the first applicable range) Rs bitmap s= sign bit x= wildcard-bit

1 −28 ≤ x < 28 ssssssss ssssssss ssssssss xxxxxxxx
2 −216 ≤ x < 216 ssssssss ssssssss xxxxxxxx xxxxxxxx
3 −224 ≤ x < 224 ssssssss xxxxxxxx xxxxxxxx xxxxxxxx
4 remaining x xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

654 Appendix D Instruction Cycle Timings

Table D.4 ARM7TDMI (ARMv4T) instruction cycle timings.

Instruction class Cycles Notes

ALU 1 +1 if you use a register-specified shift Rs.
+2 if Rd is pc.

B, BL, BX 3
CDP 1 + B
LDC 1 + B + N
LDR/B/H/SB/SH 3 +2 if Rd is pc.
LDM 2 + N +2 if pc is in the register list.
MCR 2 + B
MLA 2 + M
xMLAL 3 + M
MRC 3 + B
MRS, MSR 1
MUL 1 + M
xMULL 2 + M
STC 1 + B + N
STR/B/H 2
STM 1 + N
SWI 3
SWP/B 4

D.3 ARM9TDMI Instruction Cycle Timings
The ARM9TDMI core is based on a five-stage pipeline with a single execute stage and two
memory fetch stages. There is usually a one- or two-cycle delay following a load instruction
before you can use the data. Using data immediately after a load will add interlock cycles.
The multiplier circuit uses a 32-bit by 8-bit multiplier array with early termination. The
number of multiply iteration cycles M depends on the value of register Rs according to
Table D.5. Table D.6 gives the ARM9TDMI instruction cycle timings.

Table D.5 ARM9TDMI multiplier early termination.

M Rs range (use the first applicable range) Rs bitmap s= sign bit x= wildcard-bit

1 −28 ≤ x < 28 ssssssss ssssssss ssssssss xxxxxxxx
2 −216 ≤ x < 216 ssssssss ssssssss xxxxxxxx xxxxxxxx
3 −224 ≤ x < 224 ssssssss xxxxxxxx xxxxxxxx xxxxxxxx
4 remaining x xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

D.4 StrongARM1 Instruction Cycle Timings 655

Table D.6 ARM9TDMI (ARMv4T) instruction cycle timings.

Instruction class Cycles Notes

ALU 1 +1 if a register-specified shift Rs is used.
+2 if Rd is pc.

B, BL, BX 3
CDP 1 + B
LDC B + N
LDRB/H/SB/SH 1 Rd is not available for two cycles.
LDR Rd not pc 1 Rd is not available for one cycle.
LDR Rd is pc 5
LDM not loading pc N +1 if N = 1 or the last loaded register used in

the next cycle.
LDM loading pc N + 4
MCR 1 + B
MRC Rd not pc 1 + B Rd is not available for one cycle.
MRC Rd is pc 3 + B
MRS 1
MSR 1 +2 if any of the csx fields are updated.
MUL, MLA 2 + M
xMULL, xMLAL 3 + M
STC B + N
STR/B/H 1
STM N +1 if N = 1.
SWI 3
SWP/B 2 Rd is not available for one cycle.

D.4 StrongARM1 Instruction Cycle Timings
The StrongARM1 core is based on a five-stage pipeline. There is usually a one-cycle delay fol-
lowing a load or multiply instruction before you can use the data. Additionally, there is often
a one-cycle delay if you start a new multiply instruction immediately following a previous
multiply instruction. The multiplier circuit uses a 32-bit by 12-bit multiplier array with early
termination. The number of multiply iteration cycles M depends on the value of register Rs
according to Table D.7. Table D.8 gives the StrongARM1 instruction cycle timings.

Table D.7 StrongARM1 multiplier early termination.

M Rs range (use the first applicable range) Rs bitmap s= sign bit x= wildcard bit

1 −211 ≤ x < 211 ssssssss ssssssss sssssxxx xxxxxxxx
2 −223 ≤ x < 223 ssssssss sxxxxxxx xxxxxxxx xxxxxxxx
3 remaining x xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

656 Appendix D Instruction Cycle Timings

Table D.8 StrongARM1 (ARMv4) instruction cycle timings.

Instruction class Cycles Notes

ALU 1 +1 if a register-specified shift is used [even if the instruction is not
executed].
+2 if Rd is pc [only if executed].

B, BL 2
LDR/B/H Rd not pc 1 Rd is not available for one cycle.
LDRSB/SH Rd not pc 2 Rd is not available for one cycle.
LDR Rd is pc 4
LDM N = 1, not pc 2 [2 cycles if not executed.]
LDM N > 1, not pc N The last loaded value is not available for one cycle.

[N cycles if not executed.]
LDM loading pc N + 3 [max(N ,2) if not executed.]
MRS 1 Rd is not available for one cycle.
MSR to cpsr 3 +1 if any of the csx fields are updated.
MSR to spsr 1
MUL, MLA M Rd is not available for one cycle. You cannot start another multiply

on the next cycle.
MULS, MLAS 4
xMULL, xMLAL 1 + M RdHi is not available for one cycle. You cannot start a multiply on

the next cycle. [2 if instruction not executed.]
xMULLS, xMLALS 5 [2 if instruction not executed.]
STR/B/H 1
STM N +1 if N = 1.

[Same number of cycles if not executed.]
SWP/B 2 [2 if instruction not executed.]

D.5 ARM9E Instruction Cycle Timings
The ARM9E core is based on a five-stage pipeline. There is usually a one- or two-cycle delay
following a load or multiply instruction before you can use the data. The multiplier circuit
uses a 32-bit by 16-bit multiplier array. The multiplier does not terminate early. Table D.9
gives the ARM9E instruction cycle timings.

D.5 ARM9E Instruction Cycle Timings 657

Table D.9 ARM9Erev2 (ARMv5TE) instruction cycle timings.

Instruction Class Cycles Notes

ALU Rd not pc 1 +1 if a register-specified shift is used.
ALU Rd is pc 3 +1 if the operation is logical or any shift is used.
B, BL, BX, BLX 3
CDP 1 + B
LDC B + N
LDRB/H/SB/SH 1 Rd is not available for two cycles.

+1 if the load offset is shifted.
LDR Rd not pc 1 Rd is not available for one cycle.

+1 if the load offset is shifted.
LDR Rd is pc 5 +1 if the load offset is shifted.
LDRD 2 R(d+1) is not available for one cycle.
LDM not loading pc N +1 if N = 1 or the last loaded register used in the next

cycle.
LDM loading pc N + 4
MCR 1 + B
MCRR 2 + B
MRC Rd not pc 1 + B Rd is not available for one cycle.
MRC Rd is pc 4 + B
MRRC 2 +B Rn is not available for one cycle.
MRS 2
MSR 1 +2 if any of the csx fields are updated.
MUL, MLA 2 Rd is not available for one cycle, except as an

accumulator input for a multiply accumulate.
MULS, MLAS 4
xMULL, xMLAL 3 RdHi is not available for one cycle, except as an

accumulator input for a multiply accumulate.
xMULLS, xMLALS 5
PLD 1
QxADD, QxSUB 1 Rd is not available for one cycle.
SMULxy, SMLAxy, SMULWx, SMLAWx 1 Rd is not available for one cycle, except as an

accumulator input for a multiply accumulate.
SMLALxy 2 RdHi is not available for one cycle, except as an

accumulator input for a multiply accumulate.
STC B + N
STR/B/H 1 +1 if a shifted offset is used.
STRD 2
STM N +1 if N = 1.
SWI 3
SWP/B 2 Rd is not available for one cycle.

658 Appendix D Instruction Cycle Timings

D.6 ARM10E Instruction Cycle Timings
The ARM10E core is based on a five-stage pipeline with branch prediction. There is usually
a one-cycle delay following a load or multiply instruction before you can use the data. The
ARM10E uses a 64-bit-wide data bus, so load and store instructions can transfer 64 bits
per cycle. The multiplier does not use early termination. Table D.10 gives the ARM10E
instruction cycle timings.

Table D.10 ARM10E (ARMv5TE) instruction cycle timings.

Instruction class Cycles Notes

ALU 1 +1 if a register-specified shift, or RRX, is used.
+4 if Rd is pc.
An exception is MOV pc, Rn. This takes 4 cycles.

B, BX 0-2 +4 if the branch is mispredicted.
BL, BLX 1-2 +4 if the branch is mispredicted.
CDP 1
LDC 1 Data availability depends on the coprocessor.
LDR/B/H/SB/SH 1 Rd is not available for one cycle.
Rd not pc +1 if the addressing mode is register preindexed with the option of a

(constant) shift.
LDR Rd is pc 6 +1 if the offset (pre- or postindex) is a shifted register.

[2 cycles if not executed].
LDRD 1 Rd and R(d + 1) are not available for one cycle.
LDM not loading pc 1 The first data item is not available for one cycle. Once the address is 8-byte

aligned, data items are loaded in pairs, at two per cycle. Therefore the kth
data item will be available after (k + a + 1)/2 cycles, where a is bit 2 of the
base address. You cannot start another load or store until this one has
finished.

LDM loading pc L + 6 L = (N + a)/2, and a is bit 2 of the base address.
MCR, MCCR 1
MR{R}C Rd not pc 1 Rd is not available for one cycle.
MRC Rd is pc 2
MRS 1
MSR to cpsr 1 +3 if any of the csx fields are updated.
MSR to spsr 3 [2 if the instruction is not executed.]
MUL, MLA 2 Rd is not available for one cycle.
MULS, MLAS 4
xMULL, xMLAL 3 RdHi is not available for one cycle.
xMULLS, xMLALS 5

D.7 Intel XScale Instruction Cycle Timings 659

Table D.10 ARM10E (ARMv5TE) instruction cycle timings. (continued)

Instruction class Cycles Notes

PLD 1 +1 if a shifted register offset is used.
QxADD, QxSUB 1 Rd is not available for one cycle.
SMULxy, SMULWx 1 Rd is not available for one cycle.
SMLAxy, SMLAWx 2
SMLALxy 2 RdHi is not available for one cycle.
STC 1
STR/B/H 1 +1 if a preindexed shifted register offset is used.
STRD 1
STM 1 Registers are stored two per cycle once the address is 8-byte aligned. You

cannot write a register in the register list until its value has been stored.
You cannot start another load or store until this one is complete.

SWP/B 2

D.7 Intel XScale Instruction Cycle Timings
The Intel XScale is based on a seven-stage pipeline. There is usually a two-cycle delay
following a load instruction before you can use the data. Multiply instructions usually
issue in a fixed number of cycles, but then the result is not available for a variable number
of cycles, depending on the value of Rs. Table D.11 shows how the number of multiply
iteration cycles M depends on the value of Rs. Table D.12 gives the Intel XScale instruction
cycle timings.

Table D.11 Intel XScale multiplier early termination.

M Rs range (use the first applicable range) Rs bitmap s= sign bit x= wildcard bit

1 −215 ≤ x < 215 ssssssss ssssssss sxxxxxxx xxxxxxxx
2 −227 ≤ x < 227 sssssxxx xxxxxxxx xxxxxxxx xxxxxxxx
3 remaining x xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

660 Appendix D Instruction Cycle Timings

Table D.12 Intel XScale (ARMv5TE) instruction cycle timings.

Instruction class Cycles Notes

ALU 1 +1 if a register-specified shift, or RRX, is used.
+4 if Rd is pc.

B, BL 1 +4 if the branch is mispredicted.
BX, BLX 5 [1 cycle if not executed.]
LDR/B/H/SB/SH Rd not pc 1 Rd is not available for two cycles.
LDR Rd is pc 8 [2 cycles if not executed.]
LDRD 1 Rd is not available for two cycles. R(d + 1) is not available for

three cycles.
+1 if Rd is r12.

LDM not loading pc 2 + N The last value loaded is not available for two cycles. The value
previous to that is not available for one cycle.

LDM loading pc 7 + N Increase to 10 cycles if N < 3.
[3 + N cycles if not executed.]

MCR to copro 15 2
MRC from copro 15 4
MRS 1 Rd is not available for one cycle.
MSR 2 +4 if any of the csx fields are updated.
MUL, MLA 1 Rd is not available for M cycles. You cannot start another

multiply in the next M − 1 cycles.
MULS, MLAS 1 + M
xMULL 1 RdHi is not available for M + 1 cycles. RdLo is not available for

M cycles. You cannot start another multiply in the next M
cycles.

xMLAL 2 RdHi is not available for M cycles. RdLo is not available for
M − 1 cycles. You cannot start another multiply in the next
M − 1 cycles.

xMULLS, xMLALS 2 + M
PLD 1
QxADD, QxSUB 1 Rd is not available for one cycle.
SMULxy, SMLAxy 1 Rd is not available for one cycle.
SMULWx, SMLAWx 1 Rd is not available for two cycles. You cannot start another

multiply for one cycle.
SMLALxy 2 RdHi is not available for one cycle.
STR/B/H 1
STRD 2
STM 2 + N
SWI 6
SWP/B 5

D.8 ARM11 Cycle Timings 661

D.8 ARM11 Cycle Timings
The ARM11 core uses an eight-stage pipeline with three execute stages. There is usually a
two-cycle delay following a load instruction before you can use the data. Some operations
such as shift, multiply, and address calculations require their input registers a cycle early.

For example, the following code sequence will stall the core for three cycles because the
result of the load is not available for two cycles, and the input to the shift is required one
cycle early:

LDR r0, [r1] ; r0 not available for 2 cycles
MOV r2, r0, ASR#3 ; r0 required one cycle early

The ARM11 core has a separate address generation unit that can calculate simple
addresses in one cycle. More complicated addresses take two cycles. Table D.13 defines
the number of address calculation cycles A for each addressing mode.

Table D.13 ARM11 address calculation cycles.

A Addressing modes

1 [Rn, #<signed-offset>]{!}
[Rn], #<signed-offset>
[Rn, Rm {, LSL #2}]{!}
[Rn], Rm {, LSL #2}

2 [Rn, -Rm] {!}
[Rn], -Rm
[Rn, {-}<shifted_Rm>]{!} where shift is not LSL #0 or LSL #2
[Rn], {-}<shifted_Rm> where shift is not LSL #0 or LSL #2

The ARM11 core uses prediction to minimize the number of cycles caused by a change
in program flow. To enable prediction, set bit 11 of CP15 register c1. There are three branch
predictors.

A static predictor predicts relative branches that are not recorded in the branch prediction
cache. This is the case the first time the processor sees a given branch. The static predictor
predicts forward conditional branches as taken and backward conditional branches as not
taken.

A dynamic predictor predicts relative branches that are recorded in the branch prediction
cache. The branch prediction cache has 128 entries based on the branch instruction
address. Each cache entry predicts the branch destination and if the branch is taken. A
cache entry has four states: strongly not taken, weakly not taken, weakly taken, strongly

662 Appendix D Instruction Cycle Timings

taken. Each time the branch is taken, the state moves one to the right in this list (if it can),
and each time the branch is not taken, the state moves one to the left in this list (if it can).

A return stack predicts unconditional subroutine return instructions. The stack has three
entries storing the return address from the three deepest BL, BLX subroutine calls.

Table D.14 gives the ARM11 instruction cycle timings.

Table D.14 ARM11 (ARMv6) instruction cycle timings.

Instruction class Cycles Notes

ALU operations except a
MOV to pc (for MOV to
pc, see BX)

1 Rm is required one cycle early if shifted by a constant shift.

+1 if a register-specified shift is used. In this case Rs is
required one cycle early and Rn is not required until the second
cycle.
+6 if Rd is pc.

B <immed>
BL <immed>
BLX <immed>

1 Assumes successful dynamic prediction. Some dynamically
predicted branches may be folded, to be zero cycles.

+3 for successful static prediction.
+4 for unsuccessful static or dynamic prediction. In this case
the flags are required two cycles early.

BX lr 4 +1 if unconditional and return stack is empty.
MOV pc, lr +3 if unconditional and return stack mispredicts.

+1 if conditional. In this case the flags are required two cycles
early.

BX Rm (not lr)
BLX Rm

5 If no shift on MOV and conditional, the flags are required two
cycles early.

MOV pc, Rm (not lr) +1 if a constant shift is used for MOV. In this case Rm is required
one cycle early. If conditional, then the flags are required one
cycle early.
+2 if a register-specified shift is used for MOV. In this case Rs is
required one cycle early, and Rn is not used until the second
cycle.

CPS 1 +1 if a mode change occurs.
LDR/B/H/SB/SH/D

Rd not pc
A Rd is not available for two cycles. R(d + 1)is not available

for two cycles for LDRD.
If the load is potentially unaligned (base or offset unaligned),
then you cannot start another memory access on the next cycle.
If the load is unaligned, then Rd is not available for three cycles
for LDR/H/SH. For LDRD Rd is not available for two cycles and
R(d + 1) for three cycles.

D.8 ARM11 Cycle Timings 663

Table D.14 ARM11 (ARMv6) instruction cycle timings. (Continued.)

Instruction class Cycles Notes

LDR pc, [sp, #off] {!} 4 +4 if unconditional and return stack is empty.
LDR pc, [sp], #off +5 if unconditional and return stack mispredicts

+4 if conditional.
LDR pc not using a

constant stack offset
A + 7

LDM not loading pc 1 You cannot start another memory access for the next
(N + a − 1)/2 cycles, where a is bit 2 of the address.
The kth register in the list not available for (k + a + 3)/2 cycles.

LDM sp{!} loading pc 4 +5 if conditional or return stack empty or return stack
mispredicts. You cannot start another memory access for
(N + a)/2 cycles. The kth register in the list not available for
(k + a + 5)/2 cycles.

LDM loading pc not from
the stack

8 You cannot start another memory access for (N + a)/2
cycles. The kth register in the list not available for (k + a + 5)/2
cycles.

MCR/MCRR 1 This counts as a memory access.
MRC/MRRC 1 This counts as a memory access. The result registers are not

available for two cycles.
MRS 1
MSR to cpsr 1 +3 if any of the csx fields are updated.
MSR to spsr 5
MUL, MLA 2 Rd is not available for two cycles, except as an accumulator

input for another multiply accumulate when it is not available
for one cycle.
Rm and Rs are required one cycle early. Rn is not required until
the second cycle for MLA.

MULS, MLAS 5 Rm and Rs are required one cycle early. Rn is not required until
the second cycle for MLAS.

xMULL, xMLAL 3 RdLo is not available for one cycle. RdHi is not available for
two cycles. Reduce these latencies by one if these registers are
used as accumulator inputs for another multiply accumulate.
Rm and Rs are required one cycle early. RdLo is not required
until the second cycle for MLAL.

xMULLS, xMLALS 6 Rm and Rs are required one cycle early. RdLo is not required
until the second cycle for MLAL.

PKHBT, PKHTB 1 Rm is required one cycle early.

664 Appendix D Instruction Cycle Timings

Table D.14 ARM11 (ARMv6) instruction cycle timings. (Continued.)

Instruction class Cycles Notes

PLD A
QxADD, QxSUB 1 Rd is not available for one cycle. Rn is required one cycle early

for QDADD and QDSUB.
REV, REV16, REVSH 1 Rm is required one cycle early.
{S,SH,Q,U,UH,UQ}
ADD16, ADDSUBX,
SUBADDX, SUB16,
ADD8, SUB8

1 Rd is not available for one cycle for saturating or halving
operations (SH, Q, UH, UQ prefix).
Rm is required one cycle early for ADDSUBX and SUBADDX
operations.

SEL 1
SETEND 1
SMULxy, SMLAxy,
SMULWy, SMLAWy
SMUAD, SMLAD,
SMUSD, SMLSD

1 Rd is not available for two cycles, except as an accumulator input
for another multiply accumulate when it is not available for
one cycle.
Rm and Rs are required one cycle early.

SMLALxy, SMLALD{X},
SMLSLD{X}

2 RdLo is not available for one cycle. RdHi is not available for
two cycles. Reduce these latencies by one if these registers are
used as accumulator inputs for another multiply accumulate.
Rm and Rs are required one cycle early. RdHi is not required
until the second cycle.

SMMUL{R}, SMMLA{R},
SMMLS{R}

2 Rd is not available for two cycles, except as an accumulator
input for another multiply accumulate when it is not available
for one cycle.
Rm and Rs are required one cycle early. Rn is not required until
the second cycle.

SSAT, USAT, SSAT16,
USAT16

1 Rd is not available for one cycle. Rm is required one cycle early
for SSAT and USAT.

STR/B/H/D A If the store is potentially unaligned (base or offset unaligned),
then you cannot start a memory access on the next cycle.
For STRD you cannot start another instruction that writes to
R(d + 1) for one cycle.

STM 1 You cannot start another memory access for the next
(N + a − 1)/2 cycles, where a is bit 2 of the address.
You cannot start an instruction that writes to the kth register in
the list for k/2 cycles.

SWI 8
SWP/B 2 Rd is not available for one cycle.
SXT, UXT 1 Rm is required one cycle early.

D.8 ARM11 Cycle Timings 665

Table D.14 ARM11 (ARMv6) instruction cycle timings. (Continued.)

Instruction class Cycles Notes

UMAAL 3 RdLo is not available for one cycle. RdHi is not available for
two cycles. These latencies are reduced by one for another
accumulate.
Rm and Rs are required one cycle early. RdLo is not required
until the second cycle.

USAD8, USADA8 1 Rd is not available for two cycles, with the exception that the
result of USAD8 is available as the accumulator for USADA8 after
one cycle.
Rm and Rs are required one cycle early.

E.1 ARM References
E.2 Algorithm References
E.3 Memory Management and Cache Architecture (Hardware Overview

and Reference)
E.4 Operating System References

A p p e n d i x

Suggested
Reading

E

E.1 ARM References
■ ARM Architecture Reference Manual, Second Edition, Published 2001, edited by

David Seal. Addison-Wesley. The definitive reference for the ARM architecture
definition.

■ ARM System-on-Chip Architecture, Second Edition, Published 2000, by Steve
Furber. Addison-Wesley. Covers the hardware aspects of ARM processors and SOC
design.

E.2 Algorithm References
■ Digital Signal Processing: Principles, Algorithms, and Applications, by John G. Proakis

and Dimitris G. Manolakis. Published 1996. PrenticeHall. This is a solid book on DSP
algorithms.

■ The Art of Computer Programming: Seminumerical Algorithms, by Donald E. Knuth.
Third Edition, Published 1998. Addison-Wesley. A highly respected work covering
random number generation, algorithms used for extended-precision arithmetic, as
well as many other fundamental algorithms.

667

668 Appendix E Suggested Reading

E.3 Memory Management and Cache
Architecture (Hardware Overview and
Reference)

■ The Cache Memory Book, by Jim Handy. Second edition (1998). Academic Press.
Provides a detailed discussion of cache design.

■ Computer Architecture: A Quantitative Approach, by John L. Hennessy et al. Morgan
Kaufmann. 2nd edition (1996). A classic text on computer hardware design.

■ Computer Organization and Design: The Hardware/Software Interface, by David A. Pat-
terson et al. 1997. Morgan Kaufmann. A solid textbook showing the relationship
between hardware and software in modern computer systems.

E.4 Operating System References
■ Design of the UNIX Operating System, by Maurice J. Bach (1986). Prentice-Hall.

Describes the internal algorithms and structures of the UNIX System V kernel.

■ Operating Systems, 2nd edition (1990) by Harvey M. Deitel. Addison-Wesley. A very
good introductory text on operating systems.

■ Modern Operating Systems, 2nd edition (2001) by Andrew Tanenbaum. Prentice-Hall.
A thorough overview of operating system design.

Index

Page numbers followed by “f” denote figures and “t” denote tables

A
Abort mode, 23, 26t
Abort signal, 462
Absolute function, 254
Access permission

memory management units, 510–512
memory protection units, 470–474
page-table-based, 512

ADC instruction, 54, 93, 222, 573–574
ADD instruction, 54, 93, 166, 574–575
Address, 49
Address relocation, 493
Addressing modes

multiple-register, 65t
single-register, 63t–64t, 96
stack operations, 70t

ADR instruction, 78, 575–576
Advanced Microcontroller Bus Architecture

bus. see AMBA bus
Aliasing, pointer, 127–130
ALIGN, 624
AMBA bus

development of, 8
protocol for, 8–9

AND instruction, 55, 94, 576
Application programmer interface, 131–132
Application programming interface, 369
Applications, 15
AREA, 624–625
AREA directive, 159
Argument registers, 121t, 172
Arithmetic instructions

barrel shift used with, 55

definition of, 53–54
description of, 80–81
examples of, 54–55

Arithmetic logic unit
barrel shifter and, 51f
data processing instructions processed in, 51
description of, 20

ARM assembler
directives, 624–631
expressions, 623–624
labels, 622
overview of, 620–621
variables, 621–622

ARM assembly code
bit-fields. see Bit-fields
conditional execution, 180–183
digital signal processing vs., 269
efficient switches, 197–200
instruction scheduling. see Instruction

scheduling
register allocation. see Register allocation

ARM instruction
conditional execution of, 6
encodings, 637–638

ARM processor(s)
applications of, 15
architectures, 647–649
coprocessors attached to, 36–37
cores, 647–649
description of, 3
design philosophy of, 5–6, 15–16
development of, 3
embedded systems. see Embedded systems
exceptions handling, 318–319

669

670 Index

ARM processor(s) (continued)
family of, 38–44
functions of, 7
future of, 549
instruction set architecture. see Instruction set

architecture
load-store architecture of, 19–20, 106t
modes

changing of, 25
characteristics of, 26t
description of, 23, 318–319

naming convention, 647
nomenclature of, 37–38
operating systems for, 14–15
specialized, 43
variants of, 41t

ARM7 core
attributes of, 40t
family of, 40–41
pipeline for, 31, 32f
read-allocate policy, 422

ARM7EJ-S, 40, 41t
ARM7TDMI

description of, 40, 41t
digital signal processing on, 270–272
instruction cycle timings, 653–654

ARM9 core
attributes of, 40t
family of, 42
pipeline length in, 31
read-allocate policy, 422

ARM9E
digital signal processing on, 275–277
instruction cycle timings, 656–657
Newton-Raphson division routines on, 217

ARM9TDMI
description of, 164–165
digital signal processing on, 272–274
instruction cycle timings, 654–655
unsigned 64-bit by 64-bit multiply with

128-bit result, 210
ARM10 core

attributes of, 40t
family of, 42
pipeline length in, 31–32
read-allocate policy, 422

ARM10E
digital signal processing on, 277–278
instruction cycle timings, 658–659

ARM11 core
attributes of, 40t
family of, 43
instruction cycle timings, 661–665

ARM720T, 41t
ARM740T, 463, 467
ARM920T, 41t
ARM922T, 41t
ARM926EJ-S, 41t, 42
ARM940T, 41t, 42, 463
ARM946E-S, 41t, 42, 467
ARM966E-S, 41t
ARM1020E, 41t, 42
ARM1022E, 41t
ARM1026EJ-S, 41t, 42
ARM1136J-S, 41t
ARM1136JF-S, 41t
ARM High Performance Bus, 8
ARM instruction set. see Instruction set
ARM Peripheral Bus, 8
ARM Procedure Call Standard, 122
ARM1 prototype, 3
armasm, 158, 620
armcc, 105–106, 151
arm-elf-gcc, 105–106
ARM-Thumb interworking, 90–92
ARM-Thumb Procedure Call Standard

argument passing, 123f
description of, 70, 72, 120
function of, 122

ARMv1, 39t
ARMv2, 39t
ARMv2a, 39t
ARMv3, 39t
ARMv3M, 39t
ARMv4

architecture of, 106
description of, 39t
integer normalization on, 213–215

ARMv4T, 39t
ARMv5

architecture of, 106, 106t
integer normalization on, 212–213

Index 671

ARMv5E
description of, 79
extensions, 79–82
multiply instructions, 81–82

ARMv5TE
description of, 39t

ARMv5TEJ, 39t
ARMv5TE, 130t
ARMv6

architecture of, 550
complex arithmetic support, 554–555
cryptographic multiplication extensions, 559
description of, 39t
exception processing, 560, 562t
implementations, 563
mixed-endianness support, 560
most significant word multiplies, 558–559
multiprocessing synchronization primitives,

560–562
packing instructions, 554
reverse instructions in, 561f
saturation instructions, 555–556
single instruction multiple data arithmetic

operations, 550–554
sum of absolute differences instructions,

556–557
Ascending stack, 70
.ascii, 632
.asciz, 632
ASR instruction, 94, 577–578
Assembly code

looping constructs. see Loop(s)
names allocated to variables, 172
writing of, 158–163

ASSERT, 625
Atomic operation, 72

B
B instruction, 577
Background regions, for memory protection

units, 464–465
Backward branch, 59
.balign, 632
Banked registers, 23–26
Barrel shifter

arithmetic instructions with, 55

arithmetic logic unit and, 51f
data processing instructions that

do not use, 51
description of, 51
operations, 52t
syntax for, 53t

Base address register, 61
Base-two exponentiation, 244–245
Base-two logarithm, 242–244
BIC instruction, 55–56, 94, 577–578
Big-endian mode, 137, 138t
Biquads, 295–296
Bit permutations

description of, 249t, 249–250
examples of, 251–252
macros, 250–251

Bit population count, 252–253
Bit reversal, 249t
Bit spread, 249t
Bitbuffer, 193
Bit-fields

description of, 133–136
fixed-width bit-field packing and unpacking,

191–192
Bitstream

fixed-width bit-field packing and unpacking,
191–192

variable-width packing, 192–194
variable-width unpacking, 195–197

BKPT instruction, 578
BL instruction, 578
Block finite impulse response filters, 282–294
Block memory copy, 68
Block-floating algorithms, 149
Block-floating representation of digital signal,

263
BLX instruction, 90–91, 579
BNE instruction, 69
Boot code, 13–14
Booting, 13
Bootloader, 368, 377
Branch exchange, 60
Branch exchange with link, 60
Branch instructions

conditional, 92
description of, 58–60

672 Index

Branch instructions (continued)
variations of, 92–93

Branch prediction, 32
Bus

architecture levels of, 8
characteristics of, 8
function of, 7
schematic diagram of, 7f

Bus master, 8
Bus slaves, 8
BX instruction, 90–91, 579–580
BXJ instruction, 579–580
.byte, 632
Byte reversal, 249t

C
C code

data types
function argument, 111–112
local variable, 107–110
overview of, 105–107
signed, 112–113
unsigned, 112–113

loops
with fixed number of iterations, 113–116
unrolling, 117–120
with variable number of iterations,

116–117
optimization of, 104–105
overview of, 104–105
portability issues, 153–154

C compilers
bit-fields, 133–136
datatype mappings, 107t
description of, 104–105
function calls, 122–127
inline assembly, 149–153
inline functions, 149–153
pointer aliasing, 127–130
register allocation, 120–122
structure arrangement, 130–133
unaligned data, 136–140

Cache
architecture of, 408–417
cleaning of, 438–443
coprocessor 15 and, 423

D-, cleaning of
description of, 423, 428
in Intel XScale SA-110 and Intel

StrongARM cores, 435–438
procedural methods for, 428t, 428–431
test-clean command for, 428t, 434–435
way and set index addressing for, 428t,

431–434
definition of, 403, 457
description of, 9–10, 34–35
direct-mapped, 410–411
efficiency measurements, 417
flushing of, 423–427, 438–443
fully associative, 414
hit rate for, 417
improvements using, 406–407
initializing of, 465–466
logical, 406, 407f, 458
main memory and, relationship between,

410–412
memory management units and, 406–408,

512–513
miss rate for, 417, 443
performance of, 456–457
physical, 406, 407f, 458
primary, 405
region attributes, 474–477
secondary, 405
self-modifying code, 424
set associativity, 412–416, 458
simple, 408, 409f
size of, 408
split, 408, 424, 458
status bits in, 408–409
unified, 408, 458
write buffer used with, 403, 416–417,

457
writeback, 418–419

Cache bit, 474
Cache controller

description of, 409–410
replacement policy of, 419

Cache lines
definition of, 408, 457
eviction, 410, 419
replacement policies, 419–422

Index 673

Cache lockdown
definition of, 443
by incrementing the way index,

445–449
Intel XScale SA-110, 453–456
lock bits for, 450–453
locking code and data, 444–445
method of, 445t

Cache policies
allocation policy on a cache miss, 422
cache line replacement policies, 419–422
description of, 418
write policy, 418–419

Cache-tag, 457–458
CDP instruction, 580
Checksums, 107–108
Circular buffers, 141, 177
CISC, 4f
CLZ instruction, 214, 580
CMN comparison instruction, 56, 94, 580–581
CMP comparison instruction, 56–57, 94,

582–583
CN, 625
Coalescing, 417
.code, 632
CODE16, 625
CODE32, 625
Command line interpreter, 369
Common object file format, 370
Common subexpression elimination, 127
Comparison instructions, 56–57
Compilers, 65
Complex instruction set computer. see CISC
Condition codes, 571–572
Condition field, 82
Condition flags, 27–29, 82, 181
Conditional branch instruction, 92
Conditional execution, 6, 29, 29t, 82–84,

180–183
Conditional instructions, 170
Content addressable memory, 414
Context switch

description of, 396–398, 486
page table activation, 497

Controllers
cache

description of, 409–410
replacement policy of, 419

function of, 7
Coprocessor

description of, 36–37
instructions, 76–77
system control, 77

Coprocessor 15
access permissions, 470t, 471f
cache and, 423
description of, 77
instruction syntax, 77–78
memory management unit configuration

and, 513–515
Core extensions

cache memory, 34–35
coprocessors, 36–37
description of, 34, 44
function of, 19
memory management, 35–36
tightly coupled memory, 35, 36f

cos, 245
Count leading zeros

description of, 215–216
instruction, 80

Count trailing zeros, 215–216
Counted loops

decremented, 183–184
types of, 190–191
unrolled, 184–187

CP, 625
CP15:c7, 432t
CPS instruction, 581–582
CPY instruction, 582
Cryptographic multiplication extensions,

559
Current program status register

banked registers, 23–26
condition flags, 27–29
conditional execution, 29, 29t
description of, 21–23, 40t
fields of, 22
instruction sets, 26–27, 27t
interrupt masks, 27
processor modes, 23

674 Index

Current program status register (continued)
saving of, 26
state instruction sets, 26–27

Cycle counter, 163
Cyclic redundancy check, 107

D
DATA, 625–626
Data

C code
function argument, 111–112
local variable, 107–110
overview of, 105–107
signed, 112–113
unsigned, 112–113

unaligned
description of, 136–140
handling of, 201–203

Data abort, 318t, 321
Data abort vector, 33
Data bus, 19
Data encryption standard permutation, 249t
Data pointers, 154
Data processing instructions

arithmetic instructions, 53–55
barrel shifter. see Barrel shifter
comparison instructions, 56–57
logical instructions, 55–56
move instructions, 50
multiply instructions, 57–58
Thumb instruction set, 93–95

Data streaming, 410
D-cache cleaning

description of, 423, 428
in Intel XScale SA-110 and Intel StrongARM

cores, 435–438
procedural methods for, 428t, 428–431
test-clean command for, 428t, 434–435
way and set index addressing for, 428t,

431–434
DCB, 626
DCD, 626
DCI, 626
DCQ, 626
DCW, 626
Decimation-in-time radix-2 butterfly, 304

Decode, 164
Decremented counted loops, 183–184
Defines, 339
Descending stack, 70
Device driver, 369, 398–400
Diagnostics, 13
Digital signal processing

advanced
complex arithmetic support, 554–555
cryptographic multiplication extensions,

559
dual 16-bit multiply instructions, 557–558
most significant word multiplies, 558–559
packing instructions, 554
saturation instructions, 555–556
single instruction multiple data arithmetic

operations, 550–554
sum of absolute differences instructions,

556–557
applications of, 259
on ARM9E, 275–277
on ARM10E, 277–278
on ARM7TDMI, 270–272
on ARM9TDMI, 272–274
description of, 259–260
discrete Fourier transform

definition of, 303
fast Fourier transform

benchmarks, 314t
description of, 303–304
radix-2, 304–305
radix-4, 305–313

function of, 303
finite impulse response filters

block, 282–294
definition of, 280
description of, 280–281

fixed-point representation signals
addition of, 265–266
description of, 262–263
division of, 267
multiplication of, 266–267
operating on values stored in, 264
square root of, 267–268
subtraction of, 265–266
summary of, 268

Index 675

floating-point representation signal, 262, 268
infinite impulse response filters, 294–302
on Intel XScale, 278–280
load-store intensive, 259
multiply, 259
representation of digital signal

block-floating, 263
description of, 260
fixed-point. see Digital signal processing,

fixed-point representation
floating-point, 262, 268
logarithmic, 263
selection of, 260–263
summary of, 268–269

on StrongARM, 274–275
Digital signal processor, 6
Direct-mapped cache, 410–411
Disable_lower_priority routine, 362
Discrete Fourier transform

definition of, 303
fast Fourier transform

benchmarks, 314t
description of, 303–304
radix-2, 304–305
radix-4, 305–313

function of, 303
Division

conversion into multiplies, 143–145
description of, 216–217
fixed-point representation signal, 267
Newton-Raphson

applications of, 223–224
on ARM9E, 217
description of, 223–225
fractional values

initial estimate for, 231
iteration accuracy, 232
overview of, 230
theory of, 231

integer normalization for, 212
Q15 fixed-point division by, 233–235
Q31 fixed-point division by, 235–237
unsigned 32/32-bit divide by, 225–230

overview of, 140–142
repeated unsigned division with remainder,

142–143

signed
by a constant, 147–149
description of, 237–238

trial subtraction
description of, 217–218
nonrestoring, 218
restoring, 218
unsigned 64/31-bit divide by, 222–223
unsigned 32-bit/15-bit divide by, 220–222
unsigned 32-bit/32-bit divide by, 218–220

unsigned
by a constant, 145–147
by Newton-Raphson division. see Division,

Newton-Raphson
repeated, with remainder, 142–143
by trial subtraction. see Division, trial

subtraction
Domains

access to, 541–542
fast context switch extension use of, 518–519
memory management units, 510–512

Double-precision integer multiplication
description of, 208
long long multiplication, 208–209
signed 64-bit by 64-bit multiply with 128-bit

result, 211–212
unsigned 64-bit by 64-bit multiply with

128-bit result, 209–210
DRAM, 11
DSL modems, 15
Dual 16-bit multiply instructions, 557–558
Dynamic predictor, 661–662
Dynamic random access memory. see DRAM
Dynamic task, 382

E
ELSE, 626
.else, 632
Embedded operating systems

ARM processors. see ARM processors
components of, 381–383
description of, 381
device driver framework, 383
hardware, 6–12, 16
initialization, 382
initialization code, 12–14

676 Index

Embedded operating systems (continued)
instruction set for, 6
memory. see Memory
memory handling, 382
nonpreemptive, 382
peripherals, 11–12
round-robin algorithm, 383
scheduler, 383
schematic diagram of, 7f
simple little operating system

context switch, 396–398
device driver framework, 398–400
directory layout, 384–385
exceptions handling

description of, 389
IRQ exception, 393–394
reset exception, 390
SWI exception, 390–393

initialization, 385–389
interrupts, 389
memory model, 389
overview of, 383–384
periodic timer, 388
scheduler, 394–396
service routines, 384

software, 12–16
Embedded trace macrocell, 42
EmbeddedICE macrocell, 38
END, 626
.end, 633
END directive, 159
ENDFUNC, 626
Endian reversal, 248–249
Endianness, 137, 154
.endif, 633
.endm, 633
ENTRY, 626
enum, 132
EOR instruction, 55, 94, 583
.equ, 633
EQU (alias *), 626–627
.err, 633
Eviction, 410, 419
Exception handling

ARM processor, 318–319
description of, 317–318

fast interrupt request, 326–329
interrupt request, 326–329
link register offsets, 322–324
prioritizing, 321–322
simple little operating system

description of, 389
IRQ exception, 393–394
reset exception, 390
SWI exception, 390–393

vector table, 319–320
Executable and linking format, 370
.exitm, 633
Exponentiation, base-two, 244–245
EXPORT (alias GLOBAL), 627
EXPORT directive, 159
EXTERN, 627

F
Fast context switch extension

definition of, 515
domains used by, 518–519
features of, 515–516
hints for, 519–520
page tables used by, 518–519
schematic diagram of, 517f
virtual addresses modified by, 516

Fast Fourier transform
benchmarks, 314t
description of, 303–304
radix-2, 304–305
radix-4, 305–313

Fast interrupt mode, 23, 26t
Fast interrupt request

description of, 23, 27, 318t, 321–322
exceptions, 326–329

Fast interrupt request vector, 34
Fetch, 164
FIELD (alias #), 627
Filters

benchmarks for, 314t
finite impulse response

block, 282–294
definition of, 280
description of, 280–281

infinite impulse response, 294–302

Index 677

Finite impulse response filter
benchmarks for, 314t
block, 282–294
definition of, 280
description of, 280–281

FIR filter. see Finite impulse response
filter

Firmware
ARM Firmware Suite, 370–371
definition of, 367–368
description of, 13
execution flow, 368t
implementation of, 368t, 368–369
interactive functions, 369
RedBoot, 371–372

Fixed kernel memory, 500
Fixed mapping, 499
Fixed-point algorithm, 149
Fixed-point representation of digital

signal
addition of, 265–266
description of, 262–263
division of, 267
multiplication of, 266–267
operating on values stored in, 264
saturating, 263
square root of, 267–268
subtraction of, 265–266
summary of, 268

Fixed-width bit-field packing and unpacking,
191–192

Flags, 22, 571–572
Flash ROM, 11
Flash ROM filing system, 369
Floating point, 149
Floating point accelerator, 149
Floating-point representation of digital signal,

262, 268
Flushing of cache, 423–427, 438–443
Forward branch, 59
Four-register rule, 122
Four-way set associativity, 413f, 414, 415f
Fractional value division, by Newton-Raphson

iteration
initial estimate for, 231
iteration accuracy, 232

overview of, 230
theory of, 231

Fully associative cache, 414
FUNCTION, 627
Function arguments, 111–112
Function call overhead, 125
Function calls, 122–127

G
GBLA, 627
GBLL, 627
GBLS, 627
gcc compiler, 111–112
General scratch register, 121t
General variable register, 121t
GET. see INCLUDE
GLOBAL. see EXPORT
.global, 633
GNU assembler

directives, 632–635
quick reference for, 631–635

H
æHAL, 370–371
Hardware abstraction layer, 369–370
Harvard architecture, 35f, 408
Hash function, 200, 214
Headroom, of fixed-point representation, 264
High code density, 5
Hit rate, 417
Huffmnan codes, 191
.hword, 633

I
.if, 633
if statements, 181–182
.ifdef, 633
.ifndef, 634
IIR filter. see Infinite impulse response

filters
Immediate postindex, 63, 64t
Immediates, 571
IMPORT, 627, 628
IMPORT directive, 161

678 Index

Impulse response filters
finite

benchmarks for, 314t
block, 282–294
definition of, 280
description of, 280–281

infinite, 294–302
INCBIN, 628
.include, 634
INCLUDE (alias GET), 628
Index methods, 61–63, 63t–64t
Infinite impulse response filters, 294–302
INFO (alias !), 628
Initialization code, 12–14
Inline assembly, 149–153
Inline barrel shifter, 6
Inline functions, 149–153
Instruction(s)

AND, 55, 94, 576
ADC, 54, 93, 222, 573–574
ADD, 54, 93, 166, 574–575
ADR, 78, 575–576
arithmetic

barrel shift used with, 55
definition of, 53–54
description of, 80–81
examples of, 54–55

ASR, 94, 577–578
B, 577
BIC, 55–56, 94, 577–578
BKPT, 578
BL, 578
BLX, 90–91, 579
BNE, 69
branch

conditional, 92
description of, 58–60
variations of, 92–93

BX, 90–91, 579–580
BXJ, 579–580
CDP, 580
CLZ, 214, 580
CMN, 56, 94, 580–581
CMP, 56–57, 94, 582–583
conditional, 170
conditional branch, 92

count leading zeros, 80
CPS, 581–582
CPY, 582
data processing

arithmetic instructions, 53–55
barrel shifter. see Barrel shifter
comparison instructions, 56–57
logical instructions, 55–56
move instructions, 50
multiply instructions, 57–58
Thumb instruction set, 93–95

dual 16-bit multiply, 557–558
EOR, 55, 94, 583
LDC, 583–584
LDM, 65, 164, 584–586
LDMIA, 66, 67f, 97
LDR, 60, 63, 64t, 78, 96, 106t, 164, 319,

586–589
LDRB, 60, 96, 106t
LDRD, 106t
LDRH, 60, 96, 106t, 109
LDRSB, 60, 96, 106t
LDRSH, 60, 96, 106t
logical, 55–56
LSL, 94, 589
LSR, 94, 589–590
MCR, 590
MCRR, 590
MLA, 57–58, 590–591
MOV, 94, 591–592
MRC, 592
MRRC, 592
MRS, 75–76, 592
MSR, 75–76, 592–593
MUL, 57–58, 94, 593–594
multiply, 57–58
MVN, 94, 594–595
NEG, 94, 595
NOP, 595
ORR, 55, 94, 595–596
PKH, 596
PLD, 596–597
POP, 70, 98, 597
program status registers, 75–76
PUSH, 70, 98, 597
QADD, 81, 597–599

Index 679

QDADD, 81, 597–599
QDSUB, 81, 597–599
QSUB, 81, 597–599
REV, 599–600
reverse subtract, 54
RFE, 600
ROR, 94, 600
RSB, 54, 600–601
RSC, 54, 601
SADD, 601–603
Saturation, 81t
SBC, 54, 94, 603
scheduling of

description of, 30, 163–167
load instructions, 167–171

SEL, 603–604
SETEND, 604
SHADD, 604–605
single-register load-store

addressing modes, 61–63, 96
description of, 61–63
Thumb instruction set, 96–97

SMLA, 605–607
SMLAL, 57–58
SMLALxy, 82t
SMLAWy, 82t
SMLAxy, 82t
SMLS, 605–607
SMMLA, 607
SMMLS, 607
SMMUL, 607
SMUA, 608–609
SMUL, 608–609
SMULL, 57–58
SMULWy, 82t
SMULxy, 82t
SMUS, 608–609
SRS, 609
SSAT, 609
SSUB, 609–610
STC, 610
STM, 65, 610–612
STMED, 71
STMIA, 97
STMIB, 68
STR, 60, 96, 106t, 612–615

STRB, 60, 96, 106t
STRD, 106t
STRH, 60, 64t, 96, 106t
SUB, 54, 94, 615–616
sum of absolute differences, 556–557
Swap, 72–73
SWI, 99, 616
SWP, 72, 616–617
SWPB, 72
SXT, 617–618
SXTA, 617–618
TEQ, 56, 618
TST, 56, 94, 618–619
UADD, 619
UHADD, 619
UHSUB, 619
UMAAL, 619
UMLAL, 57–58, 620
UMULL, 57–58, 620
undefined, 318t, 321
UQADD, 620
UQSUB, 620
USAD, 620
USAT, 620
USUB, 620
UXT, 620
UXTA, 620

Instruction cycle timings
ARM11, 661–665
ARM9E, 656–657
ARM10E, 658–659
ARM7TDMI, 653–654
ARM9TDMI, 654–655
Intel XScale, 659–660
StrongARM1, 655–656
tables, 651–653

Instruction set
architecture

definition of, 37
evolution of, 38
revisions of, 37–38, 39t

ARM, 26, 27t
branch instructions, 58–60
characteristics of, 6
conditional execution, 82–84
coprocessor, 76–77

680 Index

Instruction set (continued)
data processing instructions

arithmetic instructions, 53–55
barrel shifter. see Barrel shifter
comparison instructions, 56–57
logical instructions, 55–56
move instructions, 50
multiply instructions, 57–58

description of, 26, 47–50, 48t–49t
Jazelle, 26–27, 27t
loading constants, 78–79
load-store instructions

multiple-register transfer. see
Multiple-register transfer

single-register load-store addressing
modes, 61–63

single-register transfer, 60–61
swap instruction, 72–73

program status register instructions, 75–76
16-bit, 6
software interrupt instruction, 73–75
Thumb

ARM-Thumb interworking, 90–92
branch instructions, 92–93
code density, 87, 88f
data processing instructions, 93–95
decoding, 88f, 639–641
description of, 26, 27t
encodings, 638–644
list of, 89t
load and store offsets, 132t
multiple-register load-store instructions,

97–98
overview of, 87–89
register usage, 89–90
single-register load-store instructions,

96–97
software interrupt instruction, 99
stack instructions, 98–99

Integer
double-precision multiplication

description of, 208
long long multiplication, 208–209
signed 64-bit by 64-bit multiply with

128-bit result, 211–212

unsigned 64-bit by 64-bit multiply with
128-bit result, 209–210

normalization of
on ARMv4, 213–215
on ARMv5 and above, 212–213
description of, 212

overflow of, 265
Intel XScale

D-cache cleaning in, 435–438
digital signal processing on, 278–280
instruction cycle timings, 659–660

Intel XScale SA-110, 453–456
Interrupt(s)

assigning of, 324–325
description of, 33, 317
software, 324

Interrupt controller registers, 349t
Interrupt controllers, 12
Interrupt handler

nested, 325, 333, 336–342
nonnested, 333–336
prioritized direct, 333, 356–359
prioritized group, 333, 359–363
prioritized simple, 333, 346–352
prioritized standard, 333, 352–356
reentrant, 333, 342–346

Interrupt handling schemes, 317
Interrupt latency, 325–326
Interrupt masks, 27
Interrupt request

assigning of, 324
description of, 318t, 322
exceptions, 326–329
stack design and implementation, 329–333

Interrupt request mode, 23–24, 26t, 27
Interrupt request vector, 33
Interrupt stack, 343
Inverted logical relations, 183
.irp, 634

J
J bit, 22
Jazelle, 26–27, 27t
JTAG, 38

Index 681

K
KEEP, 629

L
L1 translation table base address, 503–504
Latency, 30
LCLA, 629
LCLL, 629
LCLS, 629
LDC instruction, 583–584
LDM instruction, 65, 164, 584–586
LDMIA instruction, 66, 67f, 97
LDR instruction, 60, 63, 64t, 78, 96, 106t, 164,

319, 586–589
LDRB instruction, 60, 96, 106t
LDRD instruction, 106t
LDRH instruction, 60, 96, 106t, 109
LDRSB instruction, 60, 96, 106t
LDRSH instruction, 60, 96, 106t
Least recently used, 422
Left shifts, saturation of, 253–254
Level 1 page table entry, 501–503
Level 2 page table entry, 504–505
Link register

description of, 22, 121t
offsets, 322–324

Little-endian mode, 137, 138t
Load instructions scheduling

overview of, 167–168
by preloading, 168–169
by unrolling, 169–171

Loading constants, 78–79
Load-store architecture, 5, 19–20
Load-store instructions

multiple-register transfer. see
Multiple-register transfer

single-register load-store
description of, 61–63
Thumb instruction set, 96–97

single-register transfer, 60–61
swap instruction, 72–73

Local variable data types, 107–110
Locality of reference, 407, 457
Lock bits, for cache lockdown, 450–453
Logarithm

base-two, 242–244
calculation of, 242f

Logarithmic indexing, 190–191
Logarithmic representation of digital signal, 263
Logical cache, 406, 407f, 458
Logical instructions, 55–56
Long long multiplication, 208–209
Loop(s)

counted
decremented, 183–184
types of, 190–191
unrolled, 184–187

with fixed number of iterations, 113–116
nested

example of, 176
multiple, 187–190

unrolling, 117–120, 184–187
with variable number of iterations, 116–117
writing for, 120

Loop counter, 114–115
Loop overhead, 118–119
LS1, 165
LS2, 165
LSL instruction, 94, 589
LSR instruction, 94, 589–590
LTORG, 629

M
Machine independent layer, 370
MACRO, 629
.macro, 634
MACRO directive, 202
MAP (alias ∧), 630
MCR instruction, 590
MCRR instruction, 590
Memory

cache. see Cache
content addressable, 414
description of, 9
dynamic random access. see DRAM
fetching instructions for, 10t
hierarchy of, 9–10, 404f
main

cache and, relationship between, 410–412
description of, 405

management of, 35–36

682 Index

Memory (continued)
nonprotected, 35
random access. see RAM
read-only. see ROM
remapping of, 14, 14f
secondary, 405
size of, 10
static random access. see SRAM
synchronous dynamic random access. see

DRAM
tightly coupled, 35, 36f, 405
types of, 10–11
virtual. see Virtual memory system
width of, 10

Memory controllers, 11
Memory management units

access permission, 510–512
ARM, 501
attributes of, 492–493, 493t
caches, 512–513
coprocessor 15 and, 513–515
definition of, 491
description of, 35–36, 406–408, 462
domains, 510–512
fast context switch extension

definition of, 515
domains used by, 518–519
features of, 515–516
hints for, 519–520
page tables used by, 518–519
schematic diagram of, 517f
virtual addresses modified by, 516

functions of, 491
multitasking and, 497–499
page tables

activation of, 497
architecture of, 501–502
context switch activation of, 497
definition of, 495
L1 translation table base address, 503–504
types of, 502t

regions, 492
simple little operating system, 545
tasks in, 493
translation lookaside buffer

CP15:c7 commands, 509t, 509–510

definition of, 506
functions of, 506
hit, 506
lockdown registers, 510t
miss, 506
operations, 509–510
single-step page table walk, 507–508
two-step page table walk, 508–509

write buffer, 512–513
Memory protection units

access permission for, 470–474
description of, 35, 461–462
initializing of

access permission, 470–474
cache attributes, 474–477
demonstration of, 481–482, 485–486
enabling of regions, 477–478
region size and location, 466–470
write buffer attributes, 474–477

protected regions
access permission for, 470–474
assigning of, 479–481
background regions, 464–465
configuring of, 482–485
enabling of, 477–478
governing rules for, 463–464
initializing of, 482–485
location of, 466–470
overlapping regions, 464
size of, 466–470

sample demonstration of
context switch, 486
description of, 478
initializing, 481–482
memory map for assigning regions,

479–481
mpuSLOS, 487
system requirements, 479

MEND, 629
MEXIT, 629
Miss rate, 417
Mixed-endianness support, 560
MLA multiply instruction, 57–58, 590–591
MMU. see Memory management unit
mmuSLoS, 492
Modified virtual address, 516

Index 683

Most significant word multiplies, 558–559
MOV instruction, 94, 591–592
Move instructions, 50
MPU. see Memory protection unit
mpuSLOS, 487
MRC instruction, 592
MRRC instruction, 592
MRS instruction, 75–76, 592
MSR instruction, 75–76, 592–593
MUL multiply instruction, 57–58, 94, 593–594
Multiple-register transfer

description of, 63
stack operations, 70–72
Thumb instruction set, 97–98

Multiplication
double-precision integer

signed 64-bit by 64-bit multiply with
128-bit result, 211–212

unsigned 64-bit by 64-bit multiply with
128-bit result, 209–210

repeated divisions converted into, 143–145
Multiply instructions, 57–58
Multiply-accumulate unit, 20
Multiprocessing synchronization primitives,

560–562
Multitasking, 497–499
MVN instruction, 94, 594–595

N
NEG instruction, 94, 595
Negative indexing, 190
Nested interrupt handler, 325, 333, 336–342
Nested loops

example of, 176
multiple, 187–190

Network order, 192
Newton-Raphson iteration

division by
applications of, 223–224
on ARM9E, 217
description of, 223–225
fractional values

initial estimate for, 231
iteration accuracy, 232
overview of, 230
theory of, 231

integer normalization for, 212
Q15 fixed-point, 233–235
Q31 fixed-point, 235–237
unsigned 32/32-bit, 225–230

square root by, 240–250
NOFP, 630
Nonnested interrupt handler, 333–336
Nonprivileged mode, 23
Nonprotected memory, 35
NOP instruction, 595
Normalization, integer

on ARMv4, 213–215
on ARMv5 and above, 212–213
description of, 212

O
One-cycle interlock, 166, 166f
Operating systems, 14–15
OPT, 630
Optional expressions, 570
ORR instruction, 55, 94, 595–596

P
Packing

fixed-width bit-field, 191–192
of variable-width bitstreams, 192–194

Page
definition of, 494
regions defined using, 495–497

Page frame
definition of, 494
mapping pages to, 496f

Page size, 505–506
Page table(s)

access permission, 512
activation of, 497
architecture of, 501–502
context switch activation of, 497
definition of, 495
demonstration of, in virtual memory system

activation of, 539–540
data structures, 525–529
defining of, 525
filling of, with translations, 531–538
initializing of, in memory, 529–531
locating of, 525

684 Index

Page table(s) (continued)
fast context switch extension use of, 518–519
L1 translation table base address, 503–504
types of, 502t

Page table control block, 527
Page table entry

definition of, 495
Level 1, 501–503
Level 2, 504–505
page size selection, 505–506

Page table walk
single-step, 507–508
two-step, 508–509

Periodic interrupt, 382
Peripheral component interconnect bus, 8
Peripherals

description of, 11
function of, 7
interrupt controllers, 12
memory controllers, 11

Permutations
bit

description of, 249t, 249–250
examples of, 251–252
macros, 250–251

description of, 249t
Physical addresses, 492
Physical cache, 406, 407f, 458
Pipeline

definition of, 29
description of, 4
executing characteristics, 31–32
filling of, 30
five-stage, 31f
schematic diagram of, 30f
six-stage, 31f
three-stage, 30, 30f

Pipeline bubble, 166
Pipeline flush, 167
Pipeline hazard, 165
Pipeline interlock, 165, 208
PKH instruction, 596
Platform operating systems, 14
PLD instruction, 596–597
Pointer aliasing, 127–130
Polling, 382–383

POP instruction, 70, 98, 597
Postindex, 62–63
Prefetch abort, 318t, 322
Prefetch abort vector, 33
Preindex, 62–63, 96
Preindex with writeback, 62
Primitives

definition of, 207
double-precision integer multiplication

description of, 208
long long multiplication, 208–209
signed 64-bit by 64-bit multiply with

128-bit result, 211–212
unsigned 64-bit by 64-bit multiply with

128-bit result, 209–210
multiprocessing synchronization, 560–562
permutations, 250t

Prioritized direct interrupt handler, 333,
356–359

Prioritized group interrupt handler, 333,
359–363

Prioritized simple interrupt handler, 333,
346–352

Prioritized standard interrupt handler, 333,
352–356

Priority mask table, 352
Privileged mode, 23
PROC. see FUNCTION
Process control block, 385
Profiler, 163
Profiling, 163
Program status registers

current. see Current program status register
decode, 645
instructions, 75–76
schematic diagram of, 23f

Protected regions, for memory protection
units

access permission for, 470–474
assigning of, 479–481
background regions, 464–465
configuring of, 482–485
enabling of, 477–478
governing rules for, 463–464
initializing of, 482–485
location of, 466–470

Index 685

overlapping regions, 464
size of, 466–470

Pseudoinstructions, 78–79
Pseudorandom numbers, 255
Pseudorandom replacement, 419, 458
PUSH instruction, 70, 98, 597

Q
Q representation, 264
Q15 fixed-point division, by Newton-Raphson

division, 233–235
Q31 fixed-point division, by Newton-Raphson

division, 235–237
QADD instruction, 81, 597–599
QDADD instruction, 81, 597–599
QDSUB instruction, 81, 597–599
QSUB instruction, 81, 597–599

R
Race condition, 342
Radix-2 fast Fourier transform, 304–305
Radix-4 fast Fourier transform, 305–313
RAM

description of, 11
dynamic, 11

Random number generation, 255
Rd, 20
Read-allocate, 422
Read-write-allocate, 422
Real-time operating systems, 14
RedBoot, 371–372
Reduced instruct set computer design. see RISC

design
Reentrant interrupt handler, 333, 342–346
Register(s)

argument, 172
banked, 23–26
function of, 4–5
general-purpose, 21–22
link

description of, 22, 121t
offsets, 322–324

maximizing of, 177–180
names, 570–571
program status

current. see Current program status register
decode, 645
instructions, 75–76
schematic diagram of, 23f

special-purpose, 22
Thumb, 89–90
types of, 22
in user mode, 21f, 21–22

Register allocation
C compilers, 120–122
description of, 171
maximizing the available registers,

177–180
variables

allocation to register numbers, 171–175
more than 14 local variables, 175–177

Register file, 20, 405
Register numbers, 171–175
Register postindex, 63, 64t
Register set, 24f
Repeated divisions converted into

multiplications, 143–145
Repeated unsigned division with remainder,

142–143
.rept, 634
.req, 634
Reset exception, 390
Reset vector, 33, 385
Return stack, 662
REV instruction, 599–600
Reverse subtract instruction, 54
RFE instruction, 600
Right shift, rounded, 254, 264
RISC design

CISC vs., 4f
philosophy of, 4–5

RLIST, 630–631
Rm, 20
RN, 20, 630–631
ROM

description of, 10
flash, 11

ROR instruction, 94, 600
Round-robin algorithm, 383
Round-robin replacement, 419
ROUT, 631

686 Index

RSB instruction, 54, 600–601
RSC instruction, 54, 601

S
SADD instruction, 601–603
Sandstone

code structure, 373–378
description of, 372
directory layout of, 372–373, 373f
execution flow, 373t
hardware initialization, 375, 377
remap memory, 375–377
reset exception, 374

Saturated arithmetic, 80–81
Saturation

absolute, 254
ARMv6, 555–556
function of, 253
left shift, 253–254
32 bits to 16 bits, 253
32-bit addition and subtraction, 254

Saturation instructions, 81t
SBC instruction, 54, 94, 603
SC100, 43
Scaled register postindex, 63
Scheduler, 394–396
Scheduling of instructions

description of, 30, 163–167
load instructions

overview of, 167–168
by preloading, 168–169
by unrolling, 169–171

SDRAM, 11
.section, 634
SEL instruction, 603–604
.set, 635
Set associativity

description of, 412–414
four-way, 413f, 414, 415f
increasing of, 414–416

Set index, 412
Set of defines, 339
SETA, 631
SETEND instruction, 604
SETL, 631
SETS, 631

SHADD instruction, 604–605
Shift operations, 572–573
Signed 64-bit by 64-bit multiply with 128-bit

result, 211–212
Signed data type, 112–113
Signed division by a constant, 147–149
Simple cache, 408, 409f
Simple little operating system

context switch, 396–398
device driver framework, 398–400
directory layout, 384–385
exceptions handling

description of, 389
IRQ exception, 393–394
reset exception, 390
SWI exception, 390–393

initialization, 385–389
interrupts, 389
memory management unit, 545
memory model, 389
memory protection units, 487
mmuSLOS, 545
mpuSLOS, 487
overview of, 383–384
periodic timer, 388
scheduler, 394–396
service routines, 384

sin, 245
Single instruction multiple data arithmetic

operations, 550–554
Single issue multiple data processing, 178
Single-register load-store instructions

addressing modes, 61–63, 96
description of, 61–63
Thumb instruction set, 96–97

Single-register transfer, 60–61
SMLA instruction, 605–607
SMLAL multiply instruction, 57–58
SMLALxy instruction, 82t
SMLAWy instruction, 82t
SMLAxy instruction, 82t
SMLS instruction, 605–607
SMMLA instruction, 607
SMMLS instruction, 607
SMMUL instruction, 607
SMUA instruction, 608–609

Index 687

SMUL instruction, 608–609
SMULL instruction, 57–58
SMULWy instruction, 82t
SMULxy instruction, 82t
SMUS instruction, 608–609
Software, 12–16
Software interrupt exception, 321
Software interrupt instruction

ARM, 73–75
Thumb, 99

Software Interrupt vector, 33
.space, 635
SPACE (alias %), 631
Spatial locality, 408
Spilled variables, 120
Split cache, 408, 424, 458
Square root

description of, 238
fixed-point representation signal,

267–268
by Newton-Raphson iteration, 240–250
by trial subtraction, 238–239

SRAM, 11
SRS instruction, 609
SSAT instruction, 609
SSUB instruction, 609–610
Stack base, 72
Stack frame, 338, 341
Stack instructions

ARM, 70–72
Thumb, 98–99

Stack limit, 72
Stack operations, 70–72
Stack overflow, 329
Stack overflow error, 72
Stack pointer, 72, 121t
Static predictor, 661
Static random access memory. see SRAM
Static task, 382
Status bits, 408–409
STC instruction, 610
STM instruction, 65, 610–612
STMED instruction, 71
STMIA instruction, 97
STMIB instruction, 68
STR instruction, 60, 96, 106t, 612–615

STRB instruction, 60, 96, 106t
STRD instruction, 106t
STRH instruction, 60, 64t, 96, 106t
StrongARM

description of, 43
digital signal processing on, 274–275

StrongARM1 instruction cycle timings,
655–656

SUB instruction, 54, 94, 615–616
Subroutine, 160
Subtraction. see Trial subtraction
Sum of absolute differences instructions,

556–557
Supervisor mode, 23, 26t
Supervisor mode stack, 332
Swap instruction, 72–73
Swapped out variables, 120
SWI exception, 390–393
SWI instruction, 99, 616
Switches

on a general value x, 199–200
efficient, 197–200
function of, 197
on the range of 0 ó x ó N, 197–199

SWP instruction, 72, 616–617
SWPB instruction, 72
SXT instruction, 617–618
SXTA instruction, 617–618
Synthesizable, 38
System control coprocessor, 77
System mode, 23–24, 26t
System-on-chip architecture, 560

T
TEQ comparison instruction, 56, 618
Test-clean command, for D-cache cleaning,

428t, 434–435
32-bit

addition, 254
subtraction, 254

32-bit interrupt controller register, 350f
32-bit/32-bit divide, unsigned

by Newton-Raphson divide, 225–230
by trial subtraction, 218–220

32-bit/15-bit divide by trial subtraction,
220–222

688 Index

Thrashing
definition of, 411, 412f
ways for reducing, 412

Thumb-2, 565
Thumb instruction set

ARM-Thumb interworking, 90–92
branch instructions, 92–93
code density, 87, 88f
data processing instructions, 93–95
decoding, 88f, 639–641
description of, 26, 27t
encodings, 638–644
list of, 89t
load and store offsets, 132t
multiple-register load-store instructions,

97–98
overview of, 87–89
register usage, 89–90
single-register load-store instructions, 96–97
software interrupt instruction, 99
stack instructions, 98–99

Tightly coupled memory, 35, 36f, 405
Trailing zeros, counting of, 215–216
Transcendental functions

base-two exponentiation, 244–245
base-two logarithm, 242–244
description of, 241–242
trigonometric operations, 245–248

Translation lookaside buffer
CP15:c7 commands, 509t, 509–510
definition of, 506
functions of, 506
hit, 506
lockdown registers, 510t
miss, 506
operations, 509–510
single-step page table walk, 507–508
two-step page table walk, 508–509

Trial subtraction, division by
description of, 217–218
nonrestoring, 218
restoring, 218
unsigned 64/31-bit divide by, 222–223
unsigned 32-bit/15-bit divide by, 220–222
unsigned 32-bit/32-bit divide by, 218–220

Trigonometric operations, 245–248

Truncation error, 228
TrustZone, 563–565
TST comparison instruction, 56, 94, 618–619

U
UADD instruction, 619
UHADD instruction, 619
UHSUB instruction, 619
UMAAL instruction, 619
UMLAL multiply instruction, 57–58, 620
UMULL multiply instruction, 57–58, 620
Unaligned data

description of, 136–140
handling of, 201–203

Undefined instruction, 318t, 321
Undefined instruction vector, 33
Undefined mode, 23, 26t
Underflow error, 72
Unified cache, 408
Unique identification number, 398
Unknown_condition routine, 362
Unpacking

fixed-width bit-field, 191–192
variable-width bitstreams, 195–197

Unrolled counted loops, 184–187
Unrolling

load instructions scheduling by, 169–171
of loop, 117–120, 184–187

Unsigned 64-bit by 64-bit multiply with 128-bit
result, 209–210

Unsigned 64/31-bit divide, by trial subtraction,
222–223

Unsigned 32-bit/32-bit divide
by Newton-Raphson divide, 225–230
by trial subtraction, 218–220

Unsigned 32-bit/15-bit divide, by trial
subtraction, 220–222

Unsigned data type, 112–113
Unsigned division

by a constant, 145–147
repeated, with remainder, 142–143

UQADD instruction, 620
UQSUB instruction, 620
USAD instruction, 620
USAT instruction, 620
User mode, 23–24, 26t

Index 689

User mode stack, 332
USMLAL macro, 211
USUB instruction, 620
UXT instruction, 620
UXTA instruction, 620

V
Variables, 171–175
Variable-width bitstream packing, 192–194
Variable-width bitstream unpacking, 195–197
Vector floating point accelerator, 149
Vector floating-point, 37
Vector interrupt controller, 12
Vector interrupt controller PL190 based

interrupt service routine, 333,
363–364

Vector table, 33t, 33–34, 319–320
Veneer, 90
VIC PL190 based interrupt service routine, 333,

363–364
Victim, 419, 458
Victim reset value, 445
Virtual address, 516
Virtual addresses, 492
Virtual memory system

components of, 495f
definition of, 491
demonstration of

context switch procedure, 544
fixed system software regions, 521–522
memory management unit initialization

activation of page table, 539–540
assigning of domain access, 541–542
overview of, 529
page tables filled with translations,

531–538
page tables initialized in memory,

529–531
overview of, 520–521
page tables

activation of, 539–540
data structures, 525–529
defining of, 525
filling of, with translations, 531–538

initializing of, in memory, 529–531
locating of, 525

region data structures, 525–529
regions in physical memory, 522–525
virtual memory maps, 522, 524f

fixed mapping in, 499–500
mechanism of, 493–495
memory organization in, 499–501
modified, 516
task mapping in, 494f
task switching, 499

volatile, 154
Von Neumann architecture, 34, 34f,

408

W
Way and set index addressing, for D-cache

cleaning, 428t, 431–434
Ways, 412
WEND, 631
WHILE, 631
.word, 635
Write buffer

description of, 403, 416–417
initializing of, 465–466
memory management units, 512–513
region attributes, 474–477

Write collapsing, 417
Write combining, 417
Write merging, 417
Writeback, 418–419
Writethrough, 418

X
XScale, 43

Z
Zeros

count leading, 215–216
count trailing, 215–216

Zero-wait-state memory, 164
z-transform, 295

	ARM System Developer’s Guide Designing and Optimizing System Software
	Copyright Page
	Contents
	About the Authors
	Preface
	Chapter 1. ARM Embedded Systems
	1.1 The RISC design philosophy
	1.2 The ARM Design Philosophy
	1.3 Embedded System Hardware
	1.4 Embedded System Software
	1.5 Summary

	Chapter 2. ARM Processor Fundamentals
	2.1 Registers
	2.2 Current Program Status Register
	2.3 Pipeline
	2.4 Exceptions, Interrupts, and the Vector Table
	2.5 Core Extensions
	2.6 Architecture Revisions
	2.7 ARM Processor Families
	2.8 Summary

	Chapter 3. Introduction to the ARM Instruction Set
	3.1 Data Processing Instructions
	3.2 Branch Instructions
	3.3 Load-Store Instructions
	3.4 Software Interrupt Instruction
	3.5 Program Status Register Instructions
	3.6 Loading Constants
	3.7 ARMv5E Extensions
	3.8 Conditional Execution
	3.9 Summary

	Chapter 4. Introduction to the Thumb Instruction Set
	4.1 Thumb Register Usage
	4.2 ARM-Thumb Interworking
	4.3 Other Branch Instructions
	4.4 Data Processing Instructions
	4.5 Single-Register Load-Store Instructions
	4.6 Multiple-Register Load-Store Instructions
	4.7 Stack Instructions
	4.8 Software Interrupt Instruction
	4.9 Summary

	Chapter 5. Efficient C Programming
	5.1 Overview of C Compilers and Optimization
	5.2 Basic C Data Types
	5.3 C Looping Structures
	5.4 Register Allocation
	5.5 Function Calls
	5.6 Pointer Aliasing
	5.7 Structure Arrangement
	5.8 Bit-fields
	5.9 Unaligned Data and Endianness
	5.10 Division
	5.11 Floating Point
	5.12 Inline Functions and Inline Assembly
	5.13 Portability Issues
	5.14 Summary

	Chapter 6. Writing and Optimizing ARM Assembly Code
	6.1 Writing Assembly Code
	6.2 Profiling and Cycle Counting
	6.3 Instruction Scheduling
	6.4 Register Allocation
	6.5 Conditional Execution
	6.6 Looping Constructs
	6.7 Bit Manipulation
	6.8 Efficient Switches
	6.9 Handling Unaligned Data
	6.10 Summary

	Chapter 7. Optimized Primitives
	7.1 Double-Precision Integer Multiplication
	7.2 Integer Normalization and Count Leading Zeros
	7.3 Division
	7.4 Square Roots
	7.5 Transcendental Functions: log, exp, sin, cos
	7.6 Endian Reversal and Bit Operations
	7.7 Saturated and Rounded Arithmetic
	7.8 Random Number Generation
	7.9 Summary

	Chapter 8. Digital Signal Processing
	8.1 Representing a Digital Signal
	8.2 Introduction to DSP on the ARM
	8.3 FIR filters
	8.4 IIR Filters
	8.5 The Discrete Fourier Transform
	8.6 Summary

	Chapter 9. Exception and Interrupt Handling
	9.1 Exception Handling
	9.2 Interrupts
	9.3 Interrupt Handling Schemes
	9.4 Summary

	Chapter 10. Firmware
	10.1 Firmware and Bootloader
	10.2 Example: Sandstone
	10.3 Summary

	Chapter 11. Embedded Operating Systems
	11.1 Fundamental Components
	11.2 Example: Simple Little Operating System
	11.3 Summary

	Chapter 12. Caches
	12.1 The Memory Hierarchy and Cache Memory
	12.2 Cache Architecture
	12.3 Cache Policy
	12.4 Coprocessor 15 and Caches
	12.5 Flushing and Cleaning Cache Memory
	12.6 Cache Lockdown
	12.7 Caches and Software Performance
	12.8 Summary

	Chapter 13. Memory Protection Units
	13.1 Protected Regions
	13.2 Initializing the MPU, Caches, and Write Buffer
	13.3 Demonstration of an MPU system
	13.4 Summary

	Chapter 14. Memory Management Units
	14.1 Moving from an MPU to an MMU
	14.2 How Virtual Memory Works
	14.3 Details of the ARM MMU
	14.4 Page Tables
	14.5 The Translation Lookaside Buffer
	14.6 Domains and Memory Access Permission
	14.7 The Caches and Write Buffer
	14.8 Coprocessor 15 and MMU Configuration
	14.9 The Fast Context Switch Extension
	14.10 Demonstration: A Small Virtual Memory System
	14.11 The Demonstration as mmuSLOS
	14.12 Summary

	Chapter 15. The Future of the Architecture
	15.1 Advanced DSP and SIMD Support in ARMv6
	15.2 System and Multiprocessor Support Additions to ARMv6
	15.3 ARMv6 Implementations
	15.4 Future Technologies beyond ARMv6
	15.5 Summary

	Appendix A. ARM and Thumb Assembler Instructions
	A.1 Using This Appendix
	A.2 Syntax
	A.3 Alphabetical List of ARM and Thumb Instructions
	A.4 ARM Assembler Quick Reference
	A.5 GNU Assembler Quick Reference

	Appendix B. ARM and Thumb Instruction Encodings
	B.1 ARM Instruction Set Encodings
	B.2 Thumb Instruction Set Encodings
	B.3 Program Status Registers

	Appendix C. Processors and Architecture
	C.1 ARM Naming Convention
	C.2 Core and Architectures

	Appendix D. Instruction Cycle Timings
	D.1 Using the Instruction Cycle Timing Tables
	D.2 ARM7TDMI Instruction Cycle Timings
	D.3 ARM9TDMI Instruction Cycle Timings
	D.4 StrongARM1 Instruction Cycle Timings
	D.5 ARM9E Instruction Cycle Timings
	D.6 ARM10E Instruction Cycle Timings
	D.7 Intel XScale Instruction Cycle Timings
	D.8 ARM11 Cycle Timings

	Appendix E. Suggested Reading
	E.1 ARM References
	E.2 Algorithm References
	E.3 Memory Management and Cache Architecture (Hardware Overview and Reference)
	E.4 Operating System References

	Index

