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This dissertation proposes and evaluates compiler techniques that enhance cache locality

and consequently improve the performance of parallel applications on shared-memory multi-

processors. These techniques target applications with loop-level parallelism that can be detected

and exploited automatically by a compiler. Novel program transformations are combined with

appropriate loop scheduling in order to exploit data reuse while maintaining parallelism and

avoiding cache conflicts.

First, this dissertation proposes the shift-and-peel transformation for enabling loop fusion

and exploiting reuse across parallel loops. The shift-and-peel transformation overcomes depen-

dence limitations that have previously prevented loops from being fused legally, or prevented

legally-fused loops from being parallelized. Therefore, this transformation exploits all reuse

across loops without loss of parallelism.

Second, this dissertation describes and evaluates adaptations of static loop scheduling

strategies to exploit wavefront parallelism while ensuring locality in tiled loops. Wavefront

parallelism results when tiling is enabled by combining the shift-and-peel transformation with

loop skewing. Proper scheduling exploits both intratile and intertile data reuse when indepen-

dent tiles are executed in parallel on a large number of processors.
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Third, this dissertation proposes cache partitioning for preventing cache conflicts between

data from different arrays, especially when exploiting reuse across loops. Specifically, cache

partitioning prevents frequently-recurring conflicts in loops with compatible data access pat-

terns. Cache partitioning transforms the data layout such that there are no conflicts for reused

data from different arrays during loop execution.

An analytical model is also presented to assess the potential benefit of locality enhancement.

This model estimates the expected reduction in execution time by parameterizing the reduction

in the number of memory accesses with locality enhancement and the contribution of memory

accesses towards execution time.

Experimental results show that the proposed techniques improve parallel performance

by 20%-60% for representative applications on contemporary multiprocessors. The results

also show that significant improvements are obtained in conjunction with other performance-

enhancing techniques such as prefetching. The importance of the techniques described in this

dissertation will continue to increase as processor performance continues to increase more

rapidly than memory performance.
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Chapter 1

Introduction

This dissertation presents new compiler techniques to improve the performance of automatically-

parallelized applications on large-scale shared-memory multiprocessors. These techniques are

motivated by key architectural features of large-scale multiprocessors—namely a large number

of processors, caches, and a physically-distributed memory system—that must be exploited

effectively to achieve high levels of performance. The proposed techniques focus on cache

locality enhancement because caches are essential for bridging the widening gap between pro-

cessor and memory performance, especially in large-scale multiprocessors. The techniques

are designed specifically to enhance cache locality while maintaining the parallelism detected

automatically by a compiler.

The remainder of this chapter is organized as follows. First, the architecture of large-

scale shared-memory multiprocessors is presented. Next, loop-level parallelism and the role of

parallelizing compilers are examined. Data reuse and cache locality in loops are then described.

The limitations of existing techniques for cache locality enhancement are then outlined. Finally,

an overview of the research conducted to overcome these limitations is presented.

1.1 Large-Scale Shared-memory Multiprocessors

Large-scale shared-memory multiprocessor systems have emerged in recent years as viable

high-performance computing platforms [Bel92, LW95]. Built using high-speed commodity

microprocessors, these systems are cost-effective platforms for a variety of applications rang-

1



CHAPTER 1. INTRODUCTION 2
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Figure 1.1: Large-scale shared-memory multiprocessor architecture

ing from scientific computation to on-line transaction processing. Examples of commercial

multiprocessors include the HP/Convex Exemplar [Con94], the SGI/Cray Origin [Sil96a],

and the Sun Ultra HPC [Sun96]. Examples of research multiprocessors include the Stanford

FLASH [HKO+94] and the University of Toronto NUMAchine [VBS+95].

The architecture of large-scale shared-memory multiprocessors consists of processors,

caches, physically-distributed memory, and an interconnection network. This architecture

is shown in Figure 1.1. The memory is physically distributed to provide scalability as the

number of processors is increased. Although the memory is physically distributed, the hard-

ware supports a shared address space that allows processors to transparently access remote

memory through the network. Because the remote access latency increases with distance, these

multiprocessors have a non-uniform memory access (NUMA) architecture. High-speed caches

are used to mitigate the long latency for accessing both local and remote memory, and hardware

enforces coherence for copies of the same data in multiple caches.

A key factor that affects application performance on large-scale multiprocessors is the

degree of parallelism [LW95]. Parallelism indicates that operations are independent and can be

distributed among processors for simultaneous execution. A larger degree of parallelism allows

more processors to be used, with commensurate reductions in execution time. Application

performance on large-scale multiprocessors also depends on cache locality [LW95]. Locality

ensures that processors access data from the nearby, high-speed cache, rather than the distant,
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DO I = 2, N−1
  A[I] = (A[I−1]+A[I]+A[I+1]) / 3
END DO

(b) Serial loop(a) Parallel loop

DO I = 1, N
  A[I] = S * A[I]
END DO

Figure 1.2: Parallelism in loops

slow memory. Although caches have long been used in uniprocessor systems, they are especially

important for avoiding the large remote memory latency in large-scale multiprocessors.

1.2 Loop-level Parallelism and Parallelizing Compilers

Parallelism in programs, especially scientific programs, is often found in loops [ZC91], and this

loop-level parallelism is exploited by distributing independent loop iterations among processors

for simultaneous execution in order to reduce execution time.

Consider the loop shown in Figure 1.2(a). For any pair of different iterations i1 and i2

from the I loop, the elements A[i1] and A[i2] that are read and written in each iteration are

different. Consequently, all iterations are independent of each other. The loop iterations may

be distributed among multiple processors and executed simultaneously without violating the

loop semantics. Loops whose iterations are independent of each other are called parallel loops.

In contrast, consider the loop shown in Figure 1.2(b). For successive pairs of iterations i

and i + 1, the value read from element A[i] in iteration i + 1 is the same value written to

element A[i] in iteration i. Hence, a dependence is said to exist between iterations i and i+ 1.

Successive iterations may not be executed simultaneously without violating the loop semantics.

Loops with dependences between successive iterations are called serial loops.

Parallelizing compilers are software tools that detect and exploit loop-level parallelism.

Many techniques have been developed to detect the absence of dependences and identify paral-

lel loops [BGS94]. Therefore, these compilers can convert a sequential program into a parallel

program by generating code in which independent iterations are distributed among processors

for simultaneous execution. By automating parallelization, these compilers promote portability

and allow programming in a machine-independent manner. Examples of commercial paral-
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DO I = 2, N−1
  B[I] = (A[I−1]+A[I+1]) / 2
END DO

DO I = 2, N−1
  A[I] = B[I]
END DO

reuse within loops

reuse across loops

Figure 1.3: Data reuse in loops

lelizing compilers include KAP [Kuc] and VAST [Pac]. Examples of parallelizing compilers

used for research include SUIF [WFW+94] and Polaris [BEF+95].

1.3 Data Reuse and Cache Locality

Loops commonly exhibit data reuse, i.e., they read or write the same data elements multiple

times. Performance is improved when this reuse is converted into locality in the cache.

Locality reduces execution time by retaining data in the cache between uses in order to avoid

long memory access latencies.

There are two types of data reuse for loops: reuse within loops and reuse across loops [BGS94,

KM94, Wol92]. Figure 1.3 depicts sample code to illustrate the two types of reuse. In the first

loop, iteration i reads array elements A[i � 1] and A[i + 1]. In iteration i + 2, elements

A[i + 1] and A[i + 3] are read. The array references cause element A[i + 1] to be read in

both iterations i and i + 2. Because the same element is read in successive iterations of the

same loop, this data reuse is said to be within a loop. In contrast, consider the references to

array B. Iteration i of the first loop in Figure 1.3 writes array element B[i]. The value written

to B[i] is subsequently read in iteration i of the second loop. Because the same element is

referenced in iterations of different loops, this form of data reuse is said to exist across loops.

Although data reuse is common in loops, it may not necessarily lead to locality because of

limited cache capacity and associativity [PH96]. If the amount of data accessed between uses

exceeds the cache capacity, data is displaced from the cache before it is reused. Even when



CHAPTER 1. INTRODUCTION 5

DO J = 1, M
  DO I = 2, N−1
    B[I,J]=A[I−1,J]+A[I+1,J]
  END DO
END DO

DO I = 2, N−1
  DO J = 1, M
    B[I,J]=A[I−1,J]+A[I+1,J]
  END DO
END DO

(a) Original loops and access order in array A (b) Permuted loops and access order in array A

N

M

N

M

Figure 1.4: Example of loop permutation

the cache capacity is not exceeded between uses, reused array elements may still be displaced

from the cache because of cache conflicts, which occur when cache lines containing different

array elements are mapped into the same location in the cache because of limited associativity.

Consider once again the example loops shown in Figure 1.3. The reuse of elements from

array B is separated by a large number of iterations in different loops. If the cache capacity is

not sufficient to contain all the elements of array B between uses, there is no locality. Even if

the cache capacity is sufficient, locality may still be lost for the reuse of array B if the mapping

in the cache for elements of array A conflicts with elements of array B between uses.

1.4 Cache Locality Enhancement

In order to enhance cache locality, compilers apply a variety of loop transformations such as

permutation and tiling [BGS94]. These transformations reorder loop iterations to reduce the

number of iterations between uses of the same data. Reuse often implies the existence of

dependences between iterations, as described in Section 1.2. A transformation is legal if and

only if the reordering of iterations obeys dependence constraints. Even if a transformation is

legal, it is beneficial only if reordering of iterations improves cache locality.

Figure 1.4 depicts the effect of reordering iterations with loop permutation. In the original

loops shown in Figure 1.4(a), the references A[I-1,J] and A[I+1,J] reuse elements in the

same column of array A. However, the inner J loop reads elements in rows of the array. As a
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result, reuse of elements in the same column is separated by 2 �M inner loop iterations. The

reuse is not converted into locality if the cache capacity is insufficient to hold elements of arrayA

accessed between uses. However, if the loops are permuted to make the I loop innermost, as

shown in Figure 1.4(b), reuse of an element in the same column is now separated by only 2

inner loop iterations, which increases the likelihood of achieving locality. Permutation is legal

in this case because there are no dependences between iterations.

Despite the promise of locality-enhancing loop transformations, compilers using them

often fail to improve performance [CMT94, Wol92]. The scope of transformations such as

permutation is limited to exploiting the reuse within an individual loop. However, caches often

generate locality for reuse within loops without requiring any compiler assistance [MT96]. In

such cases, applying an iteration-reordering loop transformation provides no locality benefit.

On the other hand, caches normally cannot generate locality from reuse across loops

because of the larger number of iterations between uses [MT96]. However, transformations

for exploiting reuse across loops are restricted by dependences between iterations in different

loops that may render transformation illegal [KM94]. Consequently, reuse across loops remains

unexploited.

Even when a loop transformation to exploit reuse within or across loops is legal, parallelism

may be reduced or lost as a result of iteration reordering [Wol92, KM94]. Consequently, there

is a tradeoff between maintaining sufficient parallelism for many processors and enhancing

locality with little or no resultant parallelism. Compilers seeking to parallelize applications for

a large number of processors may therefore abandon locality for the sake of parallelism.

Finally, the locality benefit of any loop transformation is diminished by the occurrence of

cache conflicts [CMT94, Wol92]. Conflicts displace data from the cache, and if the displaced

data is later reused, the missing data must be reloaded into the cache. The latency of cache

misses to reload data into the cache therefore increases execution time unnecessarily.

1.5 Research Overview

This dissertation proposes new techniques that improve parallel performance on large-scale

multiprocessors by enhancing locality across parallel loops. These techniques enable trans-
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formations to exploit reuse across loops and allow subsequent parallelization, even when

dependences would otherwise prevent legal transformation or result in a serial loop. At same

time, the benefit of locality enhancement is ensured by avoiding cache conflicts for reused data.

The techniques are listed below with underlying assumptions.

� A code transformation called shift-and-peel is proposed for overcoming dependence lim-

itations and exploiting reuse across a sequence of loops without sacrificing parallelism—

specifically when the reuse within loops is captured by the cache on its own. This

technique assumes uniform dependences between the loops in the sequence.

� An evaluation is provided for loop scheduling strategies for executing transformed loops

on a large number of processors in a manner that ensures that the full benefit of locality

enhancement is realized. The strategies are appropriate when the degree of available

parallelism varies in the scheduled loops, and there is little or no variability in the units

of work assigned to different processors.

� A data transformation called cache partitioning is proposed to prevent cache conflicts

between data from different arrays, particularly when exploiting reuse across loops. This

technique assumes that the arrays in the loops of interest are similarly-sized and traversed

in the same manner, which is typical in most applications.

An analytical performance model is also presented to assess the impact of locality enhance-

ment across loops on execution time and guide the application of the proposed techniques. The

model assumes that loops have iteration space bounds that match array bounds, and that the

computation performed in a loop accesses all elements in an array. A prototype implemen-

tation of the proposed techniques is described to demonstrate the feasibility of incorporating

the techniques within a compiler. Finally, experimental results for representative applications

on contemporary multiprocessors confirm that the proposed techniques provide substantial

improvements in parallel performance.
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1.6 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides background and

surveys previous work on the effectiveness of existing locality enhancement techniques. Chap-

ter 3 presents an analytical model to assess the impact of locality enhancement across loops on

execution time. Chapter 4 presents the shift-and-peel transformation. Chapter 5 discusses loop

scheduling strategies for parallel execution. Chapter 6 describes cache partitioning for conflict

avoidance. Chapter 7 presents the results of an experimental evaluation to demonstrate the

effectiveness of the proposed techniques. Finally, Chapter 8 offers conclusions and directions

for future research.



Chapter 2

Background

This purpose of this chapter is twofold. First, it provides background on loop parallelization,

loop transformations, and data transformations. Second, it reviews work on the effectiveness

of existing locality-enhancing loop transformations.

This chapter is organized as follows. First, the structure and semantics of loops are defined.

Dependence analysis is then described. Loop parallelization techniques are then described,

followed by a review of loop transformations for enhancing locality and parallelism. Various

data transformation techniques for arrays accessed in loop nests are described next. Finally, this

chapter concludes by reviewing the effectiveness of existing techniques for enhancing locality

within loops.

2.1 Loops and Loop Nests

A DO-loop (hereafter referred to simply as a loop) is a structured program construct consisting

of a loop header and a loop body,

do i = b0; bf ; s ( header
<body>(i)

end do

where i is the loop index variable, and b0, bf , s are integer-valued expressions that evaluate to

constants on entry to the loop. The index variable takes on values beginning at b0 in steps of

s until the value bf is exceeded, and each value represents one loop iteration. The loop body

contains statements in which the variable i may appear, hence the body may be parameterized

by i. A statement S within the loop body may also be parameterized as S(i).

9
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do t=1,T
do j=2,N-1

do i=2,N-1
a[i,j] = (a[i-1,j]+a[i+1,j]+a[i,j-1]+a[i,j+1]+a[i,j])/5

end do
end do

end do
(a) A perfectly-nested loop nest

do i=1,N
do j=1,N

s = 0
do k=1,N

s = s + b[i,k] * a[k,j]
end do
c[i,j] = s

end do
end do

do t=1,T
do j=2,N-1

do i=2,N-1
b[i,j] = (a[i-1,j]+a[i+1,j]+a[i,j-1]+a[i,j+1])/4

end do
end do
do j=2,N-1

do i=2,N-1
a[i,j] = b[i,j]

end do
end do

end do
(b) An imperfectly-nested loop nest (c) An arbitrarily-nested loop nest

Figure 2.1: Classification of loop nest structure

A loop nest L is a set of loops and their respective bodies structured such that exactly one

loop `outer 2 L encloses all of the remaining loops, and no enclosing loop uses the same index

variable as one of the loops it encloses. The level of a loop is the number of loops which enclose

it. For example, the level of `outer is 0, since no other loop encloses it. The depth of the loop nest

is one larger that the maximum level of any component loop, i.e., depth=
�

max
`2L

level(`)
�
+ 1.

A perfectly-nested loop nest consists of loops `0; `1; : : : ; `m�1 such that:

level(`i) = i; 8 0 � i � m� 1; and body(`i) = f`i+1g; 8 0 � i < m� 1:

The level of each loop is unique, and the body of each loop except the innermost loop consists

of exactly one loop. All non-loop statements are in the body of the innermost loop. An example

of a perfect loop nest is given in Figure 2.1(a).

An imperfectly-nested loop nest consists of loops `0; `1; : : : ; `m�1 such that:

� level(`i) = i; 8 0 � i � m� 1; body(`i) = f`i+1g [ Si; 8 0 � i < m� 1,

� 9 0 � i < m� 1 3 Si 6= ;,
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where Si is a set of zero or more non-loop statements. Hence, the only distinction between

an imperfectly-nested loop nest and a perfectly-nested loop nest is the presence of at least one

non-loop statement in the body of any loop except the innermost. An example of an imperfect

loop nest is given in Figure 2.1(b).

An arbitrarily-nested loop nest consists of loops `0; `1; : : : ; `m�1 such that:

� level(`0) = 0; level(`i) > 0; 8 1 � i � m� 1,

� 9i; j 3 (1 � i � m� 1) ^ (1 � j � m� 1) ^ (i 6= j) ^ (level(`i) = level(`j)).

Hence, there are at least two loops with the same level. Apart from the requirement for exactly

one outermost enclosing loop and the proscription against an enclosing loop using the same

index variable as one of the loops it encloses, there are no other restrictions on the nesting

structure of an arbitrarily-nested loop nest or the presence of non-loop statements. An example

of an arbitrarily-nested loop nest is given in Figure 2.1(c).

This dissertation centers on perfectly-nested loop nests, and arbitrarily-nested loop nests

with inner loop nests that are perfectly-nested, as shown in Figure 2.1(c).

2.2 Loop Dependence Analysis

The legality of loop parallelization or loop transformation is dictated by dependences between

loop iterations. These dependences reflect the semantics of the original program. Conse-

quently, loop dependence analysis to uncover these dependence relationships is an essential

prerequisite for loop parallelization and transformation. The remainder of this section defines

data dependence, formulates the dependence problem, and describes various dependence tests.

2.2.1 Iteration Spaces, Iteration Vectors, and Lexicographical Ordering

The loop bounds in a perfectly-nested loop nest of depth m define a set of points in an m-

dimensional iteration space I. It is assumed that the lower bound is one and the step is one

for all loop variables.1 The iteration vector~{ = (i0; i1; : : : ; im�1) 2 Z
m identifies points in I,

1A transformation called loop normalization [ZC91], which is always legal, converts a loop into this form.
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do j = 1, 4
    do i = 1, 4
        <body>
    end do
end do

(a) Two−dimensional loop nest (a) Corresponding  iteration space

(4,1)1

4

i

(1,2)

1 4
j

Figure 2.2: A two-dimensional iteration space

where i0; i1; : : : ; im�1 denote loop variables, and i0 is the outermost loop variable. Figure 2.2

illustrates a representative two-dimensional iteration space; the iteration vector is (j; i).

The loop headers and their nesting order in a loop nest specify the sequence in which the

points are traversed in the iteration space I. The sequence of vectors corresponding to these

points is called the lexicographical order of iterations [Wol92]. A pair of iteration vectors

~p; ~q is ordered with the relation ~p � ~q to reflect this lexicographical order. For example, the

lexicographical order for the iteration space in Figure 2.2 is given by

(1; 1) � (1; 2) � � � � � (3; 4) � (4; 1) � � � � � (4; 4)

and is represented by the path taken by the dashed line.

2.2.2 Definition and Use of Variables

Statements in the body of a loop may write (define) or read (use) program variables in each

loop iteration. These program variables may be scalars or subscripted arrays. In the latter

case, subscript expressions may contain index variables. For each statement instance S(~{) in

the body of a perfectly-nested loop nest with iteration vector~{, DEF (S(~{)) denotes the set of

variables that are written, and USE(S(~{)) denotes the set of variables that are read. These sets

identify the memory locations read or written in each instance of the loop body.

2.2.3 Data Dependence

Data dependence is a relationship between statements that reference the same memory location.

Let S and S0 denote statements in the body of a perfectly-nested loop nest (the statements need
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not be distinct), and let ~p and ~q denote points in the iteration space. The statement instance

S 0(~q) is data dependent on the statement instance S(~p) if the following conditions hold:2

1. (~p � ~q) _ ((~p = ~q) ^ (S 6= S 0) ^ (S appears before S0 in the body))

2.
�
DEF (S(~p)) \ USE(S 0(~q)) 6= ;

�
_
�
USE(S(~p)) \ DEF (S 0(~q)) 6= ;

�
_�

DEF (S(~p)) \ DEF (S 0(~q)) 6= ;
�

The notationS(~p)�S 0(~q) indicates a data dependence. S(~p) is the dependence source, and S0(~q)

is the sink. Similarly, ~p; ~q are the source and sink iterations, respectively.

Dependences may be further categorized based on condition 2 above. A true dependence

S(~p)�tS 0(~q) exists ifDEF (S(~p))\USE(S 0(~q)) 6= ; (write precedes read). An antidependence

S(~p)�aS 0(~q) exists if USE(S(~p))\DEF (S 0(~q)) 6= ; (read precedes write). Finally, an output

dependence S(~p)�oS 0(~q) exists if DEF (S(~p)) \DEF (S 0(~q)) 6= ; (write precedes write).

The dependence distance vector is given by ~d = ~q � ~p. If ~p = ~q, then ~d = ~0. Otherwise,

~p � ~q by definition and ~d must be lexicographically positive. The dependence direction vector

is given by ~s = sig(~d) and is also lexicographically positive.

If S(~p)�S0(~q) and ~p 6= ~q, then the dependence is loop-carried between the source and sink

iterations. The level of a loop-carried dependence is given by scanning the dependence vector

for the first non-zero component, starting with the element for the outermost loop. For a loop

nest of depthm, the level ranges from 0 tom�1. If S(~p)�S0(~q) and ~p = ~q, then the dependence

is loop-independent because it exists within one instance of the loop body. The dependence

level of a loop-independent dependence is 1, since there are no non-zero components.

2.2.4 The Dependence Problem

The goal of dependence analysis is to solve the dependence problem: for two statement instances

S(~p) and S0(~q), determine whether the statement instances access the same memory location.

The solution is trivial for scalar variables because a data dependence will always exist if at

least one of the statements writes the scalar variable. However, when S(~p) and S0(~q) access

the same array variable, a mathematical formulation of the dependence problem is used to

2These conditions are conservative and may generate a superset of the actual dependences. Greater precision
is obtained with an additional covering condition for writes [ZC91], although it is often ignored in practice.
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determine if the same array element is accessed. In other words, the formulation determines if

array subscript expressions are equal for any pair of statement instances.

The problem is simplified when the array subscripts consist only of affine expressions of

the loop index variables. Affine expressions are linear combinations of variables with integer

coefficients. For example, an affine expression for the iteration vector~{ = (i0; i1; : : : ; im�1) is

a0 � i0 + a1 � i1 + � � � + am�1 � im�1 + c; where a0; a1; : : : ; am�1 and c are integer constants.

Affine subscripts for multidimensional arrays may be expressed as matrix-vector products. For

example, the array reference a[2i0 � 2; 3i1 � i0 + 1] is represented by a[f(~{)], where

f(~{) =

2
64 2 0

�1 3

3
75
2
64 i0

i1

3
75 +

2
64 �2

1

3
75 :

For a reference a[f(~{)] in S(~{) and a reference a[f0(~{)] in S 0(~{) in a normalized perfectly-

nested loop nest, the dependence problem is formulated succinctly as follows: find a pair of

points ~p; ~q 2 I such that

f(~p) = f 0(~q): (2.1)

Equation 2.1 expands into a system of linear equalities consisting of elements from ~p and

~q. Since ~p; ~q must lie in the iteration space, solutions are constrained by inequalities that reflect

the iteration space bounds. In addition, solution vectors must consist of integers. Figure 2.3

illustrates the dependence problem formulation for an example two-dimensional loop nest (i.e.,

m = 2). with two statements that reference a one-dimensional array a.

A solution for Equation 2.1 that satisfies all constraints indicates the existence of a pair

of statement instances that reference the same memory location. However, it is necessary to

establish the order of the statement instances to properly establish the dependence relation.

From Section 2.2.3, S(~p)�S0(~q) implies that ~p � ~q. If the solution to Equation 2.1 is such that

~p � ~q, then the dependence relation must be S(~p)�S0(~q). On the other hand, if the solution is

such that ~q � ~p, then the dependence relation must be S0(~q)�S(~p). If ~p = ~q, then the order of

S and S0 within the loop body determines the dependence relation.

2.2.5 Dependence Tests

Techniques for obtaining solutions to Equation 2.1 are called dependence tests. Some depen-

dence tests apply only to restricted forms of the dependence problem, while others are generally
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do i0=1,5
do i1=1,10

S: a[2i0+i1-1] = : : :
S 0: : : : = a[i0+i1]

end do
end do

2p0 + p1 � 1 = q0 + q1

p0; p1; q0; q1 2 Z

1 � p0

1 � q0
1 � p1

1 � q1

p0 � 5
q0 � 5
p1 � 10
q1 � 10

(a) Two-dimensional loop nest (b) Dependence problem

Figure 2.3: Example formulation of the dependence problem for subscripted array references

applicable. All dependence tests must correctly report independence when they are applicable.

The following paragraphs briefly describe a number of dependence tests.

Approximate dependence tests assume that a dependence exists whenever they are unable

to prove independence. This assumption is required because approximate tests ignore or relax

integer constraints in order to reduce the complexity of finding a solution.

The gcd (greatest common divisor) test [ZC91] examines the divisibility of the integer

constants and coefficients in Equation 2.1 to prove independence. However, it requires a con-

servative assumption whenever it cannot prove independence because it ignores the inequality

constraints bounding the iteration space.

The Banerjee test [Ban88] does consider the inequality constraints, hence it is useful

whenever the gcd test is inclusive. However, the Banerjee test relaxes the integer solution

constraints to provide a necessary and sufficient condition for the existence of a real solution

within the bounds of iteration space. If no real solution exists, then independence is proven.

However, the test is inclusive when a real solution does exist because the solution may not

satisfy the original integer solution constraints.

Exact tests provide necessary and sufficient conditions for the existence of integer solutions.

They do not require conservative assumptions because they either prove independence, or

provide conditions for a data dependence.

The separability test [ZC91] is an exact test for a restricted form of the dependence problem

where corresponding elements of f(~{) and f 0(~{) in Equation 2.1 contain only one (and the
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same) index variable. In this restricted form, this test either proves independence, or provides

minimum and maximum dependence distances when a dependence exists. However, other tests

must be used for those cases in which it is not applicable.

The Omega test [Pug92] is an efficient exact test for the general dependence problem. It

proves independence, or provides distance information when a dependence exists. It also solves

problems with symbolic constants to obtain conditions for the existence of a dependence; these

conditions may be used as run-time dependence tests.

2.3 Loop Parallelization and Concurrentization

Loop parallelization and loop concurrentization designate loops whose iterations are executed

on different processors [ZC91]. Parallelizable DOALL loops do not require synchronization be-

tween iterations, whereas concurrentized DOACROSS loops do require synchronization between

iterations. In some cases, DOALL loops are obtained by variable expansion and privatization

or by recognizing induction and reduction variables. Finally, loop scheduling specifies the

execution order of iterations on each processor. The remainder of this section discusses these

topics in more detail.

2.3.1 DOALL Loops and DOACROSS Loops

LetDEP (L) denote all dependence distance or direction vectors for a perfectly-nested loop nest

L. A loop ` 2 L does not carry a dependence if and only if level(d) 6= level(`); 8 d 2 DEP (L):

Such a loop is a DOALL loop and may be parallelized by distributing iterations arbitrarily among

processors with no synchronization between iterations.

Although DOALL loops carry no dependences, they may be enclosed by other loops that

carry dependences, or they may be preceded or followed by statements that must be executed

serially. Synchronization outside the DOALL loop is required to preserve the original program

semantics. This synchronization is normally provided before and after the loop with a barrier

that forces each processor to wait until all processors are ready to proceed.

The iterations of a loop that carries a dependence may still be distributed among parallel

processors through loop concurrentization. Such a loop is a DOACROSS loop and requires ex-

plicit synchronization between dependent iterations to preserve the original program semantics.
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do i=4,N
a[i] = f (a[i-3])

end do
=)

doacross i=4,N
if (i>6) wait(i-3)
a[i] = f (a[i-3])
if (i<N-2) signal(i)

end do

Figure 2.4: A DOACROSS loop with explicit synchronization for loop-carried dependences

Semaphores provide the required synchronization, with one semaphore per dependence edge.

A semaphore wait operation immediately before the sink statement instance of a loop-carried

dependence is paired with a semaphore signal operation immediately after the source of the

dependence. The wait operation suspends execution until the corresponding signal operation

has been performed. Figure 2.4 provides an example of a DOACROSS loop with explicit

synchronization that allows three loop iterations to be executed in parallel at any time. In the

worst case, dependences may serialize all iterations in a DOACROSS loop.

2.3.2 Data Expansion and Privatization to Enable Parallelization

A true loop-carried dependence S(~p)�tS 0(~q) implies that the memory location written in it-

eration ~p is subsequently read in iteration ~q. This inherently-serial dependence relationship

prevents the iterations ~p and ~q from being executed simultaneously.

On the other hand, a loop-carried antidependence S(~p)�aS 0(~q) implies that a memory loca-

tion is read in iteration ~p and then overwritten with new data in iteration ~q. The antidependence

would cease to exist if the read and write were performed on different memory locations. This

observation provides the key insight into variable expansion and privatization.

Scalar expansion removes loop-carried antidependences caused by a scalar variable. The

scalar variable is replaced with an array containing as many elements as loop iterations, as shown

in Figure 2.5. Each array element is accessed by only one iteration, hence the loop-carried

antidependence is eliminated without violating any dependences within a single iteration. Array

expansion extends this technique to arrays by increasing array dimensionality and introducing

as many elements in the new dimension as loop iterations.

Scalar privatization eliminates loop-carried antidependences by associating a private vari-



CHAPTER 2. BACKGROUND 18

do i=1,N
s = ...
a[i] = s

end do

=)

doall i=1,N
s exp[i] = ...
a[i] = s exp[i]

end do

Figure 2.5: Scalar expansion to eliminate loop-carried antidependences

able with each loop iteration. When multiple iterations are assigned to the same processor,

multiple private variables are collapsed into one variable per processor. Array privatization is

a similar technique where a private array is associated with each loop iteration. Once again,

multiple private arrays may be collapsed into a single private array per processor.

Both expansion and privatization must preserve true dependences flowing outside the loop.

For sequential loop semantics, there is a final value associated with each scalar or array element.

When a loop is parallelized, final values for privatized or expanded variables must be preserved

by copying each value from the expanded array or the appropriate private version before

executing any code following the loop.

2.3.3 Recognition of Induction and Reduction Variables

An induction variable is a variable that causes a loop-carried dependence, but whose value is

implicitly a function of enclosing loop index variables. An example of an induction variable

is given in Figure 2.6(a). The variable k causes a true loop-carried dependence because it is

read then written in each iteration. However, the sequence of values for k is easily expressed

as a function of i. Once this relationship is recognized, the assignment to k is replaced with a

function of i, as shown in Figure 2.6(b). There is still a loop-carried dependence for k, but now

it is an antidependence that is easily resolved with privatization.

An reduction variable is a variable whose value is computed in each loop iteration using

an associative operator. An example of an reduction variable is given in Figure 2.7(a). The

variable s causes a true loop-carried dependence by summing elements from array a. However,

partial sums may be computed in parallel on each processor, as shown in Figure 2.7(b), because

addition is associative. After all partial sums are computed, one processor performs the final
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k = 7
do i=1,N

k = k + 2
a[k] = : : :

end do

=)

k = 7
do i=1,N

k = 2*i + 7
a[k] = : : :

end do

(a) k is an induction variable (b) Transformation of k as a function of i

Figure 2.6: Induction variable recognition

s = 0
do i=1,N

s = s + a[i]
end do

=)

partial s[proc id] = 0
do i=istart(proc id),iend(proc id)

partial s[proc id] = partial s[proc id] + a[i]
end do

(a) s is a reduction variable (b) Computing partial sums to allow parallelization

Figure 2.7: Reduction variable recognition

addition of all partial sums.3 Reductions involving other associative operators such as minimum

or maximum are treated similarly.

2.3.4 Scheduling Loop Iterations

Scheduling of DOALL and DOACROSS loop iterations specifies the distribution and execution

order on each processor. DOALL loops have no constraints on execution order. However,

a subset of DOACROSS loop iterations assigned to the same processor must be executed

in lexicographical order to ensure that one processor can always execute the iteration that

lexicographically precedes any dependent iterations. Irrespective of any constraints, a schedule

should balance the workload for best performance.

In static scheduling, the distribution and execution order of iterations are determined at

compile-time, hence no run-time overhead is incurred. Static scheduling is most effective when

3Although addition is mathematically associative, changing the order of summation may produce slightly
different numerical results on real hardware due to rounding in floating-point arithmetic.
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there is no variance in the amount of computation between iterations, or when the variance

is known at compile time. The most common schedules are block, cyclic, and block-cyclic.

For n iterations and p processors (with n � p), block distribution assigns a contiguous subset

of bn=pc iterations to each processor except the last, which is assigned n � (p � 1) � bn=pc

iterations. Cyclic distribution assigns the ith iteration to processor (i mod p). Block-cyclic

distribution assigns contiguous subsets of fewer than bn=pc iterations to p processors in a cyclic

manner.

Loop iterations may also be scheduled dynamically at run time. The most common approach

is self-scheduling, where processors extract iterations atomically from one or more subsets of

iterations. Self-scheduling is most effective when the variance in the amount of computation

for different iterations is high, or when the variance is unknown at compile time. There are a

number of self-scheduling algorithms [HSF92]. In the simplest algorithm, processors obtain

one iteration at a time from a single set. More elaborate algorithms provide one subset of

iterations per processor and permit iterations to be transferred between subsets to balance

workloads.

2.4 Loop Transformations for Locality and Parallelism

A loop transformation reorders loop iterations in order to enhance locality or parallelism [PW86,

ZC91]. The legality of loop transformations is dictated by dependences, just as it is for

parallelization. This section first describes the relationship between data reuse and locality, then

characterizes the degree and granularity of parallelism in loops. Various loop transformations

for enhancing locality and parallelism are then discussed.

2.4.1 Data Reuse and Locality

Data reuse is an inherent characteristic of programs. Locality in the memory hierarchy results

when processors obtain reused data from nearby (i.e., faster) levels of the hierarchy, specifically

the cache. Locality reduces the effective memory access latency and thereby reduces total

execution time. Temporal locality results from reuse of the same data item, whereas spatial

locality results from reuse of different data items in the same cache line.

There are, however, a number of obstacles for achieving cache locality. First, the cache



CHAPTER 2. BACKGROUND 21

capacity is limited, hence reused data may be displaced from the cache if the cache capacity is

exceeded between uses. Second, the cache associativity is limited, hence reused data may be

displaced by mapping conflicts in the cache, even if there is sufficient cache capacity. Finally,

false sharing occurs when two different processors write different elements of the same cache

line, and the affected cache line is repeatedly exchanged between the two processor caches.

In a loop, temporal and spatial reuse may occur between iterations as well as within

iterations. The goal of locality enhancement is to increase the likelihood of converting reuse

into locality by: (a) reducing the number of iterations between uses, (b) reducing the occurrence

of the cache conflicts, or (c) limiting the extent of false sharing.

2.4.2 Degree and Granularity of Parallelism

The degree of parallelism in a DOALL loop is equal to the number of iterations because the

iterations are independent of each other. For DOACROSS loops, the degree of parallelism

is constrained by synchronization; in the worst case, there is no parallelism (i.e., degree of

parallelism is 1). The granularity of parallelism is the amount of computation per parallel loop

iteration. For example, the nesting level of a single DOALL loop within a perfectly-nested loop

nest dictates the granularity of parallelism.

Loop transformations for enhancing parallelism control the degree and granularity of par-

allelism that is actually exploited. For example, positioning two or more DOALL loops in a

perfectly-nested loop nest adjacent to each other makes the total available parallelism equal

to the product of the degrees of parallelism of each DOALL loop. Furthermore, positioning

DOALL loops at outer nesting levels increases the granularity of parallelism.

2.4.3 Unimodular Transformations

Unimodular transformations [Ban93, Wol92] are applied to perfectly-nested loop nests with

affine loop bounds and array subscripts. These transformations are represented as invertible

unimodular matrices whose determinants are �1. Three elementary loop transformations—

permutation, reversal, and skewing—may be represented with unimodular matrices, as shown

in Figure 2.8. A compound transformation is formed with a product of elementary unimodular

matrices, and the resulting matrix remains unimodular. A unimodular transformation is applied
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do i=1,L
do j=1,M

do k=1,N
<body>

end do
end do

end do

=)

do i=1,L
do k=1,N

do j=1,M
<body>

end do
end do

end do

2
4 1 0 0

0 0 1
0 1 0

3
5

(a) Loop permutation and corresponding unimodular matrix

do i=1,L
do j=1,M

do k=1,N
<body>

end do
end do

end do

=)

do i=1,L
do j=�M,�1

do k=1,N
<body>

end do
end do

end do

2
4 1 0 0

0 �1 0
0 0 1

3
5

(b) Loop reversal and corresponding unimodular matrix

do i=1,L
do j=1,M

do k=1,N
<body>

end do
end do

end do

=)

do i=1,L
do j=1+i,M+i

do k=1,N
<body>

end do
end do

end do

2
4 1 0 0

1 1 0
0 0 1

3
5

(c) Loop skewing and corresponding unimodular matrix

Figure 2.8: Unimodular transformations

by multiplying the corresponding matrix with the iteration vector to yield the new iteration

vector. Loop bounds are transformed in a similar manner. However, array subscript expressions

are transformed by using the inverse of the matrix.

Unimodular transformations enhance locality and parallelism, primarily by permuting or

skewing loops in a loop nest. Loop permutation enhances locality by reducing the number

of iterations between uses of the same data. Permutation also enhances the granularity of

parallelism by moving DOALL loops to the outermost position. When a loop nest contains

no DOALL loops, but parallelism exists along wavefronts in the iteration space, loop skewing
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obtains a new iteration space where the parallelism is captured in a DOALL loop.

Testing the legality of a unimodular transformation is straightforward. Dependence vectors

are transformed in the same manner as the iteration vector with a matrix-vector product. Since

iterations in the transformed space are traversed in lexicographical order, the transformed

dependence vectors must remain lexicographically positive for the transformation to be legal.

2.4.4 Tiling

Tiling (also known as blocking) combines strip-mining of inner loops with loop permuta-

tion [BGS94, Wol92]. Strip-mining encloses a loop with a new control loop that iterates

between the original loop bounds in steps of B. The original loop executesB iterations starting

at each value of the enclosing loop index variable. Tiling is completed by permuting the control

loop to the outermost level, as shown in Figure 2.9(b).

Tiling is legal if and only if the strip-mining and loop permutation are legal. Strip-mining

alone is always legal; the loop nest dimensionality is increased, but the iterations are traversed in

the same order. Strip-mining expands each dependence vector by inserting a zero in the position

corresponding to the control loop index. Furthermore, for each original vector with a non-zero

element for the original loop index, a new vector is introduced. The new dependence vector is

copied from the transformed dependence, then the element corresponding to the control loop

index is set to B or �B, depending on the sign of the component corresponding to the original

loop index.

The legality of permutation is determined just as in unimodular transformations. If any

transformed dependence vector after permutation is not lexicographically positive, then tiling

is not legal. Since permutation moves control loops to the outermost level, tiling is legal only

if strip-mining does not introduce negative elements into the transformed dependence vectors.

Tiling enhances locality by reducing the number of iterations between uses of the same

data, as shown in Figure 2.9. The outermost loop in Figure 2.9(a) carries reuse, and tiling inner

loops as shown in Figure 2.9(b) exploits this reuse. Figures 2.9(c) and (d) graphically illustrate

the reuse before and after tiling. Locality is enhanced with tiling because fewer data elements

are accessed between uses.

Tiling enhances the granularity of parallelism by permuting parallel control loops to the
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do t=1,T
do j=1,N

do i=1,N
: : : = a[i,j]

end do
end do

end do

do jj=1,N,B
do ii=1,N,B

do t=1,T
do j=jj,min(jj+B�1,N)

do i=ii,min(ii+B�1,N)
: : : = a[i,j]

end do
end do

end do
end do

end do

(a) Original loop nest (b) Loop nest after tiling loops j and i

(c) Original data accesses in array a (d) Tiled data accesses in array a

Figure 2.9: Example of tiling

outermost level. For example, if loops j and i in Figure 2.9(a) are parallel, the control loops

jj and ii are also parallel, but each control loop iteration executes many inner loop iterations.

However, the degree of parallelism in each control loop is reduced by a factor of B. Hence,

there is a tradeoff between the degree and granularity of parallelism.

2.4.5 Loop Distribution

Loop distribution transforms a single loop into one or more loops containing statements from

the original loop body, as illustrated in Figure 2.10. As a result, the order of statement instances

is altered substantially from the original loop.

Loop distribution is primarily used to enhance parallelism by obtaining one or more DOALL

loops from a serial loop that carries dependences. If the dependences flow between different

statements, then loop distribution places the source statement in one loop and the sink statement

in another loop, and the resulting loops no longer carry dependences. Loop distribution also
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do i=1,N
S1

S2
S3

S4

end do

distribution
=)

fusion
(=

do i=1,N
S1

end do
do i=1,N

S2
S3

end do
do i=1,N

S4

end do

Figure 2.10: Loop distribution and loop fusion

enhances locality by reducing the amount of data accessed in any one loop, hence reducing

the likelihood of cache conflicts. On the other hand, loop distribution also reduces locality by

increasing the number of iterations between uses of the same data.

Loop distribution is legal if and only if there are no dependence cycles in the original loop

with at least one loop-carried dependence. For example, the loop in Figure 2.10 could not

be distributed in the manner shown if S1(i)�S2(i), S2(i)�S4(i), and S4(i)�S1(i). Statements

involved in a cycle must appear in the same loop.

2.4.6 Loop Fusion

Loop fusion is the opposite of loop distribution; it combines the bodies of adjacent loops, as

shown in Figure 2.10. The loops to be fused must have compatible loop headers. Renaming of

index variables and peeling of boundary iterations may be used to make headers compatible.

Alternatively, the fused loop bounds may be set to the minimum lower bound and maximum

upper bound from the original loops, and conditional guards may be used to prevent statements

from being executed in iterations not included in their original loops.

Loop fusion enhances both locality and parallelism. Locality is enhanced after fusion by

reducing the number of intervening iterations between uses of the same data. However, fusion

may also reduce locality because increasing the amount of data accessed in each fused loop

iteration increases the potential for cache conflicts. If the loops being fused are parallel, then

fusion increases the granularity of parallelism when the resulting fused loop is also parallel.



CHAPTER 2. BACKGROUND 26

However, fusion may also reduce the degree of parallelism by resulting in a serial loop.

The legality of fusion is dictated by dependences between iterations in the loops being

fused. If a dependence flows from statement S1 in one loop to statement S2 in another loop,

but after fusion the dependence becomes S2(i)�S1(i), then fusion is not legal because the sense

of the dependence has been reversed from the original semantics. If fusion of a sequence of

parallel loops is legal, the resulting fused loop may not be parallel if dependences originally

between iterations in different loops become loop-carried in the fused loop.

2.5 Data Transformations

In addition to loop transformations, there are a number of data transformations, primarily

for array data, that may also enhance locality within loops. The legality of all of the data

transformations described in this section is contingent upon the ability to identify all array

references and alter them where necessary to match the data transformation. Features such

as pointers and aliasing may make it impossible to guarantee that all references are modified

appropriately. However, in numeric programs that operate on arrays, data transformations are

often feasible [AAL95, BGS94, LW94].

2.5.1 Memory Alignment

Memory alignment [BGS94] is a general data transformation that seeks to enhance spatial

locality within cache lines by aligning data to cache line boundaries in memory. For example,

if a cache-line-sized portion of data structure is referenced in a program, aligning the data

structure such that the data to be accessed begins at a cache line boundary, rather than straddling

two cache lines, reduces the number of cache lines that are referenced. Memory alignment

can be useful in reducing false sharing in parallel execution. However, the benefit of memory

alignment diminishes when the data size is much larger than a single cache line, and there is

no benefit if data is accessed with a stride that exceeds the cache line size.

2.5.2 Array Padding

Array padding [BGS94] increases the size of inner array dimensions to reduce cache conflicts

between elements from the same array. Since caches sizes are powers of two, conflicts may
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occur frequently when array dimension sizes are also powers of two. Padding introduces unused

array elements that serve only to alter the memory layout of the array. Since the mapping of

data from memory into the cache depends on the memory layout, array padding may enhance

locality by altering the mapping sufficiently to reduce the occurrence of cache conflicts.

2.5.3 Array Element Reordering

Array element reordering [AAL95] modifies the storage order for elements within the same

array without consuming additional storage. Modifying the storage order can enhance spatial

locality for cache lines. The simplest transformation for array element reordering is permutation

of array dimensions. If the dimension that is traversed in the innermost loop of a loop nest

is aligned with the storage order for cache lines, then spatial locality is maximized. A more

complicated transformation is increasing the dimensionality of the array while holding the total

number of elements constant. This transformation may be used to create smaller blocks of

contiguous array elements to enhance spatial locality. For example, given an n � n array, a

subblock of b�b elements (where b < n) is not contiguous in memory. However, restructing the

array into a three-dimensional k � b� b array (where k = n2=b2) results in k two-dimensional

contiguous subblocks of b � b, and the amount of storage needed remains the same. The

drawback of this approach is that all array references and their subscript expressions must be

modified to reflect the element reordering.

2.5.4 Array Expansion and Contraction

Array expansion was discussed earlier in Section 2.3.2 in the context of eliminating loop-carried

dependences to enable loop parallelization. Because array expansion increases the amount of

data accessed in a loop, it is not likely to enhance locality, and may instead diminish locality.

On the other hand, the opposite transformation, array contraction [War84], reduces the

array dimensionality and eliminates the storage needed by the dimensions being eliminated,

and hence reduces the amount of data accessed in a loop. Array contraction is applicable when

a value written to an array element in one loop iteration is not used in other iterations, and

also not used after exiting the loop. In such circumstances, the array may be contracted to

eliminate the dimension containing the unused data. In the best case, the array is contracted
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into a single scalar variable to substantially reduce the amount of data accessed in the loop.

However, contraction to a single scalar variable may then introduce loop-carried dependences

that prevent parallelization. Hence, there is a tradeoff between parallelism and locality.

2.5.5 Array Merging

Array merging [LW94] interleaves data from two or more arrays used in the same loop in order

to enhance spatial locality for cache lines. For example, the conventional memory layout for

two arrays x and y consists of all elements of x, followed by all elements of y. With array

merging, the new layout consists of the first element of x, followed by the first element of y,

then second element of x, then the second element of y, and so on. When executing a loop,

this layout causes corresponding elements from both arrays to be loaded in the same cache line

with one memory access. With the conventional layout, two separate cache lines are loaded.

Although array merging may avoid back-to-back memory accesses for cache lines, the total

number of cache lines accessed is the same with either layout.

2.6 Effectiveness of Locality Enhancement within Loop Nests

This section surveys a representative set of studies that provide insights into the effectiveness of

locality enhancement. There exists a large body of literature on locality-enhancing techniques

such as unimodular transformations, tiling, loop distribution, and loop fusion [BGS94]. In past

research, loop permutation and tiling within loops have been studied frequently and evaluated

extensively [Ban93, CMT94, IT88, KM92, NJL94, WL91]. Other techniques such as loop

distribution and loop fusion have received less attention [KM94, War84], and have been viewed

as transformations that enable permutation [CMT94]. Hence, the survey will focus primarily

on evaluating the effectiveness of loop permutation and tiling within loops.

2.6.1 Survey of Selected Studies

The studies selected for the survey in this section are the works by Porterfield [Por89];

Wolf [Wol92]; Carr, McKinley, and Tseng [CMT94]; and McKinley and Temam [MT96].

These studies consider programs from well-known benchmark suites such as SPEC [Sta] and

Perfect Club [BCK+89], as well as other representative numerical programs. The loop nests
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in these programs exhibit two common characteristics. First, the majority of loop nests have

rectangular iteration spaces, and on occasion, triangular iteration spaces [MT96, Wol92]. Rect-

angular iteration spaces reflect the bounds of rectangular arrays accessed in loop nests. Second,

the majority of array references in loop nests have subscript expressions that induce regular data

access patterns [Por89, MT96, Wol92]. This regularity in turn induces uniform data reuse and

dependence relationships. The following paragraphs summarize the results and conclusions

from each of these studies.

Porterfield [Por89] performs cache simulations to evaluate the effectiveness of loop per-

mutation, tiling, and loop fusion, and proposes a model to guide the application of these loop

transformations. The model makes use of dependence information (including input depen-

dences) for array references in a loop body to determine the number of iterations before the data

accessed in the loop exceeds the available cache capacity. Dependence distances and the level

of loops carrying dependences are used to compute the amount of data resident in the cache.

The same information is then used to identify individual array references that are likely to incur

cache misses once the cache capacity is exceeded. The intent is to guide the application of

appropriate transformations for reducing the number of misses for these array references.

Porterfield presents simulated cache hit ratios for a collection of 12 numerical programs.

The simulations employ a 32-Kbyte cache with 4-way set-associativity. Prior to applying

transformations for locality enhancement, Porterfield reports that the average hit ratio for the

programs is 76% with one-word cache lines. After applying the transformations, the average

hit ratio increases to 81%. Only 3 of the 12 programs could be transformed to show a significant

improvement in hit ratio with one-word cache lines. Two of the programs contained matrix

multiplication kernels whose cache hit ratios were improved substantially with tiling. The

third program benefited from applying a sequence of loop permutation, distribution, and fusion

transformations to a pair of loop nests that were executed frequently. Porterfield also reports

that when the cache line size is increased to 8 or 16 words, the average hit ratio for the original

programs increases to 95%. Thus, the average hit ratio for the original programs with long

cache lines is better than the hit ratio for the transformed programs with one-word cache lines.

No performance results are given for the transformed programs with long cache lines.

Wolf [Wol92] describes techniques that combine unimodular loop transformations with
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tiling. He also proposes a model to guide the application of the loop transformations. The

model estimates the expected reduction in the number of cache misses per iteration of the

innermost loop. When tiling is applied to exploit temporal reuse, the model assumes that the

number of cache misses is reduced by the number of uses of the same data. In other words,

the underlying assumption is that in the absence of tiling, none of the reuse is converted into

temporal locality. In conjunction with tiling, Wolf also describes an algorithm for tile-size

selection to limit the occurrence of conflicts between reused elements from the same array in

low-associativity caches.

Experimental results are presented for 8 application programs in which 171 loop nests were

considered for transformation. Tiling was applied to 50% of the loop nests, permutation was

applied to 20% of the loop nests, and the remaining loop nests were not transformed. Loop

skewing was never applied. The performance results are speedups given by the ratio of original

and enhanced execution times for each program on a uniprocessor. On a system with a 64-Kbyte

direct-mapped cache, the speedup for one program was 15%, and the speedup for two others

was 5%. The five remaining programs either showed no improvement or performed worse.

Results are also provided for 7 kernels. Out of 11 loop nests in these kernels, 8 were tiled

and 2 were permuted; none were skewed. Tiling resulted in a speedup of 200% for a kernel

containing a loop nest for LU decomposition. The speedup for a kernel loop containing matrix

multiplication improved by 15%. The remaining kernels showed little or no improvement.

Carr, McKinley, and Tseng [CMT94] study the effectiveness of loop permutation to

enhance spatial locality for cache lines. They also consider the use of loop distribution and

loop fusion as supplementary transformations to enable loop permutation. A cost model is used

to estimate the number of cache lines accessed when a given loop is positioned innermost in a

loop nest. This cost model determines a permutation that positions loops from outermost level

to innermost level in decreasing order of the number of cache lines accessed.

Experimental results are reported for a collection of 35 application programs to ascertain

whether loop permutation driven by the cost model described above provides significant per-

formance improvements. The performance results are speedups that represent reductions in

execution time for each program on a uniprocessor. Results obtained on a system with a

64-Kbyte, 4-way set-associative cache indicate that the speedup for one program was 115% as
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a result of permuting the loops in the two most frequently executed loop nests. The speedup

with loop permutation for a kernel containing a loop nest for Gaussian elimination was 768%

because the original loop nest did not conform to the array element order enforced by the source

language. Seven other programs showed speedups ranging from 1% to 13%. The remaining

27 of 35 programs experienced no benefit or degradation in performance. Their analysis of the

1400 loop nests considered in the 35 programs indicates that 74% of the loop nests are already

coded with the best loop in the innermost position for spatial locality, hence loop permutation

is not needed in the majority of loop nests. Only 11% of the loop nests were permuted, while

the remaining 15% could not be permuted.

McKinley and Temam [MT96] perform cache simulations for 8 application programs to

classify and measure spatial and temporal locality. They simulate a modest 8-Kbyte, direct-

mapped cache with 32-byte cache lines. These results are obtained only for the original

programs without applying any locality enhancement techniques. Nonetheless, they do provide

a number of insights that are relevant for locality enhancement.

First, they report that overall cache hit ratio for all programs is high; no program had a hit

ratio below 90%. Second, the results indicate that the majority of the cache misses are incurred

for data reused between loop nests, i.e., data accessed in one loop nest does not remain cached

for reuse in a subsequent loop nest. They indicate that the cache hit ratio for data reused within

loop nests is high, and that both spatial and temporal locality have equal significance within

loop nests.4 Finally, they conclude that the relatively small number of cache misses for data

reused within the same loop nest is due primarily to cache conflicts between different array

references, rather than due to insufficient cache capacity. This behavior persists even for 2-way

set-associative caches.

2.6.2 Conclusions and Implications

A number of conclusions can be drawn from the survey of previous studies. These conclusions

are enumerated and explained in detail below.

4It should be noted that McKinley and Temam disabled loop unrolling when compiling programs, which
potentially increases the number of accesses to the cache across loop iterations. This increase may potentially
overstate the extent of temporal locality in the cache. In contrast, an unrolled loop provides opportunities to reuse
data from registers within the unrolled loop body and thereby reduce the number of accesses to the cache.
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1. Loop permutation and tiling provide limited performance improvements for the majority

of loop nests in representative applications. Carr et al. demonstrate that loop permutation

is frequently unnecessary because the majority of representative loop nests are already

coded with the best permutation. The results of Porterfield suggest that long cache lines

provide adequate locality without requiring additional transformations. Wolf and Porter-

field demonstrate that tiling provides significant improvements only for distinguished

kernels such as matrix multiplication and LU decomposition that are characterized by

significant temporal reuse. For the majority of loop nests in more representative appli-

cation programs, tiling does not provide any significant benefit. Finally, McKinley and

Temam conclude that locality from data reuse within representative loop nests is high.

They also report that the failure to capture reuse between loop nests causes the majority

of cache misses; this reuse cannot be converted into locality by permutation or tiling.

2. Techniques for avoiding cache conflicts when applying locality-enhancing transforma-

tions have not received adequate attention. Carr et al. and Porterfield conducted their

experiments on 4-way set-associative caches that decrease the likelihood of conflicts,

hence they do not discuss techniques for conflict avoidance and rely instead on the cache

associativity. McKinley and Temam conclude that relatively few misses are incurred for

reuse within loop nests, and conflicts cause the majority of these misses, even for a 2-way

set-associative cache. However, they do not propose a conflict avoidance technique be-

cause their study does not evaluate transformations for locality enhancement. Only Wolf

discusses a technique for conflict avoidance in conjunction with a locality-enhancing loop

transformation. Although he proposes a tile-size selection algorithm to prevent conflicts

within the same array in a tiled loop nest such as matrix multiplication, the benefit of

tile-size selection is not demonstrated for loop nests in more representative applications.

3. Existing models for guiding loop transformations do not adequately reflect the potential

benefit of locality enhancement on execution time. Failure to properly gauge the impact

of a particular transformation on execution time is evident in the lack of performance

improvement and leaves the utility of the transformation open to question. The surveyed

models establish criteria for applying individual transformations, but these criteria do not
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necessarily reflect the true locality benefit. The model of Porterfield seeks to identify

array references that incur cache misses within a loop nest, but such cache misses are

caused largely by failing to capture data reuse between loop nests. The model of Wolf

assumes that there is no temporal locality within a loop nest prior to tiling, but since

reuse within loop nests is frequently converted to locality, this assumption can overstate

the benefit of tiling. Finally, the model of Carr et al. provides a measure for ranking loop

permutations, but representative loop nests do not normally require permutation.

The implications of the survey presented in this section are that reuse across loops must be

exploited, that cache conflicts must be eliminated to ensure the benefit of locality, and that more

effective models are required to reflect the impact of locality enhancement on execution time.

The remainder of this dissertation addresses each of these implications. The issue of enhancing

locality across loop nests is addressed in Chapters 4 and 5, while the issue of eliminating cache

conflicts to ensure the benefit of locality is addressed in Chapter 6. In the interim, Chapter 3

describes a new model for quantifying the impact of locality on execution time. The model is

used in the subsequent chapters to assess the potential benefit of locality enhancement.



Chapter 3

Quantifying the Benefit of Locality
Enhancement

The benefit of locality enhancement must be assessed with reasonable accuracy in order to

effectively guide the application of appropriate transformations and also to verify that the

actual performance gains meet expectations. This chapter proposes a model to assess the

potential reduction in execution time from enhancing cache locality across nested loops.

This chapter is organized as follows. First, an overview of the proposed model is outlined

along with underlying assumptions. Next, the benefit of locality enhancement is expressed as a

ratio of the number of memory accesses before and after applying a transformation. This ratio

is then used to model the impact of locality enhancement on execution time. Finally, potential

limitations of the model are briefly discussed.

3.1 Overview of Model and Underlying Assumptions

The purpose of the model proposed in this chapter is twofold. First, the model enables a

compiler to better assess the extent to which locality enhancement will reduce execution time.

Second, the model provides a useful estimate for the expected reduction in execution time for

comparison with the measured reduction in execution time. Chapters 4 and 5 use the model

to assess the benefit of locality-enhancing transformations (namely fusion and tiling), and

Chapter 7 uses the model to compare expected and measured reductions in execution times.

The model accounts for two factors that together determine the potential benefit of locality

enhancement: (a) the reduction in the number of memory accesses from locality enhancement,

and (b) the contribution of memory accesses towards the total execution time prior to locality

34
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enhancement. The model seeks to quantify each of these factors such that the extent of the

reduction in execution time can be assessed.

The underlying assumptions for the model are enumerated below along with justifications.

1. Data reuse within representative loop nests is assumed to be converted into locality by the

cache without the aid of any transformation. The justification for this assumption is the

lack of significant performance improvement from existing transformations and evidence

for high locality from reuse within loop nests, as described in Section 2.6.

2. Data reuse between loop nests is assumed not to be converted into locality. The validity

of this assumption depends on the total data size for a specific program and the cache

size of the system on which the program is executed. The expectation is that problems

of greatest interest to application programmers will have sufficiently large data sizes

to require locality enhancement across loop nests. Furthermore, the evidence cited in

Section 2.6 indicated that reuse between loop nests is often unexploited.

3. Loop nests are assumed to have rectangular iteration spaces to reflect the bounds of

similarly-sized arrays accessed in loop bodies. As a result, it is assumed that loop nests

read or write all elements of the accessed arrays (or nearly all elements, if boundary

regions are excluded). The justification for this assumption follows from the common

characteristics of loop nests in numeric programs, as described in Section 2.6.

4. It is assumed that cache conflicts do not diminish locality after applying transformations

for locality enhancement. The cache conflict avoidance techniques to be presented in

Chapter 6 will allow transformations to fully realize their benefits and ensure the validity

of this assumption.

5. The cache policy for writes is assumed to be write-allocate and write-back [PH96].

Cache lines must first be loaded, or allocated, in the cache in order for writes to proceed.

Furthermore, modified data is written back to memory only on replacement in the cache.

This policy performs well in multiprocessor systems [PH96] and is standard for caches

in contemporary high-speed microprocessors [CHK+96, MWV92, Yea96].



CHAPTER 3. QUANTIFYING THE BENEFIT OF LOCALITY ENHANCEMENT 36

array a[M,N], b[M,N]

do j=1,N
do i=1,M

a[i,j] = b[i,j] + 1
end do

end do

array a array b

cache lines read from memory

array a array b

cache lines written back to memory

(a) Example loop nest (b) Memory accesses for cache lines in arrays

Figure 3.1: Illustration of memory accesses for arrays in loop nests

3.2 Quantifying Memory Accesses for Arrays

To assess the benefit of locality enhancement, the model discussed in this chapter relies on

quantifying memory accesses for arrays in loop nests. Since processors access memory in

units of cache lines, the number of memory accesses per array is a function of the array size

and cache line size. A k-dimensional array with dimensions N1 � N2 � � � � � Nk normally

consists of contiguously-allocated elements in memory. For a cache line size of sline elements,

the number of cache lines in the array is given by d(N1 �N2 � � �Nk)=slinee.

A loop nest referencing an array often has regular data access patterns and iteration space

bounds that reflect the array bounds. Reuse of array elements arising from the data access

patterns within the loop nest is normally captured by the cache (see Section 2.6). As a result,

each cache line in the array is ideally accessed only once from memory to load the line into the

cache. If the loop nest modifies a cache line (i.e., writes to array elements in the cache line),

the line must subsequently be written back to memory. The total number of memory accesses

per array is therefore given by the number of cache lines read from and written to memory for

the array.

An example for illustrating memory accesses for arrays in loop nests is shown in Figure 3.1.

The loop nest in Figure 3.1(a) references two arrays whose dimensionality and bounds match
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the dimensionality and bounds of the loop nest. Arrays a and b are read in the body of the loop

nest, hence cache lines for these arrays are loaded into the cache as they are needed. Since

elements of array a are modified in the body of the loop nest, the affected cache lines for array a

are eventually written back to memory as they are replaced by new data later in the execution

of the loop nest. The transfer of cache lines to and from memory is shown in Figure 3.1(b).

When the arrays accessed in a collection of loop nests are similar in size and the iteration

space bounds reflect the array bounds (as in Figure 3.1), memory accesses may be quantified

in a manner that is independent of array size and cache line size. Throughout this dissertation,

reading or writing the cache lines for a single array during the execution of a loop nest is

designated a sweep through the region of memory allocated for that array. When arrays are

similarly-sized, sweeps for different arrays represent an equivalent number of memory accesses.

For example, in Figure 3.1(b), loading the cache lines for arrays a and b from memory results

in 2 sweeps (each accessing a total of M �N array elements), and writing back the cache lines

for array a to memory results in 1 additional sweep, for a total of 3 equivalent sweeps.

3.3 Quantifying the Reduction in Memory Accesses with Lo-
cality Enhancement

The goal of locality enhancement across a loop nest sequence is to reduce the number of

memory accesses for cache lines by retaining data in the cache between uses. The reduction in

the number of memory accesses for cache lines is expressed as the ratio

rm =
#memory accesses before locality enhancement
#memory accesses after locality enhancement

: (3.1)

This ratio indicates the potential benefit of enhancing locality across loops; the larger the ratio,

the greater the potential reduction in execution time.

When the loop nest sequence under consideration contains references to similarly-sized

arrays, as described in Section 3.2, the ratio rm may be expressed using the number of sweeps

before and after locality enhancement. This is because the total number of memory accesses

for cache lines is directly proportional to the number of sweeps. Before locality enhancement,

each array that is referenced in a loop nest contributes one sweep for the numerator of the

ratio for rm. Each array that is modified in a loop nest contributes an additional sweep for
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writebacks. Locality enhancement to exploit array reuse across loop nests reduces the number

of memory accesses, and hence the number of sweeps. The expected number of sweeps after

locality enhancement is indicated in the denominator of the ratio for rm. When expressed in

terms of sweeps, rm is designated the sweep ratio for convenience. A compiler can compute

this ratio to assess the potential benefit of enhancing locality for a loop nest sequence (Chapter 4

and Chapter 5 provide the details on computing rm for different transformations).

3.4 Quantifying the Impact of Locality Enhancement on Ex-
ecution Time

A reduction in the number of memory accesses with locality enhancement, as embodied by the

ratio rm in Equation 3.1, can reduce execution time. The potential reduction in execution time

depends on the relative contribution of memory accesses towards total execution time. In the

simplest case where the processor stalls on each memory access, the total execution time T for

a sequence of loop nests before locality enhancement is represented as

T = Tc + Tm;

where Tc is the total computation time, and Tm is the time during which computation is stalled

to access memory for cache lines. This formulation does not consider concurrency between

computation and memory accesses; this issue is addressed at the end of this section.

The contribution of memory accesses towards execution time is reflected in the fraction

fm =
Tm

Tm + Tc
:

Figure 3.2 illustrates the relationship between Tc, Tm, and fm for a hypothetical sequence of

computation and memory accesses for cache misses. For illustrative purposes, the computation

and memory accesses shown in Figure 3.2(a) are lumped together in Figure 3.2(b) without

changing Tc or Tm.

A locality-enhancing transformation reduces the number of memory accesses by a factor rm,

which should also reduce Tm by a factor of rm without affecting Tc. For example, Figure 3.2(c)

shows the effect of reducing Tm by rm = 2. Since only a fraction fm of the total execution time
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T = 7

(a) Computation and memory access time

(b) Lumped computation and memory access time

T  / r  = 6 / 2 = 3
m

(c) Reduction in execution time when r  = 2m

Figure 3.2: Graphical representation of T = Tc + Tm and effect of locality enhancement

T is reduced by rm, the improvement in performance due to locality enhancement is given by

Tc + Tm
Tc + Tm=rm

=
1

(1� fm) + fm=rm
: (3.2)

This improvement indicates a reduction in execution time on one processor, but also applies for

parallel execution with a balanced workload; in this case, all processors see the same reduction

in execution time.

Although Equation 3.2 assumes for simplicity that a processor stalls on memory accesses,
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modern processors are now designed with support for prefetching [CHK+96, Yea96]. Prefetch-

ing hides memory latency by initiating multiple memory accesses in advance of data usage to

overlap memory accesses with computation [MLG92]. The performance improvement from

prefetching depends on the extent of this overlap and the memory system bandwidth available

for concurrent memory accesses.

Locality enhancement can increase the performance improvement with prefetching by

reducing the number of memory accesses and hence making more bandwidth available to

overlap the remaining memory accesses [MLG92, BAM+96]. If the time for concurrent memory

accesses with prefetching still exceeds the time for computation, execution time is governed

by memory access time. In this case, combining prefetching with locality enhancement to

reduce the memory accesses by a factor of rm should ideally reduce execution time by rm over

prefetching alone, provided that the remaining memory accesses still determine execution time

(equivalent to fm = 1 in Equation 3.2).

However, the actual improvement may be less than rm for a number of reasons. First, locality

enhancement may reduce the number of memory accesses to the point that the computation

time, rather than the reduced memory time, dominates total execution time. Hence, overlapping

the remaining memory accesses with computation will not result in commensurate reductions

in execution time. Second, with software-controlled prefetching, instruction overhead may

also reduce the improvement [MLG92]. Finally, prefetch requests may not be scheduled early

enough in some cases to hide all memory latency [BAM+96, SMP+96]. In general, the ratio

rm provides a useful bound for the improvement of locality enhancement with prefetching.

3.5 Potential Limitations of the Model

Capturing reuse within loop nests The model assumes that reuse of data within loop nests

is captured by the cache. This assumption may not be valid for loop nests that access a large

volume of data and have considerable temporal reuse separated by a large number of loop

iterations. Such loop nests may benefit from being tiled individually; one example is matrix

multiplication, as discussed in Section 2.6. However, the model presented in this chapter targets

more representative loop nest sequences, rather than isolated loop nests, and the intent of the

model is to assess the benefit of enhancing locality across these loop nests, rather than tiling
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array a[M,N], b[N]

do j=1,N
do i=1,M

a[i,j] = b[j] + 1
end do

end do

array a[M,N], c[M]

do j=1,N
do i=1,M

a[i,j] = c[i] + 1
end do

end do

(a) Reuse carried by inner loop (b) Reuse carried by outer loop

Figure 3.3: Examples of loop nests accessing arrays with differing dimensionalities

them individually. As discussed in Section 2.6, the majority of loop nests in representative

applications do not benefit from tiling because most unexploited reuse occurs across loop nests.

Memory sweeps for differing array sizes The determination of memory sweeps is based

on the assumption of rectangular loop bounds that reflect the bounds of similarly-sized arrays

accessed in the loop body. However, loop nests may access arrays of different size, most often

when array dimensionalities differ. Figure 3.3 provides examples of such loop nests.

Differences in array sizes do not present a serious limitation for two reasons. First, the

significance of memory accesses for lower-dimensionality arrays diminishes rapidly with in-

creasing array sizes. For example, consider the loop nest shown in Figure 3.3(a). The elements

of array b are reused within the inner loop, hence each element may be register-allocated and

the N elements in array b should ideally be loaded once. At the same time, a total of M � N

elements in array a are both read and written. Two memory sweeps are required for array a,

and for large M , the memory accesses for array b become insignificant.

The second reason is that even when reuse of a lower-dimensional array is carried by an

outer loop, as in Figure 3.3(b), the available cache capacity may permit reused data to remain

cached between uses. For example, the data from array c occupies a fixed region of the cache,

while the data from array a sweeps through the cache as the loop is executed. Although array a

will occasionally displace elements of array c from the cache, the elements of c will often be

reused from the cache.
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3.6 Chapter Summary

The model proposed in this chapter provides a means of assessing the potential benefit of

locality enhancement by quantifying the reduction in the number of memory accesses. The

model can also estimate the expected reduction in execution time by quantifying the contribution

of memory accesses towards total execution time. The estimates provided by the model can then

be compared against experimental measurements. Chapters 4 and 5 of this dissertation use the

model to assess the benefit of locality enhancement, while Chapter 7 compares experimental

results with estimates obtained with the model to demonstrate that the benefits of locality

enhancement are realized.



Chapter 4

The Shift-and-peel Transformation for
Loop Fusion

This chapter proposes a technique called the shift-and-peel transformation to fuse multiple

parallel loops in order to enhance cache locality. With existing techniques, fusion is limited

by dependences that either render fusion illegal or force the fused loop to be executed serially.

The shift-and-peel transformation overcomes these limitations in order to fully exploit reuse

across loops without sacrificing parallelism.

This chapter is organized as follows. First, motivation for the shift-and-peel transformation

is provided. The shift-and-peel transformation is then described in detail, including algorithms

for the required analysis and methods for implementing the transformation.

4.1 Loop Fusion

This section provides motivation for the shift-and-peel transformation by first describing and

quantifying the benefits of fusion, then explaining how data dependences limit the use of fusion.

Related work is then outlined to highlight shortcomings of existing fusion techniques.

4.1.1 Granularity of Parallelism and Frequency of Synchronization

Loop fusion combines the bodies of parallel loops into a single loop body. When the resulting

loop is also parallel, then the granularity of parallelism is larger than the granularity in each of

the original loops prior to fusion. A large granularity of parallelism reduces the overhead of

parallelization, particularly for large-scale multiprocessors.

Furthermore, barrier synchronization is normally required between parallel loops to ensure
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that data dependences between loops are respected. In a large-scale multiprocessor, frequent

global synchronization with barriers after every parallel loop reduces parallel efficiency when-

ever one slow processor forces all others to wait. By combining loop bodies into a single loop,

fusion reduces the number of barriers to only one. Hence, the frequency of synchronization is

reduced, and parallel efficiency is increased.

4.1.2 Quantifying the Benefit of Enhancing Locality with Fusion

Loop fusion enhances locality by combining loop bodies to reduce the number of iterations

between uses of the same data. In this section, the model proposed in Chapter 3 is used to

quantify the locality benefit of fusion. Let L denote a sequence of loop nests that reference

similarly-sized arrays. Hence, memory accesses may be quantified conveniently as sweeps, as

discussed in Section 3.2. Prior to fusion, a memory sweep is required for each array referenced

in each loop nest. Let A(`) denote the set of arrays referenced (read or written) in each loop

nest ` 2 L. For the original sequence of loop nests, the total number of memory sweeps to load

data into the cache before applying fusion is

srb =
X
`2L

jA(`)j:

Modified data in the cache must be written back to memory as it is replaced by incoming

data in each loop nest. Thus, there is a writeback sweep each time an array is modified in

a loop nest. Let Aw(`) denote the set of arrays that are modified in each loop nest ` 2 L

(Aw(`) � A(`)). The number of writeback sweeps for the original loop nest sequence is given

by the number of times arrays are modified:

swb =
X
`2L

jAw(`)j:

When the loop nests in L are fused, only one read sweep should be incurred for each array.

Hence, the total number of sweeps to load data into the cache after applying fusion is

sra =

������
[
`2L

A(`)

������ :
Clearly, sra � srb , since each array is referenced in at least one loop nest prior to fusion. Indeed,

sra is the minimum number of read sweeps that can be achieved with fusion: one per array.
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Writebacks still occur after fusion. However, an array that is modified in two or more of

the original loop nests before fusion generates only one writeback sweep after fusion because

the data remains cached between writes. Consequently, the number of writeback sweeps after

fusion is given by the number of arrays modified in any of the original loop nests,

swa =

������
[
`2L

Aw(`)

������ :
Clearly, swa � swb , since each modified array incurs at least one writeback sweep prior to fusion.

Indeed, swa is the minimum number of writeback sweeps: one per modified array.

The sweep ratio for loop fusion is given by

rfusion =
srb + swb
sra + swa

=

X
`2L

jA(`)j+
X
`2L

jAw(`)j������
[
`2L

A(`)

������+
������
[
`2L

Aw(`)

������
: (4.1)

Since sra � srb and swa � swb , it is clear that rfusion � 1. A compiler may assess the profitability

of fusion by computing this sweep ratio. If it is close to one, then the locality benefit is not

significant, and fusion may not be profitable. However, as the sweep ratio increases, the benefit

from fusion increases because fewer cache misses and writebacks are incurred.

4.1.3 Dependence Limitations on the Applicability of Loop Fusion

Despite the benefits of loop fusion, it is not always applicable. Reuse across loops often implies

the existence of data dependences between iterations in different loops. After applying loop

fusion, these dependences now flow within a single loop. Dependences that flow between state-

ment instances in the same loop iteration are loop-independent. However, those dependences

that flow between statement instances in different loop iterations are loop-carried.

Fusion is legal if and only if none of the loop-carried dependences flow backwards with

respect to the iteration execution order [Wol89]. In other words, the corresponding dependence

distance or direction vectors must not be lexicographically negative. For example, both loops in

Figure 4.1(a) reference the array a. This reuse implies dependences between the iteration spaces,

as shown graphically in Figure 4.1(a), where individual iterations are represented by circles,

and dependences are represented by arrows. Fusion combines the iteration spaces as shown

in Figure 4.1(b), where the overlapping circles indicate that computation originally in separate
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doall i = ...

        a[i] = ...

end do

doall i = ...

        ... = a[i+1] + a[i−1]

end do

L1 L2

(a) Loop nests to be fused (b) Illegal fusion of loop nests

L1+L2
do i = ...

        a[i] = ...

        ... = a[i+1] + a[i−1]

end do

backward dependences with
respect to execution order

Figure 4.1: Example to illustrate fusion-preventing dependences

(a) Loop nests to be fused (b) Legal fusion with serializing dependences

L1 L2

doall i = ...

        a[i] = ...

end do

doall i = ...

        ... = a[i] + a[i−1]

end do

do i = ...

        a[i] = ...

        ... = a[i] + a[i−1]

end do

serial
L1+L2

Figure 4.2: Example to illustrate serializing dependences

loop iterations is now performed in a single loop iteration. Dependences now flow within

the same loop and are loop-carried. Half of the dependences are lexicographically positive,

hence they are not violated by fusion. However, the remaining loop-carried dependences are

lexicographically negative, indicating that the sink iteration of each dependence would be

executed before the source iteration. Consequently, fusion is not legal because it has violated

the original program semantics. Dependences that become loop-carried and lexicographically

negative after fusion are referred to as fusion-preventing dependences.

Even when there are no fusion-preventing dependences, lexicographically-positive loop-
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carried dependences in the fused loop prevent parallel execution. This is illustrated in Figure 4.2.

The two loops in Figure 4.2(a) individually have no loop-carried dependences; the iterations

within each loop may be executed in parallel. Only a barrier synchronization is required

between the loops to ensure that all iterations of the first loop have been executed before any

iterations of the second loop are executed. However, fusion of the two loops results in loop-

carried dependences, as shown in Figure 4.2(b). Explicit synchronization is required between

dependent iterations executed by different processors. When blocks of iterations from the fused

loop nest are assigned to different processors, the required synchronization effectively serializes

the execution of the blocks of iterations. Consequently, lexicographically-positive loop-carried

dependences are referred to as serializing dependences.

Thus, fusion to exploit reuse and enhance locality is not applicable in the presence of

fusion-preventing dependences that arise from reuse. Furthermore, serializing dependences

also limit the applicability of fusion for multiprocessors. Hence, the goal of this chapter is to

overcome these dependences and enable fusion and subsequent parallelization.

4.1.4 Related Work

Existing techniques do not adequately address the dependence limitations discussed above. The

following paragraphs present a survey of related techniques to highlight their shortcomings.

Warren [War84] discusses the use of fusion to enhance locality in vector registers, and to

permit contraction of temporary arrays into scalars. However, fusion is not permitted in the

presence of loop-carried dependences or incompatible loop bounds.

Kennedy and McKinley [KM94] use loop fusion and distribution to enhance locality and

maximize parallelism. They focus on enhancing register locality with fusion, and describe a

fusion algorithm that prevents fusion of parallel loops with serial loops. However, they disallow

fusion when loop-carried dependences result or when loop bounds are incompatible.

Porterfield [Por89] suggests a “peel-and-jam” transformation in which iterations are peeled

from the beginning or end of one loop nest to allow fusion with another loop nest. However,

no systematic method is described for fusion of multiple loop nests, nor is parallelization of the

fused loop nest considered.

Ganesh [Gan94] suggests an extension of Porterfield’s peel-and-jam transformation to the
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inner loops for a pair of multidimensional loop nests. However, dependences preventing

parallelization are not addressed, nor is a systematic method described.

Callahan [Cal87] proposes loop alignment within a single loop to remove loop-carried

dependences that prevent parallel execution. Code replication is advocated for resolving

any conflicts in alignment requirements. However, replication to address alignment conflicts

contributes significant execution overhead.

Appelbe and Smith [AS92] present a graph-based algorithm for deriving the required

alignment, replication, and statement reordering to permit parallelization of an individual loop

nest with loop-carried dependences. This work extends the techniques of Callahan, but still

incurs significant overhead due to replication.

Pugh [Pug91] derives affine schedules for individual statements within a loop nest to

guide transformations for parallelization. It is claimed that this method produces a compound

transformation that is equivalent to applying any sequence of elementary transformations to

the component loops within a loop nest, including fusion of inner loops. The intent of this

method is to optimize for parallelism, hence fusion is not allowed if it generates loop-carried

dependences. As a result, this technique may fail to enhance locality.

4.2 The Shift-and-peel Transformation

This section provides the details of the shift-and-peel transformation. The basic idea of the

technique is described first, followed by a description of the procedure for deriving and applying

the transformation on sequences of parallel loop nests. The legality of the transformation is

also discussed, with a formal proof provided to substantiate the discussion.

4.2.1 Shifting to Enable Legal Fusion

Shifting enables legal fusion despite the uniform backward loop-carried dependences discussed

in Section 4.1.3. This technique ensures that backward dependences become loop-independent

in the fused loop by shifting the iteration space containing the sink iterations with respect to the

iteration space containing the source iterations. Shifting is similar to alignment of dependences

within a loop [Cal87], but is applied to different iteration spaces. The amount by which to shift is

determined by the dependence distance. Shifting is illustrated in Figure 4.3, using the iteration
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(a) Shifting of iteration spaces to make
      backward dependences loop−independent

L1 L2
L1

L2’

execution
order

L1+L2’

(b) Legal fusion after shifting
       iteration spaces

Figure 4.3: Shifting iteration spaces to permit legal fusion

spaces shown earlier in Figure 4.1. The iteration space of the second loop in Figure 4.3(a) must

be shifted by one iteration because of the backward dependence with a distance of one. The

shift increases the distance of the forward dependences, but these dependences do not prevent

fusion. After shifting, the loops may then be legally fused, as shown in Figure 4.3(b). The

algorithm for deriving the required amount of shifting for arbitrary sequences of loop nests is

discussed in Section 4.2.3.

4.2.2 Peeling to Enable Parallelization of Fused Loops

Peeling enables parallelization of a fused loop with uniform forward loop-carried dependences.

This technique assumes static, blocked scheduling when parallelizing the fused loop. Static

scheduling is not a serious limitation, as it is the most efficient approach when the computation

is regular (see Section 2.3.4). This technique identifies iterations from the original loop

nests that become sinks of cross-processor dependences1 in the fused loop, then peels these

iterations from their respective iteration spaces. After fusion, there are no longer any cross-

processor dependences between blocks of iterations that are assigned to different processors.

The peeled iterations are executed after all fused loop iterations have been executed. Since

the dependences are uniform and block scheduling is used, the peeled iterations are located at

block boundaries. The number of iterations that must be peeled is determined by the forward

1Cross-processor dependences are loop-carried dependences for which the source and sink iterations are
executed by different processors.
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L1 L2 L1+L2

parallel

parallel

Figure 4.4: Peeling to retain parallelism when fusing parallel loops

dependence distance. This procedure is illustrated in Figure 4.4 using the iteration spaces

shown previously in Figure 4.2. The forward dependences require peeling one iteration from

the second loop at each block boundary. After fusion, the blocks of iterations are independent of

each other and may be executed in parallel on different processors. Loop-carried dependences

still exist, but are contained entirely within a block. Once the blocks of iterations have been

executed in parallel, the peeled iterations may themselves be executed in parallel. The algorithm

for deriving the required amounts of peeling for arbitrary sequences of parallel loop nests is

given in Section 4.2.3.

4.2.3 Derivation of Shift-and-peel

In general, two or more loop nests may be considered for fusion, and fusion-preventing or

serializing dependences may result from any pair of loop nests in the candidate set. Dependence

relationships exist in the form of dependence chains passing through iterations in different loop

nests. These dependence chains are dictated by the reuse of array elements in different loop

iterations and constitute ordering constraints that must be satisfied for correctness. If shifting

or peeling is applied to one loop nest, all subsequent loop nests along all dependence chains

that pass through the affected loop nest must also be shifted or peeled in order to satisfy the

ordering constraints for the affected iterations. That is, shifting and peeling must be propagated

along dependence chains. It is therefore advantageous to treat candidate loop nests collectively
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for fusion rather than incrementally one pair at a time.

This section presents algorithms to determine the amounts of shifting and peeling needed for

each iteration space to enable legal fusion of a sequence of parallel loops, and subsequent par-

allelization of the fused loop. The algorithms assume uniform dependences between the loops

being fused. Because the dependences are uniform, the dependence chains are also uniform.

Consequently, all dependence chains may be represented with a single acyclic dependence

chain multigraphG(V;E). Each loop is represented by a vertex, and each dependence between

a pair of loops is represented by a directed edge weighted by the corresponding dependence

distance. Since fusion combines multiple loop bodies into a single loop body, all statements

in a fused loop will share the same loop index variable. This fact can be exploited in order to

obtain dependence distance information by assuming that the index variables of the different

loops are the same [Wol89]. A forward dependence has a positive distance, and results in an

edge with a positive weight. Conversely, a backward dependence has a negative distance, and

results in an edge with a negative weight. A multigraph is required since there may be multiple

dependences between the same two loops.

In deriving the required amounts of shifting, the dependences of interest are fusion-

preventing dependences with negative distances. The multigraph G(V;E) is reduced to a

simpler dependence chain graph Gs(V;Es) by replacing multiple edges between two vertices

by a single edge whose weight is the minimum from the original edges. A negative edge

weight determines the amount of shifting required to remove backward dependences. This

graph reduction preserves the acyclic structure of the original dependence chains. A traversal

algorithm is then used to propagate shifts along dependence chains in Gs(V;Es). Each vertex

is assigned a weight, which is initialized to zero, and the vertices are visited in topological

order to accumulate shifts along chains. Note that the original loop order gives the topological

order, hence there is no need to perform a topological sort. Only edges with a negative weight

contribute shifts; all other edges are treated as having a weight of zero and serve only to prop-

agate any accumulated shifting. At each vertex, the minimum value for all accumulated shifts

through that vertex is always selected to ensure that all backward dependences are removed.

The algorithm is given in Figure 4.5. Since each edge is traversed exactly once, the complexity

of the algorithm is linear in the size of the graph, and upon termination, the final vertex weights
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TRAVERSEDEPENDENCECHAINGRAPHFORSHIFTING(Gs)::
foreach v 2 V [Gs] do

shift weight(v) = 0
endfor
foreach v 2 V [Gs] in topological order do

foreach e = (v; vc) 2 Es[Gs] do
if weight(e) < 0 then

shift weight(vc) = min(shift weight(vc); shift weight(v) + weight(e))
else

shift weight(vc) = min(shift weight(vc); shift weight(v))
endif

endfor
endfor

Figure 4.5: Algorithm for propagating shifts along dependence chains
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(c) Dependence
       chain graph
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       chain multigraph

(a) Example loop
       nest sequence

(d) Shifts derived
       from traversal

L1: do i=2,n−1
         a[i] = b[i]
      end do
L2: do i=2,n−1
         c[i] = a[i+1]+a[i−1]
      end do
L3: do i=2,n−1
          d[i] = c[i+1]+c[i−1]
       end do
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Figure 4.6: Representing dependences to derive shifts for fusion

indicate the amount by which to shift each loop relative to the first loop to enable legal fusion.

Figure 4.6 illustrates the above procedure for deriving shifts.

In deriving the required amounts of peeling, the original dependence chain multigraph is

reconsidered. This time, the edges of interest are serializing dependences with positive weights.

The multigraph is reduced to a simpler dependence chain graphGp(V;Ep) by replacing multiple

edges between two vertices with a single edge whose weight is the maximum from the original

set of edges between these two vertices (as opposed to the minimum as in the case of shifting).

When this maximum weight is positive, it indicates the amount of peeling needed to remove

cross-processor dependences between the loops corresponding to the vertices for the edge. As
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TRAVERSEDEPENDENCECHAINGRAPHFORPEELING(Gp)::
foreach v 2 V [Gp] do

peel weight(v) = 0
endfor
foreach v 2 V [Gp] in topological order do

foreach e = (v; vc) 2 Ep[Gp] do
if weight(e) > 0 then

peel weight(vc) = max(peel weight(vc); peel weight(v) + weight(e))
else

peel weight(vc) = max(peel weight(vc); peel weight(v))
endif

endfor
endfor

Figure 4.7: Algorithm for propagating peeling along dependence chains

before, the reduced graph preserves the dependence chains from the original multigraph and

remains acyclic. A similar graph traversal algorithm is used to propagate the required amounts

of peeling along the dependence chains. The only modification is to consider edges with a

positive weight, since only they require peeling to remove cross-processor dependences; all

other edges are treated as having a weight of zero to propagate any accumulated amounts of

peeling. At each vertex, the maximum value for all accumulated peeling through that vertex is

selected to ensure that all cross-processor dependences will be removed. Upon termination, the

final vertex weights are the number of iterations to peel relative to the first loop. The algorithm

is provided in Figure 4.7, and Figure 4.8 illustrates its application using the dependence chain

multigraph shown in Figure 4.6(b).

The dependence chain graphs in Figure 4.6 and Figure 4.8 represented dependences flowing

between adjacent loops in a sequence. In general, dependences may flow between any pair of

loops. For example, the code shown in Figure 4.9(a) has a dependence flowing from L1 to L3

with a distance of 2. The dependence chain graph for this example is shown in Figure 4.9(b).

Applying the derivation algorithm for peeling in the absence of the dependence between L1

and L3 would result in a final weight of 1 for the vertex representing L3. However, with this

dependence, the derivation algorithm assigns a final weight of 2 to reflect the maximum of

accumulated amounts of peeling passing through L3.
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(c) Peeling derived
       from traversal
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Figure 4.8: Deriving the required amount of peeling
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(b) Dependence chain graph for peeling(a) Loop sequence

L1: do i=2,n−1
         a[i] = b[i]
      end do
L2: do i=2,n−1
         c[i] = a[i−1]
      end do
L3: do i=2,n−1
          d[i] = c[i]+a[i−2]
       end do

Figure 4.9: Dependence chain graph with dependences between non-adjacent loops

4.2.4 Implementation of Shift-and-peel

Once the required amounts of shifting and peeling have been derived, the loop nests must be

transformed to complete the legal fusion. There are two methods to implement shift-and-peel.

In the direct method, the original loop bodies are combined into a single body. The iterations

of the fused loop are then divided into blocks to be executed in parallel on different processors.

To implement shifting, array subscript expressions in statements from shifted loop nests must

be adjusted wherever the index variable of the shifted loop appears. To implementing peeling,

guards must be introduced for each statement from a loop that requires peeling. Figure 4.10(a)
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(a) Direct method (b) Strip−mined  method

do i=istart,iend
     a[i] = b[i]
     if (i  >=  istart+1) c[i−1] = a[i]+a[i−2]
     if (i  >=  istart+2) d[i−2] = c[i−1]+c[i−3]
end do

c[iend] = a[iend+1] + a[iend−1]

do i=iend−1,iend
    d[i] = c[i+1]+c[i−1]
end do

do ii=istart,iend,s
    do i=ii,min(ii+s−1,n−1)
        a[i] = b[i]
    end do
    do i=max(ii−1,istart+1),min(ii+s−2,iend−1)
        c[i] = a[i+1]+a[i−1]
    end do
    do i=max(ii−2,istart+2),min(ii+s−3,iend−2)
        d[i] = c[i+1]+c[i−1]
    end do
end do

c[iend] = a[iend+1]+a[iend−1]
do i=iend−1,iend
    d[i] = c[i+1]+c[i−1]
end do

Figure 4.10: Alternatives for implementing fusion with shift-and-peel

illustrates this approach for a block of iterations istart: : :iend executed by one processor.

Note that a small number of iterations from shifted loops are executed outside the fused loop.

The alternative to the direct method is to use strip-mining. This approach assumes that the

number of iterations exceeds the number of processors, a reasonable assumption when locality

enhancement is required. The original loops are strip-mined by a factor of s, then the resulting

outer control loops are fused, as shown in Figure 4.10(b). In this method, shifting only requires

adjustments to inner loop bound expressions, leaving the subscript expressions unchanged.

Peeling is also implemented by adjusting inner loop bound expressions. Strip-mining also

accommodates differing iteration spaces by modifying the min, max expressions in the inner

loop bounds. Finally, the strip-mined method may also reduce register pressure. The only

drawback to strip-mining is that it may incur more loop overhead in comparison to the direct

approach. However, a larger strip size s reduces this overhead. But the choice of s is also

constrained by the cache capacity because s determines the amount of data that must remain

cached for reuse; this issue is addressed in Chapter 6. Nonetheless, in light of its advantages,

strip-mining is selected as the implementation method for shift-and-peel in this thesis.

The only remaining issue is the execution of the iterations peeled to enable parallel execution.
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do ii=istart,iend,s
    do i=ii,min(ii+s−1,iend)
        a[i] = b[i]
    end do
    do i=max(ii−1,istart+1),min(ii+s−2,iend−1)
        c[i] = a[i+1]+a[i−1]
    end do
    do i=max(ii−2,istart+2),min(ii+s−3,iend−2)
        d[i] = c[i+1]+c[i−1]
    end do
end do
<BARRIER>
do i=iend,iend+1
    c[i] = a[i+1]+a[i−1]
end do
do i=iend−1,iend+2
    d[i] = c[i+1]+c[i−1]
end do

Figure 4.11: Complete implementation of fusion with shift-and-peel

These iterations are peeled from the start of each block on different processors and can only

be executed after all preceding iterations have been executed; a barrier synchronization can be

inserted to ensure that this condition is satisfied. Iterations peeled from the same block are

grouped into sets. There are no dependences between different sets of peeled iterations (proved

later in Section 4.2.5), although there may be dependences within each set. As a result, these

sets of peeled iterations may also be executed in parallel without synchronization.

Shifting causes a number of iterations to be executed outside the fused loop. These iterations

are at the end of blocks assigned to different processors. Because there may be dependences

between the iterations at the end of a block assigned to one processor, and the iterations peeled

from the start of the adjacent block assigned to another processor, these iterations are collected

into subsets such that all dependences are contained entirely within each set. In this manner,

these subsets of iterations may be executed in parallel. Figure 4.11 illustrates the complete

code that implements fusion with shift-and-peel. Peeled iterations are executed after a barrier

to ensure all preceding iterations have been executed. The iterations executed after the barrier

include those excluded from block istart: : :iend because of shifting, and also those peeled

from the start of the block beginning at iend+1. Note that the implementation in Figure 4.11
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(a) Adjacent loops
       to be fused

L1 L2

L1: doall i=2,n−1
            a[i] = b[i−1]
        end do

L2: doall i=2,n−1
            b[i] = a[i−1]
        end do

L1

L2

(d) Cross−processor
      dependences

(e) Parallel blocks of fused
       and peeled iterations

L1

L2 L1 L2

(c) Shifting
       for fusion

(b) Dependences
      between loops

Figure 4.12: Legality of the shift-and-peel transformation

is essentially independent of the number of processors. The values of istart and iend

may be calculated at runtime based on the loop bounds and number of processors available for

parallel execution on entry to the fused loop.

Finally, the implementation must also account for minor differences in the transformed code

for processors executing blocks at the boundaries of the full iteration space. For the processor

executing the block containing iterations from the beginning of the iteration space of the fused

loop, there are no iterations to be peeled; only shifting is implemented in the fused loop.

However, this processor does execute the peeled iterations for the adjacent block following the

barrier synchronization. The processor executing the block containing iterations from the end

of the iteration space does not execute any iterations peeled for parallelization after the barrier

synchronization because there is no subsequent block of iterations.

4.2.5 Legality of the Shift-and-peel Transformation

This section first presents an intuitive argument for the legality of the shift and peel transfor-

mation. This argument is then substantiated with a formal proof.

Consider the example sequence of parallel loops in Figure 4.12(a); this example contains

both forward and backward dependences between the two loops. The dependences are illus-

trated in Figure 4.12(b). Because each loop is parallel, there are no loop-carried dependences
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within the individual loops. The antidependence between L1 and L2 caused by references to the

array b is uniform with a distance of �1, and hence it prevents fusion. In general, there may be

several such fusion-preventing dependences with different distances. The derivation algorithm

in Figure 4.5 always selects the amount of shifting according to the minimum dependence

distance between the loops. Similarly, the flow dependence for array a is also uniform with a

distance of 1, hence it serializes execution if the backward dependence is ignored and the loops

are fused. In general, there may be several serializing dependences with different distances. In

the derivation algorithm, the amount of peeling is always determined by the dependence with

the maximum distance, as discussed in Section 4.2.3.

Based on the antidependence with the distance of �1, L2 is shifted by one iteration with

respect toL1 to permit legal fusion. This is shown in Figure 4.12(c). The computation performed

in each pair of iterations identified by the shading in Figure 4.12(c) would be performed in

one loop iteration if the two loops were to be fused directly. The original dependence distance

of �1 is transformed to 0, since it is the minimum distance. All other dependence distances,

including the forward dependence distance of 1, are increased, but this does not prevent legal

fusion. Hence it is always legal to perform fusion after shifting by the amount needed to satisfy

the minimum dependence distance.

Now, consider parallel execution of the fused loop as shown in Figure 4.12(d), where

each processor is assigned a contiguous block of iterations. There are now cross-processor

dependences flowing between processors, hence the blocks must be executed serially. The

iterations from L2 identified with a square in Figure 4.12(d) are the sink iterations of these

cross-processor dependences. In the absence of shifting, some of these sink iterations would

otherwise be executed in the same processor as their corresponding source iterations. However,

shifting moves each of these sink iterations to an adjacent processor. The number of such

iterations per block is equal to the amount of shifting. The remaining sink iterations would

still generate cross-processor dependences even without shifting and therefore require peeling.

The number of such iterations is equal to the maximum distance among all original forward

dependences. For the example in Figure 4.12, there is one such iteration per block.

To permit parallel execution, iterations that would otherwise become sinks of cross-

processor dependences are peeled out of L2 prior to fusion. Of each pair of iterations peeled
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(a) Alignment conflicts

L1+L2 (L1+L2)’

L0

(L1+L2)’’

           L0:    doall i=1,n−2
                        b0[i]=b[i]
                      end do

(L1+L2)’’: doall i=1,n−1
                         if  (i>1)  a[i] = b0[i−1]
                         if  (i<n−1) b[i+1]=a[i]
                      end do

serial loop illegal alignment
(b) Array replication (c) Parallel loop after replication

Figure 4.13: Resolution of alignment conflicts with replication

from the blocks of iterations in Figure 4.12(d), one iteration must be peeled out as a consequence

of shifting, and the other due to the original forward dependence with a distance of 1. The

shift-and-peel transformation thus groups the computations into the blocks of fused and peeled

iterations shown in Figure 4.12(e). The blocks of fused iterations are executed in parallel, then

the blocks of peeled iterations are executed in parallel after a barrier.

Based on Figure 4.12, the shift-and-peel transformation is always legal. First, no de-

pendences flow between blocks of fused iterations by virtue of peeling iterations that would

otherwise serialize execution. Within each block of fused iterations, shifting to satisfy the min-

imum dependence distance ensures that the fusion is indeed legal, as shown in Figure 4.12(c).

Second, no dependences flow between blocks of peeled iterations. Dependences either flow

from a block of fused iterations to a block of peeled iterations, or they flow within the same

block of peeled iterations, and are satisfied by the execution order within the block of peeled

iterations. Finally, since dependences only flow from blocks of fused iterations to blocks of

peeled iterations, the barrier synchronization ensures that these are always satisfied.

It is interesting to note that dependence relationships in the fused loop shown in Fig-

ure 4.12(c) lead to an alignment conflict that requires replication if parallel execution is enabled

using the techniques proposed by Callahan[Cal87] and Appelbe and Smith [AS92]. This con-
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flict is illustrated in Figure 4.13(a). The loop that results from fusion is serial due to a forward

loop-carried dependence. This forward dependence is the flow dependence for array a. If

the computations in the loop are aligned as shown in Figure 4.13(a) such that the forward

dependence is made loop-independent, a backward dependence results, hence the alignment is

illegal. Alignment for parallel execution is not possible because the alignment requirements of

the different dependences conflict with each other. To resolve this alignment conflict, replica-

tion is required. In Figure 4.13(b), a new loop L0 replicates the array b into a new array b0,

and the values of array b0 are read in the aligned version of the fused loop, rather than array

b. As a result, the backward loop-carried dependence is removed, and the aligned loop is not

only legal, but may also be executed in parallel, since it no longer contains any loop-carried

dependences. The new loop L0 may also be executed in parallel. However, L0 may not be

fused with the aligned loop because the original alignment conflict would then reappear.

In general, both data and computation replication are required to address alignment conflicts.

Replicating computation contributes execution time overhead, while replicating data contributes

memory overhead. In contrast, the shift-and-peel transformation does not require any replication

to enhance locality while preserving parallelism.

Formal Proof of Legality

For simplicity, this proof is presented for sequences of parallel loops with identical loop bounds.

First, a number of definitions are provided.

Definition 1 A sequence of loops L1; : : : ; Ln is an admissible parallel loop sequence if there

is no intervening code between the loops, if each loop Lk (1 � k � n) is parallel, and if all

loops use the same integer index variable I with the same integer lower/upper bounds ` and

u (` � u) and a step of 1. The loop sequence is totally ordered, i.e., L1 � L2 � � � � � Ln.

The computation performed for an iteration I=i (` � i � u) within the body of a loop Lk

(1 � k � n) is denoted by Sk(i).

Definition 2 For a loop Lk in a parallel loop sequence L1; : : : ; Ln, the set of all memory

locations read in a given iteration i of the loop body Sk(i) is denoted by Rk(i). Similarly, the

set of all memory locations written is denoted by Wk(i).
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Definition 3 For a pair of loopsLa; Lb in a parallel loop sequenceL1; : : : ; Ln, where La � Lb,

an interloop dependence Sa(i1)�Sb(i2) exists between iteration i1 in La and iteration i2 in Lb if

�
Ra(i1) \Wb(i2) 6= ;

�
_
�
Wa(i1) \ Rb(i2) 6= ;

�
_
�
Wa(i1) \Wb(i2) 6= ;

�
;

where ` � i1 � u and ` � i2 � u. The dependence distance is given by i2 � i1, and may be

positive, negative, or zero.

Definition 4 Let La and Lb denote a pair of loops in a parallel loop sequence L1; : : : ; Ln such

that La � Lb: Let DEPa;b denote the set of all interloop dependences Sa(i1)�Sb(i2) between

La and Lb. Let DEPa;b(d) denote the subset of all interloop dependences between the loops La

and Lb with distance d. Let DISTa;b denote the set of all distances d such that DEPa;b(d) 6= ;.

DEPa;b is a set of uniform interloop dependences if:

8d 2 DISTa;b; 9Sa(i)�Sb(i+ d) 2 DEPa;b(d);

8><
>:
8` � i � u� d; if d � 0;

8`� d � i � u; if d < 0:

Uniformity requires interloop dependences with distance d to flow from all iterations i in La to

i+ d in Lb, subject to the loop bound constraints.

Definition 5 For a parallel loop sequence L1; : : : ; Ln in which all interloop dependences are

uniform, let shift(k) � 0 and peel(k) � 0 denote the amounts of shifting and peeling derived

for each loop Lk (1 � k � n) by the shift-and-peel derivation algorithm. Let P denote the

number of processors to be used for parallel execution. Let istart(p) and iend(p) denote the

starting and ending iterations for a subset of consecutive iterations from the original iteration

space bounded by ` and u to be executed by a processor p (1 � p � P ), i.e.,

istart(p) = `+

$
u� `+ 1

P

%
�(p�1); iend(p) =

8>><
>>:

istart(p) +

$
u� `+ 1

P

%
� 1; 1 � p < P;

u; p = P:

The shift-and-peel transformation produces a fused loop whose iterations are executed in

parallel on P processors, followed by a barrier synchronization, which is then followed by

peeled loop iterations that are also executed in parallel on P processors. For each processor

p (1 � p � P ), FUSED(p) is the subset of computations from the fused loop, i.e.,

FUSED(p) =

(
fSk(i) j istart(p) � i � iend(p) + shift(k); 1 � k � ng ; p = 1;
fSk(i) j istart(p) + peel(k) � i � iend(p) + shift(k); 1 � k � ng ; 1 < p � P:
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Similarly, PEELED(p) is the subset of peeled computations for a processor p, i.e.,

PEELED(p) =

(
fSk(i) j iend(p) + shift(k) + 1 � i � iend(p) + peel(k); 1 � k � ng ; 1 � p < P;
fSk(i) j iend(p) + shift(k) + 1 � i � iend(p); 1 � k � ng ; p = P:

Definition 6 For a parallel loop sequence L1; : : : ; Ln in which all interloop dependences are

uniform, let shift(k) � 0 and peel(k) � 0 denote the amounts of shifting and peeling derived

for each loop Lk (1 � k � n) by the shift-and-peel derivation algorithm. The iteration count

threshold Nt for the parallel loop sequence is defined as

Nt = max
1�k�n

�
peel(k)� shift(k)

�
:

Definition 6 is a consequence of the implementation of the shift-and-peel transformation

discussed in Section 4.2.4, which assumes that the number of iterations per original loop is much

greater than the number of processors (which in turn implies that locality enhancement with

fusion is required). The iteration count threshold asserts that shifting and peeling for a given

original loop do not remove more computations from the resulting FUSED(p) subsets than the

number of iterations per processor. Exceeding this threshold indicates that all computation from

one of the original loops is excluded from the fused loop, which clearly defeats the purpose of

loop fusion for locality.

With the preceding set of definitions, the following theorem on the legality of the shift-and-

peel transformation and the implementation discussed in Section 4.2.4 may now be proved.

Theorem 1 The shift-and-peel transformation is always legal for a parallel loop sequence

L1; : : : ; Ln in which all interloop dependences are uniform, provided that$
u� `+ 1

P

%
� Nt;

where P is the number of processors used in parallel execution of the resulting loop, u� `+ 1

is the number of iterations in each of the loops of the original parallel loop sequence, and Nt

is the iteration count threshold in Definition 6.

Proof First, all of the original computation is performed in the transformed code. Using

Definition 5, this condition is satisfied by noting that the lower and upper bounds for the fused

loop in each processor together with the peeled iterations cover the original computation, i.e.,

[
1 � p � P

�
FUSED(p) [ PEELED(p)

�
= fSk(i) j ` � i � u; 1 � k � ng :
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Second, there is no redundancy in the computation. To show that each component of the

original computation is performed by exactly one processor, it is necessary to show that the

subsets of computation assigned to different processors are disjoint. Because these subsets

contain computation from consecutive iterations, it is sufficient to show that for processors p

and p+ 1,

PEELED(p) \ PEELED(p+ 1) = ;;

for which Definition 5 implies that the following condition must be satisfied:

81 � p < P; 81 � k � n; iend(p) + peel(k) < iend(p+ 1) + shift(k) + 1:

Substituting for iend(p) and iend(p+ 1) using Definition 5 and simplification results in

81 � k � n;

$
u� `+ 1

P

%
+ 1 > peel(k)� shift(k):

Since it must be true for all loops, it must be true for the loop for which peel(k) � shift(k) is

the largest, and this is given by the iteration count threshold Nt. Since both
j
u�`+1

P

k
and Nt are

integers, the condition may be simplified to$
u� `+ 1

P

%
� Nt:

With this condition satisfied, it can also be shown using Definition 5 that FUSED(p) \

FUSED(p+ 1) = ;, PEELED(p)\FUSED(p+ 1) = ;, and PEELED(p+ 1)\FUSED(p) =

;, 81 � p < P .

Third, none of the original uniform interloop dependences are violated when the FUSED(p)

subsets are executed in parallel onP processors. For interloop dependencesSa(i)�Sb(i+d) such

that Sa(i); Sb(i+d) 2 FUSED(p) and d < 0, shifting trivially ensures that the dependences are

satisfied internally within each subset. Dependences with d > 0 are always satisfied internally

even with shifting. Furthermore, no dependences flow between the FUSED(p) subsets executed

in parallel on different processors. This is shown with the following proof by contradiction.

For Sa(i)�Sb(i+ d), assume that Sa(i) 2 FUSED(p1) and Sb(i+ d) 2 FUSED(p2), where

p1 6= p2. For d � 0, assume that p2 > p1. The shift-and-peel derivation algorithm results in

peel(b) � d. If Sa(i) 2 FUSED(p1), the maximum value of i is i = iend(p1) + shift(a) by

Definition 5. If Sb(i + d) 2 FUSED(p2), where p2 > p1, then by Definition 5,

i+ d = iend(p1) + shift(a) + d � istart(p1 + 1) + peel(b):
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Substituting for iend(p1) and istart(p1 + 1) from Definition 5 and rearranging results in

d� 1 + shift(a) � peel(b):

Since shift(a) � 0, and peel(b) � d,

d� 1 � d� 1 + shift(a) � peel(b) � d:

But d� 1 < d, hence this is a contradiction. Since the maximum iteration i such that Sa(i) 2

FUSED(p1)was used, this contradiction is true for all iterations i such thatSa(i) 2 FUSED(p1).

A similar contradiction results from assuming that p2 < p1 for d < 0. Thus, no dependences

flow between the FUSED(p) subsets for any pair of processors.

Fourth, none of the original uniform interloop dependences are violated when the PEELED(p)

subsets are executed in parallel on P processors. Any interloop dependences Sa(i)�Sb(i + d)

such that Sa(i); Sb(i + d) 2 PEELED(p) are always satisfied because iterations peeled from

loop La are executed before iterations peeled from Lb. Furthermore, no dependences flow be-

tween different PEELED(p) subsets. This may be shown with a similar proof by contradiction

as for the FUSED(p) subsets; it is omitted here for brevity.

Finally, none of the original uniform interloop dependences are violated across the synchro-

nization point between the execution of FUSED(p) and PEELED(p) on each processor because

all interloop dependences either flow interally within each fused or peeled subset of iterations,

or from a fused subset to a peeled subset. The total ordering implies that all dependences flow

forward in the original sequence. For those dependences that require peeling, it is always the

sink iteration that is peeled. Any other iterations that depend on a peeled iteration are also

peeled by virtue of the shift-and-peel derivation algorithm. Thus, dependences never flow from

a peeled subset to a fused subset. The synchronization point ensures that those dependences

flowing from a fused subset to a peeled subset are always satisfied.

Since the transformed code executes all of the original computation without redundancy

(provided that the iteration count threshold is satisfied), and none of the original interloop depen-

dences are violated internally within the subsets of iterations executed by different processors

or externally between the subsets, the shift-and-peel transformation is legal.2
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4.3 Multidimensional Shift-and-peel

4.3.1 Motivation

For a sequence of parallel loop nests, fusion of outermost loops produces a single loop nest,

and the shift-and-peel transformation enables legal fusion and parallelization. However, there

are two reasons why fusion of outermost loops may not be sufficient.

First, although fusion increases the granularity of parallelism in the outermost loop, it does

not increase the degree of parallelism. For parallel execution on large-scale multiprocessors, a

greater degree of parallelism is typically required to fully utilize a large number of processors.

By fusing inner parallel loops in addition to the outermost loop, the degree of parallelism may

be increased,2 although the granularity of the resulting parallelism is reduced as a consequence.

Second, fusion of multiple loops increases the amount of data accessed in the resulting

fused loop. A significant portion of this data may have to remain cached for reuse. If only the

outermost loop is fused in a sequence of loop nests, the amount of data that must remain cached

across iterations of the fused outermost loop may overflow the cache capacity. By fusing inner

loops as well as the outermost loop, the execution order of the computation is further modified

to reduce the amount of data that must remain cached for reuse.

In both cases, dependences flowing between iterations of inner loops may become loop-

carried after fusion, and hence these dependences may render fusion illegal or prevent paral-

lelization. However, the shift-and-peel transformation may also be applied to the inner loop

levels in order to overcome such dependences.

4.3.2 Derivation

The derivation of the appropriate amounts of shifting and peeling to enable fusion and paral-

lelization of inner loops uses the same approach as the derivation for the outermost loop. The

same algorithms are used, but the dependence distances at each inner loop level are considered,

rather than the distances at the outermost loop level.

Rather than reapplying the derivation algorithms at each level, it is possible to modify

the algorithms for only one application. Instead of maintaining just one weight at each vertex

2Section 2.4.2 discussed how to increase the degree of parallelism by making all parallel loops adjacent in a
loop nest.
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representing the accumulated shift or peel amounts, it is possible to maintain a vector of weights,

with one element for each loop level. In one traversal of the dependence chain graph, shift or

peel amounts are propagated at all loop levels as each vertex is visited by the algorithm. The

original algorithm is linear in the graph size, and the computation at each vertex increases by

only a constant amount, hence the complexity remains linear in the graph size.

4.3.3 Implementation

Fusing multidimensional loop nests with strip-mining for serial execution does not present

difficulties since only shifting is required. The loops being fused are strip-mined, the control

loops are moved to the outermost level, and then the control loops are fused. As before, shifting

is reflected in the inner loop bounds. New loop nests are then introduced to execute iterations

that are excluded from the fused computation as a result of shifting; more than one loop nest

is required because these iterations do not constitute a simple rectangular region. Fusion with

multidimensional shifting is illustrated using the loop nest sequence shown in Figure 4.14(a).

The dependences between the two loop nests require shifting by one iteration in both inner

and outer loops to enable fusion. The fused loop nest sequence (with shifting only) is shown

Figure 4.14(b). The iteration spaces after shifting to enable fusion are shown in Figure 4.14(c).

However, multidimensional peeling to enable parallel execution is more complicated. The

multidimensional iteration space is divided into blocks of iterations that are executed by different

processors. For those processors that execute blocks on the boundaries the iteration space, there

are slight differences in the loop code (as discussed in Section 4.2.4). For a one-dimensional

iteration space, there are only three cases, as shown in Figure 4.15(a). This number is small

enough to permit generating three different versions of the code. However, when fused inner

loops are parallelized with peeling, the number of cases increases dramatically. For fusion of

a two-dimensional iteration space, there are a total of 9 cases, as shown in Figure 4.15(b). For

a three-dimensional iteration space, there are 27 cases, as shown in Figure 4.15(c). Generating

27 different versions of the code is unnecessary because the differences are quite minor.

The differences between the various cases center on the execution of the iterations peeled

to enable parallel execution. Instead of generating multiple versions, only one set of loops is

generated, with the different cases reflected in a number of variables that control peeling in
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(a) Original loop nest sequence

do j=2,n−2
   do i=n−1,n−1
      a[i,j] = b[i,j]
   end do
end do
do j=n−1,n−1
   do i=2,n−1
      a[i,j] = b[i,j]
   end do
end do

do j=2,n−1
   do i=2,n−1
      b[i,j] = (a[i,j−1]+a[i,j+1]
              +a[i−1,j]+a[i+1,j])/4
   end do
end do

do j=2,n−1
   do i=2,n−1
      a[i,j] = b[i,j]
   end do
end do

do jj=2,n−1,sj
   do ii=2,n−1,si
      do j=jj,min(jj+sj−1,n−1)
         do i=ii,min(ii+si−1,n−1)
            b[i,j] = (a[i,j−1]+a[i,j+1]
                         +a[i−1,j]+a[i+1,j])/4
         end do
      end do
      do j=max(jj−1,2),min(jj+sj−2,n−2)
         do i=max(ii−1,2),min(ii+si−2,n−2)
            a[i,j] = b[i,j]
         end do
      end do
   end do
end do

j

i
=Iteration from first loop nest
=Iteration from second loop nest

Iterations performed
in fused loop nest

(b) Fused loop nest sequence with iterations excluded due to shifting

Excluded iterations
due to shifting

(c) Iteration spaces after shifting to enable fusion

Figure 4.14: Fusion with multidimensional shifting

(b) Two dimensions: 9 cases (c) Three dimensions: 27 cases(a) One dimension: 3 cases

Figure 4.15: Enumerating the number of cases for multidimensional shift-and-peel

the fused loops and the subsequent execution of peeled iterations. The values for these control

variables are determined by a prologue to the fused loop nest that computes the case that this

instance of the code represents. The prologue determines which boundary or boundaries the

block of iterations includes, then sets the flags to control the peeled iterations accordingly. This
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JNPROCS = <#processors along j−dimension>
INPROCS = <#processors along i−dimension>
jp = mypid / JNPROCS
ip = mypid % INPROCS
jblksz = j_trip_count / JNPROCS
iblksz = i_trip_count / INPROCS
jstart = 2+jp * jblksz
istart = 2+ip * iblksz
if (jp == JNPROCS − 1)
   jend = n−1
else
   jend = jstart + jblksz
endif
if (ip == INPROCS − 1)
   iend = n−1
else
   iend = istart + iblksz
endif
left         =    (ip == 0)
right      =    (ip == INPROCS − 1)
top         =    (jp == 0)
bottom =    (jp == JNPROCS − 1)
jfpeel    =   (left) ? 0 : 1
ifpeel    =   (top) ? 0 : 1
jppeel   =   (right) ? 0 : 1
ippeel   =   (bottom) ? 0 : 1

do jj=jstart,jend,sj
   do ii=istart,iend,si
      do j=jj,min(jj+sj−1,jend)
         do i=ii,min(ii+si−1,iend)
            b[i,j] = (a[i,j−1]+a[i,j+1]
                           +a[i−1,j]+a[i+1,j])/4
         end do
      end do
      do j=max(jj−1,jstart+jfpeel),min(jj+sj−2,jend−1)
         do i=max(ii−1,istart+ifpeel),min(ii+si−2,iend−1)
            a[i,j] = b[i,j]
         end do
      end do
   end do
end do
<BARRIER>
do j=jstart,jend−1
   do i=iend,iend+ippeel
      a[i,j] = b[i,j]
   end do
end do
do j=jend,jend+jppeel
   do i=istart,iend+ippeel
      a[i,j] = b[i,j]
   end do
end do

Figure 4.16: Parallelization with multidimensional peeling

j

i

(a) Independent blocks of fused iterations (b) Independent blocks of peeled iterations

Figure 4.17: Independent blocks of iterations with multidimensional shift-and-peel

approach is shown for the example in Figure 4.16. The dependences between the two loop

nests require peeling by one iteration in both inner and outer loops. Iterations are grouped into

independent blocks for distribution on a grid of processors, as shown in Figure 4.17. Note

that the blocks in Figure 4.17(b) include iterations excluded from the fused loops as a result of

shifting, as well as iterations peeled for parallelization.
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4.3.4 Legality of Multidimensional Shift-and-peel

The legality for multidimensional shift-and-peel follows directly from the legality of shift-

and-peel for outermost loops. Just as shifting of outermost loops ensures that there are no

backward-flowing dependences at the outermost level, shifting of inner loops ensures that there

are no backward-flowing dependences carried by inner loops. Similarly, peeling iterations from

inner loops removes cross-processor dependences. Peeled iterations are executed only after all

fused loop iterations have been executed, and no dependences are violated.

4.4 Fusion with Boundary-scanning Loop Nests

A final issue affecting loop fusion is the presence of boundary-scanning loop nests within

a candidate sequence for fusion. A boundary-scanning loop nest accesses elements from

a boundary region of a multidimensional array, which normally implies that the loop nest

dimensionality is less than the array dimensionality. For example, a one-dimensional loop may

access one of following boundary regions of a two-dimensional array: the first column, the last

column, the first row, and the last row. Arrays with higher dimensionality have correspondingly

more boundary regions.

A boundary-scanning loop nest normally appears in sequence with other full-dimensionality

loop nests (i.e., loop nests whose dimensionality matches the array dimensionality). For

example, the loop nest labelled `1 in Figure 4.18(a) writes all elements of array a, except

elements in the first column. The loop labelled `boundary then writes only the first column of a

with values that are computed differently than those computed in `1. Finally, the loop nest

labelled `2 reads all values written to array a by both loops `1 and `boundary .

A loop nest sequence that includes a loop nest such as `boundary in Figure 4.18(a) cannot

be fused directly because of the differences between loop headers in the sequence. Fusion is

limited to the subsets of loop nests that either precede or follow a boundary-scanning loop nest.

As a result, opportunities to exploit data reuse across the entire loop nest sequence are lost.

For example, arrays a and b in Figure 4.18(a) are reused across loop nests 1̀ and `2, but the

presence of `boundary prevents the application of direct fusion to exploit that reuse.3

3Although `boundary may be moved ahead of `1 in Figure 4.18(a), code mobility is in general more restricted.
A boundary-scanning loop nest may depend on data written by a preceding full-dimensionality loop nest, and the
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`1 : do j=2,N
do i=1,M

a[i,j] = f (b[i,j])
end do

end do
`boundary : do i=1,M

a[i,1] = g(b[i,1])
end do

`2 : do j=1,N
do i=1,M

c[i,j] = h(a[i,j],b[i,j])
end do

end do

`1 : do j=2,N
do i=1,M

a[i,j] = f (b[i,j])
end do

end do
`0boundary : do j=1,1

do i=1,M
a[i,1] = g(b[i,1])

end do
end do

`2 : do j=1,N
do i=1,M

c[i,j] = h(a[i,j],b[i,j])
end do

end do

(a) Original loop nest sequence (b) Transformation of `boundary into `0boundary

`01 : do j=1,N
if (j>1) then

do i=1,M
a[i,j] = f (b[i,j])

end do
else

do i=1,M
a[i,1] = g(b[i,1])

end do
end if

end do
`2 : do j=1,N

do i=1,M
c[i,j] = h(a[i,j],b[i,j])

end do
end do

`fused : do j=1,N
if (j>1) then

do i=1,M
a[i,j] = f (b[i,j])

end do
else

do i=1,M
a[i,1] = g(b[i,1])

end do
end if
do i=1,M

c[i,j] = h(a[i,j],b[i,j])
end do

end do

(c) Combining `1 and `0boundary into `01 (d) Fusion of `01 and `2 into `fused

Figure 4.18: Fusing a loop nest sequence with a boundary-scanning loop nest

However, fusion of loop sequences is still possible, even in the presence of boundary-

scanning loops. The key to enabling fusion is determining the array regions that are written

by a boundary-scanning loop nest and the regions written by neighboring loop nests. If these

regions are disjoint, a straightforward transformation incorporates the computation performed

data written by the boundary-scanning loop nest may also be read by a subsequent loop nest.
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in the boundary-scanning loop nest into a fused loop without violating loop semantics.

The transformation to enable fusion is illustrated using the loop nest sequence in Fig-

ure 4.18(a). To exploit the reuse of arrays a and b, the outermost j loops must be fused. The j

loop headers for `1 and `2 differ by one iteration, namely j = 1. However, `boundary effectively

performs the computation for j = 1. Hence, `boundary is transformed into a two-dimensional

loop nest with an outer j loop of only one iteration, as shown in Figure 4.18(b).

The regions of array a written by `1 and `0boundary in Figure 4.18(b) are disjoint because the

j-loop iteration values do not overlap. This feature is exploited by forming the union of the

separate iteration spaces to produce a new loop `01. The body of `01 includes the computations

from both `1 and `0boundary , as shown in Figure 4.18(c); a guard selects the appropriate inner i

loop. Note that this combination of loop bodies does not correspond to fusion; it is effectively

the inverse of loop peeling.

Loops `01 and `2 in Figure 4.18(c) are now fused directly to result in the loop f̀used shown in

Figure 4.18(d). The bounds of `fused range from 1 toN . When j is 1, the computation originally

in loop `boundary is performed. When j > 1, the computation from loop `1 is performed.

Figure 4.18 illustrated a case in which direct fusion was applied after generating outermost

loops with the same index variable. More generally, array references in loop nest sequences

generate interloop dependences that require shift-and-peel. The approach illustrated in Fig-

ure 4.18 for boundary-scanning loop nests is still applicable in such cases. Once outermost

loops with the same index variable are obtained, the dependence distances required for shift-

and-peel are obtained for the core computation from the full-dimensionality loop nests. When

the shift-and-peel transformation is applied with strip-mining as described in Section 4.2.4, the

computation from boundary-scanning loop nests is automatically included in the appropriate

block of iterations. The guard ensures that the boundary-scanning computation is performed

only for the appropriate loop iteration. This is because strip-mining does not affect the loop

body; only the bounds of the loop are modified.

Hence, the presence of boundary-scanning loop nests does not preclude the shift-and-

peel transformation. Instead, the ability to incorporate boundary-scanning loop nests into a

collection of full-dimensionality loop nests results in longer loop nest sequences for fusion.
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4.5 Chapter Summary

This chapter has described the shift-and-peel transformation for enabling legal loop fusion and

subsequent parallelization. The primary motivation for fusion of parallel loop nest sequences is

locality enhancement, and the model described earlier in Chapter 3 has been used to quantify the

benefit of locality enhancement. However, the motivation for the shift-and-peel transformation

is the presence of dependences that either render fusion illegal or force a fused loop to be

executed serially. Shifting and peeling have been shown to overcome such dependences and

allow all reuse across a sequence of parallel loop nests to be exploited with fusion. The

legality of the shift-and-peel transformation has been established with a formal proof. The

transformation has also been described for fusion of inner loops as well as outermost loops.

Finally, the presence of boundary-scanning loop nests within a candidate loop nest sequence

for fusion has been addressed to ensure that all available reuse can be exploited.



Chapter 5

Scheduling Wavefront Parallelism in Tiled
Loop Nests

This chapter describes scheduling strategies for tiled loop nests with wavefront parallelism, and

analyzes the parallelism and locality provided by each strategy. Tiling a loop nest for cache

locality enhancement introduces loop-carried dependences that limit parallelism to wavefronts

in the tiled iteration space. These dependences result from using the shift-and-peel transfor-

mation and loop skewing to enable tiling. Scheduling the execution of a tiled loop nest with

wavefront parallelism involves a tradeoff between the degree of parallelism in wavefronts and

the extent of locality enhancement.

This chapter is organized as follows. First, the use of loop skewing and the shift-and-peel

transformation to enable tiling is described. Next, the emergence of wavefront parallelism in

tiled loop nests is discussed, followed by the tradeoff between parallelism and locality. Related

work on tiling and loop scheduling is then outlined. Finally, scheduling strategies for wavefront

parallelism are described and evaluated analytically.

5.1 Wavefront Parallelism in Tiled Loop Nests

5.1.1 Loop Skewing to Enable Legal Tiling

A perfectly-nested loop nest can be legally tiled if it is fully permutable, i.e., if none of its

loop-carried dependence vectors have negative elements [Wol92]. Negative vector elements

that are permuted to the outermost loop level result in lexicographically-negative dependence

vectors that violate the original loop semantics. Loop skewing enables legal loop permutation

by eliminating any negative elements in loop-carried dependences.

73
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do t=1,T
    do j=2,N−1
        do i=2,N−1
            a[i,j] = (a[i,j]+a[i+1,j]+a[i−1,j]
                    +a[i,j+1]+a[i,j−1]) / 5

do jj=2,N−1+T,B
    do ii=2,N−1+T,B
        do t=1,T
            do j=max(jj,2+t),min(jj+B−1,N−1+t)
                do i=max(ii,2+t),min(ii+B−1,N−1+t)
                    a[i−t,j−t] = (a[i−t,j−t]+a[i+1−t,j−t]+a[i−1−t,j−t]
                            +a[i−t,j+1−t]+a[i−t,j−1−t]) / 5

do t=1,T
    do j=2+t,N−1+t
        do i=2+t,N−1+t
            a[i−t,j−t] = (a[i−t,j−t]+a[i+1−t,j−t]+a[i−1−t,j−t]
                    +a[i−t,j+1−t]+a[i−t,j−1−t]) / 5

do t=1,T
    do jj=2+t,N−1+t,B
         do j=jj,min(jj+B−1,N−1+t)
            do ii=2+t,N−1+t,B
                do i=ii,min(ii+B−1,N−1+t)
                    a[i−t,j−t] = (a[i−t,j−t]+a[i+1−t,j−t]+a[i−1−t,j−t]
                            +a[i−t,j+1−t]+a[i−t,j−1−t]) / 5

(a) Original SOR loop nest (b) Skewing inner two loops

(c) Strip−mining inner two loops (d) Permuting control loops

Figure 5.1: Steps in tiling the SOR loop nest

The SOR loop nest in Figure 5.1(a) is used to illustrate the use of loop skewing to enable

tiling. This loop nest is a candidate for tiling because the outermost loop carries the dependence

(1,0,0), hence it carries reuse. The complete set of dependence distance vectors for this loop nest

is: f(1,0,0), (1,�1,0), (1,0,�1), (0,1,0), (0,0,1)g. Hence, the loop nest is not fully permutable,

and loop skewing must be applied, as shown in Figure 5.1(b), in order to remove the negative

elements in the distance vectors. Both inner loops i and j are skewed by one iteration with

respect to loop t, resulting in the transformed distance vectors: f(1,1,1), (1,0,1), (1,1,0), (0,1,0),

(0,0,1)g. The loop nest can be then tiled legally by first strip-mining the skewed i and j loops

by a factor ofB, as shown in Figure 5.1(c), and then by permuting the resulting ii and jj control

loops to the outermost level, as in Figure 5.1(d). The effects of skewing on dependences and

the grouping of iterations into units of tiles are illustrated graphically in Figure 5.2.

5.1.2 Enabling Tiling with the Shift-and-Peel Transformation

This section demonstrates how the shift-and-peel transformation proposed in Chapter 4 enables

tiling. Figure 5.3 is used to illustrate the procedure. For simplicity, only one-dimensional tiling

is illustrated. However, the following discussion can be extended to two or more dimensions.

The outermost loop in Figure 5.3(a) carries temporal reuse. The iteration spaces for each of

the component loops L1 and L2 are illustrated for each iteration t of the outermost loop, along

with all dependences. Tiling of inner loops is not possible because there are two inner loops at
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t
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j

do t=1,T
    do j=2,N−1
        do i=2,N−1
            a[i,j] = (a[i,j]+a[i+1,j]+a[i−1,j]
                    +a[i,j+1]+a[i,j−1]) / 5

do jj=2,N−1+T,B
    do ii=2,N−1+T,B
        do t=1,T
            do j=max(jj,2+t),min(jj+B−1,N−1+t)
                do i=max(ii,2+t),min(ii+B−1,N−1+t)
                    a[i−t,j−t] = (a[i−t,j−t]+a[i+1−t,j−t]+a[i−1−t,j−t]
                            +a[i−t,j+1−t]+a[i−t,j−1−t]) / 5

(b) Iteration space after skewing with
       two representative tiles of iterations

(a) Three−dimensional iteration space with
       dependences for original SOR loop nest

Figure 5.2: Graphical representation of skewing and tiling in the iteration space
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t=1 t=2

        do t=1,2
L1:      do i=1,4
                b[i] = a[i−1]+a[i+1]
            end do
L2:      do i=1,4
                a[i] = b[i]
            end do
        end do  

t=1 t=2 t=1 t=2

L1 L2 L1 L2
t=1 t=2

(a) Original arbitrarily−nested loop nest with outermost loop
      carrying data reuse, and corresponding iteration spaces

do ii=1,6,2
    do t=1,2
        do i=max(ii,1),min(ii+1,4)
            b[i] = a[i−1]+a[i+1]
        end do
        do i=max(ii−1,1),min(ii,4)
            a[i] = b[i]
        end do
    end do
end do  

do ii=1,8,2
    do t=1,2
        do i=max(1,ii−2*t+2),min(ii−2*t+3,4)
            b[i] = a[i−1]+a[i+1]
        end do
        do i=max(1,ii−2*t+1),min(ii−2*t+2,4)
            a[i] = b[i]
        end do
    end do
end do  

L1+L2 L1+L2 L1+L2 L1+L2 L1+L2 L1+L2

ii

ii

ii

(b) Illegal tiling after illegal fusion (c) Illegal tiling after shifting of
      iteration spaces for legal fusion

(d) Legal tiling after shifting iteration
      spaces for legal fusion and skewing
      with respect to outermost loop

do ii=1,4,2
    do t=1,2
        do i=ii,ii+1
            b[i] = a[i−1]+a[i+1]
            a[i] = b[i]
        end do
    end do
end do  

Figure 5.3: Enabling tiling with the shift-and-peel transformation

the same level. The inner loops must first be fused to enable tiling.

Figure 5.3(b) illustrates direct fusion without regard for dependences, followed by tiling.

The dashed boxes are tiles of iterations indexed by iterations of the ii loop. Within each tile,

iterations corresponding to t = 1 are executed first, followed by iterations corresponding to t =

2. However, this transformation is illegal. There are lexicographically-negative dependences

in the fused loop for the same iteration of the t loop, as well as between different iterations of

the t loop. The order in which tiles are executed does not preserve the original semantics.

Now consider applying the shift-and-peel transformation. In this instance, legal fusion is

enabled by shifting the iteration space of L2 by one iteration with respect to L1, as illustrated
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in Figure 5.3(c). However, tiling is still not legal because there are still backward dependences

between tiles. Loop skewing must now be applied to enable tiling. In this case, the required

skewing factor is 2. The effect of skewing on the iteration spaces is illustrated in Figure 5.3(d).

There are no longer any backward dependences between tiles, hence tiling is now legal.

5.1.3 Wavefront Parallelism after Tiling

Enabling tiling with the shift-and-peel transformation and loop skewing transforms the de-

pendences into a form that leads to wavefront parallelism in the tiled loop nest. The SOR

loop nest in Figure 5.1(a) is used to illustrate the emergence of wavefront parallelism. Con-

sider the dependence distance vector (t; j; i) = (1; 0; 0) for the original loop nest; this vector

indicates that the outermost loop carries reuse. The inner loops must be tiled in order to

exploit this reuse. If it were possible to tile the SOR loop nest directly, then the distance

vector would first be transformed into (t; jj; j; ii; i) = (1; 0; 0; 0; 0) after strip-mining, and then

into (jj; ii; t; j; i) = (0; 0; 1; 0; 0) after loop permutation. Hence, the outer loops would be

parallelizable because they do not carry dependences.

However, direct tiling is not legal because other dependences require loop skewing in order

to produce a fully permutable loop nest. Skewing of the inner loops transforms the original

distance vector that reflects the outer loop reuse into (t; j; i) = (1; 1; 1). Now, strip-mining

results in (t; jj; j; ii; i) = (1; B; 1; B; 1), and permutation finally produces (jj; ii; t; j; i) =

(B;B; 1; 1; 1).1 Hence, skewing of the inner loops converts a dependence (i.e., reuse) carried

by the original outermost loop into a loop-carried dependence in the outermost loop after tiling.

Since all of the vector components are nonzero, permutation of any other loop into the outermost

position also results in a loop-carried dependence.

Similar transformations of the remaining distance vectors for the SOR loop nest introduce

additional loop-carried dependences in the outer loops after tiling (although these are redundant

in relation to the primary dependence discussed above). Hence, both ii and jj loops in the tiled

loop nest of Figure 5.1(d) carry dependences. These loop-carried dependences are represented

graphically by the arrows in Figure 5.4. This figure is a two-dimensional representation of the

five-dimensional iteration space of the tiled loop nest. Each square corresponds to an iteration

1The effect of strip-mining on dependences was discussed in Section 2.4.4, specifically the introduction of the
factor B in the transformed dependence vector.
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jj

ii

Figure 5.4: Dependences and wavefronts

(jj; ii) from the outer loops, and represents a B�B�T tile of iterations from the original j,i,

and t loops. Since the two outer loops carry dependences, they are not parallelizable.

However, exploitable parallelism exists, even in the presence of these loop-carried de-

pendences. The parallelism is along the diagonal wavefronts shown by the dashed lines in

Figure 5.4. Tiles within each wavefront are independent from one another and may be executed

in parallel, although the wavefronts must be executed in proper sequence to satisfy the depen-

dences. The existence of wavefront parallelism follows from previous research that asserts

that a fully-permutable loop nest of depth m can always be transformed into another loop nest

of depth m such that there are at least m � 1 parallel (or DOALL) loops [Wol92]. However,

in the presence of loop-carried dependences, these parallel loops may be inner loops, and the

outermost loop may remain sequential.

5.1.4 Exploiting Wavefront Parallelism: DOALL vs. DOACROSS

There are two general approaches for exploiting wavefront parallelism. The first is to apply

a wavefronting transformation to obtain the inner DOALL loops [Wol92]. This wavefronting

transformation corresponds to applying additional loop skewing at the outer loop levels to align

independent tiles in each wavefront such that their execution may be expressed in a DOALL

loop. For the SOR example, applying additional skewing to the tiled iteration space shown in

Figure 5.4 yields the iteration space shown in Figure 5.5. Independent tiles in the skewed space

are aligned with the ii loop and may be executed in parallel. The outermost jj loop remains

sequential, requiring global synchronization of all processors between successive iterations.

The drawback of the DOALL approach is that processors may not be fully utilized between
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do jj=2,2*(N−1+T)−B,B
              ii=max(2,jj−(N−1+T)+1),min(jj,N−1+T),B
        do t=1,T
            do j=max(jj−ii,2+t),min(jj−ii+B−1,N−1+t)
                do i=max(ii,2+t),min(ii+B−1,N−1+t)
                    a[i−t,j−t] = (a[i,j]+a[i+1−t,j−t]+a[i−1−t,j−t]
                            +a[i−t,j+1−t]+a[i−t,j−1−t]) / 5

jj

ii

X

Y

Z

doall

V

Figure 5.5: Exploiting parallelism with inner DOALL loops

global synchronizations because the number of independent tiles varies in each wavefront. For

example, the middle wavefront in Figure 5.5 has three tiles labelled X, Y, and Z. With two

processors executing in parallel, both processors are initially busy executing tiles X and Y.

However, one processor must remain idle until the remaining tile Z is executed because of the

global synchronization required for the DOALL loop.

The alternative approach for exploiting wavefront parallelism is to treat the two outer loops

as DOACROSS loops and introduce explicit synchronization between dependent tiles. This

approach avoids global synchronization and effectively utilizes idle processors by allowing

concurrent execution of tiles in different wavefronts, although local synchronization is now

required between tiles. For example, after tiles X and Y in Figure 5.5 have been executed,

tiles V and Z may be executed concurrently because the dependences for tile V are satisfied.

Since the DOACROSS approach provides the opportunity for improved processor utilization,

it is used later in this chapter for scheduling the execution of tiled loop nests.

5.2 Data Reuse in Tiled Loop Nests

5.2.1 Intratile and Intertile Reuse

In this chapter, data reuse in a tiled loop nest is categorized as intratile or intertile reuse.

Intratile reuse results from capturing the reuse from the original outer loop within a single tile.

In the tiled loop nest, data referenced in each tile is ideally loaded only once into the cache,

then reused from the cache for locality within the same tile. However, when loop skewing is

required to enable tiling, the data access patterns in the original loop nest are modified. When
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the skewed loop nest is tiled, there is still reuse of data within tiles, but the modified data access

patterns also introduce reuse between tiles, i.e., intertile reuse.

The two categories of reuse are illustrated for the example SOR loop nest in Figure 5.6. The

iteration and data spaces for the original SOR loop nest are shown in Figure 5.6(a). With loop

skewing and tiling, successive iterations of the original outer loop that are executed within the

same tile access overlapping regions of the array, as shown in Figure 5.6(b). This constitutes

intratile reuse. However, iterations from adjacent tiles also access overlapping regions in the

data space as a result of loop skewing, as shown in Figure 5.6(c), and it is this overlap between

tiles that results in intertile reuse.

When executing a tiled loop nest on a multiprocessor, an individual tile is executed to

completion by one processor. As a result, intratile reuse is converted to locality on each

processor if reused data remains cached during the execution of the tile. When adjacent tiles

are executed by the same processor, and data in the overlapping regions for those tiles is retained

in the cache between tiles, intertile reuse is converted to intertile locality. That is, data in the

overlapping regions is loaded only once into the cache, then reused from the cache not only

within the same tile for intratile locality, but also in adjacent tiles. On the other hand, when

adjacent tiles are executed by different processors, cache misses are incurred by each processor

to load all the data referenced within each tile, including the data in the overlapping regions. In

this case, there is no intertile reuse, and the opportunity to convert the reuse into locality is lost.

5.2.2 Quantifying the Locality Benefit of Tiling

The sweep ratio in Chapter 3 can quantify the locality benefit of tiling. Let ` denote a loop nest

with an outermost loop that carries temporal reuse, let A(`) denote the set of similarly-sized

arrays referenced in the loop nest `, and Aw(`) denote the subset of arrays that are modified.

Prior to tiling, each iteration of the outermost loop requires a complete memory sweep for

each of the arrays in A(`), and an additional writeback sweep for each of the arrays in Aw(`).

Hence, the total number of memory sweeps for the entire loop nest before tiling is given by

sb = T �
�
jA(`)j+ jAw(`)j

�
; where T is the number of iterations of the outermost loop.

First, consider tiling without loop skewing. Each tile performs all T iterations of the original

outermost loop. Cache misses are incurred at the start of each tile to load the required data into
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iteration space
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(a) Iteration and data spaces for original SOR loop nest

data space

(b) Skewed data access patterns within a tile

data spaceskewed, tiled iteration space

skewed, tiled iteration space

(c) Intertile reuse for adjacent tiles

data space

do t=1,T
    do j=2,N−1
        do i=2,N−1
            a[i,j] = (a[i,j]+a[i+1,j]+a[i−1,j]+a[i,j+1]+a[i,j−1]) / 5

Figure 5.6: Data reuse in a tiled loop nest that requires skewing
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B

B

T=B

(a) Data accessed per tile when s=1

B

B

T=B

(b) Data accessed per tile when s=2

total data in region = 3*B*B total data in region = 5*B*B

Figure 5.7: Amount of data accessed per tile with skewing

the cache, then the same data is reused from the cache for the remainder of the tile. In addition,

writebacks occur only when modified data in the cache is replaced by new data for the next tile.

Consequently, the total number of memory sweeps with tiling is sa = jA(`)j + jAw(`)j: The

sweep ratio for tiling without skewing is therefore

rtiling =
sb
sa

=
T �

�
jA(`)j+ jAw(`)j

�
jA(`)j+ jAw(`)j

= T:

Now, consider tiling with loop skewing. Skewing alters data access patterns within a tile;

rather than reusing a fixed portion of data, the amount of data accessed per tile is proportional

to T . Figure 5.7(a) illustrates this relationship when tiling two inner loops with T = B and a

skewing factor of s = 1. The number of elements accessed in the region shown in Figure 5.7(a)

is (2 � (T=B) + 1) � (B � B) = 3 � B � B. Figure 5.7(b) illustrates the region resulting from a

larger skewing factor s = 2. This region encloses (2 � (s � T=B) + 1) � (B � B) = 5 � B � B

elements. Compared with ideal tiling that references only B � B elements per tile, skewing

effectively reduces the ideal sweep ratio of T by a factor of 2 � (s �T=B)+ 1. Hence, the sweep

ratio for tiling with skewing is given by

rtiling =
T

2 � (s � T=B) + 1
: (5.1)

This result assumes that only intratile reuse is exploited; Section 5.4.4.4 will discuss the impact

of exploiting intertile reuse.

Finally, consider the combined effect of the shift-and-peel transformation and tiling. As

discussed in Section 5.1.2, the shift-and-peel transformation enables tiling by fusing inner
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loops. In addition to enabling tiling, fusion reduces the number of memory sweeps by a

factor of rfusion = (sweeps before fusion)=(sweeps after fusion). Tiling reduces the number

of sweeps by a factor of rtiling = (sweeps before tiling)=(sweeps after tiling). Since fusion is

performed first, the number of sweeps after fusion is equal to the number of sweeps before

tiling. Hence, the overall sweep ratio roverall is given by

roverall =
sweeps before fusion

sweeps after tiling
=

sweeps before fusion

sweeps after fusion
�

sweeps before tiling

sweeps after tiling
= rfusion � rtiling :

(5.2)

5.2.3 Tile Size, Parallelism, and Locality

The tile size has a significant impact on the performance of a tiled loop nest because it determines

both the degree of parallelism and the extent to which locality is enhanced. With wavefront

parallelism, a smaller tile size increases the number of wavefronts and, more importantly,

increases the number of independent tiles in each wavefront. Hence, the degree of parallelism

increases with smaller tile sizes, although the frequency of synchronization also increases.

The tile size also dictates the extent of locality enhancement when loop skewing is required

for tiling. The impact of tile size on intratile and intertile locality is illustrated in Figure 5.8.

The shaded regions represent the data accessed by adjacent tiles, as in Figure 5.6(c). The

overlapping regions correspond to the intersection of the data accessed by different tiles. For

a given number of iterations in the original outer loop, the amount of data in the overlapping

regions is relatively small compared to the total amount of data accessed by the tile when the

tile size is large. Consequently, a large tile size enhances intratile locality and diminishes the

impact of intertile locality. In contrast, for the same number of iterations and a small tile size,

the amount of data in the overlapping regions is a much larger fraction of the total amount of

data accessed by the tile. Hence, a small tile size increases the importance of intertile locality.

5.3 Related Work

5.3.1 Tiling

An extensive formal treatment of tiling is given by Wolf [Wol92], building on the work of

Porterfield [Por89], Irigoin and Triolet [IT88] and Abu-Sufah et al. [ASKL81]. However,
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overlap regions for intertile locality

smaller tiles in array larger tiles in array

Figure 5.8: Impact of tile size on locality

there are two shortcomings in the work of Wolf. First, Wolf does not study the effects of

loop skewing on data reuse, although his theory incorporates skewing. Hence, he does not

distinguish between intratile and intertile locality. Second, Wolf’s experiences with tiling are

limited to small-scale multiprocessors with uniform memory access. Satisfactory performance

is achieved with relatively large tiles that exploit intratile reuse for locality with a modest degree

of parallelism. However, large-scale multiprocessors require the use of small tiles to provide

sufficient parallelism on a large number of processors. Furthermore, when loop skewing is

required to enable tiling, intertile locality becomes more important with small tiles.

5.3.2 Loop Scheduling

There exists a large body of work dealing with scheduling of parallel, or DOALL, loops on

shared-memory multiprocessors. Many scheduling strategies have been proposed to strike a

balance between load balance and scheduling overhead. Static scheduling [BGS94] minimizes

overhead, but may not provide sufficient load balance. Dynamic techniques, such as self-

scheduling [BGS94], guided self-scheduling [PK87], and factoring [HSF92], seek to improve

load balance at the expense of increased overhead. Some scheduling strategies also consider

memory locality for nonuniform memory access by attempting to distribute loop iterations in a

manner that matches the distribution of the data accessed by those iterations. Examples include

affinity-based scheduling [ML94] and locality-based dynamic scheduling [LTSS93].

There are two problems when considering the use of existing scheduling strategies for

exploiting wavefront parallelism in tiled loop nests. First, the strategies cited above address
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individual DOALL loops in which there no restrictions on the manner in which iterations are

distributed and executed among multiple processors. Greater care is needed when scheduling

multiple DOACROSS loops with explicit synchronization in order to satisfy loop-carried de-

pendences; iterations must be executed in lexicographical order on each processor, otherwise

deadlock may occur. Second, the scheduling strategies cited above do not address the issue of

exploiting intertile reuse for cache locality. Since the importance of intertile locality increases

when tiling loop nests for large-scale multiprocessors, new scheduling approaches are required.

5.3.3 Scheduling Vectors

In the presence of wavefront parallelism in a loop nest, the loop-carried dependences define

the scheduling vector [DR94] that determines the sequence in which the wavefronts must be

executed. By definition, the scheduling vector is orthogonal to the wavefronts.

Hodzic and Shang [HS96] present an analytical method for deriving the optimal granularity

(i.e., tile size) for tiling loop nests with loop-carried dependences that require interprocessor

communication on message-passing multiprocessors. Their derivation assumes that the startup

cost for communication is high and that transmission time after startup is negligible, hence

they seek the optimal tradeoff between the frequency of communication and the degree of

parallelism to minimize execution time. They conclude that the optimal scheduling vector that

minimizes execution time does not vary with the optimal granularity.

In contrast, the scheduling of tiled loop nests considered in this chapter addresses shared-

memory multiprocessors in which cache locality, rather than communication startup cost, has

the greatest impact on performance. As a result, the optimal tradeoff to minimize execution

time is between the degree of locality enhancement and the degree of parallelism. In particular,

consideration must be given to intertile locality when tile sizes are reduced to increase paral-

lelism. The next section will show that the optimal tradeoff betwen locality and parallelism to

minimize execution time may in fact require a subobtimal scheduling vector.

5.4 Scheduling Strategies for Wavefront Parallelism

This section discusses three scheduling strategies—namely dynamic self-scheduling, static

cyclic scheduling and static block scheduling—for exploiting wavefront parallelism in tiled
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loop nests when the outer loops are treated as DOACROSS loops. The first strategy, dynamic

self-scheduling, is a straightforward adaptation of the existing technique for DOALL loops to

DOACROSS loops by controlling the order in which loop iterations are assigned to processors.

The other two techniques are adaptations of static scheduling for DOACROSS loops with

modifications to the manner in which iterations are distributed and ordered among processors.

The strategies are evaluated on the bases of runtime overhead, synchronization requirements,

degree and granularity of parallelism, and locality enhancement.

5.4.1 Dynamic Self-scheduling

In normal dynamic self-scheduling of DOALL loops, processors obtain iterations in some ar-

bitrary order from a shared work pool. Dynamic self-scheduling is most effective in improving

load balance when there is high variability in the amount of computation within the independent

iterations assigned to each processor. Since there are no dependences between iterations in a

DOALL loop, there is no need for synchronization between iterations. For the DOACROSS

loops in tiled loop nests, the iterations represent individual tiles, and there is explicit synchro-

nization to enforce dependences between tiles in different wavefronts. Dynamic scheduling

for tile execution must be modified such that idle processors obtain tiles in an order that re-

spects these dependences. Prior to executing a tile, interprocessor synchronization is required

to ensure that tiles in the preceding wavefront have been executed. Dynamic scheduling also

balances the workload for the variability in the degree of parallelism in successive wavefronts.

This form of dynamic self-scheduling is adequate for exploiting wavefront parallelism

in tiled loop nests for small-scale shared-memory multiprocessors. With a limited number of

processors, a large tile size generally provides an adequate degree of parallelism. Consequently,

intratile locality is enhanced because a large tile size captures most of the reuse from the original

loop nest within a single tile, and intertile locality has little impact on performance.

However, with little or no variability in the amount of computation per tile, dynamic

self-scheduling is not an appropriate strategy for large-scale shared-memory multiprocessors

for two reasons. First, a large number of processors requires a relatively small tile size for

sufficient parallelism. A small tile size reduces intratile locality and places greater importance

on intertile locality. Dynamic self-scheduling is not likely to enhance intertile locality since
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Figure 5.9: Static cyclic scheduling of tiles

tiles are assigned arbitrarily to idle processors. The second reason is that cache misses that

result from the reduced intertile locality with small tile sizes are likely to be incurred for

remote, rather than local, memory due to the arbitrary assignment of tiles to processors. The

performance degradation resulting from these misses may be significant.

5.4.2 Static Cyclic Scheduling

In normal static scheduling for DOALL loops, the assignment of iterations to processors is

determined in advance and remains fixed. Since DOALL loop iterations are independent, no

synchronization is required. To exploit wavefront parallelism, static cyclic scheduling for the

DOACROSS loops assigns rows of horizontally-adjacent tiles to the same processor, as shown

in Figure 5.9. In this manner, intertile reuse within rows of tiles is exploited by one processor

to enhance intertile locality. The cyclic mapping of rows of tiles to processors distributes the

workload in each wavefront evenly among processors to fully exploit the available parallelism.

However, explicit synchronization between dependent tiles is still required.

Static cyclic scheduling improves over dynamic self-scheduling in three ways. First, cyclic

scheduling enhances intertile locality for horizontally-adjacent tiles by statically assigning

them to the same processor, whereas dynamic self-scheduling does not necessarily exploit any

intertile reuse due to the arbitrary assignment of tiles. Second, interprocessor synchroniza-

tion to enforce loop-carried dependences is required only for vertically-adjacent tiles, since

horizontally-adjacent tiles are executed in the correct order by the same processor. Third,

the scheduling overhead is reduced since the assignment of tiles to processors is determined

statically. However, cyclic scheduling still requires synchronization for each tile to enforce
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Figure 5.10: Static block scheduling of tiles

dependences, and not all of the intertile reuse is exploited.

5.4.3 Static Block Scheduling

Static block scheduling for the DOACROSS loop iterations in a tiled loop nest assigns con-

tiguous blocks of tiles to the same processor, as shown in Figure 5.10. In this manner, all of

the intertile reuse within a block of horizontally- and vertically-adjacent tiles is exploited by

one processor to enhance intertile locality. Since the loops are DOACROSS, the tiles must

be executed in an order that respects the dependences. However, the available parallelism in

each wavefront is not exploited efficiently for the original wavefronts shown in Figure 5.10(a)

because a portion of the processors is left idle for the few initial and few final wavefronts. The

block assignment of tiles to processors precludes the use of additional processors even when

there are tiles that can be executed. Consequently, it takes longer for all processors to become

active, and it takes longer for execution to complete.

Block scheduling requires the use of modified wavefronts as shown in Figure 5.10(b)

to provide greater parallelism. This involves rotating wavefronts such that the number of

independent tiles in the largest wavefront is exactly equal to the number of processors. This

rotation corresponds to the selection of a different scheduling vector. The scheduling vector

is (1; 1) for the original wavefronts in Figure 5.10(a); in fact, this is the optimal scheduling

vector for dynamic and cyclic scheduling. The scheduling vector for the modified wavefronts

in Figure 5.10(b) is given by (b(N + T )=(B �P )c; 1), where N + T is the number of iterations

(with skewing), B is the tile size, and P is the number of processors. The new scheduling
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Table 5.1: Comparison of scheduling strategies for tiling

Dynamic Cyclic Block

runtime overhead yes no no
synch. req’d. horizontal/vertical tiles vertical tiles vertical processors
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B
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=P + P � 1
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B

m2
=P + P � 1

�l
N+T
B

m
+ P � 1

�
�
l
N+T
B�P

m
intertile locality none horizontal tiles horizontal/vertical tiles

vector preserves the loop-carried dependences in block scheduling, but reduces the time before

all processors become active in parallel execution and reduces the completion time.

Static block scheduling improves over both dynamic and cyclic scheduling in two ways.

First, block scheduling exploits all intertile reuse, except at block boundaries. Second, interpro-

cessor synchronization to enforce loop-carried dependences is required only for tiles on block

boundaries; no synchronization is required for adjacent interior tiles, since they are executed in

the correct order by the same processor. Similar to cyclic scheduling, the scheduling overhead

is also reduced since the assignment of tiles to processors is determined statically.

5.4.4 Comparison of Scheduling Strategies

The scheduling strategies are compared on the bases of runtime overhead, synchronization,

parallelism, and intertile locality enhancement. These features are summarized in Table 5.1.

5.4.4.1 Runtime Overhead for Scheduling

Dynamic self-scheduling incurs runtime overhead in order to assign tiles to processors as they

become idle. The overhead has two components. The first is maintaining the set of iterations to

be assigned. Since the wavefronts governing the order of tile assignment have a regular pattern,

only two counters are required for ths purpose; one counter identifies the current wavefront, and

the second identifies the last tile assigned in that wavefront. The cost of updating the counters

is low in comparison to the computation in each tile.

The second component of runtime overhead for dynamic self-scheduling arises from pro-

cessors competing for access to the counters governing tile assignment. For correctness, the
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counters must updated atomically, hence they must be protected with an appropriate synchro-

nization construct such as a lock. If more than one idle processor seeks to obtain a new tile at

the same time, contention for the lock and counters contributes overhead.

Static cyclic and static block scheduling incur no runtime overhead for scheduling since

the assignment of tiles to processors is determined in advance. The only overhead is due to

synchronization to satisfy dependences, which is discussed below.

5.4.4.2 Synchronization Requirements

DOACROSS loops require explicit synchronization between dependent iterations; Section 2.3.1

discussed the use of semaphores for this purpose. In tiled loop nests, rather than using one

semaphore for each individual tile, it is possible to employ a counter for each row of horizontally-

adjacent tiles. The counter is incremented as each tile in that row is completed, and hence tracks

the progress of the wavefronts through that row. The dependences between tiles are such that

only one tile in any given row may be executed at any time. Hence, the corresponding counter

will never be updated by more than one processor at any time and no locking is required.

Dynamic self-scheduling requires synchronization for both horizontally- and vertically-

adjacent tiles. In other words, prior to executing a tile in a given row, a processor must read the

counters for the same row and an adjacent row to verify that it is safe to execute the tile. Thus,

a processor must wait for both counter values to reach a safe value if it cannot begin executing

the tile immediately. Static cyclic scheduling requires interprocessor synchronization only for

vertically-adjacent tiles, hence only one counter for the adjacent row needs to be read.

Finally, static block scheduling requires interprocessor synchronization only for vertically-

adjacent tiles on block boundaries. As a result, the number of synchronization counters required

is equal to the number of processors, rather than the number of rows. The counter between two

blocks is checked only before executing tiles at the block boundary.

5.4.4.3 Parallelism and Theoretical Completion Time

In ideal circumstances, greater parallelism implies reduced execution time, hence the degree

of parallelism for the different scheduling strategies may be evaluated by determining the
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theoretical completion time2 for a given number of processors P . A unit time step is defined

as the theoretical execution time for one tile (i.e., neglecting the impact of synchronization and

locality); the completion time is expressed in these units. For simplicity, it is assumed that

there is no variance in the amount of computation per tile.3

The following analysis assumes that there are N iterations in each of the tiled inner loops

of the original loop nest, and that there are T iterations in the outer loop that carries reuse.

Skewing the inner loops by one iteration, then tiling the inner loops byB, yields a tiled iteration

space with nt = d(N + T )=Be tiles in each of the new outer loops. This value of nt also

represents the number of synchronization counters required for dynamic and cyclic scheduling,

and appears in Table 5.1. The final assumption is that P � nt, i.e., there are more tiles in the

largest wavefront than there are processors in order to ensure high processor utilization.

For dynamic self-scheduling, idle processors are assigned new tiles arbitrarily in an order

governed by the wavefronts, hence the processors are fully utilized with maximal exploitation

of the available parallelism, except when dependences for a tile force a processor to wait. In

the absence of scheduling and synchronization overhead, the theoretical completion time is

determined only by the ordering requirements for the tiles. Since there are P processors, the

initial P wavefronts shown in Figure 5.11 contain P �(P +1)=2 tiles and require exactly P time

units to execute in parallel, since there are no more than P independent tiles per wavefront.

The same argument applies for the final P wavefronts shown in Figure 5.11. The number of

tiles in the remaining interior wavefronts shown in Figure 5.11 is given by

n2
t � 2 �

P � (P + 1)
2

:

Since there are more tiles per wavefront than processors in the interior wavefronts, tiles in

different wavefronts may be executed concurrently, hence the parallel execution time for the

interior is given simply by dividing the number of tiles by the number of processors,

n2
t

P
� (P + 1):

Finally, the completion time for dynamic scheduling is given by the sum of the execution times

2Note that theoretical completion time is distinct from ideal schedule length [DR94] because it is determined
for a finite number of processors.

3Variances may exist between tiles from the boundaries of the iteration space and interior tiles; these variances
are not significant when the total number of tiles is large.
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Figure 5.11: Wavefronts for dynamic and cyclic scheduling (nt = 4,P = 2)

for the initial P wavefronts, the final P wavefronts, and the interior wavefronts,

Tdyn =
n2
t

P
� (P + 1) + 2 � P =

n2
t

P
+ P � 1:

In static cyclic scheduling, the independent tiles in each wavefront are evenly distributed

among P processors (or fewer if the number of independent tiles per wavefront is less than P ).

In the absence of overhead, the theoretical completion time is determined only by the ordering

requirements for the tiles. The cyclic distribution of independent tiles provides the same degree

of processor utilization as dynamic scheduling, hence the execution times for the initial, final,

and interior wavefronts are the same as for dynamic scheduling. As a result, the completion

time for static cyclic scheduling is the same as for dynamic scheduling:

Tcyc =
n2
t

P
� (P + 1) + 2 � P =

n2
t

P
+ P � 1:

In static block scheduling, the modified wavefronts shown in Figure 5.12 are different than

the wavefronts for dynamic and cyclic scheduling. Assuming that nt is evenly divisible by P ,

the number of initial wavefronts with fewer than P independent tiles is given by

nt
P
� (P � 1):

Since the number of independent tiles in each initial wavefront is less than P , the execution

time is equal to the number of initial wavefronts, and a similar argument applies for the final

wavefronts as well. The number of interior wavefronts is given by

�
nt � (P � 1)

�
�
nt
P
:
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Figure 5.12: Wavefronts for block scheduling (nt = 4,P = 2)

Since the number of independent tiles on each of the interior wavefronts is exactly P , the

execution time for the interior wavefronts is exactly equal to the number of interior wavefronts.

The completion time for block scheduling on P processors is therefore given by the sum of

times for the initial, interior, and final wavefronts, i.e.,

Tblk = 2 �
nt
P
� (P � 1) +

�
nt � (P � 1)

�
�
nt
P

= (nt + P � 1) �
nt
P
:

Since Tdyn = Tcyc, it suffices to compare Tcyc with Tblk. To make this comparison, let

R =
Tblk
Tcyc

=
(nt + P � 1) � nt

P

n2
t

P
+ P � 1

=
n2
t + nt � P � nt
n2
t + P 2 � P

;

i.e., the ratio of completion times. Figure 5.13(a) illustrates the variation of R for nt = 32

and 1 � P � 32. Since R � 1, this indicates that Tblk � Tcyc, i.e., block scheduling does

not provide as much parallelism as cyclic scheduling, even with the modified wavefronts.

Figure 5.13(b) illustrates the variation of R for P = 32 and 32 � nt � 256. Once again,

R � 1. There is clearly a maximum for R, and it may be shown that

Pmaxj @R
@P
=0 = 1� nt +

q
2 � n2

t � nt;

hence,

Rmaxj @R
@P
=0 =

1

1
nt
� 2 + 2

s
2�

1
nt

:

For nt = 32, Rmax = 1:19 (which agrees with Figure 5.13), indicating that at best, cyclic

scheduling is 19% faster than block scheduling. However, this large discrepancy is easily
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Figure 5.13: Variation of completion time ratio R = Tblk=Tcyc

avoided by choosing smaller tile sizes to increase the degree of parallelism for block scheduling.

This corresponds to increasing nt, hence the ratio approaches 1 again, as in Figure 5.13(b).

Completion times may also be used to establish a criterion for sufficient parallelism when

selecting tile sizes. The completion times are functions ofP , hence the times atP = 1 represent

sequential execution. For example, Tdyn(P = 1) = n2
t=1+ 1� 1 = n2

t . It is therefore possible

to express the speedup using P processors over sequential execution as

Sdyn =
n2
t

n2
t

P
+ P � 1

and the parallel efficiency as

Edyn =
Sdyn
P

=
n2
t

n2
t + P 2 � P

=
1

1 +
P 2 � P

n2
t

;

assuming no variance in the amount of computation per tile and no overhead.

Since 0 < Edyn < 1, it is possible to specify 0 < emin < 1 as the minimum desired

parallel efficiency. It is therefore possible to determine, for a given number of processors P ,

the requirements for the tile size to produced the desired efficiency. Hence,

emin �
1

1 +
P 2 � P

n2
t
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that after substitution for nt may be simplified to

B �
N + Ts

(P 2 � P ) �
emin

1� emin

:

For instance, if a target of emin = 0:75 is set for a problem where N + T = 1024 and P = 32

(i.e., minimum speedup of 0:75 � 32 = 24), then

B �
1024s

(1024� 32) �
0:75
0:25

;

or B � 18. The smallest possible value of B is 1, which would yield an efficiency of

1

1 +
P 2 � P

(N + T )2

=
1

1 +
1024� 32

10242

= 0:999;

but achieving such high efficiency is unlikely in practice. The overhead from synchronization

would diminish the achieved level of efficiency.

5.4.4.4 Locality Enhancement

The extent of intertile locality enhancement for each scheduling strategy is shown in Table 5.1.

The importance of enhancing intertile locality can be demonstrated by estimating the total

latency for cache hits and misses that occur during the execution of a single tile. The following

estimates are relative to one array in a skewed, tiled loop nest. For a tile size of B � B, and

T iterations in the original outer loop of the loop nest being tiled, the number of accesses to

the cache for an array within each tile is given by B2T . Each access to the cache has a latency

of C clock cycles. Some fraction of these references miss in the cache and incur a memory

latency M . For dynamic self-scheduling, there is no intertile locality, and in the worst case,

misses are incurred for all data elements accessed for the first time within the tile. The number

of such elements is given by B2 + (2B � 1)(T � 1), as shown in Figure 5.14(a). This number

must then be divided by L, the cache line size, to arrive at an estimate for the number of

cache misses. The latency in clock cycles for memory accesses is then given by multiplying

by the cache miss penalty M . Finally, the total latency, including ache accesses is given by

B2TC + (B2 + (2B � 1)(T � 1))(M=L): To measure the extent of locality enhancement for
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Figure 5.14: Number of data elements within a tile

different values of B and T , it is useful to express the fraction f of the total memory access

latency per tile that is due to cache misses, which is given by

fdyn =
(B2 + (2B � 1)(T � 1))(M=L)

B2TC + (B2 + (2B � 1)(T � 1))(M=L)
:

A similar derivation can be made for static cyclic scheduling and static block scheduling.

Because there is intertile locality for adjacent tiles, fewer misses are incurred per tile. The

reduction in the number of misses is determined by the number of elements in one or both of

the overlap regions shown in Figure 5.14(b). Once again, the fraction of the latency due to

misses can be determined. Hence,

fcyc =
(B2 +BT � 2B � T + 1)(M=L)

B2TC + (B2 +BT � 2B � T + 1)(M=L)
;

and

fblk =
(B2 � 2B + 1)(M=L)

B2TC + (B2 � 2B + 1)(M=L)
:

Note that for block scheduling, each tile incurs cache misses only for the square region of B �B

elements in Figure 5.14(a); the remaining data accesses in the tile are satisfied by the cache.

Hence, block scheduling incurs the same number of cache misses as tiling without skewing to

result in the ideal sweep ratio of T .

Figure 5.15 plots the fraction f for different tile sizes B and different values of T . The

cache line size is L = 4 elements, the cache access latency is C = 1 clock cycle, and the

cache miss latency is M = 50 clock cycles. As T increases, f decreases for all three strategies

because reuse carried by the original outer loop is captured within the tile through intratile

locality. However, f decreases far more rapidly for block scheduling. This is because block
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Figure 5.15: Fraction of miss latency per tile

scheduling benefits from enhancing intertile locality by reducing the number of cache misses

by an amount proportional to the overlap regions in Figure 5.14(b). Furthermore, for a given

value of T , f is further reduced with a smaller tile size for block scheduling because intertile

locality is more critical when the tile size is small (see Figure 5.8). In contrast, for a given value

of T , f increases when the tile size is reduced for both dynamic and cyclic scheduling. This is

because dynamic and cyclic scheduling do not enhance intertile locality to the same extent for

small tile sizes as block scheduling.

In conclusion, all of the scheduling strategies provide sufficient parallelism with small tile

sizes, but small tiles require exploiting intertile reuse for locality. Dynamic scheduling does not

exploit intertile reuse. Cyclic scheduling exploits some intertile reuse and provides the same

degree of parallelism for a given tile size as dynamic scheduling. Hence, cyclic scheduling

should perform better than dynamic scheduling. Block scheduling exploits all intertile reuse, but

with less parallelism than either dynamic or cyclic scheduling for a given tile size. However,

the benefit of enhancing locality may outweigh the loss of parallelism and provide the best

performance. The relative performance of the three strategies for small tile sizes on a large

number of processors depends on the tradeoff between parallelism and locality.



Chapter 6

Cache Partitioning to Eliminate Cache
Conflicts

This chapter proposes a technique called cache partitioning to eliminate cache conflicts between

data from different arrays in a loop nest, especially after applying a locality-enhancing trans-

formation. Cache conflicts cause data to be displaced from the cache, and subsequent reuse of

displaced data incurs unnecessary cache misses to reload the data into the cache. Conflicts are

particularly undesirable when transformations such as fusion and tiling are used because the

failure to retain reused data in the cache diminishes the effectiveness of these transformations.

This chapter is organized as follows. First, a discussion of cache conflicts is provided along

with related work in order to motivate conflict avoidance. The proposed cache partitioning

technique is then described in detail.

6.1 Cache Conflicts

This section provides the motivation for cache conflict avoidance by discussing cache organi-

zations, classifying cache conflicts, and discussing how data access patterns in loop nests lead

to cache conflicts. Related work on cache conflict avoidance is then assessed.

6.1.1 Cache Organization and Indexing Methods

Contemporary processors use either a single-level or multilevel cache organization [PH96,

CHK+96, MWV92, Yea96], as shown in Figure 6.1. In either case, the goal is to reduce the

number of main memory accesses because they incur the largest latency. Hence, it is imperative

to maximize locality by avoiding cache conflicts in the level of the cache closest to main memory.

98
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Figure 6.1: Cache organizations

As shown in Figure 6.1(a), a single-level cache normally uses virtual indexing, i.e., the

virtual address determines the cache location for each memory reference [PH96]. This approach

improves performance by allowing the physical address translation to proceed in parallel with

the cache access. Virtual indexing is also used in the primary cache of a multilevel cache, as

shown in Figure 6.1(b). However, the secondary cache may use physical indexing because the

physical address translation is complete by the time that a miss is detected in the primary cache.

The indexing method determines the mapping of data from memory into the cache. The

occurrence of cache conflicts is therefore determined by the indexing method. Hence, cache

conflict avoidance requires knowledge of the indexing method. Fortunately, the indexing in

typical caches uses an easily-computed function of address bits [PH96].

6.1.2 Cache Conflicts for Arrays in Loops

There are two types of cache conflicts for array data when executing loops [LRW91]. Self-

conflicts occur between elements from the same array. For example, in the loop nest shown

in Figure 6.2(a), the elements a[i; j] and a[i; j � 1] conflict with each other because they map

to the same location in the cache. In contrast, cross-conflicts occur between elements from

different arrays. For example, in the loop nest shown in Figure 6.2(b), the elements a[i; j] and

b[i; j] conflict with each other in the cache.

The likelihood of self-conflicts depends on the separation between elements with respect to

the cache size. For example, assume that array a in Figure 6.2(a) has dimensions of 1024�1024.

Hence, elements a[i; j] and a[i; j � 1] are separated by 1024 elements in memory. Current

caches are normally much larger than 1024 elements; for example, 1-Mbyte caches are now
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do j = 1, N
  do i = 1, N
    ... = a[i,j] + b[i,j]
  end do
end do

cache

cache

array a

array a

array b

j

i

j

i

(a) Conflicts within the same array (b) Conflicts between different arrays

do j = 2, N
  do i = 1, N
    ... = a[i,j−1] + a[i,j]
  end do
end do

Figure 6.2: Cache conflicts for arrays in loops

commonplace [CHK+96, Yea96]. If each array element is 8 bytes, a 1-Mbyte cache can hold

128 contiguous columns of 1024 elements from the same array without conflicting. Hence,

self-conflicts are unlikely to occur for typical array and cache sizes.

On the other hand, the likelihood of cross-conflicts depends on the separation between

elements from different arrays. For example, assume that both arrays a and b in Figure 6.2(b)

have dimensions of 1024 � 1024. If the two arrays are allocated contiguously in memory,

elements a[i; j] and b[i; j] are separated by a distance of 1024 � 1024 = 1; 048; 576 elements.

Since this distance may well exceed current cache sizes and allow the two elements to map to

the same cache location, cross-conflicts are more likely to occur than self-conflicts.

More representative loop bodies include array references of the form a[i � c1; j � c2] and

b[i� c1; j� c2], where c1; c2 are small integer constants. If a[i; j� c2] and a[i; j + c2] appear in

a loop nest with j as the outer loop index, then many columns of array a must remain cached

for locality. As a result, the potential for cross-conflicts with other arrays increases. Even

if elements a[i; j] and b[i; j] do not conflict, a conflict between a[i; j + c2] and b[i; j] is still

undesirable. Consequently, this chapter is concerned with avoiding cross-conflicts.

6.1.3 Data Access Patterns and Cache Conflicts

Loop nests sweep through multidimensional arrays, and array subscript expressions dictate the

data access patterns for these arrays in memory. These data access patterns are characterized
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Figure 6.3: Taxonomy of data access patterns for arrays in a loop nest

by direction and stride. The direction of access is either negative or positive and indicates

whether data is accessed in order of increasing or decreasing addresses in memory during the

execution of a loop nest. Stride indicates the distance between successive memory addresses

generated by a given array reference during the execution of the loop nest.

Figure 6.3 proposes a taxonomy that collectively describes the data access patterns for

different arrays in a loop nest. Data access patterns may either be regular or irregular in

nature. Regular access patterns are further categorized as having constant or varying strides.

This distinction is significant because the majority of array references in representative loop

nests generate regular data accesses with constant stride, with 1 being the most common stride

value [CMT94, MT96]. A constant stride of 1 is referred to as unit stride.

In the taxonomy of Figure 6.3, constant-strided data access patterns for different arrays are

further classified as having compatible or incompatible strides. Compatible array references

have the same constant stride and direction, whereas incompatible references have differing

stride and direction. This distinction is significant because the frequency of cross-conflicts is

determined by whether or not the access patterns for different arrays are compatible. Since

this work only considers array subscript expressions that are affine expressions [MT96, Wol92],

determining whether array accesses are compatible is straightforward.

The importance of compatibility is illustrated using the example loop nest shown in Fig-

ure 6.4(a). Assuming column-major storage order, each array reference generates unit stride

data accesses, as shown in Figure 6.4(b). Cache lines are accessed in the sequence they are

stored in memory, and elements within each cache line are accessed sequentially. All three
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(b) Data access patterns in array representation(a) Loop nest with compatible references

(c) Mapping of cache lines from memory into the cache during execution
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Figure 6.4: Frequency of cross-conflicts for compatible data access patterns

array references are therefore compatible. Figure 6.4(c) illustrates the mapping of individual

cache lines from memory into a 12-element direct-mapped cache for each loop iteration. Note

that two different cache lines are accessed for array b in each iteration. One of these cache

lines always conflicts with the single cache line accessed for array a. As a result, one of the

conflicting cache lines must be displaced from the cache in every loop iteration. Because there

are two elements in each cache line, unnecessary misses are incurred to reload cache lines from

memory in order to access the remaining element in each cache line.

In contrast, consider the example loop nest for matrix transpose shown in Figure 6.5(a).

The data access patterns within each array are shown in Figure 6.5(b). The reference to array a

generates unit-stride data accesses. However, the reference to array b does not generate unit-

stride data accesses. Instead, the majority of accesses to array b have a stride of 6. Clearly,
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do j=1,6
    do i=1,6
        a[i,j] = b[j,i]
    end do
end do

(a) Loop nest for matrix transpose
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Figure 6.5: Frequency of cross-conflicts for incompatible data access patterns

the access patterns for arrays a and b are incompatible. Figure 6.5(c) illustrates the mapping of

individual caches lines from memory into a direct-mapped cache for each loop iteration. The

frequency of cross-conflicts is substantially less than if the references were compatible. For

realistically large array and cache sizes, the frequency of cross-conflicts will be similarly low.

Because the majority of array references in representative loop nests generate unit-stride

data accesses [CMT94, MT96], compatibility among array references is common. Furthermore,

Figure 6.4 has demonstrated that compatibility leads to frequent cross-conflicts. Hence, this

chapter is concerned with conflict avoidance for compatible access patterns.

In the event that at least one array in a loop nest has incompatible data access patterns,

and compatibility is desired among all arrays, code and data transformations may be applied to

obtain compatibility. For example, loop distribution (Section 2.4.5) can isolate any statements
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referring to incompatible arrays in separate loops, and array dimension interchange (Section 2.5)

can alter array element order to obtain compatibility.

6.1.4 Related Work

The most common hardware approach to reduce the adverse impact of cache conflicts is to

increase the cache associativity, even though this may increase hardware complexity [PH96].

However, increased associativity may not necessarily reduce the occurrence of cross-conflicts

for a large number of arrays and a large amount of reused data from each array that must

remain cached for locality. The latter condition may result from applying the shift-and-peel

transformation and tiling.

A related hardware approach is the use of a small fully-associative cache, known as a victim

cache or assist cache, to supplement a large direct-mapped cache [CHK+96, Jou90]. The

additional cache temporarily holds cache lines that are displaced due to conflicts in the main

cache. If the displaced cache lines are reused shortly afterwards, the reuse is satisfied from the

victim cache, rather than from slow main memory. However, the limited capacity of a victim

cache may not be sufficient to hold large amounts of conflicting data.

As a software solution, Lam and Wolf [LRW91] present a tile size selection algorithm to

prevent self-conflicts when tiling is used to exploit array data reuse. However, large cache

sizes reduce the occurrence of self-conflicts. Coleman and McKinley [CM95] describe an

improved tile size selection algorithm that they claim also reduces the likelihood of cross-

conflicts. However, a much stronger guarantee is needed when a large amount of data from

different arrays must remain cached for locality after applying an aggressive transformation

such as shift-and-peel.

Temam et al. [TFJ93] study conflicts arising from array references in loop nests typical of

scientific applications. They analyze instances of self-conflicts and cross-conflicts, and suggest

the use of padding or careful placement of arrays in memory to reduce the occurrence of

conflicts. However, no concrete methodology is given for achieving this goal.

Bacon et al. [BCJ+94] discuss a method to determine the amount of padding needed to

avoid cache conflicts among individual array references in the innermost loop of a loop nest.

However, their approach is not adequate for locality-enhancing loop transformations because
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it does not consider data reuse in outer loops, and therefore cannot prevent conflicts for larger

amounts of reusable data that must remain cached.

Lebeck and Wood [LW94] present a case study of improving cache performance with a

variety of techniques including data transformations such as padding and memory alignment.

However, these transformations are discussed in the context of programmer tuning of application

performance with the aid of a simulation tool that profiles cache behavior. There is no discussion

of how such transformations may be incorporated into a compiler.

Romer et al. [RLBC94] propose operating system policies for dynamic remapping of page

assignments during execution to prevent conflicts in physically-indexed caches. The operating

system recolors (i.e., relocates) pages in memory whenever conflicting pages are detected in

the address translation buffer. The intent is to prevent future conflicts between data accessed

from the affected pages. However, recoloring of pages may incur execution time overhead.

Bugnion et al. [BAM+96] present a technique called compiler-directed page coloring that

customizes the page assignment at the start of program execution in order to prevent cache

conflicts in physically-indexed caches. Compile-time analysis of array usage in loops is used

to generate page-coloring hints for the operating system to reduce the likelihood that data from

different pages conflicts in the cache.

Page coloring schemes for physically-indexed caches have the advantage of being trans-

parent to the application, although compiler-directed coloring does requires compiler support.

The only limitation of page coloring by the operating system is that it is not applicable for

virtual caches, and some systems have been designed with a large, single-level virtual cache

for performance reasons [DWYF92, LH97].

6.2 Cache Partitioning

This chapter proposes cache partitioning as a software technique that prevents cross-conflicts

for reused data during the execution of a loop nest, specifically for the common and important

case of compatible access patterns. The primary intent of cache partitioning is to ensure that

reused data remains cached for locality after applying a locality-enhancing transformation.

Cache partitioning modifies the array layout in memory in order to alter the mapping of data

from different arrays into the cache and prevent the occurrence of conflicts.
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This section presents an overview of cache partitioning, then discusses the technique in

more detail. The technique is presented initially for a single loop nest. The technique is then

extended to apply across multiple loop nests.

6.2.1 Overview

Consider the loop nest sequence shown in Figure 6.6(a). Data reuse across the loops can be

exploited by applying simple fusion. In the fused loop nest shown in Figure 6.6(a), each outer

loop iteration accesses two adjacent columns of data from each array. One column from each

array is then reused in the subsequent iteration, and should remain cached for locality. However,

cross-conflicts occur when these columns map into overlapping regions of the cache, as shown

in Figure 6.6. Such conflicts displace data from the cache and diminish the benefit of fusion.

Cache partitioning removes these conflicts by adjusting the memory layout of the arrays. The

cache is logically partitioned into nonoverlapping regions, one for each array, and then the array

starting addresses are adjusted in virtual memory to map data from each array into a different

partition, as shown in Figure 6.6(c). The partitioning is done entirely in software; no hardware

support is required. The array starting addresses are adjusted by inserting appropriately-sized

gaps between the arrays in memory. These gaps represent inter-array padding, rather than

the conventional intra-array padding [BGS94]. In comparison with other data transformation

techniques (as discussed in Section 2.5), cache partitioning does not require any modifications

of array references or subscript expressions because only the starting addresses are affected;

the internal array structure remains unchanged.

Although each array is assigned to a unique partition in the cache, the partitions are not

static during the execution of a loop nest. Partitions cycle in unison through the cache as

execution proceeds, as shown in Figure 6.7. Each partition contains data from a different array,

and compatible array references ensure that as the partition boundaries move, no conflicts occur

between data from different arrays. As new data from each array is brought into the cache, it

displaces data from other arrays that is no longer needed.

Cache partitioning assumes that arrays referenced in a loop nest are similar in size and

dimensionality. Some loop nests reference lower-dimensionality arrays, and there is often

temporal data reuse for these arrays (see Section 3.5). If this reuse is carried by the innermost



CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 107

a

b

c

a

b

c

arrays mapping
in cache

data layout in memory

array a array b array c

gap gap

(a) Application of simple loop fusion to exploit array reuse

(b) Occurrence of cache conflicts for data accessed in fused loop

arrays mapping
in cache

data layout in memory

a b c

(c) Cache partitioning to modify data layout and prevent conflicts

do j = 2, N−1
  do i = 1, N
    a[i,j] = a[i,j] + a[i,j−1]
  end do
end do
do j = 2, N−1
  do i = 1, N
    b[i,j] = a[i,j] + b[i,j−1]
  end do
end do
do j = 2, N−1
  do i = 1, N
    c[i,j] = b[i,j] + c[i,j−1]
  end do
end do

do j = 2, N−1
  do i = 1, N
    a[i,j] = a[i,j] + a[i,j−1]
    b[i,j] = a[i,j] + b[i,j−1]
    c[i,j] = b[i,j] + c[i,j−1]
  end do
end do

Figure 6.6: Example of cache partitioning to avoid cache conflicts
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Figure 6.7: Conflict avoidance as partition boundaries move during loop execution

loop, the reused data may be register-allocated, and the array may be excluded from the set of

arrays for cache partitioning. If the reuse is carried by an outer loop, the array may still be

excluded, although the potential for conflicts with this array may increase. The alternative is

to apply data transformations such as array expansion to make all of the arrays similar in size,

but this approach leads to memory overhead and increases execution time because the temporal

reuse of the same element is spread among distinct array elements.

6.2.2 One-dimensional Cache Partitioning

The simplest form of cache partitioning is one-dimensional cache partitioning, where partitions

contain contiguous data from each array. One-dimensional partitioning limits the number of

indices from the outermost array dimension that reside simultaneously in the cache. For each

outermost index, all inner indices are present in the cache. One-dimensional cache partitioning

was illustrated earlier in Figure 6.6(c); each partition contains two columns (i.e., two outer

indices), and the columns are contiguous.

One-dimensional cache partitioning is generalized in the following manner. Givenna arrays

with dimensions N1 � N2 � � � � � Nk, and a cache capacity of c elements, na partitions are

required in the cache. The size of each partition is sp = bc=nac elements. Assuming column-

major storage order, the N1 elements in the first dimension comprise a column and are stored

contiguously in memory. The outermost array dimension is k, hence each partition contains a

contiguous block of N1 � N2 � � �Nk�1 � Bk elements. Bk is the limit on the number of indices

from the outermost dimension, and is given by Bk = bsp=(N1 � N2 � � �Nk�1)c. Note that this
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GREEDYMEMORYLAYOUT(A):: // A = set of arrays
na = jAj // number of arrays or partitions
sp = c=na // partition size
C = f0; sp; 2 � sp; : : : ; (na � 1) � spg // partition starting addresses
P = f0; 1; : : : ; na � 1g // available partition indices
q = q0 // q0 =starting address of available storage
do

select a 2 A // selection is arbitrary
mapped cache address = CACHEMAP(q)
foreach p 2 P do // determine gaps for available partitions

gap(p) = C(p)� mapped cache address
if C(p) < mapped cache address then

gap(p) = gap(p) + cache size // “wraparound” in the cache
endif

endfor
select popt 2 P where gap(popt) = min

p2P
gap(p) // select minimum gap

P = P n fpoptg // remove from available partitions
START(a) = q + gap(popt) // insert gap
q = START(a) + SIZE(a) // adjust start for next array
A = A n fag // remove from set of arrays

while A 6= ;

Figure 6.8: Greedy memory layout algorithm for cache partitioning

assumes that N1 �N2 � � �Nk�1 < sp. If this condition is not satisfied, multidimensional cache

partitioning (to be discussed in Section 6.2.3) is required.

The starting addresses of the na cache partitions must be separated by a distance sp to

ensure that they do not overlap. If the first partition begins at address 0 in the cache, the

partition starting addresses are 0; sp; 2 � sp; : : : ; (na� 1) � sp. The array starting addresses must

then be adjusted to map to unique partition starting addresses in the cache. This adjustment

is accomplished by inserting gaps between the arrays in memory, as shown in Figure 6.6(c).

These gaps represent memory overhead that should be minimized.

The greedy memory layout algorithm shown in Figure 6.8 performs three tasks: (a) it

assigns each array to a unique partition, (b) it inserts gaps in memory to enforce the partition

assignments, and (c) it attempts to minimize the overhead of the gaps. The arrays are selected

in an arbitrary order. A set of available partitions P is maintained, and each array is assigned to
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Figure 6.9: Memory overhead for 8N�N arrays from cache partitioning (cache size=131,072)

a partition that minimizes the distance between the starting address required for that partition

and the end of the array most recently placed in memory. Although multiple memory addresses

map into the selected partition, the address in free memory closest to the end of the most

recently placed array is always used. Each partition selected in this manner is removed from

the set of available partitions to ensure that two arrays are not assigned to the same partition.

The algorithm assumes a single-level, virtually-indexed, direct-mapped cache with an index

function CACHEMAP(). The complexity of the algorithm is O(n2
a).

An upper bound for the overhead (or increase in memory usage) from the gaps introduced

by this algorithm is estimated as follows. Using a probabilistic argument, if there are i partitions

remaining, the closest partition starting address is expected to be (1=i) � c elements from the

end of the most recently positioned array. Hence, the total size of the gaps is expected to bePna
i=1(1=i) � c. The quantity

Pna
i=1(1=i) is bounded from above by ln(na)+ 1. Hence, the bound

on the expected memory overhead is

(ln(na) + 1) � c
na � d

;

where c is the cache size, and d = N1 �N2 � � �Nk, the size of each array.

To verify this upper bound on memory overhead, Figure 6.9 shows the cache-partitioned

memory requirements normalized to the requirements for contiguous array layout. Cache

partitioning is applied to 8 arrays with dimensionsN �N , and N is varied from 1 to 1000. The

cache size is 131,072 elements (all 8 arrays fit in the cache whenN = 128). When compared to

the measured overhead from cache partitioning in each case, the probabilistic bound described
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above is reasonably tight, especially as N increases. Clearly, the overhead diminishes rapidly

as the array size increases relative to the cache size, which is the case in applications where

locality enhancement (and hence conflict avoidance) is required.

The algorithm in Figure 6.8 assumed a direct-mapped cache. A cache with an associativity

of m � 2 and capacity of c may be viewed as a set of m memory banks, each with capacity

c=m. Cache partitioning is still applicable in this case. Because m memory locations may be

mapped to the same cache location, there may be m cache partitions with the same starting

address. However, the partition size is still determined from the total capacity c. For example,

if na = 4, the partition size is sp = c=4. For a 2-way associative cache (m = 2), the starting

addresses for 4 partitions are f0; 0; c=4; c=4g. Hence the only change for the algorithm is the

set of partition starting addresses.

The above discussion also assumed a single-level, virtually-indexed cache. In a multilevel

cache, conflicts must be avoided in the physically-indexed level closest to main memory. Cache

partitioning is still applied in the same way to virtual addresses. If the operating system maps the

virtual address space onto the underlying physical address space such that all non-conflicting

virtual addresses imply non-conflicting physical addresses, then cache partitioning applies

identically to both virtual and physical address spaces.

Finally, partition starting addresses can be adjusted to avoid conflicts in all levels of a

multilevel cache hierarchy. For example, consider a two-level, direct-mapped hierarchy where

the primary cache has capacity cp, and the secondary cache has a larger capacity cs = 64 � cp. If

na = 4, then the partition starting addresses in the secondary cache are f0; cs=4; cs=2; 3 � cs=4g.

However, these starting addresses conflict in the small primary cache; they all map to location 0.

The starting addresses must be adjusted to separate them in the primary cache; since na = 4,

additional offsets in multiples of cp=na = cp=4 must be used. The conflict-free starting

addresses are f0; (cs + cp)=4; (cs + cp)=2; 3 � (cs + cp)=4g.

6.2.3 Multidimensional Cache Partitioning

Multidimensional cache partitioning is used when the cache capacity is not sufficient to

hold contiguous data from all arrays, or if the limit on the number of outermost indices is

insufficient to provide locality for reused data. Multidimensional cache partitioning reduces
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Figure 6.10: Multidimensional cache partitioning

the number of indices from inner array dimensions that are in the cache in order to increase

the available cache capacity for indices from the outermost dimension. In this case, the data

in each partition is no longer contiguous because reducing the number of indices from inner

dimensions skips over portions of the array in memory. Multidimensional partitioning must be

accompanied with an appropriate code transformation to reduce the data accessed from inner

dimensions (an example is multidimensional shift-and-peel as discussed in Section 4.3).

Since the data is not contiguous in memory, the partitions containing this data in the cache

are not contiguous either, as shown in Figure 6.10(a). These noncontiguous partitions must be

carefully interleaved in the cache to ensure that they do not overlap and cause conflicts, as in

Figure 6.10(b). Hence, the goal of multidimensional partitioning is to determine the starting

addresses for these interleaved, noncontiguous partitions. These starting addresses are then

used to derive the memory layout using the greedy algorithm of Figure 6.8.

Multidimensional cache partitioning is generalized in the following manner. For arrays with

dimensions N1 � N2 � � � � � Nk, the first task is to determine appropriate block dimensions

B1 �B2 � � � � �Bk, where Bi � Ni, 1 � i � k. The block dimensions must satisfy the cache

capacity constraint na �B1 �B2 � � �Bk � c, where na is the number of arrays and c is the cache

size. A simple choice is a common block size B1 = � � � = Bk = b k

q
c=nac. However, the data

access patterns for the arrays in a loop nest may dictate a minimum block size in one or more

dimensions. For example, the block size for the innermost dimension may be set equal to a

multiple of the cache line size. The block sizes for the remaining dimensions are then chosen

subject to the above capacity constraint.
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Once the block dimensions are known, the interleaving of the partitions is determined using

a set of interleaving factors n1; : : : ; nk. These interleaving factors specify how successively

larger groups of partitions can be interleaved without overlap. It is initially assumed that

N1 � N2 � � �Nk = c to derive the interleaving factors; this restriction is later relaxed. For a

three-dimensional array, Figure 6.11(a) shows how B2 � B3 subblocks, each of size B1, are

mapped into the cache starting at address 0. For a given index in the second array dimension,

the starting addresses of two contiguous subblocks of size B1 are separated by a distance N1,

as shown in Figure 6.11(a). In a space of size N1, n1 = bN1=B1c subblocks of size B1 from

different arrays may be placed. Hence, n1 partitions for n1 different arrays are interleaved to

create a contiguous region of size N1 � B2, as shown in Figure 6.11(b). To prevent these n1

partitions from overlapping, their starting addresses in the cache must be separated (i.e., shifted

in the cache) by a distance g1 = B1. If the first partition begins at address 0, the remaining

starting addresses are g1; 2 � g1; : : : ; (n1 � 1) � g1. For example, in Figure 6.11(b), we have

B1 = N1=2. Hence, the interleaving factor is n1 = 2, and the starting addresses of the two

partitions are 0 and g1.

After interleaving a group of n1 partitions in the cache, there are B3 contiguous regions of

size g2 = N1 �B2 whose starting addresses are separated by a distance N1 �N2, as illustrated in

Figure 6.11(b). Identical groups of partitions of may be introduced into the space between these

contiguous regions. The number of groups that can be interleaved within a distance of N1 �N2

is given by the interleaving factor n2 = b(N1 � N2)=(N1 � B2)c = bN2=B2c. There are now a

total of n1 �n2 partitions. To ensure that the n2 groups of n1 partitions do not overlap, the groups

must be separated or shifted by a distance g2 in the cache. For example, in Figure 6.11(c), we

have B2 = N2=2. Hence, the interleaving factor is n2 = 2. The total number of partitions to

this point is n1 � n2 = 4, and the starting addresses are 0; g1; g2; g2 + g1.

After interleaving n2 groups of n1 partitions in the cache, there is a contiguous region

of size g3 = N1 � N2 � B3 in the cache, as illustrated in Figure 6.11(c). The cache size is

N1 � N2 � N3 > g3, hence identical groups of partitions for other arrays may be introduced

into the remaining space. The number of such groups is determined by the interleaving factor

n3 = b(N1 � N2 � N3)=(N1 � N2 � B3)c = bN3=B3c. The total number of partitions is now

n1 � n2 � n3. To ensure that the n3 groups do not overlap, they must be separated or shifted by
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a distance g3 in the cache. For example, in Figure 6.11(c), we have B3 = N3=2. Hence, the

interleaving factor is n3 = 2. The total number of partitions to this point is n1 �n2 �n3 = 8, and

the starting addresses of the partitions are 0; g1; g2; g2 + g1; g3; g3 + g1; g3 + g2; g3 + g2 + g1.

In general, interleaving for k-dimensional noncontiguous partitions results in

n1 = bN1=B1c; n2 = bN2=B2c; : : : ; nk = bNk=Bkc;

g1 = B1; g2 = N1 �B2; : : : ; gk = N1 �N2 � � �Nk�1 �Bk;

where ni specifies the number of groups that can be interleaved at each point, and gi specifies

the separation between the groups to prevent overlapping. The base offset for a given group is

ti � gi, where 0 � ti < ni, and the starting address for each partition is determined by summing

the group offsets across all dimensions,
kX
i=1

ti � gi:

Upon completion of the interleaving, it must be true thatn1 �n2 � � �nk � na. It is possible for

this condition to be violated even if the capacity constraint is satisfied because of the truncation

in the calculation of n1; : : : ; nk. In such cases, one or more of the block sizes B1; : : : ; Bk may

be decreased in order to increase the corresponding interleaving factors by a sufficient amount

to satisfy this condition.

The restrictionN1 �N2 � � �Nk = c is now removed, and the case ofN1 �N2 � � �Nk < c is now

considered. In the preceding case of N1 � N2 � � �Nk = c, the final interleaving factor is given

by nk = b(N1 �N2 � � �Nk)=(N1 �N2 � � �Bk)c = bNk=Bkc. In this case, the cache size is larger

thanN1 �N2 � � �Nk. To use the additional cache space for partitions, the final interleaving factor

is computed as nk = bc=(N1 �N2 � � �Bk)c. The preceding interleaving procedure is applied in

the same way except for the change in computing nk. Note that the block dimensions are still

constrained by na �B1 �B2 � � �Bk � c.

The final case to consider is N1 � N2 � � �Nk > c. Since the array size exceeds the cache

size, wraparound occurs when mapping data into the cache. In this case, padding is introduced

in the array dimensions that cause wraparound to ensure that a partition for a given array does

not overlap with itself in the cache, and also to prevent partitions for different arrays from

overlapping with each other. The innermost dimension i in which wraparound occurs, i.e. the

smallest i such that N1 � N2 � � �Ni > c, is identified. In this dimension, the largest index mi,

1 � mi < Ni, that does not cause wraparound is determined. In other words, the largest mi

such that N1 � N2 � � �mi � c; but N1 � N2 � � � (mi + 1) > c, is determined. The restriction
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Figure 6.12: The use of padding to handle wraparound in the cache

Bi � mi is then introduced so that the contiguous subblocks of size N1 �N2 � � �Ni�1 � Bi that

result from interleaving do not exceed the cache size.

If wraparound occurs in dimension i, then wraparound will also occur in all remaining outer

dimensions i < j � k because the array size increases by a factor ofNj in each outer dimension

j. Although it is possible to avoid the complications of wraparound for these outer dimensions

by requiring Bj = 1, i < j � k, this approach is highly restrictive and may not satisfy other

requirements on the block dimensions. To allow wraparound without overlap, an appropriate

amount of padding is introduced in each outer dimension such that contiguous segments of

data corresponding to adjacent indices in an outer dimension map to adjacent, nonoverlapping

regions of the cache, as shown in Figure 6.12.

For each of the outer dimensions i < j � k in which wraparound is permitted, the procedure

for introducing padding is as follows. First, the size of the contiguous data block corresponding

to a single index of dimension j is determined as gj�1 = N1�N2 � � �Ni�1�Bi � � �Bj�1. We require

gj�1 � c to prevent the contiguous data region from overlapping with itself. Assuming that the

start of this region maps to address 0 in the cache, the end of the region maps to address gj�1.

However, the next index in dimension j maps to address cj�1 =CACHEMAP(N1 �N2 � � �Nj�1) in

the cache, assuming the array starting address maps to address 0. If cj�1 6= gj�1, then overlaps

will occur due to wraparound for adjacent indices of dimension j. To prevent overlaps, a padding
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of pj�1 is required in dimension j�1 such that CACHEMAP(N1 �N2 � � �Nj�2 � (Nj�1+pj�1)) =

gj�1. The padding ensures that blocks of data corresponding to adjacent indices in dimension

j map to adjacent, nonoverlapping regions of the cache. Because the blocks are adjacent in the

cache after padding (i.e., there is no space between these blocks), the interleaving factor for

dimension j�1 is nj�1 = 1. For all subsequent uses of dimension j� 1, Nj�1 is replaced with

(Nj�1 + pj�1). The block size in dimension j is Bj , hence the block of data for Bj adjacent

indices occupies a contiguous region of size gj = N1 �N2 � � �Ni�1 �Bi � � �Bj�1 �Bj . The above

procedure is then repeated for dimension j + 1.

The use of padding in the manner described above forces the interleaving factor to be 1 for

each outer dimension i � j < k. For the outermost dimension k, the interleaving factor is

nk = bc=(N1 �N2 � � �Ni�1 �Bi � � �Bk)c. The inner dimensions 1 � j � i� 1 are unaffected by

the padding, hence the interleaving factor is still determined as nj = bNj=Bjc. As before, it

must be true that n1 � n2 � � �nk � na to ensure that a sufficient number of partitions are created.

If not, one or more of the block dimensions B1; B2; : : : ; Bk are reduced to permit increasing

the interleaving factors to satisfy the condition.

6.2.4 Cache Partitioning for Multiple Loop Nests

Real applications consist of more than one loop nest, and several loop nests may reference the

same set of arrays. Hence, cache partitioning should also be applicable for arrays referenced

in multiple loop nests. The goal is to derive an appropriate data layout such that there are

no conflicts among the arrays in any of the loop nests. This approach would be used, for

example, after fusing different loop nest sequences that accessed a common set of arrays.

Cache partitioning is extended for such cases by first determining the number of cache partitions

needed to satisfy all the resulting loop nests, then assigning the arrays to those partitions such

that no two arrays used in the same loop nest conflict with each other.

A program may contain n` � 2 loop nests referencing a common set of arrays. The number

of partitions required for each loop nest is equal to the number of arrays in the loop nest, and

is generally different for each loop nest. Consequently, deriving the cache-partitioned memory

layout for each loop nest individually results in different sets of starting addresses for the same

arrays. To avoid conflicting requirements on starting addresses, a single set of partitions and
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array-to-partition assignments is used for all loop nests. Not all of the arrays are used in any

one loop nest, hence the number of partitions in this set may be larger than required for a given

loop nest. Furthermore, two arrays may be assigned to the same partition if they are not used in

the same loop nest, hence there may be fewer partitions than arrays. Therefore, the extension

of cache partitioning to multiple loop nests requires: (a) determining the number of partitions

that satisfies all loop nests, and (b) assigning arrays to partitions when there are fewer partitions

than arrays. The remainder of this section addresses these two aspects of the problem.

The problem of finding the required number of partitions for multiple loop nests is formu-

lated as a graph-coloring problem. Let L denote a set of n` loop nests referencing a set A of

na arrays. Let A(`) denote the set of arrays referenced (read or written) in a loop nest ` 2 L.

The number of partitions required individually by each loop nest ` is jA(`)j. A graph G(V;E)

is constructed with a set of vertices V [G] = A representing the arrays, and a set of edges E[G].

If arrays a1,a2 are referenced in the same loop nest, then there is an edge e = (a1; a2) 2 E[G].

Consequently, the arrays referenced in a loop nest form a clique (a fully-connected subgraph)

of size jA(`)j in the graph G(V;E). The goal is to label each vertex with a color such that no

vertices connected by an edge have the same color, and the number of colors is minimized. The

number of colors is then interpreted as the number of partitions np required to satisfy all loop

nests, and similarly-colored vertices denote arrays that are assigned to the same partition.

Finding the minimum number of colors, or chromatic number, for an arbitrary graph is an

NP-complete problem [GJ79]. However, it is possible to specify a lower bound for the solution

in this case, based on the construction of the graph described above. The lower bound for

the chromatic number is nr = max
`2L

jA(`)j because there is at least one clique of nr vertices

embedded in the graph. A clique of nr requires no fewer than nr colors. Any approximation

algorithm for graph coloring may be applied to find a solution np for the entire graph. If

np = nr, then the solution is optimal.

The number of colors np obtained from graph coloring determines the required number

of partitions. Cache partitioning is then used to obtain the starting addresses for a set of np

partitions in the cache. The problem is to map colors in the graph to cache partitions and place

the arrays in memory such that the sizes of the gaps inserted to enforce the partition mappings

are minimized. The problem is constrained by the fact that identically-colored vertices in the
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graph represent arrays that share the same partition.

The greedy algorithm in Figure 6.13 is employed to reduce gap sizes using an approach

similar to that used in the algorithm shown in Figure 6.8. The input consists of the result of

graph coloring and the set of starting addresses for the partitions in the cache. The output is a

mapping of colors to partitions and a memory layout for the arrays based on this mapping. The

algorithm selects arrays in an arbitrary order for placement in memory. If the color assigned

to the array has not yet been mapped to a partition, then one is chosen by computing gap sizes

for all available partitions, then selecting the partition yielding the smallest gap. This selection

implicitly determines the partition assignment for all remaining arrays sharing the same color.

When one of these remaining arrays is later selected by the algorithm, the size of the gap

inserted for the layout is computed using the previously-assigned partition since there is no

longer any choice for that array. The complexity of the algorithm is O(na � np).

To determine the memory overhead from the greedy algorithm for multiple loop nest, it is

important to note that np � na. In other words, for na � np of the arrays, there is no choice

in the partition assignment; the coloring dictates a fixed assignment. A simple probabilistic

approach can be employed to arrive at a reasonable estimate for the expected memory overhead.

When the color assigned to an array has not yet been mapped to a partition, the distance to the

closest available partition (i.e., the gap size) is assumed to be (1=i) � c, where i is the number of

unassigned partitions remaining and c is the cache size. However, when the color has already

been mapped to a partition, the gap size is expected to be c=2. The expected overhead om from

combining these two cases is

om �

 
na � np

2
+

npX
i=1

1
i

!
� c

na � d
;

where d = N1 � N2 � � �Nk is the array size. The overhead diminishes rapidly as the data size

increases relative to the cache size.

6.3 Chapter Summary

This chapter has described a conflict avoidance technique called cache partitioning. Cache

conflict avoidance is crucial for locality-enhancing transformations that rely on retaining data
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GREEDYMEMORYLAYOUT2(np,A,COLOR,C):: // A = set of arrays
// COLOR:A 7! f0; 1; : : : ; np � 1g (output from graph coloring)

// C = fc0; � � � ; cnp�1g (starting addresses in cache)
P = f0; 1; : : : ; np � 1g // unassigned partition indices
q = q0 // q0 =starting address of available storage
foreach p 2 P

partition(p) = �1 // initial partition mappings are undefined
endfor
do

select a 2 A // selection is arbitrary
` = COLOR(a) // get color for array
if partition(`) = �1 then // not yet assigned to a partition

mapped cache address = CACHEMAP(q)
foreach p 2 P // determine gaps

gap(p) = C(p)� mapped cache address
if C(p) < mapped cache address then

gap(p) = gap(p) + cache size
endif

endfor
select popt 2 P where gap(popt) = min

p2P
gap(p) // select minimum gap

gap = gap(popt)
P = P n fpoptg // remove from available indices
partition(`) = popt // establish color-to-partition mapping

else
p = partition(`) // color already assigned to partition
mapped cache address = CACHEMAP(q)
gap= C(p)�mapped cache address
if C(p) <mapped cache address then

gap = gap + cache size
endif

endif
START(a) = q + gap // insert gap
q = START(a) + SIZE(a) // adjust start for next array
A = A n fag

while A 6= ;

Figure 6.13: Greedy memory layout algorithm for multiple loop nests
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in the cache. Cache partitioning addresses the commonly-occurring case of compatible data

access patterns that can lead to frequent conflicts in loop nests. With one-dimensional cache

partitioning, data from each array is contiguous in the cache because data from all inner

dimensions is cached. Multidimensional cache partitioning results in non-contiguous partitions

by reducing the amount of cached data from inner array dimensions, and is useful when

contiguity causes the cache capacity to be exceeded. Finally, cache partitioning has been

extended to apply across multiple loop nests accessing a common set of arrays.



Chapter 7

Experimental Evaluation

This chapter provides an experimental evaluation of the cache-locality-enhancing techniques

proposed in this dissertation. The objective is to demonstrate the feasibility and effectiveness

of the proposed techniques for representative applications on contemporary shared-memory

multiprocessors. In particular, the intent is to not only show that the proposed techniques

provide significant performance improvements, but also to examine the factors influencing

performance such as the number of cache misses and the latency for cache misses.

This chapter is organized as follows. First, the prototype implementation of the proposed

techniques within an existing compiler framework is described. Next, the multiprocessor ex-

perimental platforms are described. The remaining discussion is then devoted to reviewing

the experimental results. Improvements in performance are reported along with detailed mea-

surements of cache behavior in order to explain the observed improvements. The measured

improvements in performance are also compared with estimated improvements obtained with

the model proposed in Chapter 3.

7.1 Prototype Compiler Implementation

This section outlines a prototype implementation of the proposed techniques in an experimental

compiler infrastructure. An overview of the compiler infrastructure is given first, followed by

a summary of the enhancements and additions needed to support the proposed techniques.

122
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inlining within loop bodies

constant propagation

reduction recognition
dependence testing

interprocedural constant propagation

parallelizing backend

These are global passes that are
performed on the entire program.

induction variable substitution

private variable recognition These are local passes that are applied
in sequence to each subroutine or function. 

input program

output program

Figure 7.1: Passes in the Polaris compiler

7.1.1 Compiler Infrastructure

The prototype implementation of the proposed techniques was developed in the Polaris compiler

infrastructure [BEF+95]. Polaris is a source-to-source restructuring tool whose input and output

are FORTRAN 77 programs augmented with directives embedded in comments. The primary

purpose of Polaris is to detect parallel loops. Polaris is implemented in an object-oriented

manner and provides classes of objects for constructing an internal representation of program

source code, along with functionality to manipulate the internal representation.

Polaris consists of several passes that are applied in sequence, as shown in Figure 7.1. The

dependence testing pass is the key pass. To enable more accurate dependence testing, the

global passes propagate constants and perform selective inlining of loop bodies. The induction,

reduction, and private variable recognition passes identify variables that generate serializing

dependences. Such variables are listed in annotations embedded in the internal representation,

and transformations such as array privatization are later used to remove these dependences.

Since Polaris is primarily intended to detect parallel loops, dependences are only tested

and represented within loop nests. Loop-carried dependences are represented with direction
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vectors only; no distance information is maintained. Dependence analysis marks loops that do

not carry dependences for the benefit of the parallelizing backend.

The final pass in Polaris before generating the output source program is the parallelizing

backend. This pass searches for annotations identifying parallel loops, and annotations listing

variables that are privatizable or involved in reductions. The output program is then tailored

for the target machine by converting the parallel loop annotations to target-specific directives.

At the same time, transformations for private or reduction variables are applied, or appropriate

directives are generated if the target machine provides them.

7.1.2 Enhancements to Infrastructure

A number of enhancements were required to incorporate the new techniques proposed in this

dissertation into Polaris. The enhancements and the implementation are summarized in the

following paragraphs. Altogether, the new code for the enhancements and core techniques

comprises over 4,000 lines of executable C++ code.

7.1.2.1 Support for High-level Code Transformations

Polaris is designed primarily to detect and exploit parallelism in loops with minimal change

to the source code. In contrast, the techniques proposed in this dissertation require structured,

high-level code transformations (e.g., strip-mining and fusion). To support these transforma-

tions, a new object library was incorporated into Polaris. Each object in this library performs

a high-level transformation such as loop fusion or strip-mining in a structured manner. Com-

pound transformations are supported by collecting individual high-level transformation objects

into a special container object that specifies the affected code and the order in which the

transformations are to be applied. These compound transformations cannot be represented as

simple unimodular transformations because the component transformations include fusion and

strip-mining. However, the three elementary unimodular transformations (skewing, reversal,

and permutation) are included in the library, hence unimodular transformations are a proper

subset of the possible compound transformations.
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7.1.2.2 Dependence Distance Information Across Loop Nests

The shift-and-peel transformation proposed in Chapter 4 requires dependence analysis across

loop nests as well as accurate distance information. Polaris only performs dependence analysis

within loops and does not extract distance information. Consequently, a new dependence

testing pass was developed in Polaris to identify candidate loop nest sequences for fusion, then

apply the Omega Test [Pug92] to pairs of array references in different loop nests to obtain

distance information. This distance information is then incorporated into a dependence graph,

as described in Chapter 4.

7.1.2.3 Manipulation of Array Data Layout

Polaris is a source-to-source transformation tool, hence the final data layout is ultimately

determined by the native compiler on the target machine. To implement cache partitioning,

some control over data layout must be exercised at the source code level. Explicit control over

data layout at the source code level in FORTRAN 77 is limited to COMMON blocks since

compilers are required to preserve the order and content of COMMON blocks. Hence, the

prototype source-level implementation of cache partitioning is limited to arrays in COMMON

blocks, which may require modifications to source code to collect arrays into COMMON blocks

where necessary. Furthermore, cache partitioning requires consistent definitions of the same

COMMON block in different parts of the program. Compilers may not be able to enforce this

consistency when different definitions of the same COMMON block cause memory aliasing. To

overcome this limitation, source code modifications may also be required to enforce consistency.

A new pass was introduced into Polaris for cache partitioning. The memory layout algorithm

described in Chapter 6 is applied to candidate arrays in order to determine the sizes of the gaps

to be introduced between arrays in order to enforce a conflict-free data layout. With this

information, a global pass is made over the entire program, where the COMMON blocks are

first restructured to collect arrays into the same COMMON block, then the required gaps are

introduced between arrays in each COMMON block.
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7.2 Experimental Platforms

The experiments described in this chapter were conducted on two representative shared-memory

multiprocessor architectures: the HP/Convex SPP series and the SGI Power Challenge series.

These systems employ high-speed commodity microprocessors and provide a hardware cache-

coherent memory architecture. This section describes the features of these multiprocessors.

Earlier experimental results (reported by Manjikian and Abdelrahman [MA97]) were also

obtained on Kendall Square Research KSR1 and KSR2 multiprocessors [Ken91]. These results

are not included in this chapter because their conclusions are the same as those from the results

obtained on the faster and more recent Convex and SGI multiprocessors.

7.2.1 Hewlett-Packard/Convex SPP1000 and SPP1600

The Hewlett-Packard/Convex SPP1000 multiprocessor [Con94] consists of up to 16 hypernodes,

each containing 8 processors with a crossbar connection to 512 Mbytes of common memory, as

shown in Figure 7.2. The crossbar provides uniform access to the local memory for processors

within a hypernode. Each processor is a Hewlett-Packard PA7100 RISC microprocessor

running at 100 MHz with separate 1-Mbyte instruction and data caches [DWYF92]. The

caches are direct-mapped and virtually-indexed, hence cache partitioning must be used for

conflict avoidance. The cache access latency is 1 clock cycle or 10 nsec, and the cache line

size is 32 bytes. Hypernodes are connected together with the Coherent Toroidal Interconnect

(CTI), a system of rings based on the SCI standard interconnect, clocked at 250 MHz. The

CTI permits processors to access memory in any hypernode through coherent global shared

memory.

The Convex SPP1000 is a non-uniform memory access (NUMA) multiprocessor. Cache

misses to retrieve data from the local hypernode memory incur a nominal latency of 40 cycles,

or 400 nsec. However, misses to retrieve data from remote hypernode memory through the

CTI incur a larger latency of approximately 200 cycles, or 2 �sec. A unique feature of the

Convex SPP1000 is the CTIcache, which is a portion of the memory in each hypernode reserved

for caching data from other hypernodes in order to reduce the effective memory latency for

remote memory accesses. Remote data is retrieved in units of 64 bytes, but supplied to
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Figure 7.2: Architecture of the Convex SPP1000

processors in 32-byte cache lines from the CTIcache (i.e., processors do cache remote data).

The remote memory access latency is incurred once to load data into the CTIcache, and

subsequent accesses by any processor that hit in the CTIcache incur the same access latency as

the local memory, i.e., 40 cycles instead of 200 cycles. The Convex SPP1000 provides hardware

monitoring for accurate measurement of the number of cache misses and the corresponding

latencies to local and remote memory.

The Convex SPP1600 is an enhancement of the SPP1000 to provide higher performance.

In the Convex SPP1600, each processor is a Hewlett-Packard PA7200 RISC microproces-

sor [CHK+96] running at 120 MHz, rather than a PA7100 microprocessor running at 100 MHz

in the SPP1000. In addition to a faster clock rate, the PA7200 microprocessor incorporates three

major enhancements over the PA7100. First, there is an additional integer execution unit to

permit dual issue of integer instructions (integer and floating-point instructions are dual-issued

on both microprocessors). Second, a 2-Kbyte fully-associative assist cache supplements the

1-Mbyte direct-mapped data cache for the PA7200. The assist cache holds data that conflicts

with data in the main cache. Third, the PA7200 provides hardware-initiated prefetching. On

a cache miss for a normal memory access, the PA7200 issues a prefetch request for the cache

line adjacent to the missed cache line. Prefetching with arbitrary stride is also supported by

exploiting a feature of the instruction set [CHK+96]. The HP/Convex native compiler generates

machine code using memory instructions that automatically increment the contents of an offset

register for array references in the body of a loop. Whenever a cache miss occurs for such
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instructions, the hardware also issues a prefetch request using the autoincrement value as the

prefetch stride. A prefetched cache line is marked with a special tag as it is loaded into the

cache. On the first reference to a prefetch-tagged cache line using the autoincrement memory

instruction, the hardware issues a new prefetch request.

The SPP1600 also uses a four-state cache coherence protocol instead of the three-state

protocol in the SPP1000. The additional state for the SPP1600 is a clean-exclusive state that

avoids a cache miss to obtain write permission for a given cache line when there are no other

cached copies of the cache line. An example of code that benefits from this enhancement is a

statement such as A[i] = A[i] + 1 appearing in the body of a loop within index variable

i. To perform the computation in this statement, a read cache miss is first incurred to load

A[i] into the cache. On the SPP1000, an additional coherence miss is then needed to obtain

permission from the memory to modify A[i]. On the SPP1600, the second miss is avoided by

reading the cache line in the clean-exclusive state; the write is performed in the cache and the

state changes to dirty-exclusive without requiring a memory reference.

Apart from the higher speeds and additional features provided by the PA 7200, the archi-

tecture of the Convex SPP1600 is otherwise the same as the Convex SPP1000.

7.2.2 Silicon Graphics Power Challenge R10000

Experiments were conducted on an SGI Power Challenge multiprocessor consisting of super-

scalar MIPS R10000 microprocessors [Sil96b]. The Power Challenge is a bus-based, uniform

memory access (UMA) multiprocessor. The bus has a wide datapath of 256 bits and operates

at 47.6 MHz for an available bandwidth of over 1 Gbyte/sec. The bus supports up to 9 pro-

cessor boards, each containing 4 microprocessors that share a common interface to the system

bus. The shared memory is interleaved in units of cache lines to allow multiple outstanding

requests to be serviced concurrently. Up to 8 memory boards may be connected to the bus, for

a maximum memory of 16 Gbytes.

Each R10000 microprocessor runs at 196 MHz and issues up to 4 instructions in each clock

cycle. The R10000 has separate on-chip 32-Kbyte caches for instructions and data, and a 1-

Mbyte external cache that is physically-indexed. All caches are 2-way set-associative, and the

external cache line size is 128 bytes. The R10000 supports software-controlled prefetching of
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cache lines into the external cache using a dedicated prefetch instruction. The native compiler

automatically inserts and schedules prefetch instructions into the optimized executable code,

and also provides a flag to disable this feature. By disabling prefetching, its performance impact

can be measured.

The R10000 also provides two internal counters that may be configured to count a variety of

events, such as the number of issued instructions or the number of cache misses. Unfortunately,

these counters cannot measure latency. The perfex [ZLTI96] software tool is used to select

the events to be counted during the execution of a given program. When the program being

measured terminates, perfex reports the accumulated event counts to the user.

Although the Power Challenge does not, strictly speaking, have a scalable architecture, the

R10000 microprocessors it employs are also used in the scalable SGI/Cray Origin multipro-

cessor [Sil96a]. Measurements indicate that the sustained memory bandwidth for the Origin

is comparable to the Power Challenge [McC]. Hence, the performance obtained on the Power

Challenge should reflect the expected performance on a comparable Origin multiprocessor.

7.3 Codes Used in Experiments

Table 7.1 lists the codes used to evaluate the techniques proposed in this dissertation. The

codes are divided into two categories: kernels and applications. The kernels are excerpted

codes of manageable size for detailed study. The applications are complete codes that provide

an indication of the true performance impact of the proposed techniques for representative

programs. For the purposes of experimentation and overcoming limitations of the prototype

compiler implementation, certain modifications were performed to the code. These changes

are briefly described below.

The selected applications originate from uniprocessor environments, hence the problem

sizes reflect the limitations of uniprocessor execution. Since it is reasonable to expect that

larger problem sizes justify in part the need for multiprocessor execution, array sizes were cor-

respondingly increased in order to justify the need for locality enhancement in a multiprocessor

environment. Array sizes were also decreased in some experiments to permit data to fit in

caches and hence measure the instruction overhead of the locality-enhancing transformations.

Where necessary, arrays in the applications were collected into COMMON blocks to facil-
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Table 7.1: Kernels and applications for experimental results

Name Description Lines of code
SOR kernel of loops for PDE solver 8
Jacobi kernel of loops for PDE solver 11
LL18 kernel from Livermore Loops 24
calc kernel from qgbox [McC92] ocean model 186
filter subroutine in hydro2d 247

tomcatv SPEC95 benchmark (mesh generation) 190
swm256 SPEC92 benchmark (shallow water equations) 487
hydro2d SPEC95 benchmark (Navier-Stokes) 4292
spem ocean circulation model [Hed94] 26937

itate cache partitioning for conflict avoidance. All of the arrays in tomcatv had to be placed

in a COMMON block. In the remaining applications, most of the arrays were already in COM-

MON blocks. For the hydro2d application, however, many COMMON block declarations

were inconsistent across subroutines in the original code. Compilers may not be able to en-

force consistency because of memory aliasing, hence the COMMON blocks were restructured

for consistent usage throughout the program. The usage of COMMON blocks in the spem

application was much more consistent, but minor changes were still applied; specifically, some

local automatic arrays were incorporated into COMMON blocks.

To increase the length of the candidate loop nest sequence in tomcatv for the shift-

and-peel transformation, a modification suggested by Lebeck and Wood [LW94] was applied.

This modification reorders the loop nests in tomcatv to increase the number of adjacent,

compatible loop nests. Although Lebeck and Wood apply loop fusion to these loop nests, they

target uniprocessors only; they do not address the serializing dependences that are present in the

fused loop nest sequence. Furthermore, there are also fusion-preventing dependences in this

loop nest sequence after reordering the loop nests. Lebeck and Wood fuse the loops directly,

but this violates the original program semantics. In contrast, our shift-and-peel transformation

ensures that the fusion is legal and that the resulting loop nest may still be parallelized.

Finally, all of the applications considered in this study are iterative in nature, consisting of

a main loop that repeatedly executes the core computation of the application. Because there is

little or no variance in the computation across successive iterations of the main loop, the number
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Figure 7.3: Speedups for cache partitioning alone on Convex multiprocessors

of iterations of the main loop was reduced in the larger applications. This modification was

required to reduce the time for experiments with restricted access to dedicated multiprocessor

systems without interference from other jobs.

7.4 Effectiveness of Cache Partitioning

This section provides results to demonstrate the importance of avoiding cache conflicts. Fig-

ure 7.3 illustrates the parallel speedup with and without cache partitioning on the Convex

multiprocessor for two applications, tomcatv and swm256. No locality-enhancing loop

transformations are used in these experiments; the difference in performance is attributable

solely to the data layout. All speedups in Figure 7.3 are calculated with respect to the execu-

tion time for the cache-partitioned code on one processor, hence the increase in speedup for a

given number of processors also represents an improvement in absolute performance. Both of

these applications display extreme sensitivity to the occurrence of conflicts because the array

dimensions are very close to powers of two (513 � 513 for tomcatv and 257 � 257 for

swm256). Even the assist cache in the SPP1600 is not sufficient to avoid undesirable conflict

misses. Cache partitioning improves performance at 8 processors by 25% in Figure 7.3(b). The

memory overhead from cache partitioning is 7% for tomcatv and 13% for swm256.

The next set of results compare cache partitioning with array padding when loop fusion is

applied. The measured number of cache misses on one processor during parallel execution of
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the LL18 kernel on 8 processors are shown in Figure 7.4. The array size is 1024� 1024. The

number of misses obtained for various amounts of padding within array dimensions (shaded

bars) is compared to the number of misses obtained from applying cache partitioning across the

arrays (dashed line). Padding does not guarantee the elimination of all conflicts; it is difficult

to predict the amount of padding needed to achieve the smallest number of misses. In contrast,

cache partitioning directly results in the smallest number of misses. The memory overhead

from cache partitioning is under 2% in this case.

Figure 7.5(a) illustrates the parallel speedup with and without cache partitioning on the

Convex SPP1600 for the LL18 kernel. The speedups are shown for the original code and the

code with fusion enabled by shift-and-peel. Again, all speedups are computed with respect

to the execution time for the original code with cache partitioning on one processor, hence

the increase in speedup for a given number of processors also represents an improvement in

absolute performance. There are two features to note in Figure 7.5(a). First, the speedup for

the original code is higher with cache partitioning than without it. Second, the speedup of the

fused version of the code without cache partitioning is worse than the speedup of the original

version without cache partitioning. In other words, cache conflicts are negating any potential

performance benefit from fusion. This loss of performance is occurring despite the presence of

the assist cache in the SPP1600.

Finally, Figure 7.5(b) illustrates the importance of conflict avoidance when fusing loop nests

in the hydro2d application. All speedups are computed with respect to the execution time for
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Figure 7.5: Impact of cache partitioning with fusion on Convex SPP1000/SPP1600

the original code with cache partitioning on one processor in order to show improvements in

absolute performance for a given number of processors. This application is not as sensitive to

conflicts as the applications in Figure 7.3. Nonetheless, the occurrence of conflicts still renders

loop fusion ineffective. The memory overhead is 12% in this case.

Given the importance of conflict avoidance, particularly when enhancing locality with

the shift-and-peel transformation for loop fusion as in Figures 7.4 and 7.5, the remaining

experimental results presented in this chapter include cache partitioning for both the original

and enhanced code. Since cache partitioning improves the performance of the original program,

the reported improvements in performance reflect the benefit of enhancing locality in the absence

of conflicts, and represent a lower bound on the improvement in performance.

7.5 Effectiveness of the Shift-and-peel Transformation

This section presents results that demonstrate the effectiveness of the shift-and-peel transfor-

mation for the kernels and applications shown in Table 7.2. For each kernel or application,

Table 7.2 provides the number of loop nest sequences to which the shift-and-peel transformation

was applied, as well as the length of the longest sequence and the maximum shift/peel amounts

for any sequence. The loop nests of interest are analyzed and transformed using the prototype

compiler implementation discussed in Section 7.1. The only exception is the calc loop nest

sequence that was analyzed and transformed manually because the inner loops in two of the
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Table 7.2: Kernels and applications used in experiments for the shift-and-peel transformation
Base Total Lines Uniproc. Number of Loops in
array data of time on loop longest Maximum

Name size (Mbytes) code SPP1000 sequences sequence shift/peel
Jacobi 400 � 400 2.4 11 — 1 2 1/1
LL18 1024 � 1024 72 24 3.99 s 1 3 2/1
calc 1024 � 1024 48 186 3.02 s 1 5 3/3
filter 1602 � 640 63 247 8.31 s 1 10 5/4
tomcatv 513 � 513 16 190 132 s 1 3 1/1
hydro2d 802 � 320 50 4292 3820 s 3 10 5/4
spem 60 � 65 � 65 70 26937 1197 s 11 8 1/2

loop nests prevent the current implementation from obtaining dependence distances.

For reference, Table 7.2 also provides uniprocessor execution times on the Convex SPP1000

multiprocessor for the unfused code with cache partitioning. These times are used to calculate

speedups for the experimental results. For each of the kernels, the reported time in Table 7.2

is for one iteration of the kernel code, with initialization time excluded. However, for the

applications, the times include initialization and many iterations of the main loop in each

application. For tomcatv and hydro2d, the uniprocessor times are for 100 iterations of the

main loop, and the time for spem is for 50 iterations of the main loop. All uniprocessor times

(as well as the multiprocessor times to be reported later in this section) reflect elapsed real time

that is measured on dedicated systems to minimize any variability caused by interference from

other programs.

The results to be presented in this section are organized as follows. First, the improvements

in performance provided by the shift-and-peel transformation will be demonstrated for the

kernels, supported by measurements of cache behavior to explain the observed improvements.

Measured improvements in performance will also be compared with estimated improvements

obtained with the model presented in Chapter 3. Second, the benefit of the shift-and-peel

transformation will be demonstrated for parallel execution of application programs. Third, the

benefit of combining the shift-and-peel transformation with data prefetching will be considered.

7.5.1 Results for Kernels

The presentation of the experimental results for the kernels is organized as follows. First,

the derived amounts of shifting and peeling will be presented to demonstrate the need for the
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Table 7.3: Amounts of shifting and peeling for kernels

LL18 calc filter
Loop shifts peels shifts peels shifts peels

1 0 0 0 0 0 0
2 1 0 0 0 0 0
3 2 1 2 2 0 0
4 3 3 1 1
5 3 3 2 2
6 2 2
7 3 3
8 4 4
9 4 4
10 5 4

shift-and-peel transformation. Second, performance results will be provided, and the measured

performance improvements will be compared with the estimated improvements obtained with

the model proposed in Chapter 3. Third, the overhead of the shift-and-peel transformation

will then be characterized by measuring the effect of reducing problem sizes such that data

fits in caches. Finally, the performance obtained with the shift-and-peel transformation will

also be compared to the performance obtained with the alignment/replication techniques of

Callahan [Cal87] and Appelbe and Smith [AS92].

7.5.1.1 Derived Amounts of Shifting and Peeling

The amounts of shifting and peeling required to fuse the outermost loops of the kernels are

given in Table 7.3. Shift-and-peel is indeed required in order to apply fusion legally across all

loops. Furthermore, shift-and-peel is required to enable parallel execution of the fused loops.

The complexity of the dependence relationships across these representative loop nest sequences

requires a systematic approach to automate the derivation and application of the shift-and-peel

transformation. For example, the dependence chain multigraph forfilter contains 149 edges

from which the shift and peel amounts in Table 7.3 are derived.

It should be noted that the dependences in these kernels necessitate replication with the

techniques proposed by Callahan [Cal87] and Appelbe and Smith [AS92] because alignment
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conflicts exist (see Section 4.2.5). In contrast, our technique does not require any replication.

7.5.1.2 Multiprocessor Speedups

Figure 7.6 shows the parallel speedups and measured cache misses for the fused and unfused

versions of three of the kernels on the Convex SPP1000. Array sizes were 1024 � 1024 for

LL18 and calc, and 1602 � 640 for filter. For each kernel, speedups are computed

with respect to the execution time without fusion on one processor, hence the increase in

speedup for a given number of processors represents an improvement in absolute performance.

Furthermore, superlinear speedups may be expected from this choice of reference for speedups.

Cache partitioning is used in all the experiments. Misses are measured on one processor and are

representative for all processors used in parallel execution. Fusion improves performance by at

least 30% for LL18 and calc, and by 60% for filter. These improvements are attributable

entirely to enhanced locality, as evidenced by the reduction in the number of cache misses for

a given number of processors. Because misses are shown on a logarithmic graph in Figure 7.6,

the constant slopes reflect a constant ratio for the number of misses before and applying fusion

at a given number of processors. The larger the reduction in the number of cache misses, the

larger the improvement in performance.

7.5.1.3 Impact of Problem Size on the Improvement from Fusion

To study the impact of problem size with respect to cache size on the improvement from fusion,

the array sizes in LL18 and calc were varied. The results for the Convex SPP1000 are shown

in Figure 7.7. The horizontal axes in the graphs represent different array sizes, and the vertical

axes represent the performance improvement from fusion, which is computed as the ratio of

parallel execution times of the original loops and fused loops, respectively. Any point above the

reference line at 1 indicates that fusion improves performance. As before, cache partitioning

is used throughout, hence any improvements represent lower bounds. Figure 7.7(a) indicates

that with 8 processors, the two larger array sizes are such that the data does not entirely fit in

the cache, hence fusion improves performance. With 16 processors, the total cache capacity

is doubled, and Figure 7.7(b) indicates that even the 512 � 512 array size permits data to fit

in the cache for calc, hence fusion does not improve performance. Note that because LL18
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Figure 7.6: Speedup and misses of kernels on Convex SPP1000
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Figure 7.7: Improvement in speedup with fusion for LL18 and calc on Convex SPP1000

has nine arrays of the same size whereas calc has only six, fusion still improves performance

at 16 processors for LL18 when the array size is 512 � 512 because all the data cannot

simultaneously fit in the caches. These observations suggest using knowledge of data sizes

and cache sizes to determine the profitability of applying the shift-and-peel transformation for

locality enhancement. A compiler can include both the original and transformed versions of

a loop nest sequence in executable code, with a run-time decision to select the appropriate

version based on the amount of data accessed per processor.

It must be stressed that the shift-and-peel transformation is applied at the level of the source

code in these experiments. The transformed source code is then passed to the native compiler.

The ability of the native compiler to optimize more complex loop structures determines the

efficiency of the resulting executable code. Faced with more complex code, the compiler

is less aggressive in its optimizations, which then increases the instruction overhead. It is

reasonable to expect that integrating the shift-and-peel transformation within a native compiler

framework should result in better performance by permitting more aggressive optimizations to

be performed in conjunction with loop fusion.

7.5.1.4 Comparison of Shift-and-peel with Alignment/replication

The shift-and-peel transformation avoids the overhead that results from the alignment and

replication techniques proposed by Callahan [Cal87] and Appelbe and Smith [AS92]. Figure 7.8
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Figure 7.8: Performance of shift-and-peel vs. alignment/replication for LL18

compares the speedup of the fused LL18 loop nests parallelized using shift-and-peel with the

speedup of the fused loop nest parallelized using direct application of alignment and replication.

For the latter case, it was necessary to replicate two arrays and two statements for parallelization.

All speedups are computed with respect to the execution time for the original loop nest sequence

on one processor, hence higher speedup also indicates better absolute performance. The figure

clearly indicates that superior performance is achieved with shift-and-peel by avoiding the

overhead associated with the replication of code and data.

7.5.2 Comparing Measured Performance Improvements with the Model

This section compares the measured performance improvements for the kernels with estimates

obtained with the model discussed in Chapter 3. The following paragraphs determine sweep

ratios and the memory fraction of execution time in order to apply the model.

7.5.2.1 Determining the Sweep Ratios

Table 7.4 characterizes each loop nest kernel in terms of the number of arrays read from or

written to memory both before and after fusion. Because all arrays have the same size, memory

accesses can be quantified in terms of sweeps through memory for the arrays, as discussed in

Section 3.2. Assuming that the cache capacity is not sufficient to hold all of the data referenced

across the loop nests, locality enhancement with fusion is required, and a reduction in the

number of memory accesses is expected when fusion is applied.
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Table 7.4: Characteristics of loop nest kernels

Num. Sweep statistics Sweep ratio
loop Num. before fusion after fusion with without

Kernel nests arrays read write read write writes writes
Jacobi 2 2 4 2 2 2 1.50 2.00
calc 5 6 13 6 6 5 1.73 2.17
LL18 3 9 16 6 9 6 1.47 1.78
filter 10 8 33 14 8 6 3.36 4.13

DO K= 2, N-1
DO J= 2, N-1
ZA[J,K]= (ZP[J-1,K+1]+ZQ[J-1,K+1]-ZP[J-1,K]-ZQ[J-1,K])

*(ZR[J,K]+ZR[J-1,K])/(ZM[J-1,K]+ZM[J-1,K+1])
ZB[J,K]= (ZP[J-1,K]+ZQ[J-1,K]-ZP[J,K]-ZQ[J,K])

*(ZR[J,K]+ZR[J,K-1])/(ZM[J,K]+ZM[J-1,K])
END DO

END DO
DO K = 2, N-1
DO J = 2, N-1
ZU[J,K]= ZU[J,K]+S*(ZA[J,K]*(ZZ[J,K]-ZZ[J+1,K])

-ZA[J-1,K] *(ZZ[J,K]-ZZ[J-1,K])
-ZB[J,K] *(ZZ[J,K]-ZZ[J,K-1])
+ZB[J,K+1] *(ZZ[J,K]-ZZ[J,K+1]))

ZV[J,K]= ZV[J,K]+S*(ZA[J,K]*(ZR[J,K]-ZR[J+1,K])
-ZA[J-1,K] *(ZR[J,K]-ZR[J-1,K])
-ZB[J,K] *(ZR[J,K]-ZR[J,K-1])
+ZB[J,K+1] *(ZR[J,K]-ZR[J,K+1]))

ENDDO
ENDDO
DO K = 2, N-1
DO J = 2, N-1
ZR[J,K]= ZR[J,K]+T*ZU[J,K]
ZZ[J,K]= ZZ[J,K]+T*ZV[J,K]

ENDDO
ENDDO

Figure 7.9: Code for LL18 loop nest sequence

When arrays have the same size, the sweep ratio can be used to express the reduction in

the number of memory sweeps, as discussed in Section 3.3. Equation 4.1 in Section 4.1.2

computes the sweep ratio for fusion using both reads and writebacks to assess the benefit of

reducing all memory accesses. However, in contemporary systems, the latency for writebacks
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on replacement is often hidden by buffering the replaced cache line and initiating the read for

the new cache line first. The writeback to memory is performed while the read response is

being forwarded to the requesting processor. In this case, the effective sweep ratio is computed

by excluding the writebacks, which results in a larger sweep ratio. For comparison, Table 7.4

provides both variants of the sweep ratio. Clearly, there is significant potential for locality

enhancement because the sweep ratios are significantly larger than 1.

To understand how the sweep statistics in Table 7.4 are obtained, consider the code for the

LL18 kernel shown in Figure 7.9. The first loop nest in Figure 7.9 references 6 arrays, the

second loop nest references 6 arrays, and the third loop nest references 4 arrays. Assuming

that the data does not remain cached between loop nests, a total of 16 arrays will be read from

memory into the cache. Similarly, arrays are modified 6 times across the loop nests, hence

there will be 6 arrays written back to memory as new data is loaded into the cache. When the

loops are fused, each array should only be read once from memory and reused as needed from

the cache, for a total of only 9 arrays. The number of arrays written back remains at 6.

The remaining statistics in Table 7.4 are obtained in a similar manner. It may be noted

that fusion reduces the number of effective number of writebacks for the calc and filter

kernels. As discussed in Section 4.1.2, this reduction occurs when the same array is written in

more than one of the original loop nests being fused. With fusion, multiple writes to the same

array are performed in the cache, and only one writeback is performed to memory.

There is one additional factor that must be considered when quantifying the number of

memory accesses. The Convex SPP1000 employs a three-state cache coherence protocol that

generates additional coherence misses. These upgrade misses [PH96] occur when a cache

line is loaded into the cache in a read-only state, and later written while it is still cached.

The write may not proceed without an additional cache miss to upgrade the state of the line

to exclusive-modified, even if no other cached copies exist. For the Convex SPP1000, the

effective round-trip latency for the upgrade request, even without a data response, is essentially

the same as a normal cache miss because the memory directory must be accessed.

Upgrade misses occur when an array is both read and written in a loop body, with the read

occurring before the write. For the LL18 kernel in Figure 7.9, there are four such references

for arrays ZU, ZV, ZR, and ZZ. Hence, there are 4 upgrade references in addition to the 16
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Table 7.5: Revised sweep ratios to account for upgrade requests

Sweep statistics Sweep ratio
before fusion after fusion (reads and

Kernel read upgrade read upgrade upgrades only)
Jacobi 4 0 2 1 1.33
calc 13 2 6 1 2.14
LL18 16 4 9 4 1.54
filter 33 6 8 4 3.25

Table 7.6: Cache misses for parallel execution on Convex SPP1000

Number of Original Fused
Kernel processors expect. meas. expect. meas.
LL18 2 2621440 2629000 1703936 1717110

16 327680 320954 212992 214546
calc 2 1966080 1965820 917504 932760

16 245760 194001 114688 115443
filter 2 4998240 4633480 1537920 1653140

16 624780 528052 192240 217479

references in the original loop nest sequence. Even when the loops are fused, the reads still

precede the writes, hence there are still 4 upgrade requests. A similar analysis for the other

kernels results in the revised statistics given in Table 7.5. If the ratios in Table 7.5 are compared

with Table 7.4, it is clear that upgrade misses reduce the ratios.

Using the sweep statistics in Table 7.5, it is possible to verify that the expected number of

cache misses are being incurred in parallel execution. Given the number of read and upgrade

sweeps, the array size (number of elements), the cache line size, and the number of processors,

it is possible to compute the expected number of cache misses per processor as follows:

#cache misses =
(#sweeps) � (array size)

(cache line size) � (#processors)
: (7.1)

The cache line size on the Convex SPP1000 is 32 bytes, which is equivalent to 4 array elements

using 8-byte floating point values.

Using the above formula, the expected number of cache misses per processor and the

measured number of cache misses are compared in Table 7.6 for each of the kernels in parallel
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Table 7.7: Comparison of estimated and measured improvement from fusion

Measured fm Sweep ratio Perf. improvement
before (without with fusion

Kernel fusion writes) estimated measured

LL18 (2 proc.) 0.53 1.54 23% 30%
LL18 (16 proc.) 0.56 24% 30%
calc (2 proc.) 0.52 2.14 38% 55%
calc (16 proc.) 0.49 35% 32%
filter (2 proc.) 0.44 3.25 44% 63%
filter (16 proc.) 0.45 45% 53%

execution at 2 and 16 processors. There is agreement between the expected and measured

results in the majority of cases. There are only two significant discrepancies, and both are

easily explained. For calc andfilter, the measured number of cache misses is significantly

lower than the expected number of misses at 16 processors because the data is beginning to fit

in the cache, hence there is a reduction in the number of capacity misses across loop nests in

the original loop nest sequences. Nonetheless, fusion of the loop nests provides a much larger

reduction in the number of cache misses at 16 processors for both kernels. Furthermore, cache

conflict avoidance ensures that the full benefit of fusion is obtained.

7.5.2.2 Determining fm and Applying the Model

For the purpose of estimating the performance improvement from fusion using Equation 3.2

in Chapter 3, a reasonably-accurate value for fm (the memory fraction of execution time) is

required. This value may be obtained using the hardware monitoring features of the Con-

vex SPP1000. The accumulated cache miss latency on one processor can be measured for an

execution of the original loop nests before fusion, and this quantity may be divided by the

execution time for the original loop nests to obtain an estimate of fm.

Table 7.7 compares the estimated and measured improvements in performance from fusion

for each of the kernels on 2 and 16 processors of the Convex SPP1000. The measured

improvements are computed from the execution times T (p) from parallel execution on p
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processors,  
Toriginal (p)

Tfused (p)
� 1

!
� 100%;

where p = 2 or p = 16. The estimated improvements are obtained by substituting the measured

fm values and the sweep ratios from Table 7.7 into Equation 3.2, then converting to a percentage,

 
1

(1� fm) + fm=rm
� 1

!
� 100%:

Because the workload is balanced, the improvement applies equally to all processors in parallel

execution.

The intent of the comparison in Table 7.7 is to demonstrate that the measured performance

improvements are meaningful with respect to the expected benefit embodied in the sweep ratio.

In all but one case, the improvements obtained with the model underestimate the measured

improvements. For calc at 16 processors, the measured improvement is less than the estimate

because reused data begins to fit in the combined cache capacity when executing the original

loop nest sequence, as discussed earlier (see Table 7.6). The underestimated improvement

for the remaining cases in Table 7.7 can be explained by pointing out that the HP PA7100

microprocessors used in the SPP1000 implement hit-under-miss [DWYF92], which means that

processors do not stall immediately on a cache miss. Hit-under-miss allows a processor to

continue executing after an initial cache miss until the missing data is actually needed by a

subsequent instruction, or until a second cache miss occurs. This feature provides a small

degree of concurrency between computation and memory access, though certainly not as much

as full prefetching. Recall that each 32-byte cache line contains only four array elements. Prior

to fusion, the opportunities for hit-under-miss are limited by the fact that one of every four

unique array references in each loop nest incurs a cache miss. Reducing the number of cache

misses with fusion increases the effectiveness of hit-under-miss by allowing more instructions

to be executed before a stall is required.

7.5.3 Results for Applications

The benefit of the shift-and-peel transformation with cache partitioning for applications on the

Convex SPP1000 is shown in Figure 7.10. For tomcatv, the array size is 513 � 513, and

the total data size is 16 Mbytes. For hydro2d, the array size is 802 � 320, and the total
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Figure 7.10: Speedup for applications on Convex SPP1000

data size is 50 Mbytes. For spem, the array size is 60 � 65 � 65, and the total data size is

70 Mbytes. For each application, the speedups in Figure 7.10 are computed with respect to

the execution time of the original code with cache partitioning on one processor, hence the

increase in speedup for a given number of processors represents an improvement in absolute

performance. For tomcatv, the shift-and-peel transformation improves performance by 10%

to 12%. For hydro2d, the improvement is 23% on one processor, and diminishes to 8%

on eight processors. At 16 processors, the data begins to fit in the caches, so the overhead

of the shift-and-peel transformation degrades the fused performance. The improvement in

performance for spem is at least 20% up to eight processors because this application had

the largest number of transformed loop sequences, and these sequences constitute close to

half of total execution time. However, at 16 processors, remote memory accesses cause



CHAPTER 7. EXPERIMENTAL EVALUATION 146

the performance for both the fused and unfused versions to fall below the performance at 8

processors. This behavior results in part from serial loops that the Convex compiler executes on

a single processor and in part due to isolated loop nests for which the Convex compiler chooses

to apply loop permutation, causing excessive data movement between hypernodes. The loop

permutation, in particular, cannot be disabled in the compiler without disabling optimization

altogether. Nonetheless, the fused version still provides better performance, and would continue

to do so if this behavior could be counteracted with more control over the code produced by

the native compiler.

7.5.4 Combining Shift-and-peel with Prefetching

7.5.4.1 Results for Kernels

Uniprocessor speedups These results are obtained on the SGI Power Challenge R10000

where prefetching can be disabled in software. The results are presented for uniprocessor

execution to focus initially on the interaction of loop fusion and prefetching.

The uniprocessor kernel speedups on the Power Challenge are shown in Figure 7.11. For

each kernel, speedups are determined relative to the execution time without loop fusion or

prefetching. The reference times in seconds are 4.67 for Jacobi (100 iterations of the kernel),

3.67 for LL18 (20 iterations), and 3.87 (20 iterations) for filter. The array sizes are

400 � 400 for Jacobi and LL18, and 402 � 160 for filter; the total data size exceeds

the 1-Mbyte cache capacity in all cases. Figure 7.11 confirms that combining fusion with

prefetching results in the largest speedup by first reducing the number of memory accesses,

then hiding as much of the latency as possible for the remaining memory accesses. Reducing

the number of memory accesses makes more memory system bandwidth available and improves

the effectiveness of prefetching.

In order to confirm the extent of the reduction in the number of memory accesses, Table 7.8

compares the expected and measured number of cache misses in the external cache for the

original and fused loops. The expected number of cache misses is determined with Equation 7.1

in Section 7.5.2 using the number of read sweeps in Table 7.4. The measured number of cache

misses is obtained with the perfex tool [ZLTI96]. The measurements given in Table 7.8

are obtained without prefetching; measurements with prefetching are similar because prefetch
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Figure 7.11: Uniprocessor speedups on Power Challenge

Table 7.8: Expected and measured cache misses for uniprocessor execution on Power Challenge

Original Fused
Name expected measured expected measured

Jacobi 40000 39659 20000 19770
LL18 160000 163314 90000 89728

filter 132660 125132 32160 34811

requests are not distinguished from normal memory requests. The expected and measured

values in Table 7.8 for all three kernels agree closely.
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Table 7.9: Expected and measured writebacks for uniprocessor execution on Power Challenge

Original Fused
Name expected measured expected measured

Jacobi 20000 19308 20000 19129
LL18 60000 58376 60000 57407

filter 56280 55252 24120 25183

Similarly, Table 7.9 compares the expected and measured number of writebacks. The

measured number of writebacks is obtained with the perfex tool [ZLTI96]. The expected

number of writebacks is calculated in a manner similar to the expected number of cache misses;

the only difference is that the number of written arrays in Table 7.4 is used. Once again, the

expected and measured results in Table 7.9 are in close agreement.

Multiprocessor speedups Multiprocessor kernel speedups obtained on the Convex SPP1000

and SPP1600 are presented in this section (parallel speedups for the kernels could not be

obtained on the Power Challenge due to restricted access). Figure 7.12 shows the speedups for

LL18 and filter. Array sizes are 1024� 1024 for LL18 and 1602� 640 for filter.

All speedups in Figure 7.12 are relative to the execution time without fusion on one pro-

cessor of the SPP1000 (see Table 7.2). Hence, higher speedups in Figure 7.12 indicate better

absolute performance (i.e., reduced execution time). Figure 7.12 makes a direct comparison of

performance on the two multiprocessors, even though the processors used in the two systems

are different (see Section 7.2.1). This comparison is made only because prefetching on the

SPP1600 is hardware-initiated and cannot be disabled; speedups without prefetching can only

be obtained on the SPP1000. The results in Figure 7.12 confirm that hardware prefetching

on the SPP1600 combined with fusion provides the best performance. At 8 processors on the

SPP1600, fusion improves parallel speedup by approximately 50% for both kernels.

To verify that the expected number of memory accesses are being made by each processor

in parallel execution, Table 7.10 compares the expected and measured number of cache misses

for the original and fused loops on the SPP1600. The expected number is determined from

the sweep statistics in Table 7.4 using Equation 7.1 in Section 7.5.2. The measured number
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Figure 7.12: Multiprocessor speedups on Convex SPP1000 and SPP1600 (computed with

respect to one processor on Convex SPP1000)

Table 7.10: Cache misses for parallel execution on Convex SPP1600

Number of Original Fused
Name processors expect. meas. expect. meas.
LL18 2 2097152 2106030 1179648 1192240

4 1048576 1052390 589824 596249
8 524288 525588 294912 298289

filter 2 4229280 4122660 1025280 1298850
4 2114640 2059990 512640 653192
8 1057320 996078 256320 330362

of misses is obtained from the hardware performance monitor. This number includes prefetch

requests because they are not distinguished from normal memory requests. Once again, there is

close agreement between the expected and measured values in Table 7.10. The expected misses

with fusion for filter are higher at 4 and 8 processors because the large amounts of shifting

and peeling for this kernel (as shown in Table 7.3) contribute a fixed number of cache misses

for the peeled iterations that are executed following the barrier in the transformed code (see

Section 4.2.4). Because there are no upgrade misses to increase the total number of misses, as

in the SPP1000, these additional misses become apparent on the SPP1600 as more processors

are used. Nonetheless, the application of fusion with the shift-and-peel transformation does
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Figure 7.13: Average cache miss latencies on Convex SPP1600

provide a substantial reduction in the total number of misses, with a corresponding improvement

in parallel speedup.

The hardware performance monitor was also employed to measure the average observed

cache miss latency on each processor of the SPP1600. The results for LL18 and filter are

shown in Figure 7.13. The nominal miss latency is 400 nsec; hardware prefetching hides a

portion of this latency. In all cases, the average latency increases as more processors are used

due to the increased load on the memory system. Since the average miss latency with fusion

in Figure 7.13(a) is significantly smaller than without it, fusion for LL18 allows hardware-

initiated prefetching to hide a larger portion of the memory latency. On the other hand, the

average miss latencies for filter do not show a similar decrease with fusion. Hence, the

simple hardware-initiated prefetching scheme is not as effective in hiding a large portion of the

memory latency for filter, and fusion provides most of the improvement at 8 processors.

7.5.4.2 Results for Applications

This section describes the results for the complete hydro2d application from which filter

was extracted. In addition to the 10-loop sequence in filter, the hydro2d application also

contains two sequences of three loop nests that are fused using the shift-and-peel transformation.

The array size is 802� 320 for these experiments.

First, the performance results are given for the Convex SPP1000/SPP1600 multiprocessors.
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Figure 7.14: hydro2d on Convex SPP1000 and SPP1600
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Figure 7.15: hydro2d on SGI Power Challenge R10000

Figure 7.14 shows the uniprocessor and parallel speedups for the hydro2d application. Again,

all speedups are with respect to the execution time without fusion on one processor of the

SPP1000 (see Table 7.2). Hence, higher speedups indicate better absolute performance. This

allows a direct performance comparison between the SPP1600 with hardware prefetching and

the SPP1000 with no prefetching. Figure 7.14 shows that the faster processors with prefetching

on the SPP1600 can improve performance significantly, but fusion combined with prefetching

on the SPP1600 provides the best performance.

Figure 7.15 shows the uniprocessor and parallel speedups for the hydro2d application on
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the SGI Power Challenge R10000. All speedups are with respect to the execution time without

fusion or prefetching on one processor (700 seconds for 50 iterations) , hence the increase in

speedup for a given number of processors represents better absolute performance. Because

prefetching can be disabled in software, performance comparisons on the same microprocessor

are possible. In the uniprocessor results shown in Figure 7.15(a), combining loop fusion

with prefetching provides the best performance. Similar behavior occurs in multiprocessor

execution, as shown in Figure 7.15(b). For example, at 4 processors, prefetching alone improves

performance by 18%, and fusion alone improves performance by 29%. The combination of

both fusion and prefetching at 4 processors improves performance by 46% over execution

using neither technique. Fusion substantially enhances locality across loop nests to make more

memory system bandwidth available and improve the effectiveness of prefetching.

In contrast, other research has primarily combined prefetching and individual loop nest

transformations such as tiling, with mixed results. Mowry [MLG92] reports that a kernel

for Gaussian elimination performed best when tiled with or without prefetching, while an-

other kernel performs best when loop permutation is combined with prefetching. Saavedra et

al. [SMP+96] consider tiling and prefetching for a matrix multiplication loop nest, and report

that prefetching alone provided the best performance. Finally, Saavedra et al. [SMP+96] and

Bugnion et al. [BAM+96] indicate that prefetching is generally effective in hiding latency, but

in some cases, tiling reduces the effectiveness of software-controlled prefetching by inhibiting

software pipelining and preventing prefetch instructions from being scheduled early enough to

hide miss latency.

Figure 7.15 also confirms one additional feature regarding performance improvements for a

fixed problem size. Adding more processors increases the total cache capacity while reducing

the amount of data accessed per processor. As a result, more of the data accessed by each

processor can remain cached, and there is less need for prefetching and locality enhancement

with fusion. However, it is still necessary to avoid cache conflicts to retain data in the cache for

reuse, as shown in Section 7.4. Conflict avoidance in parallel execution has also been discussed

elsewhere by Manjikian and Abdelrahman [MA95] and by Bugnion et al. [BAM+96].
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7.5.5 Summary for the Shift-and-peel Transformation

In summary, the results for the shift-and-peel transformation provide the following conclusions:

� Representative loop nest sequences in application programs exhibit dependences that

require the shift-and-peel transformation to enable legal fusion and parallelization.

� The reduction in the number of cache misses provided by the shift-and-peel transformation

leads to significant improvements in performance. The measured improvements compare

favorably with estimates obtained using the model discussed in Chapter 3.

� Combining the shift-and-peel transformation with prefetching on systems that support

it provides the largest performance improvement. By reducing the number of memory

accesses, the shift-and-peel transformation improves the effectiveness of prefetching in

hiding memory latency.

In addition, the experimental results have demonstrated that the shift-and-peel transformation

avoids the unnecessary overhead of code and data replication used in other techniques. Finally,

the results have also shown that the overhead of the shift-and-peel transformation degrades

performance when data fits in the cache, which suggests using run-time knowledge of data size

with respect to cache size for selecting execution of the original or transformed code.

7.6 Evaluation of Scheduling for Wavefront Parallelism

This section presents the results of experiments to evaluate the scheduling strategies discussed

in Chapter 5 for exploiting wavefront parallelism in tiled loop nests. The experiments seek to

establish the importance of exploiting intertile reuse to enhance locality when the shift-and-peel

transformation and loop skewing are required to enable tiling. Intertile locality enhancement is

especially important when small tile sizes are used to provide sufficient parallelism for a large

number of processors.

All of the results reported in this section were obtained on the Convex SPP1000 multi-

processor. The results are limited to the SOR, Jacobi, and LL18 kernels, as they contain

loop nest sequences embedded within an outer loop that carries reuse. Tiling of the Jacobi

and LL18 kernels requires the application of fusion to inner loop nests, and the dependences
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between these inner loop nests require the shift-and-peel transformation to enable legal fusion.

For both fusion and tiling, cache partitioning is employed to allow data from multiple arrays to

remain cached for reuse without conflicting.

7.6.1 Results for SOR

The first results in this section are for the SOR loop nest that was discussed in Chapter 5. The

array size is 1024 � 1024 elements, and each element is 8 bytes. The number of iterations

in the original outer loop is T = 40. Results are provided for tile sizes of 32 � 32, 16 � 16,

and 8 � 8 for each of the three scheduling strategies. Larger tile sizes are not considered

because they do not provide sufficient parallelism for a large number of processors. Figure 7.16

shows the average number of cache misses and corresponding miss latencies per processor on

16 processors (i.e., 2 hypernodes). Both the number of misses and the latencies are broken

down into local and remote. Figure 7.16(a) indicates that block scheduling incurs far fewer

misses for a given tile size than dynamic or cyclic scheduling, which agrees with the analytical

observations in Section 5.4.4.4. The fraction of misses to remote memory is small for block

and cyclic scheduling (4% and 5% respectively for a tile size of 8). This fraction is significantly

larger for dynamic self-scheduling (27% for a tile size of 8). Hence, the impact of the remote

misses on the total cache miss latency shown in Figure 7.16(b) is more pronounced for dynamic

self-scheduling because of the higher cost of remote misses. As the tile size is reduced, both

the number of cache misses and the total miss latencies increase dramatically for both dynamic

and cyclic scheduling. The resulting miss latency for dynamic self-scheduling with a tile size

of 8 is 30 times larger than for block scheduling.1 This clearly demonstrates the detriment of

failing to provide intertile locality when the tile size is small. Block scheduling is much less

sensitive to a reduction in the tile size because it exploits all intertile reuse.

The effect of the cache behavior on execution time for tiled SOR is shown in Figure 7.17 for

16 processors, and also for 30 processors. The results indicate that static scheduling performs

better than dynamic scheduling for a large number of processors, but only block scheduling

improves consistently when the tile size is reduced to provide greater parallelism. Although

the results indicate that cyclic scheduling with an intermediate tile size may perform better than

1Note that because tiling significantly reduces the memory access component of execution time, the impact of
the increased miss latency on execution time is much less than a factor of 30.
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Figure 7.16: Cache misses for tiled SOR
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Figure 7.17: Execution times for tiled SOR

block scheduling, it may be difficult to predict an optimal tile size for cyclic scheduling that

achieves the appropriate balance between sufficient parallelism and sufficient locality. Later

results in this section will confirm this observation. Furthermore, block scheduling simplifies

the selection of the tile size for a large number of processors. It is sufficient to choose a small

tile size for greater parallelism; intertile locality is preserved with block scheduling. Hence,

the remainder of the results focus on comparing block scheduling with dynamic scheduling for

the largest and smallest tile sizes.

The parallel speedup of tiled SOR is shown in Figure 7.18; all speedups are computed with
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Figure 7.18: Speedup for tiled SOR

respect to the untiled loop nest executed on a single processor,hence the increase in speedup for a

given number of processors represents an improvement in absolute performance. The speedups

of block scheduling and dynamic self-scheduling are compared for the largest and smallest tile

sizes. When the number of processors is 8 or less, all memory accesses are confined within a

single hypernode, i.e., there are no remote memory accesses. Dynamic self-scheduling with

a large tile size generates sufficient parallelism for the relatively small number of processors,

and maximizes intratile locality. The larger tile size and the uniform memory access within

a hypernode diminish the impact of intertile locality. Consequently, dynamic self-scheduling

with the largest tile size performs the best. However, as the number of processors increases,

a large tile size limits the speedup of dynamic self-scheduling due to insufficient parallelism.

In addition, memory accesses span hypernodes and become non-uniform, which limits the

speedup of dynamic self-scheduling, particularly when a smaller tile size is used to provide

greater parallelism. Intertile locality is critical for small tile sizes, and dynamic self-scheduling

does not exploit intertile reuse. In contrast, block scheduling with a small tile size provides

sufficient parallelism while enhancing intertile locality, improving the speedup by a factor of

1.4 over dynamic self-scheduling at 30 processors.

7.6.2 Results for Jacobi

The Jacobi kernel consists of two loop nests surrounded by an outer loop, as shown in

Figure 7.19. There is reuse between the inner two loop nests in addition to the reuse carried by
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do t=1,T
    do j=2,N−1
        do i=2,N−1
            b[i,j] = (a[i+1,j]+a[i−1,j]+a[i,j+1]+a[i,j−1]) / 4
        end do
    end do
    do j=2,N−1
        do i=2,N−1
            a[i,j] = b[i,j]
        end do
    end do
end do

Figure 7.19: The Jacobi kernel

the outer loop. Tiling requires fusion of the inner two loop nests to produce a single loop nest,

and dependences between the inner two loop nests require the application of the shift-and-peel

transformation to enable legal fusion. Once a single loop nest is obtained with fusion, loop

skewing is required just as for the SOR loop nest to enable tiling. The application of shift-

and-peel to enable fusion results in dependences that require skewing the inner loops by two

iterations with respect to the outer loop, rather than one as required for SOR. Once skewed, the

loop nest is then tiled to exploit the reuse carried by the outer loop.

Figure 7.20 shows the average number of cache misses and corresponding miss latencies

per processor for parallel execution of tiled Jacobi with the different scheduling strategies

on 16 processors. The array sizes are 2048� 2048 and the number of iterations in the original

outer loop is T = 10. As before, the number of misses and the latencies are broken down into

local and remote. The results are similar to those obtained for SOR. Block scheduling incurs

the fewest cache misses as well as having the smallest fraction of remote misses. The cache

latency for block scheduling is also the lowest. Dynamic self-scheduling incurs the greatest

number of cache misses and a larger fraction of remote misses, which results in a dramatic

increase in cache miss latency as the tile size is reduced.

Normalized execution times for tiled Jacobi on 16 and 30 processors are shown in

Figure 7.17. All execution times are normalized with respect to time obtained with parallel

execution of the original code to facilitate comparison. The normalized execution time for

fusion of the inner loops without tiling is also shown, since parallel execution of the fused loops

is enabled by the shift-and-peel transformation. Once again, the results for tiling are similar to
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Figure 7.20: Cache misses for tiled Jacobi
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Figure 7.21: Normalized execution times for tiled Jacobi

those obtained for SOR. The dramatic increase in execution time for dynamic self-scheduling

correlates with the increase in the cache miss latency. Block scheduling with a small tile size

performs far better. Fusion exploits reuse between the inner two loops, but tiling goes further

to exploit the reuse carried by the outer loop. To ensure that the full benefit of tiling is realized,

the tiled loop nest must be scheduled appropriately.

Finally, the parallel speedup of tiled Jacobi for various numbers of processors over the

original code executed on a single processor is shown in Figure 7.22. The increase in speedup

for a given number of processors represents an improvement in absolute performance. The
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0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Orig Fused Blk Cyc Dyn

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

  |-- Untiled --|     |------- Tiled -------|     

tile size = 32
tile size = 16
tile size = 8

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Orig Fused Blk Cyc Dyn

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

  |-- Untiled --|     |------- Tiled -------|     

tile size = 32
tile size = 16
tile size = 8

(a) 16 processors (b) 30 processors

Figure 7.23: Normalized execution times for tiled LL18

speedup for block scheduling and dynamic self-scheduling is compared to the speedup from

parallel execution of the original code and the fused version. The speedup for cyclic scheduling

is not shown because its performance for small tile sizes is worse than block scheduling. Once

again, dynamic self-scheduling with a large tile size is only effective in the absence of remote

memory accesses, i.e., when the number of processors is 8 or less. In contrast, block scheduling

with a small tile size improves the speedup by a factor of 1.8 over dynamic self-scheduling

at 30 processors, and consistently outperforms even the parallel versions of the original and

fused code. Block scheduling improves parallel speedup by 53% over the original code at 16

processors, and by 36% at 30 processors.
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Figure 7.24: Speedup for LL18

7.6.3 Results for LL18

The LL18 kernel consists of three loop nests surrounded by an outer loop. A total of nine

arrays are used, and there is reuse between the inner loop nests in addition to the reuse carried

by the outer loop. Tiling requires fusion with the shift-and-peel transformation to produce a

single loop nest, followed by skewing of the inner loops by three iterations. The tiled loop nest

is scheduled with the different strategies just as for SOR and Jacobi. Normalized execution

times for 16 and 30 processors are shown in Figure 7.23 for array sizes of 1024 � 1024 and

T = 10 iterations in the original outer loop. The results are similar to those obtained for

Jacobi. Fusion improves performance by exploiting reuse between the inner loop nests, but

tiling with an appropriate scheduling strategy exploits all the reuse for the best performance.

Once again, only block scheduling is successful in enhancing locality when the tile size is

reduced to provide sufficient parallelism for a large number of processors. The speedups for

LL18 shown in Figure 7.24 also agree with the trends observed for Jacobi. Block scheduling

improves the speedup at 30 processors by a factor of 2.3 over dynamic self-scheduling. Block

scheduling improves the speedup by 50% over the original code at 16 processors, and by 29%

at 30 processors.

7.6.4 Comparison of Sweep Ratios for Tiling

This section compares sweep ratios for tiling of the Jacobi kernel. Table 7.11 provides the

number of cache misses measured on one processor during parallel execution on 16 processors
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Table 7.11: Cache misses and sweep ratios for Jacobi on Convex SPP1000 (16 processors)

Measured Sweep ratio
Version of code cache misses measured predicted

Original 2645990 — —
Fused 1991090 1.3 1.3
Dyn. sched., tile size=32 525763 5.0 5.9
Dyn. sched., tile size=8 1664540 1.6 2.2
Block sched., tile size=32 405631 6.5 13
Block sched., tile size=8 266595 9.9 13

for different versions of Jacobi. For each version, the measured sweep ratio is computed

with respect to the original code. For example, the measured sweep ratio for the fused code is

2645990=1991090 = 1:3.

Table 7.11 also provides the predicted sweep ratios for each version of the code. The sweep

ratio of 1.3 for fusion was computed earlier in Table 7.5. For dynamic scheduling of the tiled

code, no intertile reuse is exploited, hence the sweep ratio for tiling with skewing is given by

Equation 5.1 in Section 5.2.2, i.e., rtiling = T=(2 � (s � T=B) + 1): For Jacobi, the skewing

factor is s = 2 and the number of iterations is T = 10. The tile sizes are B = 8 and B = 32.

Hence, rtiling = 1:7 for B = 8 and rtiling = 4:4 for B = 32.

However, tiling is preceded by fusion whose sweep ratio is rfusion = 1:3. The overall

sweep ratio for both transformations is given by the product of sweep ratios for the individual

transformations (Equation 5.2): roverall = rfusion � rtiling . The overall sweep ratios for dynamic

scheduling with tile sizes of 8 and 32 are computed accordingly and given in Table 7.11.

For block scheduling, the analysis in Section 5.4.4.4 explained that even with skewing,

exploiting intertile reuse should result in the ideal sweep ratio of T , the number of iterations in

the outermost loop. Since T = 10 for Jacobi, rtiling = T = 10 for block scheduling. Tiling is

still preceded by fusion, hence the overall sweep ratio is sroverall = rfusion �rtiling = 1:3�10 = 13.

Comparing the measured and predicted sweep ratios in Table 7.11, the results for fusion

agree closely (see the validation in Section 7.5.2). For tiling with dynamic scheduling, the large

tile size provides the best agreement, whereas for block scheduling, the small tile size provides

the best agreement. These results are not surprising because dynamic scheduling exploits
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intratile reuse best with a large tile size, while block scheduling exploits intertile reuse best

with a small tile size. The discrepancy for dynamic scheduling with a small tile size is caused

by referencing additional cache lines at tile boundaries; these references are not significant

when the tile size is large. The discrepancy for block scheduling with a large tile size is due to

conflicts that reduce intertile locality. Only one-dimensional cache partitioning is applied in this

case, and this is sufficient for the small tile size. Although two-dimensional cache partitioning

would increase the measured sweep ratio for block scheduling with the large tile size, the small

tile size is still required for sufficient parallelism on a large number of processors.

7.6.5 Summary for Evaluation of Scheduling Strategies

In summary, the experimental results have confirmed that exploiting intertile reuse is crucial to

improve the performance of tiling for a large number of processors. Block scheduling permits

the use of small tile sizes required to provide sufficient parallelism without sacrificing locality.

Furthermore, the results for Jacobi and LL18 demonstrate the importance of exploiting all

reuse, first from fusing inner loop nests, then by tiling for reuse carried by the outermost loop.
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Conclusion

The performance of applications on large-scale shared-memory multiprocessors is determined

largely by the degree of parallelism and cache locality. Parallelism in applications is often

found in loops that operate on array data, and current parallelizing compilers are capable of

detecting this loop-level parallelism. Compilers also enhance cache locality by applying loop

transformations that reorder iterations in order to increase the likelihood of retaining reused

data in the cache. However, existing transformations are ineffective because they only exploit

reuse within loops or they fail to preserve parallelism when exploiting reuse across loops.

Furthermore, even when reuse can be exploited across loops, cache conflicts between data from

different arrays diminish locality by displacing data from the cache before it is reused.

To address these shortcomings, this dissertation has proposed and evaluated new compiler

techniques to improve parallel performance on large-scale multiprocessors. Novel code and

data transformations enhance cache locality across loops while avoiding cache conflicts and

maintaining sufficient parallelism for a large number of processors. These transformations

are combined with appropriate loop scheduling strategies to maintain locality and parallelism

during execution.

The importance of the techniques described in this dissertation will continue to increase as

processor performance continues to increase more rapidly than memory performance. Current

multiprocessors are now using commodity microprocessors operating at speeds of 200 MHz

or more. Cache misses to access memory are extremely costly at these speeds; execution time

is increasingly dominated by memory access time. All available data reuse must be exploited

for cache locality if significant reductions in execution time are to be achieved, especially in

large-scale multiprocessors with large remote memory latencies.
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8.1 Summary of Contributions

The contributions of this research are embodied in the proposed techniques. The following

paragraphs summarize these contributions:

� The shift-and-peel transformation has been proposed to enable legal fusion and subse-

quent parallelization, despite dependences that have previously prevented loop fusion or

resulted in a serial loop. This technique is therefore able to exploit reuse across loops

and maintain parallelism where previous techniques have failed. Experimental results

have shown that shift-and-peel is required for representative loop nest sequences and that

it improves parallel performance by up to 30% for representative applications. Results

have also shown that the shift-and-peel transformation provides additional performance

gains in conjunction with other performance-enhancing techniques such as prefetching.

� Loop scheduling strategies have been evaluated for exploiting wavefront parallelism that

results when the shift-and-peel transformation is combined with tiling. Proper scheduling

allows both intratile and intertile data reuse to be exploited effectively during parallel

execution on a large number of processors. Experimental results have shown that static

block scheduling with a small tile size improves parallel performance by up to 50% over

the original code without fusion or tiling. Results have also shown that static scheduling

incurs the fewest cache misses and is the least sensitive to changes in the tile size.

� A data transformation technique called cache partitioning has been proposed to prevent

cache conflicts between data from different arrays, especially when enhancing locality

across loops. Unlike techniques such as array padding, cache partitioning systematically

derives a conflict-free data layout in memory for commonly-occurring compatible data

access patterns that would otherwise lead to frequent conflicts. Experimental results

have shown that cache partitioning permits the full benefit of transformations such as

shift-and-peel to be realized by preventing unnecessary cache misses.

To provide a means of assessing the benefit of enhancing locality across loops with transfor-

mations such as shift-and-peel and tiling, an analytical model has been described for quantifying
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the reduction in memory accesses. The contribution of memory accesses towards total exe-

cution time is also quantified in order to associate the reduction in memory accesses with a

reduction in execution time. Estimates for performance improvement obtained with this model

compare favorably with measured improvements in the experimental results.

Finally, the feasibility of the proposed techniques has been established with a prototype

source-to-source compiler implementation in FORTRAN 77. The implementation automates

the shift-and-peel and cache partitioning transformations (with the exception of modifications

required to produce consistent COMMON block definitions for cache partitioning). Although

the prototype implementation performs only source-level transformations, the techniques are

equally feasible for a native machine compiler that generates executable code. Integrating the

requisite analyses and transformations into a native compiler framework should enable further

performance improvements.

8.2 Future Work

The results from combining the shift-and-peel transformation with prefetching suggest further

work to explore the limits on the achievable improvements in performance. Current processor

designs support between 4 and 10 concurrent memory accesses [Hun95, Yea96]. Further

experimentation can investigate how effectively the shift-and-peel transformation can improve

the available bandwidth utilization for prefetching with a large number of concurrent memory

accesses, and to what extent computation becomes the performance bottleneck in representative

loop nest sequences when both techniques are combined.

In this dissertation, candidate loops for the shift-and-peel transformation have been identified

within individual subroutines. This approach exploits a common programming style in which

related loops are placed together in the same subroutine. The scope of the transformation can be

increased with interprocedural techniques, specifically selective subroutine inlining to collect

loops from separate subroutines and form larger candidate sequences.

The techniques have centered on dense array applications that constitute an important class

of scientific applications. However, there are also many applications that operate on sparse

arrays. These applications may also contain loop sequences that are candidates for loop fusion,

although the data access patterns (and hence the dependence relationships) may not be as
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regular. Future work can investigate the feasibility of exploiting reuse across loops in such

applications.

A more challenging direction for future work is broadening the scope of locality enhance-

ment in non-numeric applications. Such applications also contain loops; however, instead of

DO-loops with an integer index variable, such applications may employ WHILE-loops using a

pointer variable to traverse complex data structures. The challenge is to identify opportunities

to legally combine the bodies of multiple WHILE-loops in such applications.

Finally, this dissertation has centered on cache locality enhancement. The physically-

distributed memory in large-scale multiprocessors also raises the issue of memory locality

enhancement, i.e., ensuring that most cache misses are satisfied by local rather than remote

memory. Memory locality is enhanced with an appropriate data distribution to match the distri-

bution of parallel computation among processors. Future work can investigate the interaction

between cache and memory locality enhancement and the relative importance of each.
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