
Quaternions, Interpolation and Animation

Erik B. Dam Martin Koch Martin Lillholm

erikdam@diku.dk myth@diku.dk grumse@diku.dk

Technical Report DIKU-TR-98/5
Department of Computer Science

University of Copenhagen
Universitetsparken 1
DK-2100 Kbh �

Denmark

July 17, 1998

Abstract

The main topics of this technical report are quaternions, their mathematical prop-
erties, and how they can be used to rotate objects. We introduce quaternion math-
ematics and discuss why quaternions are a better choice for implementing rotation
than the well-known matrix implementations. We then treat di�erent methods for
interpolation between series of rotations. During this treatment we give complete
proofs for the correctness of the important interpolation methods Slerp and Squad .
Inspired by our treatment of the di�erent interpolation methods we develop our own
interpolation method called Spring based on a set of objective constraints for an
optimal interpolation curve. This results in a set of di�erential equations, whose
analytical solution meets these constraints. Unfortunately, the set of di�erential
equations cannot be solved analytically. As an alternative we propose a numerical
solution for the di�erential equations. The di�erent interpolation methods are visu-
alized and commented. Finally we provide a thorough comparison of the two most
convincing methods (Spring and Squad). Thereby, this report provides a comprehen-
sive treatment of quaternions, rotation with quaternions, and interpolation curves
for series of rotations.

i

Contents

1 Introduction 1

2 Geometric transformations 3

2.1 Translation . 3

2.2 Rotation . 3

3 Two rotational modalities 5

3.1 Euler angles . 5

3.2 Rotation matrices . 6

3.3 Quaternions . 7

3.3.1 Historical background . 7

3.3.2 Basic quaternion mathematics . 8

3.3.3 The algebraic properties of quaternions. 12

3.3.4 Unit quaternions . 14

3.3.5 The exponential and logarithm functions 15

3.3.6 Rotation with quaternions . 17

3.3.7 Geometric intuition . 22

3.3.8 Quaternions and di�erential calculus . 23

3.4 An algebraic overview . 26

ii

4 A comparison of quaternions, Euler angles and matrices 27

4.1 Euler angles/matrices | Disadvantages . 27

4.2 Euler angles/matrices | Advantages . 31

4.3 Quaternions | Disadvantages . 31

4.4 Quaternions | Advantages . 31

4.5 Conclusion . 32

4.6 Other modalities . 33

5 Visualizing interpolation curves 34

5.1 Direct visualization . 34

5.2 Visualizing an approximation of angular velocity 34

5.3 Visualizing the smoothness of interpolation curves 35

5.4 Some examples of visualization . 36

6 Interpolation of rotation 38

6.1 Interpolation between two rotations . 38

6.1.1 Linear Euler interpolation: LinEuler . 38

6.1.2 Linear Matrix interpolation: LinMat . 39

6.1.3 Linear Quaternion interpolation: Lerp . 40

6.1.4 A summary of linear interpolation . 41

6.1.5 Spherical Linear Quaternion interpolation: Slerp 42

6.2 Interpolation over a series of rotations:
Heuristic approach . 49

6.2.1 Spherical Spline Quaternion interpolation: Squad 51

6.3 Interpolation between a series of rotations:
Mathematical approach . 56

6.3.1 The interpolation curve . 56

6.3.2 De�nitions of smoothness . 56

6.3.3 The optimal interpolation . 57

6.3.4 Curvature in H1 . 58

6.3.5 Minimizing curvature in H1: Continuous, analytical solution 60

6.3.6 Minimizing curvature in H1: Continuous, semi-analytical solution 63

6.3.7 Minimizing curvature in H1: Discretized, numerical solution 64

iii

7 Squad and Spring 77

7.1 Example: A semi circle . 77

7.2 Example: A nice soft curve . 78

7.3 Example: Interpolation curve with cusp . 79

7.4 Example: A pendulum . 80

7.5 Example: A perturbed pendulum . 81

7.6 Example: Global properties . 81

7.7 Conclusion . 84

8 The Big Picture 85

8.1 Comparison to previous work . 85

8.2 Future work . 87

A Conventions 89

B Conversions 90

B.1 Euler angles to matrix . 90

B.2 Matrix to Euler angles . 90

B.3 Quaternion to matrix . 91

B.4 Matrix to Quaternion . 93

B.5 Between quaternions and Euler angles . 93

C Implementation 94

C.1 The basic structure of quat . 95

iv

Chapter 1

Introduction

To animate means to \bring to life." Animation is a visual presentation of change. Traditionally
this has been used in the entertainment business, for example Donald Duck moving in a cartoon.
More serious applications have later been developed for physics (visualization of particle systems)
and chemistry (displaying molecules).

This paper treats a small part of the world of animation | animation of rotation. As a back-
ground for the following chapters, we will in this section give an overview of how animation was
done traditionally (i. e. before the computer), and how it is done now. The presentation is based
on [Foley et al., 1990] and [Lasseter, 1987].

An animation is based on a story | a manuscript. The manuscript is used to make a storyboard,
in which it is decided how to split the story into individual scenes. For each scene a sketch is
made with some text describing the scene. Based on the storyboard, a series of key frames is
produced showing the characters of the cartoon in key positions. The frames between the key
frames can then be made from these key positions. Traditionally, the most experienced artists
produced the key frames (and were therefore named key framers), leaving the frames in-between
to the less experienced artists (who became known as in-betweeners). The animators produce a
rough draft of the animation, which is presented at a pencil test. Once the draft is satisfactory,
the �nal version is produced and transferred to celluloid.

This method of animation is called key framing and has since been used in computer animation
systems. Already in 1968 animation of 3D models was known, and the idea of using computers
for key frame animation was used in 1971 [Burtnyk & Wein, 1971].

Computers are natural replacements for the in-betweeners. Given two key frames, the frames
in-between can be generated by interpolation. Admittedly there are several problems with this
approach:

1

� A translation between two key frames can easily be obtained by simple linear interpolation.
When the movement consists of more key frames it is necessary to use more advanced
curves (for example splines) to produce a smooth movement across key frames.

� Ordinary physics cannot be used to describe how the eye perceives moving objects in a
cartoon. Objects will change shape as they move: A ball will morph into an oval when
bouncing fast (see �gure 1.1). This will not happen automatically if a computer is used
to animate the motion of the ball.

� Animation of rotational movement has also been attempted using key frames and inter-
polation. Rotation is more complex than translation, however. The problems involved in
interpolating rotations will be treated in this paper.

Figure 1.1: The cartoon version of a bouncing ball.

Computer animation consists of much more than pure motion. Apart from the problems of
interpolation of the movement there are complicated issues concerning light, sound, colors,
camera angles, camera motion, shadows, physical properties of the objects being modelled etc.

We limit this paper to treat methods for representation and implementation of rotation. The
methods are mostly based on quaternions, a kind of four-dimensional complex numbers. Through
a series of attempts to de�ne \nice" rotation, we derive a mathematical description of rotation
through a series of key frames.

We will not discuss the matters mentioned in the �rst two bullets above or the other aspects
mentioned (light, sound etc.)

The main foundation for this paper is the articles [Shoemake, 1985], [Barr et al., 1992], and
[Watt & Watt, 1992]. We do not require any knowledge of these articles. It will, however, be an
advantage for the reader to be familiar with the common transformation methods using matrices
and to have basic knowledge of interpolation curves in the plane (in particular splines). Some
basic mathematics knowledge will also be advantageous (group theory, di�erentional calculus,
calculus of variations and di�erential geometry).

2

Chapter 2

Geometric transformations

In this chapter we will briey discuss selected transformations of objects in 3D. The key topic
will be rotation but since interpolation between positions o�ers useful parallels to interpolation
of rotation, we include translation. Note that these parallels serve only as inspiration for the
rotational case | mainly because the space of translations is Euclidean while the space of
rotations is not. This di�erence will be discussed in depth in the following chapters.

2.1 Translation

Translation is the most obvious kind of transformation: A point in space is moved from one
position to another. Let a point P 2 R3 be denoted by a 3-tuple (x; y; z); x; y; z 2 R and
the translation by a vector (�x;�y;�z). Then the new position P 0 is calculated by simple
addition: P 0 = (x+�x; y+�y; z+�z). The de�nition is non-ambiguous i. e. there exists only
one translation vector that takes P to P 0.

2.2 Rotation

Rotation in 3D is not as simple as translation and it can be de�ned in many ways. We have
chosen the following de�nition:

We will use the de�nition given by Euler's (�1707 { y 1783) theorem [Euler, 1752] | written in
modern notation (compare with �gure 2.1):

Proposition 1.

Let O, O0 2 R3 be two orientations. Then there exists an axis l 2 R3 and an angle of rotation
� 2]� �; �] such that O yields O0 when rotated � about l.

Note that the proposition states existence and does not state uniqueness.

We will distinguish between orientations and rotations. An orientation of an object in R3 is
given by a normal vector. A rotation is de�ned by an axis and an angle of rotation.

3

O0 O

�

l

Figure 2.1: Let O, O0 2 R3 be two orientations. Then there exists an axis l 2 R3 and an angle
of rotation � 2]� �; �] such that O yields O0 when rotated � about l.

4

Chapter 3

Two rotational modalities

Euler's theorem (proposition 1) gives a simple de�nition of rotations. In most of the literature,
Euler angles are used to de�ne rotation. From these two fundamental de�nitions, rotation can
be discussed mathematically in numerous ways. We will term the combination of a de�nition
and a corresponding mathematical representation a rotational modality. In this report we will
discuss the following two modalities:

� Rotation de�ned by Euler angles represented by general transformation matrices.

� Rotation de�ned by Euler's theorem represented by quaternions.

The aim is of this chapter is to reach an implementation of a general rotation with each modality.
A comparison of how the modalities implement a general rotation is given in chapter 4. Conver-
sion between representations of rotation is discussed in appendix B. Finally, general conventions
for rotation used in this report can be found in appendix A.

In sections 3.1 and 3.2, Euler angles and their matrix representation are described. The descrip-
tion is brief | the reader is assumed familiar with these topics.

Section 3.3 gives an in-depth treatment of quaternions starting of with the basics of quaternion
mathematics. After the introduction, it is established how quaternions can be used to represent
rotation as de�ned by Euler's theorem.

3.1 Euler angles

The space of orientations can be parameterized by Euler angles. When Euler angles are used,
a general orientation is written as a series of rotations about three mutually orthogonal axes in
space. Usually the x, y, and z axes in a Cartesian coordinate system are used. The rotations
are often called x-roll, y-roll and z-roll.

Euler originally developed Euler angles as a tool for solving di�erential equations. Later Euler
angles have become the most widely used method of parametererizing the space of orientations.

5

As we shall see below, this choice gives rise to a number of problems. If we choose to consider
a rotation as the action performed to obtain a given orientation, Euler angles can be used to
parameterize the space of rotations. To describe a general rotation as described in section 2.2,
three Euler angles (�1; �2; �3) are required, where �1, �2, and �3 are the rotation angles about
the x, y, and z axes, respectively.

The conversion from a general rotation to Euler angles is ambiguous since the same rotation
can be obtained with di�erent sets of Euler angles (see [Foley et al., 1990]). Furthermore, the
resulting rotation depends on the order in which the three rolls are performed. This gives rise to
further ambiguity but �ts well with the fact that rotations in space do not generally commute
(see appendix B). Some of the ambiguity in the conversion to Euler angles can be eliminated
by adopting a convention of which order the rolls should be performed. In this paper, we use
the convention described in appendix A. Introducing a convention does not, however, eliminate
the ambiguity altogether (see chapter 4).

3.2 Rotation matrices

Rotation matrices are the typical choice for implementing Euler angles. For each type of roll,
there is a corresponding rotation matrix, i. e. an x rotation matrix, a y rotation matrix, and a
z rotation matrix. The matrices rotate by multiplying them to the position vector for a point
in space, and the result is the position vector for the rotated point. A rotation matrix is a
3� 3 matrix, but usually homogeneous 4� 4 matrices are used instead (see [Foley et al., 1990]
for further detail). A general rotation is obtained by multiplying the three roll-matrices corre-
sponding to the three Euler angles. The resulting matrix embodies the general rotation and can
be applied to the points that are to be rotated.

The three standard rotation matrices are given in homogeneous coordinates in appendix B.

Matrix multiplication is not generally commutative. This �ts well with the fact that rotations
in space do not commute.

Finally it should be noted that using homogeneous transformation matrices gives the only imple-
mentation that e�ectively embodies all standard transformations: Translation, scaling, shearing,
and various projection transformations.

6

3.3 Quaternions

The second rotational modality is rotation de�ned by Euler's theorem and implemented with
quaternions. Since quaternions are not nearly as well-known as transformation matrices, and
since no good overview of the �eld exists, we will give a historical overview and then provide a
thorough treatment of quaternion mathematics.

3.3.1 Historical background

Quaternions were invented by Sir William Rowan Hamilton (�1809 { y 1865) in 1843. Hamilton's
aim was to generalize complex numbers to three dimensions, i. e. numbers of the form a+ ib+ jc,
where a; b; c 2 R and i2 = j2 = �1. Hamilton never succeeded in making this generalization,
and it has later been proven that the set of three-dimensional numbers is not closed under
multiplication. In 1966 Kenneth O. May gave the following elegant proof of this:

Proposition 2.

The set of three-dimensional complex numbers is not closed under multiplication.

Proof (freely adopted from Kenneth O. May 1966):

Assume that the usual rules of arithmetic for complex numbers hold, and that i2 = j2 = �1.

The proof is by contradiction, so we assume that a closed multiplication exists. Since multi-
plication is closed, there exist a; b; c 2 R that satisfy ij = a + ib + jc. Multiplying this with
i yields �j = �b + ia + ijc. Substituting the �rst equation in the second equation yields
�j = �b+ ia+(a+ ib+ jc)c, i. e. 0 = (ac� b)+ i(a+ bc)+ j(c2+1). Thus ac� b = 0; a+ bc = 0
and c2 + 1 = 0. The equation c2 + 1 = 0 gives the contradiction, since c is real by assumption.

2

One of Hamilton's motivations for seeking three-dimensional complex numbers was to �nd a
description of rotation in space corresponding to the complex numbers, where a multiplication
corresponds to a rotation and a scaling in the plane.

While walking by the Royal Canal in Dublin on a Monday in October 1843, Hamilton realized
that four numbers are needed to describe a rotation followed by a scaling. One number describes
the size of the scaling, one the number of degrees to be rotated, and the last two numbers
give the plane1 in which the vector should be rotated. After this insight, Hamilton found a
closed multiplication for four-dimensional complex numbers of the form ix + jy + kz, where
i2 = j2 = k2 = ijk = �1. Hamilton dubbed his four-dimensional complex numbers quaternions.
The parallel to ordinary complex numbers stems from the imaginary parts.

A quaternion is usually written [s;v]; s 2 R;v 2 R
3 . Here s is called the scalar part, and

v = (x; y; z) is the vector part.

1The xy plane can be rotated to any plane in xyz space through the origin by giving the rotation angles about
the x and y axes.

7

Historical aside

Hamilton presented quaternion mathematics at a series of lectures at the Royal Irish Academy.
The lectures gave rise to a book [Hamilton, 1853], the full title of which (with typography as in
the book) is:

Lectures on Quaternions: Containing a systematic statement of

A New Mathematical Method

of which the principles were communicated in 1843 to the royal Irish

academy; and which has since formed the subject of successive courses

of lectures, delivered in 1848 and subsequent years in the halls of

trinity college, Dublin: with numerous illustrative diagrams, and with

some geometrical and physical applications.

In the book (page 271) Hamilton writes (again imitating the book's typography):

285. We know then how to interpret in two apparently di�erent ways, which are, however,
easily perceived to have an essential connection with each other, the following symbol of
operation,

q()q�1;

where q may be called (as before) the operator quaternion while the symbol (suppose r) of
the operand quaternion is conceived to occupy the place marked by the parentheses. For
we may either consider the e�ect of the operation, thus symbolized, to be (as in 282, 283)
a conical rotation of the axis of the operand round the axis of the operator, through double
the angle thereof, in such a manner as to transport the vertex of the representative angle
of the operand to a new position on the unit sphere, without changing the magnitude of
that angle, nor the tensor2 of the quaternion thus operated on: or else, at pleasure, may
regard (by 285) the operation as causing one extremity of the representative arc of the
same operand (r) to slide along the doubled arc of the same operator (q), without any
change in the length of the arc so sliding, nor of its inclination to the great circle along
which its extremity thus slides.

The historically interested reader is referred to [Hamilton, 1899] and [Hallenberg et al., 1993]
(only available in Danish).

3.3.2 Basic quaternion mathematics

In this section we will state the notation used for quaternions and establish quaternion mathe-
matics including addition, multiplication, subtraction, and multiplication with a scalar. Finally
we de�ne the conjugate and the inverse of a quaternion.

2In modern usage = norm.

8

Notation

We use � to mean equal by de�nition. Closed intervals on the real line are denoted by [a; b] �
f x j a � x � b; a; b; x 2 Rg. A semi-open interval is, for example, denoted by]a; b] � f x j a <
x � b; a; b; x 2 Rg. The set of n times di�erentiable functions from A to B with continuous
derivatives we denote Cn(A;B).

De�nition 1.

The set of quaternions is denoted H.

Quaternions consist of a scalar part s 2 R and a vector part v = (x; y; z) 2 R3 . We will use the
following forms:

De�nition 2.

Let i2 = j2 = k2 = ijk = �1; ij = k and ji = �k. Then q 2 H can be written:

q � [s;v] ; s 2 R; v 2 R3
� [s; (x; y; z)] ; s; x; y; z 2 R
� s+ ix+ jy + kz ; s; x; y; z 2 R

We will identify the set of quaternions f[s;0] j s 2 Rg with R and the set f[0;v] j v 2 R3g with
R
3 .

De�nition 3.

Let q; q0 2 H where q = [s; (x; y; z)] and q0 = [s0; (x0; y0; z0)]. The addition operator, +, is de�ned

q+ q0 � [s;v] + [s0;v0] � [s; (x; y; z)] + [s0; (x0; y0; z0)] � (s+ ix+ jy+ kz) + (s0 + ix0 + jy0 + kz0)

Proposition 3. (Quaternion addition)
Let q; q0 2 H, where q = [s;v] and q0 = [s0;v0]. Then q + q0 = [s+ s0;v + v0]

Proof of proposition 3

q + q0 � [s;v] + [s0;v0]
� (s+ ix+ jy + kz) + (s0 + ix0 + jy0 + kz0)
= (s+ s0) + i(x+ x0) + j(y + y0) + k(z + z0)
� [s+ s0;v + v0]

2

De�nition 4.

Let q; q0 2 H where q = s+ ix+ jy + kz and q0 = s0 + ix0 + jy0 + kz0. Multiplication is de�ned

qq0 � [s;v][s0;v0] � [s; (x; y; z)][s0; (x0; y0; z0)] � (s+ ix+ jy + kz)(s0 + ix0 + jy0 + kz0)

Proposition 4. (Multiplication of quaternions)

Let q; q0 2 H, where q = [s;v] and q0 = [s0;v0]. Then qq0 = [ss0�v �v0;v�v0+ sv0+ s0v], where
� and � denote the scalar and vector product in R3 , respectively.

9

Proof of proposition 4

From de�nition 2 the following identities can be obtained from simple algebra: jk = i;kj =
�i; ik = �j and ki = j. These identities are used in:

qq0 � [s;v][s0;v0]
� (s+ ix+ jy + kz)(s0 + ix0 + jy0 + kz0)
= ss0 � (xx0 + yy0 + zz0) + i(sx0 + s0x+ yz0 � zy0)+

j(sy0 + s0y + zx0 � xz0) + k(sz0 + s0z + xy0 � yx0)
� [ss0 � v � v0;v � v0 + sv0 + s0v]

2

Corollary 1. (to proposition 4)

Quaternion multiplication is not generally commutative.

Proof of proposition 1

We give a counter-example: ij = k, but ji = �k.
2

Below we will give a number of propositions without proof. The proofs are all based on the
principle used above: The constituent quaternions are written s + ix + jy + kz. Then, using
simple algebra and collection of terms, the result can be written as a quaternion using de�nition
2.

We state the following properties of quaternion multiplication:

Proposition 5.

Let p; q; q0 2 H and r 2 R. Then:

(pq)q0 = p(qq0) (Quaternion multiplication is associative.)

p(q + q0) = pq + pq0 (Quaternion multiplication distributes
(q + q0)p = qp+ q0p across addition.)

Multiplying quaternions by a scalar is most easily introduced by identifying r 2 R with the
quaternion [r;0]:

De�nition 5.

Let q 2 H and r 2 R. Multiplication by a scalar is de�ned

rq � [r;0]q

Proposition 6. (Multiplication with a scalar)

Let q 2 H, where q = [s;v] and let r 2 R. Then rq = qr = [r;0][s;v] = [rs; rv].

Note that the proposition gives that multiplication with a scalar is commutative.

We will use the notation
q

r
to mean

1

r
q, where q 2 H and r 2 R.

We can now introduce subtraction in the usual manner:

10

De�nition 6.
Given q; q0 2 H, subtraction is de�ned q � q0 � q + (�1)q0

The de�nition gives the expected:

Proposition 7. (Quaternion subtraction)

Let q; q0 2 H, where q = [s;v] and q0 = [s0;v0]. Then q � q0 = q + (�1)q0 = [s� s0;v � v0].

Corresponding to the de�nition of the conjugate of a complex number, we de�ne the conjugate
of a quaternion:

De�nition 7.
Let q 2 H. Then q� is called the conjugate of q and is de�ned by q� � [s;v]� � [s;�v].

The de�nition gives rise to the following properties:

Proposition 8.

Let p; q 2 H. Then:

i) (q�)� = q ii) (pq)� = q�p� iii) (p+ q)� = p� + q� iv) qq� = q�q.

The norm of a quaternion is obtained using conjugation:

De�nition 8.

Let p 2 H and let the mapping k � k : H y R be de�ned by kqk � p
qq�. This mapping is called

the norm and kqk is the norm of q.

That this mapping is a norm in the usual sense is shown in the corollary to proposition 9. The
norm mapping has a number of interesting properties that are summarized in:

Proposition 9.

Let q; q0 2 H and let k � k : H y R be given as is de�nition 8. The following equations hold:

kqk =
p
s2 + v � v =

p
s2 + x2 + y2 + z2 (3.1)

kq�k = kqk (3.2)

kqq0k = kqkkq0k (3.3)

Proof of proposition 9

The equations 3.1 and 3.2 can be seen directly. Equation 3.3 follows from:

kqq0k =
p
qq0(qq0)� =

p
qq0q0�q� =

p
qkq0k2q� =

p
qq�kq0k2 =

p
kqk2kq0k2 = kqkkq0k

2

We will later need the inner product of two quaternions. We also want to show that the norm
mapping is indeed a norm in the usual mathematical sense. From equation 3.1 in proposition 9
it follows that the norm of a quaternion q can be written as it is usually obtained from the inner
product (if q 2 H is identi�ed with the corresponding vector in R4). This property is formalized
by:

11

De�nition 9.
Let q; q0 2 H; q = [s;v] = [s; (x; y; z)]; q0 = [s0;v0] = [s0; (x0; y0; z0)]. The inner product is de�ned
as

�

: H �H y R where q
�

q0 = ss0 + v � v0 = ss0 + xx0 + yy0 + zz0:

Note that the de�nition yields q
�

q = s2 + x2 + y2 + z2, which gives rise to:

Corollary 2. (to proposition 9)

The norm of a quaternion q can be obtained by kqk =pq
�

q. Furthermore, k � k is a norm in
the usual mathematical sense.

Proof of corollary 2

That
�

computes the norm squared follows directly from proposition 9 and de�nition 9. Now
let q = [s; (x; y; z)] 2 H. If we identify q with (s; x; y; z) 2 R4 , the above method of computing
the norm is identical to the usual Euclidean norm on R4 . Thus the quaternion norm is a norm
in the usual sense.

2

We will later need the following generalization of the two- and three-dimensional cases:

Proposition 10.

Let q; q0 2 H. De�ne q; q0 as the corresponding four-dimensional vectors and let � be the angle
between them. Then q

�

q0 = kqkkq0k cos�.

3.3.3 The algebraic properties of quaternions.

In this section we prove that the set of quaternions H n f[0; (0; 0; 0)]g is a non-Abelian group
under quaternion multiplication. At the end of the section we give a summary of some other
algebraic properties of quaternions.

De�nition 10.

The set of quaternions H n f[0; (0; 0; 0)]g is written H
�

We will base the discussion on the de�nition of a group:

De�nition 11.

Let G be a set with an operator � : G�Gy G de�ned by (a; b)! a � b � ab. G is a group if

i) a(bc) = (ab)c for all a; b; c 2 G (The operator is associative)
ii) Exactly one I 2 G exists such that Ia = aI =

a for all a 2 G.
(I is the neutral element)

iii) For every a 2 G there exists an element
a�1 2 G, such that aa�1 = a�1a = I.

(a�1 is the inverse element of a)

If ab = ba for all a; b 2 G, G is called an Abelian or commutative group.

That there exists a neutral element and inverse elements in H
�

under quaternion multiplication
is shown in the following two lemmas:

12

Lemma 1.
The element I = [1;0] 2 H

�

is the unique neutral element under quaternion multiplication.

Proof of lemma 1

Let q 2 H be given. Proposition 6 gives qI = Iq = [1s; 1v] = [s;v] = q.

Thus I is a neutral element. I is also the only element that meets the requirements. To see
this, assume that J also meets the requirements. Then IJ = I, because J is a neutral element.
Furthermore, IJ = J , since I is a neutral element. This gives us that I = IJ = J , so I = J is

the only neutral element in H
�

.
2

Lemma 2.

Let q 2 H
�

. Then there exists q�1 2 H such that qq�1 = q�1q = I. Furthermore q�1 is unique
and given by:

q�1 =
q�

kqk2

Proof of lemma 2
Let q 2 H

�

be given.

Uniqueness
Let both p1; p2 2 H be inverse to q. That p1 and p2 are equal follows from

p1 = p1I = p1(qp2) = (p1q)p2 = Ip2 = p2

Existence

Let p =
q�

kqk2 . Then

qp = q
q�

kqk2 =
qq�

kqk2 =
kqk2
kqk2 = 1 � I

pq =
q�

kqk2 q =
q�q

kqk2 =
qq�

kqk2 =
kqk2
kqk2 = 1 � I

Thus every quaternion in H
�

has an inverse.
2

We will write p
q for pq�1. Note that this is generally di�erent from q�1p since quaternion

multiplication is not commutative.

We can now state the following:

Proposition 11.

The set H
�

is a non-Abelian group under quaternion multiplication.

Proof of proposition 11

Note that the set of quaternions is closed under multiplication. This follows directly from Ham-
ilton's de�nition. The �rst requirement from the de�nition of a group follows from proposition
5. The second and third requirements follow from lemmas 1 and 2. The group is not Abelian,
since quaternion multiplication is not commutative.

2

13

Other algebraic properties

The set of quaternions satisfy some other algebraic properties that are worth mentioning. These
are given without further ado:

� The set of quaternions is an Abelian group (H;+) under quaternion addition.

� The set of quaternions is a non-Abelian ring (H;+; �), where + and � are quaternion
addition and multiplication.

3.3.4 Unit quaternions

This section discusses a subset of the quaternion group | the set of unit quaternions.

De�nition 12.

Let q 2 H. If kqk = 1, then q is called a unit quaternion. We will use H1 to denote the set of
unit quaternions.

The set of unit quaternions constitutes a unit sphere in four-dimensional space. We shall later
see that the set of unit quaternions play an important part in relation to general rotations. The
following propositions lead to the important proposition 21. the following:

Proposition 12.

Let q = [s;v] 2 H1. Then there exists v0 2 R3 and � 2]� �; �] such that q = [cos �;v0 sin �].

Proof of proposition 12

If q = [1;0] we let � = 0 and v0 can be freely chosen amongst unit vectors in R3 .

If q 6= [1;0] we let k = jvj and v0 = 1
kv. Then v = kv0 where v0 is a unit vector in R3 . Since q

is a unit quaternion, we get

1 = kqk2 = s2 + v � v = s2 + k2v0 � v0 = s2 + k2

The equation s2 + k2 = 1 describes a circle in the plane. Since a circle is also described by
cos2 � + sin2 � = 1, there exists � 2]� �; �] such that s = cos � and k = sin �. All in all we get
the desired:

q = [s;v] = [s;v0k] = [cos �;v0 sin �]

2

Two important results for unit quaternions are given in:

Proposition 13.

Let q; q0 2 H1. The following two equations hold:

i) kqq0k = 1 ii) q�1 = q�

Proof of proposition 13

i) kqq0k = kqkkq0k = 1, since kqk = kq0k = 1. (by equation 3.3 in proposition 9)
ii) q�1 � q�=kqk2 = q�, since kqk = 1.

2

14

The set of unit quaternions H1 is obviously a subset of H
�

, but de�nition 13 and proposition 14

give that H1 constitute a subgroup of H
�

.

De�nition 13.

Let G be a group and F 6= ? be a subset of G. F is a subgroup of G if

i) For all a; b 2 F : ab 2 F (F is closed)

ii) For all a 2 F : a�1 2 F

Proposition 14.

The set H1 of unit quaternions is a subgroup of the group H
�

.

Proof of proposition 14

Let q; q0 2 H1. Proposition 13 gives that kqq0k = 1, i. e. that qq0 2 H1, and thus the �rst
subgroup requirement is satis�ed. Equation 3.2 in proposition 9 and proposition 13 give that

kq�1k = kq�k = kqk = 1

and thereby the second subgroup requirement q�1 2 H1.
2

3.3.5 The exponential and logarithm functions

We will later need quaternion versions of the real exponential and logarithm functions. The
de�nitions and a few consequences of them are given here (see [Pervin & Webb, 1992] for further
detail).

De�nition 14.

Let q 2 H1, where q = [cos �; sin �v] as in proposition 12. The logarithm function log is de�ned

log q � [0; �v]

Note that log[1; (0; 0; 0)] = [0; (0; 0; 0)] as in the real case. Note also that log q is not in general
a unit quaternion.

The exponential function is introduced by

De�nition 15.

For a quaternion of the form q = [0; �v]; � 2 R; v 2 R3 ; jvj = 1, the exponential function exp
is de�ned by

exp q � [cos �; sin �v]

Note that the exponential and logarithm functions are mutually inverse, and that exp maps into
H1.

From the above de�nitions we can de�ne exponentiation for q 2 H1; t 2 R:

15

De�nition 16.
Let q 2 H1; t 2 R. Exponentiation qt is de�ned by

qt � exp(t log q)

This gives rise to the following:

Proposition 15.

Let q 2 H1; t 2 R. Then log(qt) = t log q.

Proof of proposition 15

log(qt) = log(exp(t log q)) = t log q

2

The following rule from R also holds for unit quaternions:

Proposition 16.

Let q 2 H1; q = [cos �; sin �v] and a; b 2 R. Then

qaqb = qa+b

Proof of proposition 16

qaqb = exp(a log q) exp(b log q)

= exp(a[0; �v]) exp(b[0; �v])

= [cos a�;v sina�][cos b�;v sin b�]

= [cos a� cos b� � sina� sin b�(v � v);v cos a� sin b� + v cos b� sina� + (v � v) sin a� sin b�]

= [cos a� cos b� � sina� sin b�;v(cos a� sin b� + cos b� sina�)]

= [cos((a+ b)�); sin((a+ b)�)v]

= exp([0; (a + b)�v])

= exp((a+ b) log(q))

= qa+b

2

Another rule from the real numbers is (pa)b = pab. This rule also holds for unit quaternions:

Proposition 17.

Let p 2 H1 and a; b 2 R. Then (pa)b = pab

Proof of proposition 17

(pa)b = (exp(a log p))b = exp(b log(exp(a log p))) = exp(ba log p) = pab

2

16

One must be very careful when using exp and log as the corresponding real versions. For
example, consider the following incorrect derivation, where p and q are unit quaternions.

pq = exp(log(pq)) = exp(log(p) + log(q)) = exp(log(q) + log(p)) = exp(log(q)) exp(log(p)) = qp

This is inconsistent with the fact that quaternion multiplication is not commutative. The error
lies in the second step where the rule (log pq = log p+ log q) is used | this rule does not hold
for quaternions.

3.3.6 Rotation with quaternions

Hamilton sought to describe rotations in space, just as complex numbers describe rotations in
the plane. That quaternions do, in fact, perform rotation, is shown in the following propositions
(proposition 21 in particular).

Proposition 18.

Let p 2 H, p = [s; (x; y; z)] = [s;v] and let q 2 H
�

. If r 2 R n f0g then (rq)p(rq)�1 = qpq�1.

Proof of proposition 18

Let r 2 R n f0g. The inverse of rq is q�1r�1. Since scalar multiplication is commutative we
can write: (rq)p(rq)�1 = rqpq�1r�1 = qpq�1rr�1 = qpq�1. Thus qpq�1 is unchanged if q is
multiplied by any non-zero scalar. 2

In the propositions below, we will only consider unit quaternions, since results shown for H1

generalize to all of H
�

by proposition 18.

Proposition 19.

Let q 2 H1; p = [s;v] 2 H. Then qpq�1 = p0, where p0 = [s;v0] with jvj = jv0j.

Proof of proposition 19

Below we write S(q) for the scalar part of q.

The proof consists of three steps. We �rst show S(p0) = S(p) for p 2 f[s;0] j s 2 Rg and then
for p 2 f[0;v] j v 2 R3g. Finally these results are used to show the proposition for p 2 H.

If p is a scalar represented as a quaternion, S(p0) = S(p) follows from simple algebra. Let
p = [s;0], then:

qpq�1 = q[s;0]q�1 = [s;0]qq�1 = [s;0]

We have used that multiplication with a scalar commutes (proposition 6).

Correspondingly, we will now show that the same result holds for a vector v represented as a
quaternion [0;v].

The scalar part S(q) of a quaternion q can be computed by 2S(q) = q + q�. We show the
proposition for a quaternion with 0 in the scalar part p = [0;v]:

17

2S(qpq�1) = (qpq�1) + (qpq�1)�

= (qpq�) + (qpq�)�

= qpq� + qp�q� (Propositions 5 and 8)
= q(p+ p�)q� (Proposition 5)
= q(2S(p))q�

= 2S(p) (The above result)
= 0 (Since p = [0;v])

Now let p 2 H, p = [s;v] = [s;0] + [0;v].

qpq�1 = q([s;0] + [0;v])q�1

= q[s;0]q�1 + q[0;v]q�1 (Proposition 5)
= [s;0] + [0;v0] (The two above results)
= [s;v0]

All in all S(p0) = S(p). Since q 2 H1, proposition 9, equation 3.3 gives kp0k = kqp0q�1k =
kqkkpkkq�1k = kpk. Since s is unchanged, it must be the case that jvj = jv0j.

2

Corollary 3. (to proposition 19)

Let q 2 H1; p = [a; bv] 2 H where a; b 2 R and v 2 R3 . If q[a;v]q� = [a;v0], then q[a; bv]q� =
[a; bv0].

Proof of proposition 3

qpq� = q[a; bv]q�

= qb[ab ;v]q
�

= b[ab ;v
0] (Proposition 19)

= [a; bv0]

2

We will later need the following useful rule:

Proposition 20.

Let q; p 2 H1; p = [cos �; sin �v]; t 2 R. Then qptq� = (qpq�)t.

Proof of proposition 20

By corollary 3 there exists v0 2 R
3 such that q[cos �; sin �v]q� = [cos �; sin �v0]. We get

qptq� = q(exp(t log p))q�

= q(exp(t[0; �v]))q� (De�nition 14)
= q(exp[0; t�v])q�

= q([cos t�; sin t�v])q� (De�nition 15)
= [cos t�; sin t�v0] (Corollary 3)
= exp(t[0; �v0])
= exp(t log[cos �; sin �v0])
= exp(t log(qpq�))
= (qpq�)t

2

18

We are now ready to show the main theorem of this section (inspired by [Watt & Watt, 1992]).

Proposition 21.

Let q 2 H1; q = [cos �; sin �n]: Let r = (x; y; z) 2 R3 and p = [0; r] 2 H. Then p0 = qpq�1 is p
rotated 2� about the axis n.

Proof of proposition 21

We �rst show how a vector r is rotated � degrees about n, using sine, cosine, and the scalar
and vector products. We then show that the same result is obtained through rotation with
quaternions.

Assume therefore that r is to be rotated � to Rr about an axis given by the unit vector n (see
�gure 3.1).

rRr

�

n

Figure 3.1: The vector r is rotated � to Rr about an axis given by the unit vector n.

The vector r can be written as a sum of two components, r
k
and r?, where rk is the projection

of r on n, and r? is orthogonal to n (see �gure 3.2). We get

r
k

= (r � n)n, and

r? = r� r
k
= r� (r � n)n

To see how the rotation a�ects r, we place a two-dimensional coordinate system in the plane
that is orthogonal to n and contains the points designated by r and Rr. To do this, we need a
vector v that is orthogonal to r? and n:

v = n� r? = n� (r� (r � n)n) = n� r� n� (r � n)n = n� r� ~0 = n� r

19

r

�

n

r
k

r?

Rr

v

Figure 3.2: In the two-dimensional coordinate system orthogonal to n, (Rr)? can be written
(Rr)? = r? cos � + v sin �.

From �gure 3.2 we see that Rr's component orthogonal to n, (Rr)?, is given by

(Rr)? = r? cos � + v sin �:

We now get:

Rr = (Rr)k + (Rr)?

= r
k
+ r? cos � + v sin �

= (r � n)n+ (r� (r � n)n) cos � + v sin �

= (r � n)n� (r � n)n cos � + r cos � + v sin �

= (1� cos �)(r � n)n+ r cos � + (n� r) sin � (3.4)

We will now examine the e�ect of applying a quaternion to a vector, and see that we get the
same result as in equation 3.4.

We now look at Rq(p) = qpq�1 and remind the reader that p = [0; r] and that q is a unit
quaternion [s;v]:

20

Rq(p) = [s;v][0; r][s;v]�1

= [s;v][0; r][s;�v]
= [s;v][v � r; sr� r� v]
= [s(v � r)� v � (sr� r� v); s(sr� r� v) + (v � r)v + v � (sr� r� v)]
= [0; s2r� s(r� v) + (v � r)v + v � (sr)� v � (r� v)]
= [0; s2r+ (v � r)v � v� (r� v)� 2s(r� v)]
= [0; s2r+ (v � r)v � (v � v)r + (v � r)v + 2s(v � r)] (�)
= [0; (s2 � v � v)r + 2(v � r)v + 2s(v � r)]

(�) Here we use the identity v1 � (v2 � v3) = (v1 � v3)v2 � (v1 � v2)v3

Since q is a unit quaternion, we can write q = [cos �; (sin �)n], where jnj = 1 (by proposition 12
on page 14).

Substituting this into Rq(p), we get:

Rq(p) = [0; (cos2 � � sin2 �(n � n))r+ 2((sin �)n � r)(sin �)n
+2 cos �((sin �)n� r)]

= [0; (cos2 � � sin2 �)r+ (2n sin2 �)(n � r)
+2 cos � sin �(n� r)]

= [0; r cos 2� + (1� cos 2�)(n � r)n+ (n� r) sin 2�]

From the above derivation, we see that the result is the same vector as in equation 3.4 except
that the above equation has 2� instead of �. Thus, given a unit vector n and a rotation angle �,
the unit quaternion [cos �; sin �n] rotates r through the angle 2� about n. 2

As a consequence of this proposition, we get the following important corollary:

Corollary 4. (to proposition 21)

Any general three-dimensional rotation � about n, jnj = 1 can be obtained by a unit quaternion.

Proof of corollary 4

In the above proposition choose q such that q = [cos �
2 ; sin

�
2n]. Thus the desired rotation is

obtained.
2

Composition of rotation is achieved by multiplying the corresponding quaternions. This is
formalized in:

Proposition 22.

Let q1; q2 2 H1. Rotation by q1 followed by rotation by q2 is equivalent to rotation by q2q1.

21

Proof of proposition 22

Given p 2 H, the result follows directly from

q2(q1pq
�1
1)q�12 = (q2q1)p(q

�1
1 q�12)

= (q2q1)p(q
�
1q
�
2) (proposition 13)

= (q2q1)p(q2q1)
� (proposition 8)

= (q2q1)p(q2q1)
�1 (proposition 13)

2

3.3.7 Geometric intuition

We will make some observations that can aid the intuitive understanding of rotation with quater-
nions.

The quaternions q and q�1

Let q = [s;v] 2 H1. Then
[s; v]�1 = q�1 = q� = [s;�v]

It can be useful to consider the geometric interpretation of this: The inverse of q, q�1, rotates
the same number of degrees as q, but the axis points in the opposite direction:

q q�1

By inverting the axis, the direction of rotation is reversed; a subsequent rotation by q�1 cancels
out the e�ect of the rotation q.

The quaternions q and �q

The quaternion �q represents exactly the same rotation as q (this follows from proposition
6). This may seem surprising, but should be expected: A rotation through the angle � about
the axis n can also be expressed as a rotation through the angle �� about the axis �n. It is
therefore aesthetically pleasing that we �nd both rotations on the unit quaternion sphere. The
same duality is also found in Euler's theorem.

22

�qq

Non-unit quaternions

It follows from proposition 18 that all quaternions on the line rq; r 2 R; r 6= 0 represent the
same rotation.

3.3.8 Quaternions and di�erential calculus

In this section we show a number of common results from di�erential calculus for functions
that map into H. The results will later be used to show that certain interpolation curves are
di�erentiable.

Proposition 23.

Let q = [cos �; sin �v] 2 H1; t 2 R. Then

d

dt
qt = qt log(q)

Proof of proposition 23
The equation is shown through simple calculation of the two sides of the equation.

The left-hand side:

d

dt
qt =

d

dt
exp(t log(q)) =

d

dt
exp(t[0; �v]) =

d

dt
[cos(t�); sin(t�)v] = �[� sin(t�); cos(t�)v]

The right-hand side:

qt log(q) = exp(t log(q)) log(q) = [cos(t�); sin(t�)v][0; �v]

= [�� sin(t�)(v � v); � cos(t�)v+ � sin(t�)(v � v)]

= [�� sin(t�); � cos(t�)v] = �[� sin(t�); cos(t�)v]

2

23

We also want to show the chain rule and the product rule for quaternions. We will �rst show
the product rule. The purpose of this derivation is to ensure that the order of the quaternions
in the di�erentiated expression is correct; it is important to make sure that this is the case since
quaternion multiplication is not commutative.

Proposition 24. (The product rule)

Let f; g 2 C1(R;H). Then

d

dt
(f(t)g(t)) = (

d

dt
f(t))g(t) + f(t)(

d

dt
g(t))

Proof of proposition 24

d

dt
(f(t)g(t)) = lim

�!0

f(x+ �)g(x + �)� f(x)g(x)

�

= lim
�!0

f(x+ �)g(x + �)� f(x+ �)g(x) + f(x+ �)g(x) � f(x)g(x)

�

= lim
�!0

�
f(x+ �)

g(x + �) � g(x)

�
+
f(x+ �)� f(x)

�
g(x)

�
= f(x)g0(x) + f 0(x)g(x)

2

Proposition 25. (The chain rule)
Let f 2 C1(H;H); g 2 C1(R;H). Then d

dtf(g(x)) = f 0(g(x))g0(x)

Proof of proposition 25

We compute the derivative at an arbitrary point c 2 R:
d

dt
f(g(c)) = lim

x!c

f(g(x))� f(g(c))

x� c

= lim
x!c

(f(g(x)) � f(g(c)))(g(x) � g(c))�1(g(x) � g(c))

x� c

= lim
x!c

�
f(g(x))� f(g(c))

g(x)� g(c)

g(x)� g(c)

x� c

�
= f 0(g(c))g0(c)

2

Finally we state the following result, that has no obvious counterpart in the real numbers:

Proposition 26.

Let q 2 C1(R; H1); r 2 C1(R;R). Since q maps into H1, q(t) can be written [cos �(t);v(t) sin �(t)],
and we have

d

dt
q(t)r(t) =

h
�sin

�
r(t)�(t)

��
r0(t)�(t) + r(t)�0(t)

�
;

cos
�
r(t)�(t)

��
r0(t)�(t) + r(t)�0(t)

�
v(t) + sin

�
r(t)�(t)

�
v0(t)

i

24

Proof of proposition 26

d

dt
q(t)r(t) =

d

dt
exp(r(t) log(q(t)))

=
d

dt
exp(r(t)[0;v(t)�(t)])

=
d

dt
exp[0; r(t)v(t)�(t)]

=
d

dt
[cos(r(t)�(t)); sin(r(t)�(t))v(t)]

=
h

�sin
�
r(t)�(t)

��
r0(t)�(t) + r(t)�0(t)

�
;

cos
�
r(t)�(t)

��
r0(t)�(t) + r(t)�0(t)

�
v(t) + sin

�
r(t)�(t)

�
v0(t)

i
2

Compare this equation to the derivative of two real-valued functions u; v 2 C1(R;R):

d

dt
uv = vuv�1

d

dt
u+ uv log(u)

d

dt
v:

This equation is di�erent from the equation in proposition 26, and it is unlikely that it holds in
general for quaternions.

25

3.4 An algebraic overview

This section contains a short resume of the algebraic properties of the rotational modalities.
The mathematical concepts are assumed to be known by the reader, and they are therefore
not described in detail. This section elaborates on the algebra previously discussed and is only
intended for the interested reader.

The space of three-dimensional rotations is not a simple vector-space but a closed three-dimensional
manifold and also a non-Abelian group (see section 3.3.3) known in the literature as SO(3)
[Shoemake, 1994b]. Here S is for \special" and the O(3) stems from the de�nition: O(n) =
fn� n matrices j OtO = Ig | the set of orthonormal n� n matrices.

The set of unit quaternions constitutes a subgroup of the quaternion group (see section 3.3.4). In
the literature, H1 is also called S3 [Shoemake, 1985]. This subgroup constitutes a hypersphere
in quaternion space. The spherical metric for S3 is equivalent to the angular metric for SO(3)
[Shoemake, 1985].

Furthermore the rotation group can be projected onto the four-dimensional unit sphere of unit
quaternions. This projection is two-to-one (see section 3.3.7): For each rotation there are
two corresponding unit quaternions | q that is obtained directly and �q, the antipodal unit
quaternion (see [Shoemake, 1994b], [Foley et al., 1990] and appendix B). This is because SO(3)
has the same topology as the three-dimensional projection space called (RP 3), while the set
of unit quaternions constitutes a hypersphere (S3) that is topologically di�erent from RP 3

[Shoemake, 1994b].

Bearing these similarities and the small discrepancy in mind, we can see that by developing a
smooth interpolation between unit quaternions, we get a smooth interpolation between general
rotations. The problem is not trivial, in particular because H1 constitutes a non-Euclidean
space, which excludes the usual interpolation methods such as splines. Our task is to �nd an
equivalent interpolation curve on the surface of the four-dimensional unit sphere.

26

Chapter 4

A comparison of quaternions, Euler

angles and matrices

In the previous chapter we introduced two rotational modalities:

� Rotation de�ned by Euler angles represented by general transformation matrices.

� Rotation de�ned by Euler's theorem represented by quaternions.

In this chapter we will describe advantages and disadvantages of the di�erent modalities.

4.1 Euler angles/matrices | Disadvantages

Traditionally homogeneous matrices have been used to represent Euler angles because the basic
rotation matrices for rotation about the x-, y-, and z-axes are simple and well-known. This
historically based choice has some disadvantages, though. We will discuss the disadvantages
below.

Lack of intuition

Describing a general rotation as rotations about the three basis axes is not natural for an
animator. If, for instance, the animator wants to rotate an object 30 degrees about a rotation
axis given by the vector (1; 1; 1), it is quite tedious to derive the corresponding Euler angles
about the three basis axes.

27

The order of rotation axes is important

The user of a graphical system must express rotations in respect to a certain convention that
de�nes in which order the three basis rotations are applied. Di�erent conventions yield di�erent
results. For example, a rotation of (�2 ;

�
4 ; 0) yields di�erent orientations depending on which

convention of x; y; z and y; x; z is being used.

As an example, we examine an object in a coordinate system (see �gure 4.1). By rotating the
object in �gure 4.1.i the angle �

2 about x and then
�
4 about y the result is 4.1.ii. If the convention

y; x; z is used instead, the rotation is done by �
4 about y and then �

2 about x yielding 4.1.iii.

i) ii) iii)

Figure 4.1: In the coordinate system the x-axis points to the right, the y-axis points up and
the z-axis point to the left. Figures ii) and iii) show the result of applying di�erent rotation
conventions to the object in �gure i).

Gimbal lock

Getting an intuitive understanding of how rotation matrices work is quite di�cult. In partic-
ular, it is di�cult to predict how successive rotations about the basis axes a�ect each other.
Considering that the matrix representation of Euler angles has an innate singularity in the pa-
rameterization makes this even more di�cult. It is possible to create series of rotations, where
one degree of freedom in the rotation is lost. This situation is called gimbal lock.

Gimbal lock is a concept originating from the air and space industry, where gyroscopes are
used [Shoemake, 1985] [Watt & Watt, 1992] [Verplaetse, 1995]. A gyroscope basically consists
of three concentric rings. See �gure 4.2 for an illustration of this (the example is inspired by
[McCool, 1995]).

In 4.2.i the inner ring represents the x-axis, the center ring the y-axis and the outer ring
represents the z-axis. A rotation about the x-axis can for example result in 4.2.ii, where the
object is rotated approximately 45 degrees about the x-axis. If we then rotate 90 degrees about
the y-axis, we get the situation shown in �gure 4.3.

In this situation, the x and the z-rotation acts about the same axis. This is an example of
gimbal lock.

28

i) ii)

Figure 4.2: In the coordinate system the x-axis points up, the y-axis points to the left and the
z-axis points to the right. The inner ring represents the x-axis, the center ring the y-axis and the
outer ring represents the z-axis. From the starting point i) the x-axis is rotated approximately
45 degrees in ii).

Figure 4.3: In the coordinate system the x-axis points up, the y-axis points to the left and the
z-axis points to the right. In this situation the x and the z-rotation act about the same axis.
This phenomenon is called gimbal lock.

Mathematically gimbal lock corresponds to loosing a degree of freedom in the general rotation
matrix (see appendix B):

R(�; �;) =

8>>>>>>>>>>:
cos � cos cos sin� sin� � cos� sin cos� cos sin� + sin� sin 0
cos � sin cos� cos + sin� sin� sin cos� sin� sin � cos sin� 0
� sin� cos � sin� cos� cos � 0

0 0 0 1

9>>>>>>>>>>;

If we let � = �
2 , then a rotation with � will have the same e�ect as applying the same rotation

with �. This can be seen from the following derivation (using the addition formulas for cos
and sin):

29

R(�; �2 ;) =

8>>>>>>>>>>:
0 cos sin�� cos� sin cos� cos + sin� sin 0
0 cos� cos + sin� sin cos� sin � cos sin� 0
�1 0 0 0
0 0 0 1

9>>>>>>>>>>;
=

8>>>>>>>>>>:
0 sin(��) cos(��) 0
0 cos(��) sin(��) 0
�1 0 0 0
0 0 0 1

9>>>>>>>>>>;
This expression shows that the rotation only depends on the di�erence � � and therefore it
has only one degree of freedom instead of two. For � = �

2 changes of � and result in rotations
about the same axis.

Implementing interpolation is di�cult

Normally the coordinates of each basis axis are interpolated independently. Thereby the inter-
dependencies between the axes are ignored. As an example, this results in unexpected e�ects
when applying simple linear interpolation. See section 6.1.1 for a treatment of this.

Ambiguous correspondence to rotations

Given a rotation matrix it is di�cult to solve the inverse problem: What are the original
rotations about the basis axes? In general, there is no unambiguous solution to this problem.
See appendix A or [Shoemake & Du�, 1994] for more detail.

In addition to this, a rotation can be represented by many di�erent rotation matrices. All in all
the mapping between rotations and rotation matrices is neither injective nor surjective.

The result of composition is not apparent

According to Euler's theorem two successive rotations can be expressed as one. The two rotation
matrices must be composed and multiplied followed by extraction of the resulting rotation. To
determine this rotation is tedious and in general not possible as mentioned above (see page 90
or [Shoemake & Du�, 1994] for further detail).

The representation is redundant

Homogeneous matrices contain expendable information. If the matrices are to be used exclusively
for rotation, the matrices will have zeroes for indices (4; i) and (i; 4); i 2 f1; 2; 3g. In addition
to this, the matrix uses 9 places for the 4 degrees of freedom that are necessary to describe a
rotation according to Euler's theorem.

On top of this numerical inaccuracies will be problematic. Since rotation matrices must be
orthonormal there are 6 constraints (each row must be a unit vector and the columns must be
mutually orthogonal) that must be maintained during the computations.

30

4.2 Euler angles/matrices | Advantages

An advantage of matrix implementations is that the mathematics is well-known and that matrix
applications are relatively easy to implement using standard packages. These advantages are
more historically than rationally determined though.

The main advantage of the matrix representation is the ability of the homogeneous matrix to
represent all the other basic transformations, for example translation, scaling, projection, and
shearing.

4.3 Quaternions | Disadvantages

Quaternions only represent rotation

It is possible to implement translation using quaternions (quaternion addition can be used as
a translation transformation interpreting the vector part of the quaternion as the translation
vector). In [Maillot, 1990] a kind of homogeneous quaternions are de�ned with a multiplication
making both translation and rotation multiplicative.

Even though it is possible to de�ne a homogeneous quaternion and thereby including the trans-
lation composition, this extension is not as elegant as the homogeneous matrices. The homo-
geneous extension appears to be ignored in the literature. Quaternions are used for rotation
exclusively, matrices are used for all other transformations.

Quaternion mathematics appears complicated

Quaternions are not included in standard curriculum of modern mathematics. Some might study
the quaternion group in algebra, but knowledge of quaternions is, in general, not widespread.
Therefore quaternions require a bit of work in the beginning. However, quaternions should pose
no problem for someone able to understand matrix algebra.

4.4 Quaternions | Advantages

Obvious geometrical interpretation

Quaternions express rotation as a rotation angle about a rotation axis. This is a more natural
way to perceive rotation than Euler angles.

The obvious correspondence between Euler's theorem and rotations represented by quaternions
gives a nice intuitive understanding of quaternions. The mapping between rotations and quater-
nions is therefore unambiguous with the exception that every rotation can be represented by two
quaternions. This appears to be a weakness in the quaternion representation. That q and �q
correspond to the same rotation is on the other hand mathematically pleasing. This is because
rotations themselves come in pairs. Given a rotation, the same rotation is obtained by rotating
in the opposite direction about the opposite axis. (see 3.3.7 on page 22).

31

Coordinate system independency

Quaternion rotation in not inuenced by the choice of coordinate system. The user of an
animation system does not need to worry about a certain convention of the order of rotation
about explicit axes.

Simple interpolation methods

Quaternions allow elegant formulations of a range of interpolation methods. Achieving a smooth
interpolation is therefore simpler using quaternions than Euler angles. We will give a compre-
hensive treatment of this in chapter 6.

Compact representation

The representation of rotation using quaternions is compact in the sense that it is four di-
mensional and thereby only contains the four degrees of freedom required according to Euler's
theorem.

In theory all non-zero quaternions can be used for rotation (by proposition 18). In practical
applications only unit quaternions will be used. Thus, only one constraint on the representation
must be upheld during computation compared to the six constraints on rotation matrices.

No gimbal lock

Since gimbal lock is innate to the matrix representation of Euler angles, this problem does not
appear in the quaternion representation.

Simple composition

Rotations are easily composed when using quaternions. The composition corresponds to multi-
plication of the involved quaternions. Rotation with q1 followed by rotation with q2 is achieved
by rotating with the quaternion q2q1.

4.5 Conclusion

We have stated a series of advantages and disadvantages for the two rotation modalities. Using
Euler angles represented by matrices leads to several problems. Rotation must be expressed
as the angles about three explicit axes, with the order being important. It is possible to en-
counter gimbal lock and �nally it is troublesome to uphold the mathematical constraints on the
representation during calculations.

32

The quaternion representation is compact with a more natural geometrical interpretation and a
parameterization of rotation that is not dependent on the coordinate system.

The only real advantage of matrices is the possibility of representing all the other transforma-
tions.

All in all, quaternions o�er the best choice for representation of rotations.

4.6 Other modalities

In the previous sections we have argued that rotations should be represented by quaternions
based on Euler's theorem. However, we have only compared to one other modality | rotation
matrices based on Euler angles.

Obviously, other modalities are possible. For example the two modalities can be combined. It
is possible to de�ne rotation matrices based on Euler's theorem (an example can be found in
[Foley et al., 1990] exercise 5.15). Thereby the problems connected to Euler angles are avoided
yielding a better correspondence between rotation matrices and the set of rotations. There
are still problems with this modality though. For instance, the inverse mapping from rotation
matrices to rotations is still ambiguous. Further, the matrix representation is not well-suited for
interpolation algorithms. For example the matrices still need to ful�ll the constraints imposed
by being orthonormal matrices.

We will limit ourselves from discussing other modalities. This is simply because the two we
have mentioned are by far the most important. Euler angles and matrices are the most com-
mon modality in both the literature and in applications. We claim that quaternions are more
appropriate.

33

Chapter 5

Visualizing interpolation curves

In chapter 6 we discuss a series of interpolation methods that can interpolate between two or
more quaternions. We would like to compare these methods from a theoretical perspective. At
the same time it is natural to compare the results of the methods in practice, to see if practice
reects our theoretical considerations.

This section contains a short description of the visualization methods used and the motivation
for each type of visualization.

5.1 Direct visualization

The most obvious visualization method is to apply the interpolated rotations to the object. This
is most easily achieved by de�ning an object using a three-dimensional visualization tool, and
then rotating it with the interpolated rotations. We let this visualization method produce an
animated sequence that shows how the object is rotated. The method gives an intuitive feel
for how the interpolation curve behaves, but it is di�cult to say anything concrete about the
smoothness of the interpolation curves or the variation in angular velocity. We therefore need
other methods of visualization that can provide us with this information.

5.2 Visualizing an approximation of angular velocity

We want to visualize the angular velocity of the interpolation curve. For example it will be
interesting to see if some of the interpolation curves have constant angular velocity.

In the following, qi denotes the i'th frame, i. e. the i'th quaternion in a discrete quaternion
interpolation curve.

To produce a graph of the angular velocity, we must de�ne a function that gives an approximation
of the angular velocity. Then all that remains is to plot this function against the interpolation
parameter. A number of di�erent approximations to the angular velocity can be de�ned based

34

in either physics or mathematics. We will base our de�nition in mathematics, and use that
we have de�ned a norm on quaternions. We can de�ne the distance between two quaternions
q1; q2 to be d(q1; q2) = kq1 � q2k. Then the angular velocity V in the i0th quaternion qi can be
approximated by the centered average:

V (qi) =
d(qi; qi�1) + d(qi; qi+1)

2
=
kqi � qi�1k+ kqi � qi+1k

2
(5.1)

Plotting V as a function of the interpolation parameter yields a graph of an approximation to
the angular velocity.

We will omit the �rst and last key frames from the angular velocity graph, since no obvious
angular velocity can be assigned to them. Thereby the leftmost point on the angular velocity
graph is the angular velocity in the �rst interpolated frame. The remaining key frames we will
mark with an asterisk in the velocity graph.

5.3 Visualizing the smoothness of interpolation curves

We would also like to visualize the interpolation curves to see, for example, how smooth they
appear.

Since quaternion space is four-dimensional, we cannot visualise the interpolated curves directly.
We will always interpolate between unit quaternions, and the interpolated quaternions will
always (with a few exceptions in chapter 6 on page 38 and 69) be unit quaternions. This
means that we only need three dimensions to visualize the interpolation curves, because they
lie on the surface of the unit sphere. In practice it can be di�cult to visualise this space
e�ectively since it must be presented via a two-dimensional media (paper or monitor). We can
remove another dimension by interpolating between quaternions in the same three-dimensional
hyperplane. This can be achieved by �xing one of the quaternion coordinates in all key frames.
Thus the interpolated curves should stay inside a two-dimensional space that can be shown in
the plane. To keep the association to the four-dimensional unit sphere, we elect to show the
curves on the surface of the three-dimensional unit sphere (a two-dimensional sub manifold of
R
3). In chapter 6 we will argue that the ideal interpolation curve will lie on the surface of the

quaternion unit sphere. Our choice of visualization ensures that we can visually determine if
the visualization curve stays on the surface of the unit sphere. See �gure 5.3 for an example of
this.

The actual visualizations are produced using a ray tracer [POV, 1997]. Here we generate a large
sphere that represents the three-dimensional unit sphere. The �rst key frame is shown as a
medium-sized sphere, other key frames are shown using a bit smaller spheres, and interpolated
points are shown using small spheres. See �gures 5.1 through 5.3 below.

35

5.4 Some examples of visualization

In this section we show some examples of the visualization of the angular velocity graphs and
the interpolation curves. The interpolation methods are described in section 6; we only describe
properties of the resulting visualizations here.

The interpolation is performed on the frames given in table 5.1. The key frames are given by
a general rotation. As noted above, we choose the rotation angle and axis such that all the
rotations lie in the same three-dimensional hyperplane.

In �gures 5.1 through 5.3 we discuss di�erent properties of the visualizations. Note that there
is no obvious connection between the rotations in �gure 5.1 and the points on the surface of the
sphere. This is because the table contains general rotations, while the visualizations show the
corresponding quaternions. Since we are only interested in the geometric shape of the curves,
the absolute positioning of the key frames on the sphere is irrelevant.

Rotation angle � 2]� �; �] Rotation axis v 2 R3
1 (1,3,0)

1.9 (-1,0,0)

0 (-2,1,0)

-2 (3,4,0)

-1 (-1,4,0)

1 (1,3,0)

Table 5.1: Key frames

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800
Frame nr.

’Angular Velocity.’
’Key Frames.’

Figure 5.1: The interpolation curve stays on the surface of the sphere, but it is not di�erentiable
in any key frames; the curve \breaks" when it passes through the key frames. The angular velocity
graph is piecewise continuous and shows that the angular velocity is constant between keys. This
method of interpolation is called Slerp and is described in section 6.1.5.

36

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800
Frame nr.

’Angular Velocity.’
’Key Frames.’

Figure 5.2: The interpolation curve is now di�erentiable through all key frames. Compare, for
example, the key frame in the middle of the �gure with the corresponding key frame in �gure
5.1. The angular velocity graph is continuous and assumes local minima at the key frames. This
interpolation curve is called Squad, and it is described in section 6.2.1.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800
Frame nr.

’Angular Velocity.’
’Key Frames.’

Figure 5.3: This interpolation curve dips below the surface of the three-dimensional unit sphere.
This means that the interpolated points are not unit quaternions, and thus the points do not lie
on the surface of the sphere. The angular velocity graph is piecewise linear. This interpolation
curve is called LinEuler, and is described in section 6.1.1

In general we will illustrate the interpolation methods with the last two visualization methods:
Sphere and graph. We have included the animated sequences for the sake of completeness, since
it is in this context that the interpolation serves its practical purpose.

A few examples of these animated sequences can be seen at http://kantine.diku.dk/~myth/gif/

37

Chapter 6

Interpolation of rotation

In the previous chapters we presented and discussed two rotational modalities. In this chapter
we will investigate how well-suited the modalities are for interpolation methods.

Gradually we will move from simple, intuitive methods to more advanced, theoretically well-
founded interpolation methods. Parallel to the derivation of methods we will discuss what we
perceive as criteria de�ning the optimal interpolation method. Our modest aim is to de�ne and
implement this optimal method.

6.1 Interpolation between two rotations

Initially we will limit ourselves to looking at interpolation between two rotations. We will use
the rotation representations as inspiration for treating a series of simple methods.

Each of the methods results in an interpolation curve de�ned as follows. Given an arbitrary
set M we interpolate between x0 2 M and x1 2 M parameterised by h 2 [0; 1]. The resulting
interpolation curve :M �M � [0; 1]yM must satisfy the constraints:

(x0; x1; 0) = x0

(x0; x1; 1) = x1

6.1.1 Linear Euler interpolation: LinEuler

The most obvious method is simply linear interpolation between two tuples of Euler angles.
Calling this interpolation curve LinEuler, interpolation between v0 = (x0; y0; z0) 2 R3 and v1 =
(x1; y1; z1) 2 R3 can be stated algorithmically using h 2 [0; 1] as the interpolation parameter:

LinEuler(v0; v1; h) = v0(1� h) + v1h (6.1)

38

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300
Frame nr.

Angular Velocity
Key Frames

Figure 6.1: Interpolation curve and velocity graph for Linear Euler interpolation | LinEuler.
Between the two key frames are 300 interpolated frames.

Figure 6.1 is not a very good illustration of the interpolation curve. The curve \lives" in the
set of Euler angles while the illustration shows the corresponding quaternions. As described in
chapter 5, the illustration is designed to show unit quaternions with the z coordinate equal to
zero. The quaternions corresponding to the key frames meet these criteria but the rest of the
interpolation curve does not. The curve consists of unit quaternions but their z coordinate is
not generally equal to zero. Therefore the curve disappears from the surface of the sphere in
the illustration.

This behaviour is neither optimal1 nor intuitively correct.

The velocity graph shows that the animation corresponding to the interpolation will gradually
slow down. Again, this behaviour is neither optimal nor intuitively correct.

6.1.2 Linear Matrix interpolation: LinMat

An alternative simple attempt is linear interpolation between rotation matrices | meaning
linear interpolation of every single matrix element independently of the others.

This can be stated simply algorithmically. With parameter h 2 [0; 1], the interpolation curve
between the rotation matrices M0 2 R4 � R4 and M1 2 R4 � R4 the curve is de�ned by

LinMat(M0;M1; h) = M0(1� h) +M1h (6.2)

As with linear Euler interpolation, the curve for linear matrix interpolation does not in general
lie on the unit sphere, since linear interpolation between orthonormal matrices will not in gen-
eral produce orthonormal matrices. Thus, the interpolated matrices are general homogeneous

1We perceive \optimal" informally so far. Later we will state a strict de�nition of the optimal interpolation
curve.

39

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300
Frame nr.

Angular Velocity
Key Frames

Figure 6.2: Interpolation curve and velocity graph for linear matrix interpolation | LinMat.
Between the two key frames are 300 interpolated frames.

transformation matrices containing translation, scaling, projection and other transformation el-
ements. Thereby the interpolation can become arbitrarily wrong. For example, it is possible to
collapse the entire object into a single point [Shoemake & Du�, 1994].

Our visualization methods cannot show other transformations than rotation. Therefore we are
not able to illustrate that the interpolated matrices are not pure rotation matrices. By converting
matrices to quaternions we preserve only the rotational part.

In �gure 6.2 we have projected the interpolation curve on to the unit quaternion sphere to show
the pure rotational part of the interpolation curve. Finally, after these detours, we arrive at a
quite nice interpolation curve.

As explained, the nice illustration does not imply that the interpolation method is usable |
only a component of the full interpolation curve is shown. The method is only discussed for
completeness.

6.1.3 Linear Quaternion interpolation: Lerp

Finally, another obvious attempt is linear interpolation between rotation quaternions (called
Lerp for linear interpolation). For q0; q1 2 H and h 2 [0; 1] this interpolation curve can be
stated:

Lerp(q0; q1; h) = q0(1� h) + q1h (6.3)

The interpolation curve for linear interpolation between quaternions gives a straight line in
quaternion space. The curve therefore dips below the surface of the unit sphere. Since all
quaternions on a line through the origin give the same rotation2, the curve can be projected on

2Except the origin itself. This follows from proposition 18.

40

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300
Frame nr.

Angular Velocity
Key Frames

Figure 6.3: Interpolation curve and velocity graph for linear quaternion interpolation | Lerp.
Between the two key frames are 300 interpolated frames.

to the unit sphere without changing the corresponding rotations. Therefore the interpolation
curve is normalized (�gure 6.3).

The illustration shows that Lerp is the �rst of the interpolation methods discussed so far to yield
a satisfying result. Even though the interpolation curve for Lerp resembles the curve for LinMat
(see �gures 6.2 and 6.3) we must emphasize that this does not mean that the interpolations are
alike. The illustration for LinMat is the result of a series of transformations and not a true
image of the interpolation curve.

Even though the interpolation curve for Lerp is nice, the velocity graph is not intuitively satis-
fying. The speedup in the middle is due to the fact that the interpolation curve takes a \short
cut" below the surface of the unit sphere. This is not a desired property. The intuitively correct
velocity graph for linear interpolation is a constant function.

6.1.4 A summary of linear interpolation

We have attempted simple linear interpolation with the purpose of revealing which rotation
representation is most suitable for de�ning interpolation curves.

The disadvantages of LinEuler and LinMat are evident. As previously described, Euler angles
are not the best de�nition for rotation and matrices are not an obvious representation. Therefore
it is not to be expected that simple linear interpolation between pairs of Euler angles or rotation
matrices will result in nice interpolation curves.

In contrast the interpolation curve for Lerp is quite nice. The only problem is the varying
velocity graph. A constant velocity is not necessarily a requirement for a curve. However, in
this case the varying velocity is a problem since it is the result of a aw in the method. The
problem is that the interpolated quaternions are not unit quaternions in general.

41

For Euler angles and rotation matrices the linear interpolation can result in unacceptable in-
terpolation curves. It does not necessarily follow from this that it is impossible to de�ne a
satisfying interpolation curve using these representations. It does, however, imply that it is not
possible to de�ne simple algorithms yielding satisfying curves. This is a direct consequence of
the disadvantages in the Euler angle and rotation matrix representation as discussed in chapter
4.

On the other hand, the very simple Lerp is close to being optimal. At this stage we perceive
the optimal interpolation curve between two key frames to be the great arc on the quaternion
unit sphere between the two corresponding quaternions.

Due to the previous considerations we will refrain from further attempts at deriving interpolation
curves based on Euler angles and rotation matrices.

6.1.5 Spherical Linear Quaternion interpolation: Slerp

As proven in proposition 18, all quaternions on a line through the origin3 perform the same
rotation. However, we only want to use unit quaternions for rotation since they possess a range
of desirable properties4.

Simple linear quaternion interpolation yields a secant between the two quaternions. Therefore
the interpolation function has larger velocity in the middle of the curve (see �gure 6.3 and
�gure 6.4). Apart from this Lerp is optimal. An obvious idea is to de�ne an interpolation
method yielding the same interpolation curve but where the interpolated quaternions are unit
quaternions. Instead of doing simple linear interpolation the curve should follow a great arc on
the quaternion unit sphere from one key frame to the other. This is called great arc interpolation
or spherical linear interpolation - Slerp.

V

a) b) c)

Figure 6.4: An illustration in the plane of the di�erence between Lerp and Slerp. a) The
interpolation covers the angle v in three steps. b) Lerp | The secant across is split in four
equal pieces. The corresponding angles are shown. c) Slerp | The angle is split in four equal
angles.

This interpolation can be stated algorithmically as follows ([Shoemake, 1985], [Shoemake, 1987]
and [Shoemake, 1997]). Given q0; q1 2 H1 and h 2 [0; 1] the following four functions are equiva-
lent expressions for spherical linear interpolation:

3Except the origin itself.
4The unit quaternion sphere is, as mentioned in chapter 3.4, equivalent to the space of general rotations.

42

Slerp(p; q; h) = p (p� q)h (6.4)

Slerp(p; q; h) = (p q�)1�h q (6.5)

Slerp(p; q; h) = (q p�)h p (6.6)

Slerp(p; q; h) = q (q� p)1�h (6.7)

Notice the pairwise symmetry yielding the intuitively correct:

Slerp(p; q; h) = Slerp(q; p; 1� h)

The equivalence of the four expressions for Slerp is proven in the following proposition inspired by
[Shoemake, 1997]. No proof of the equivalence has previously been published (this is con�rmed
by Ken Shoemake).

Proposition 27.

For p; q 2 H1; h 2 R the following four expressions are equivalent:

(1) p (p� q)h

(2) (p q�)1�h q
(3) (q p�)h p
(4) q (q� p)1�h

Proof

First we show (1) = (3). Proposition 20 is used (page 18).

p(p�q)h = p(p�q)h(p�p)
= (p(p�q)hp�)p
= (pp�qp�)hp (Proposition 20)
= (qp�)hp

Now we show (4) = (2):

q(q�p)1�h = q(q�p)1�h(q�q)
= (q(q�p)1�hq�)q
= (q(q�p)q�)1�hq (Proposition 20)
= (pq�)1�hq

Finally we show (2) = (1) using proposition 16 from page 16 and proposition 17:

(pq�)1�hq = (pq�)(pq�)�hq (Proposition 16)
= (pq�)((pq�)�1)hq (Proposition 17)
= pq�((pq�)�)hq
= pq�(qp�)hq
= p(q�(qp�)q)h (Proposition 20)
= p(q�qp�q)h

= p(p�q)h

2

43

We have thus proved the equivalence of the four expressions for Slerp5. From now on we will
use Slerp(p; q; h) = p(p�q)h (equation 6.4).

That Slerp does, in fact, perform great arc interpolation on the four-dimensional quaternion
sphere is not obvious. Often in the literature it is stated that this follows directly from the
Lie group structure of the unit quaternions. We provide a thorough proof in proposition 28
requiring only basic di�erential geometry.

There are several di�erent ways of proving proposition 28. One approach is to look at the
curvature of Slerp. It is fairly easy to prove that the curvature equals one throughout the entire
interpolation curve. Only great arcs have curvature equal one on a unit sphere. Here we use
another approach. The key point in this proof is observing that the curve is a great arc if the
second derivative vector is parallel (and with opposite direction) to the position vector of the

curve, i. e. d2

dh2
Slerp(p; q; h) = c Slerp(p; q; h); c � 0. This corresponds to the forces acting on

an object describing a plane circular motion with constant angular velocity.

Before the proof we need a lemma:

Lemma 3.
Let p = [s;v]; q1 = [s1; (x1; y1; z1)] = [s1;v1]; q2 = [s2; (x2; y2; z2)] = [s2;v2] 2 H:
Then (pq1)

�

(pq2) = kpk2 (q1
�

q2)

Proof of lemma 3

(pq1)
�

(pq2) = [ss1 � v � v1; sv1 + s1v+ v � v1]
�

[ss2 � v � v2; sv2 + s2v + v � v2]
= s2s1s2 � ss1v � v2 � ss2v � v1 + (v � v1)(v � v2)+

s2v1 � v2 + ss2v � v1 + sv1 � (v � v2)+
ss1v � v2 + s1s2v � v + s1v � (v � v2)+
s(v � v1) � v2 + s2(v � v1) � v+ (v � v1) � (v � v2)

= s2s1s2 + (v � v1)(v � v2)+
s2v1 � v2 + sv1 � (v � v2) + s1s2v � v+
s(v � v1) � v2 + (v � v1) � (v � v2)

We simplify using (v � v1) � (v � v2) = (v � v)(v1 � v2)� (v � v2)(v1 � v):
(pq1)

�

(pq2) = s2s1s2 + (v � v1)(v � v2)+
s2v1 � v2 + sv1 � (v � v2) + s1s2v � v+
s(v � v1) � v2 + (v � v)(v1 � v2)� (v � v2)(v1 � v)

= (s2 + v � v)s1s2 + (s2 + v � v)v1 � v2+
sv1 � (v � v2) + s(v � v1) � v2

= kpk2 (q1
�

q2) + sv1 � (v � v2) + sv2 � (v � v1)

Finally, we use the identity

v � (v1 � v2) =

������
x y z
x1 y1 z1
x2 y2 z2

������ = xy1z2 + x2yz1 + x1y2z � xy2z1 � x1yz2 � x2y1z

5Another compelling expression for Slerp is Slerp(p; q; h) = p1�h qh. This is intuitively analogous to ordinary
linear interpolation p (1 � h) + q h. The equivalence with equation 6.4 can be shown as follows: p(p�q)h =
p(p�1q)h = pp�hqh = p1�hqh. This is very nice | and yet another example of how easy it is to make erroneous
proofs with quaternions. For q; p 2 H and h 2 R the equation (qp)h = qh ph does not hold in general. This would
require commutativity.

44

We now get:

(pq1)
�

(pq2) = kpk2 (q1
�

q2) + sv1 � (v � v2) + sv2 � (v � v1)
= kpk2 (q1

�

q2)+
s(x1yz2 + x2y1z + xy2z1 � x1y2z � xy1z2 � x2yz1)+
s(x2yz1 + x1y2z + xy1z2 � x2y1z � xy2z1 � x1yz2)

= kpk2 (q1
�

q2)

2

Proposition 28.

The curve Slerp(p; q; h) : H1 � H1 � [0; 1] y H1 is a great arc on the unit quaternion sphere
between p and q. The position vector function of Slerp has constant angular velocity.

Proof of proposition 28

To show proposition 28 we must prove that the following four conditions are met:

Slerp(p; q; 0) = p (6.8)

Slerp(p; q; 1) = q (6.9)

kSlerp(p; q; h)k = 1; h 2 [0::1] (6.10)

d2

dh2
Slerp(p; q; h) = c Slerp(p; q; h); c � 0 2 R (6.11)

Conditions 6.8 and 6.9 are shown directly using the de�nitions for exp and log.

Slerp(p; q; 0) = p (p� q)0 = p exp([0; 0]) = p[1; 0] = p

Slerp(p; q; 1) = p (p� q)1 = p exp(log(p� q))

= p p� q = p p�1 q = q

Condition 6.10 is met since exp maps into H1 (de�nition 15) and since the norm of a product is
the product of the norms (proposition 9, equation 3.3):

kSlerp(p; q; h)k = kpk k(p� q)hk = 1 k exp(h log(p� q))k = 1

To show condition 6.11, we need the second derivative of Slerp. Using proposition 23 we �nd:

d

dt
Slerp(p; q; h) =

d

dt
p(p�q)h

= p(p�q)h log(p�q)

= Slerp(p; q; h) log(p�q) (6.12)

d2

dh2
Slerp(p; q; h) = p (p� q)h log(p� q)2

= Slerp(p; q; h) log(p� q)2

Condition 6.11 holds if log(p� q)2 is a non-positive real number. Since p�; q 2 H1, then p
� q 2 H1.

By proposition 12 there exists � 2 R and v 2 R3 ; jvj = 1 such that p� q = [cos �; sin �v]. Then:

45

log(p� q)2 = [0; �v]2

= [��2 v � v; �2 v � v]

= [��2;0]

Thus d2

dh2
Slerp(p; q; h) = c Slerp(p; q; h) where c = ��2 � 0.

2

Having shown that Slerp(p; q; h); h 2 [0; 1] spans a great arc between p and q, there are still two
possible curves depending on which direction around the unit sphere Slerp takes. The following
proposition states that Slerp behaves as desired.

Proposition 29.

Let p; q 2 H1. Then Slerp(p; q; h); h 2 [0; 1], spans the shortest great arc between p and q on
the unit quaternion sphere.

Proof of proposition 29

Let q 1
2

= Slerp(p; q; 12) and let � denote the angle between p and q 1
2

. Slerp yields the shortest

arc if and only if � 2]� �
2 ;

�
2]. This is equivalent to cos(�) 2 [0; 1]. We therefore examine the

sign of cos(�).

Let p; q 2 H1, where p = [s; v].

cos(�) = p
�

q 1
2

(Proposition 10)

= p
�

Slerp (p; q; 1=2)

= p
�

(p (p�q)
1

2)

Since p�; q 2 H1 it follows that p
�q 2 H1. By proposition 12 there exists w 2 R3 , jwj = 1 and

 2]� �; �] such that p�q = [cos(); sin()w]. Using lemma 3 we get:

cos� = p
�

�
p [cos(); sin()w]1=2

�
= p

�

(p exp((1=2) log[cos(); sin()w]))

= p
�

(p exp([0; (=2)w]))

= p
�

(p [cos (=2) ; sin (=2)w])

= (p [1;0])
�

(p [cos (=2) ; sin (=2)w])

= kpk2([1;0]
�

[cos (=2) ; sin (=2)w]) (Lemma 3)

= kpk2 cos (=2)
= cos (=2)

Now 2]� �; �] yields cos(=2) � 0 and therefore cos(�) � 0. Thus Slerp spans the shortest
great arc between p and q.

2

46

We have now proven the equivalence of the four expressions for Slerp from proposition 27
and then proven that Slerp actually produces the desired great arc. This could conclude our
treatment of Slerp. However, the literature has traditionally avoided the use of exponentiation
in the expression for Slerp6. We have encountered no problems using the expressions from
proposition 27. However, for the sake of completeness, we will include the following expression
for Slerp without exponentiation:

cos(
) = q0
�

q1

Slerp(q0; q1; h) =
q0 sin((1� h)
) + q1 sin(h
)

sin(
)
(6.13)

Notice that this expression is not de�ned for q0 = �q1. The obvious patch is Slerp(q; q; h) � q.

The correctness of the expression above (equation 6.13) can be shown in the plane. The inter-
polation between p0 and p1 (as illustrated in �gure 6.5) can be written:

q(h) =

�
cos(v + ht)
sin(v + ht)

�

The expression from equation 6.13 can | through applying the addition formulas for sin and
cos successively | be written as:

Slerp(p0; p1; h) =
p0 sin((1 � h)t) + p1 sin(ht)

sin(t)

=

cos(v) sin((1�h)t)+cos(v+t) sin(ht)

sin(t)
sin(v) sin((1�h)t)+sin(v+t) sin(ht)

sin(t)

!

=

cos(v)(sin(t) cos(ht)�cos(t) sin(ht))+(cos(v) cos(t)�sin(v) sin(t)) sin(ht)

sin(t)
sin(v)(sin(t) cos(ht)�cos(t) sin(ht))+(sin(v) cos(t)+cos(v) sin(t)) sin(ht)

sin(t)

!

=

�
cos(v) cos(ht)� sin(v) sin(ht)
sin(v) cos(ht) + cos(v) sin(ht)

�

=

�
cos(v + ht)
sin(v + ht)

�
= q(h)

Thus, the correctness of the expression has been proven in the plane. This result can be gener-
alized directly to four dimensions thereby proving equation 6.13.

Slerp summarized

The interpolation curve for Slerp (�gure 6.6) forms a great arc on the quaternion unit sphere
(as proven in proposition 28). In di�erential geometry terms, the great arc is a geodesic |
corresponding to a straight line. Not only does Slerp follow a great arc (as proven in proposition
29) it follows the shortest great arc. Thus Slerp yields the shortest possible interpolation path
between the two quaternions on the unit sphere7. Furthermore Slerp has constant angular
velocity. All in all Slerp is the optimal interpolation curve between two rotations.

6Since qh = exp(h log q) exponentiation automatically implies the use of the logarithm and exponential func-
tions. These functions are only de�ned on a limited set of quaternions and they can therefore cause problems in
conjunction with numerical inaccuracies.

7It should be noted that even though Slerp performs the shortest possible arc between p and q this is not nec-

47

v

p’

t p ht

p’

q

p

a) b)

Figure 6.5: Slerp in the plane. a) The interpolation goes from p to p0 across the angle t. b) A
step in the interpolation, where h 2 [0; 1], q moves from p to p0.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300
Frame nr.

Angular Velocity
Key Frames

Figure 6.6: Interpolation curve and velocity graph for spherical linear quaternion interpolation
{ Slerp. Between the two key frames there are 300 interpolated frames.

essarily optimal. Since p and �p perform the same rotation (according to equation 18 page 17), the interpolation
between �p and q could possibly yield a shorter interpolation path. This can be established simply by comparing
the distance between p and q, kp� qk, with the distance between �p and q, kp+ qk.

48

6.2 Interpolation over a series of rotations:
Heuristic approach

When interpolating between two rotations Slerp is optimal. In the set of unit quaternions the
interpolation curve of Slerp is equivalent to a straight line (the great arc). When interpolating
between a series of rotations problems emerge: a) The curve is not smooth at the control points,
b) The angular velocity is not constant and c) The angular velocity is not continuous at the
controls points.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800
Frame nr.

Angular Velocity
Key Frames

Figure 6.7: Interpolation curve and angular velocity graph for Slerp. Between the six key frames,
750 interpolated frames have been generated.

A reparameterization can easily ensure continuity across the entire interpolation. Actually the
interpolation parameter is transformed into a number of discrete frames between each pair of key
frames. Thus a reparameterization corresponds to assigning each interval a number of frames
relative to the size of the interval. The size of an interval can be measured as the angle � between
a pair of key frames qi and qi+1, given by cos � = qi

�

qi+1.

Since the number of frames in each subinterval necessarily has to be an integer the angular
velocity is, due to rounding, only approximately constant. Compare �gure 6.7 and �gure 6.8.

It is not equally simple to �x the lack of smoothness. Analogously it is simple to interpolate
between two points in the plane with a straight line, but even in the simple Euclidean space it
is relatively complicated to create a smooth interpolation between a series of points (see �gure
6.9).

When interpolating between a series of control points in the plane di�erent kinds of cubic curves
are typically used. For example this can be done with B�ezier curves, which can be constructed
quite simply.

49

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 6.8: Interpolation curve and angular velocity graph for Slerp. Between the six key frames,
550 interpolated frames have been generated. The frames in the subintervals are distributed
according to length of the interval.

a) b) c)

Figure 6.9: a) In the plane simple interpolation between two points is obtained by a straight
line. b) Linear interpolation between a series of points is not di�erentiable in the control points.
c) To ensure di�erentiability one can use cubic curves, for example splines.

P1 P2

B2P0
P3

B1

A1

A2

B2

P1 P2

P0
P3

B1

A1

A2

Figure 6.10: Interpolation between the points P1 and P2 with a B�ezier curve. The curve is
de�ned as a third-order curve, where the tangent in the control points is de�ned by auxiliary
points. For example the tangent in P1 is de�ned by the auxiliary points A1 and B1 (the tangent
is B1-P1 or P1-A1). The di�erentiability is automatically assured since the curve is a third
order curve.

50

The B�ezier curve from �gure 6.10 (with auxiliary points B1 and A2) that interpolates between
the control points P1 and P2 can be expressed algorithmically (based on [Watt & Watt, 1992])
as three steps of linear interpolation:

lin(x0; x1; h) = x0(1� h) + x1h

Bezier(P1; P2; B1; A2; h) = lin(lin(P1; P2; h); lin(B1; A2; h); 2h(1 � h))

The auxiliary points can be moved arbitrarily, which yields a change in the shape of the curve.
The interpolation curve between P1 and P2 is solely determined from the positions of auxiliary
points B1, A2 relative to control points P1 and P2. The tangent at P1 is de�ned by the vector
B1-P1 and the tangent at P2 is de�ned by the vector A2-P2.

When interpolating between a series of control points, it is often desirable to ensure di�erentia-
bility in the control points. This constraint can be met by making the tangents coincide in the
control points, i.e. ensuring that B1-P1 = P1-A1.

6.2.1 Spherical Spline Quaternion interpolation: Squad

The above construction can serve as an inspiration for formulating the spherical cubic equivalent
of a B�ezier curve. This interpolation curve is called Squad (spherical and quadrangle) and was
presented by Shoemake in [Shoemake, 1987].

Shoemake de�nes Squad as (with h 2 [0; 1]):

De�nition 17.

Squad(qi; qi+1; si; si+1; h) = Slerp(Slerp(qi; qi+1; h);Slerp(si; si+1; h); 2h(1 � h)) (6.14)

si = qi exp

�
� log(q�1i qi+1) + log(q�1i qi�1)

4

�
(6.15)

The resulting expression for Squad is analogous to the B�ezier curve, but involves spherical linear
interpolation instead of simple linear interpolation. B1 and A2 are written si and si+1. The
expression for si (equation 6.15) will be derived below.

Correctness of Squad

The de�nition of Squad is complex and therefore neither the continuity nor the di�erentiability
of the resulting interpolation curve is obvious.

Squad was originally presented in [Shoemake, 1987] which has served as general reference for a
proof of the di�erentiability of Squad . [Shoemake, 1987] is no longer available8, and furthermore

8[Shoemake, 1987] is a set of course notes from SIGGRAPH 1987, and these notes are no longer available from
University libraries or ACM.

51

the original proof of di�erentiability was awed9. In [Kim et al., 1996] a new proof was presented.
However, the di�erentiability of Squad is a consequence of a more general result in this paper
and therefore the proof is not very thorough. In addition, the constants si from proposition 17
were not derived. After corresponding with Ken Shoemake [Shoemake, 1997] we have therefore
derived a complete proof of the di�erentiability of Squad .

Proposition 30.

Squad 2 C1

Proof
That Squad is continuously di�erentiable is obvious except at the control points, since all the
subexpressions are continuously di�erentiable in a given sub-interval and therefore Squad is
continuously di�erentiable inside each interval.

We must now show continuous di�erentiability for Squad at a given control point qi. First
we must show that the neighboring segments have the control points as their value at the end
points, i. e. that Squad(qi�1; qi; si�1; si; 1) = Squad(qi; qi+1; si; si+1; 0):

Squad(qi�1; qi; si�1; si; 1) = Slerp(Slerp(qi�1; qi; 1);Slerp(si�1; si; 1); 0)

= Slerp(qi; si; 0)

= qi

Squad(qi; qi+1; si; si+1; 0) = Slerp(Slerp(qi; qi+1; 0);Slerp(si; si+1; 0); 0)

= Slerp(qi; si; 0)

= qi

Thus Squad is continuous and has the correct value at the control points.

We now show that Squad is continuously di�erentiable at a given control point. We do this by
deriving the derivative of Squad in a given interval. Like above, we must then show that

d

dt
Squad(qi�1; qi; si�1; si; 1) =

d

dt
Squad(qi; qi+1; si; si+1; 0)

To �nd the derivative of Squad , we need the derivative of Slerp, which we get from equation
6.12.

We introduce the abbreviation

gi(h) = Slerp(qi; qi+1; h)
�Slerp(si; si+1; h)

Now we will �nd the derivative of Squad(qi; qi+1; si; si+1; h) and decide how si and si+1 must be
de�ned to ensure di�erentiability at the control points.

d

dt
Squad(qi; qi+1; si; si+1; h) =

d

dt
Slerp(Slerp(qi; qi+1; h);Slerp(si; si+1; h); 2h(1 � h))

=
d

dt

�
Slerp(qi; qi+1; h) gi(h)

2h(1�h)
�

9According to Ken Shoemake.

52

The product rule for di�erentiation (proposition 24) yields:

d

dt
Squad(qi; qi+1; si; si+1; h) =

d

dt

�
Slerp(qi; qi+1; h)gi(h)

2h(1�h)
�

=

�
d

dt
(Slerp(qi; qi+1; h))

�
gi(h)

2h(1�h) +

Slerp(qi; qi+1; h)

�
d

dt
(gi(h)

2h(1�h))

�
= Slerp(qi; qi+1; h) log(q

�
i qi+1)gi(h)

2h(1�h) +

Slerp(qi; qi+1; h)

�
d

dt
gi(h)

2h(1�h)

�

Since gi(h) is a product of unit quaternions, the function values are on the unit sphere. Therefore,
gi(h) may be written:

gi(h) = [cos(�gi(h)); sin(�gi(h))vgi(h)]

Here vgi(h) is a unit vector. We can now use proposition 26 to �nd the derivative of gi(h)
2h(1�h):

d

dt
gi(h)

2h(1�h) =

�
� sin

�
2h(1 � h)�gi(h)

�� d

dt
(2h(1 � h))�gi(h)+ 2h(1 � h)

d

dt
(�gi(h))

�
;

cos
�
2h(1 � h)�gi(h)

�� d

dt
(2h(1 � h))�gi(h) + 2h(1 � h)

d

dt
(�gi(h))

�
vgi(h) +

sin
�
2h(1 � h)�gi(h)

� d

dt
(vgi(h))

�

=
h
� sin

�
2h(1 � h)�gi(h)

� �
(2� 4h)�gi(h)+ 2h(1 � h)�g0i(h)

�
;

cos
�
2h(1 � h)�gi(h)

��
(2� 4h)�gi(h) + 2h(1 � h)�g0i(h)

�
vgi(h) +

sin
�
2h(1 � h)�gi(h)

�
vg0i(h)

i
Having expanded all the subexpressions of the derivative of Squad , we will now determine si so
that the derivative of Squad is continuous across each control point, i. e.

d

dt
Squad(qi�1; qi; si�1; si; 1) =

d

dt
Squad(qi; qi+1; si; si+1; 0)

Below we write d
dt

�
gi�1(h)

2h(1�h)
�
(1) for the derivative of the expression gi�1(h)

2h(1�h) applied
to the value 1. Using algebra and rearranging, we get:

d

dt
Squad(qi�1; qi; si�1; si; 1) = Slerp(qi�1; qi; 1) log(q

�
i�1qi) +

Slerp(qi�1; qi; 1)
d

dt

�
gi�1(h)

2h(1�h)
�
(1)

= qi log(q
�
i�1qi) + qi[0;�2 �gi�1

(1)vgi�1
(1)]

= qi
�
log
�
q�i�1qi)� 2 log([cos(�gi�1

(1)); sin(�gi�1
(1))vgi�1

(1)]
��

= qi(log(q
�
i�1qi)� 2 log(gi�1(1)))

= qi(log(q
�
i�1qi)� 2 log(q�i si))

53

d

dt
Squad(qi; qi+1; si; si+1; 0) = Slerp(qi; qi+1; 0) log(q

�
i qi+1) +

Slerp(qi; qi+1; 0)
d

dt

�
gi(h)

2h(1�h)
�
(0)

= qi log(q
�
i qi+1) + qi[0; 2 �gi(0)vgi(0)]

= qi (log (q
�
i qi+1) + 2 log([cos(�gi(0)); sin(�gi(0))vgi(0)]))

= qi(log(q
�
i qi+1) + 2 log(gi(0)))

= qi(log(q
�
i qi+1) + 2 log(q�i si))

Thus, si must satisfy

qi(log(q
�
i qi+1) + 2 log(q�i si)) = qi(log(q

�
i�1qi)� 2 log(q�i si)):

Using q�i = q�1i since qi 2 H1 we get:

4 log(q�i si) = log(q�i�1qi)� log(q�i qi+1)

q�i si = exp

�
log(q�i�1qi)� log(q�i qi+1)

4

�

si = qi exp

�
log(q�i�1qi)� log(q�i qi+1)

4

�

To rewrite the expression for si, we use the identity (q1q2)
� = q�2q

�
1. Since the constituent

quaternions are unit quaternions, the identities q� = q�1, and log(q�) = � log(q) also hold.
Finally we have:

si = qi exp

�
� log(q�i qi�1) + log(q�i qi+1)

4

�

= qi exp

�
� log(q�1i qi�1) + log(q�1i qi+1)

4

�
(6.16)

Thus Squad is continuously di�erentiable at the control points with si de�ned as above. All in
all we have shown that Squad is continuous and continuouly di�erentiable across all segments.
Further observe that the derived equation 6.16 for si is the same as equation 6.15.

2

The interpolation curve generated by Squad

The algorithmic expression for Squad yields an interpolation curve for a series of quaternions
q0; : : : ; qN . The expression is not de�ned in the �rst and last interval since q�1 appears in
the expression for s0 and qn+1 appears in the expression for sn. Therefore it is necessary to
de�ne sound values for s0 and sn. The simplest solution is to de�ne s0 � q0 and sN � qN |
alternatively q�1 and qn+1 can be de�ned. The choice of s0 and q0 have little impact on the
resulting interpolation curve and we will consider the choice an implementation detail.

As for the interpolation curve of Slerp (�gure 6.8) it is, for implementation purposes, necessary
to produce a discrete version of the interpolation parameter and thereby selecting the number
of interpolated frames between each key frame. For Slerp this process was simple since the arc
length of the interpolation curve corresponds to the angle between the two involved quaternions.

54

Since the interpolation curve for Squad is rounded, it is not simple to calculate the arc length
between each pair of key frames and thus it is not trivial to determine the number of frames
between each pair of key frames. We choose to determine the number of frames between each
pair of key frames relative to the distance between the the two key frames. This is not the
optimal choice, but a simple and e�ective heuristic.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 6.11: Interpolation curve and angular velocity graph for Squad. Between the six key
frames we have interpolated 550 frames. The frames have been distributed according to interval
length.

From �gure 6.11 it is clear that Squad gives a \nice" interpolation curve. The term \nice" can
be read as continuous and di�erentiable | but even this clari�cation is qualitatively vague: A
continuous and di�erentiable curve can have any number of more or less wild twists and turns.
From the formulation of Squad it is far from trivial to determine qualitative properties of the
curve. Therefore we want a more objective measure from which we can de�ne an interpolation
curve. In this context it is no longer adequate to use quali�ed guesses to derive new methods
of interpolation. However, the previously stated methods provide a good foundation for the
development of a more general method.

In the next sections we will seek the formulation of a more general method from a more mathe-
matical and physical point of view.

55

6.3 Interpolation between a series of rotations:
Mathematical approach

So far the interpolation methods have been fairly simple and based on the rotation represen-
tations. In principle, the interpolation is independent of which rotational modality is used to
implement the method. Instead, the optimal interpolation curve should be de�ned from the
desired properties in the space of rotations. This optimal curve can, of course, be written
algorithmically for any sensible representation of rotation.

The above point can be exempli�ed for interpolation between two rotations. The optimal inter-
polation curve is the equivalent of a straight line in the space of rotations. This curve can be
written algorithmically using Euler angles, but the advantage of using quaternions is that the
curve can be stated simply | using Slerp. This is due to the previously described equivalence
between the space of rotations and the unit quaternion sphere.

Therefore, we will base our discussion below on the space of rotations. We will give mathemat-
ically based demands for the optimal interpolation curve. The goal is to give an algorithmic
description of the optimal interpolation curve.

6.3.1 The interpolation curve

Interpolation between rotations is de�ned in the space of rotations SO(3). As mentioned earlier,
however, SO(3) and the set, H1, of unit quaternions are topologically equivalent. We therefore
choose to de�ne the general interpolation in the space of unit quaternions.

De�nition 18.

Given k control points qi 2 H1 and I = [t1; tk], the interpolation curve (t) : I y H1, is
constrained by (ti) � qi for ti 2 I. We require that t1 � t2; : : : ; tk�1 � tk.

6.3.2 De�nitions of smoothness

A natural requirement is that the interpolation curve is \nice." This vague term usually means
smooth in di�erential geometry. However, several di�erent de�nitions of smooth exist. We
mention the following:

De�nition 19.

Let (t) be the parameterization of a curve in Cn(I;Rn). Smooth can then be de�ned in the
following ways:

[Madsen, 1991]: The curve (t) is smooth if: (t) 2 C1 and 8t 2 I : 0(t) 6= 0.
[Schwarz, 1989]: The curve (t) is smooth if: (t) 2 C2.
[Jakobsen, 1993]: The curve (t) is smooth if: (t) 2 C1.

The di�erent de�nitions express that it is not immediately obvious what \nice" is. We must
therefore examine more closely which properties we want the interpolation curve to have.

56

d)a) b) c)

Figure 6.12: Interpolation between three control points in the plane. a) Discontinuous interpo-
lation curve. b) Continuous curve. c) C1-curve. d) C2-curve.

The curve must obviously be continuous. The curve must also be di�erentiable. We do not want
either \holes" or \breaks" in an animation. Thus we demand that the interpolation curve must
be C1. However, it is not as obvious whether the curve should be C2 or, for that matter, C1.
Figure 6.12 illustrates the di�erent classes of curves in the plane.

Since the control points are symmetric, it is natural to expect that the interpolation curve
is symmetric. The illustrations in the plane clearly show that we must demand C2 over C1.
However, illustrations in the plane are not adequate ground to base this choice on, and we
therefore postpone this decision (see section 6.3.7).

In the �rst de�nition we �nd the requirement 0(t) 6= 0. Thus, the interpolation function is not
allowed to contain singularities, i. e. the interpolation must not \stop." O�hand, this seems
to be a sensible demand. However, it is possible to make sensible but contradictory demands
to the speed of the interpolation curve. Consider, for example, animating a pendulum. The
control points (that de�ne the angle that the pendulum oscillates through) will lie on a straight
line in the space of rotations. At the outer positions, it is to be expected that the pendulum
has no velocity, corresponding to a singularity in the interpolation function. We therefore also
postpone this decision until section 6.3.7.

This discussion of smoothness does not bring us much further. The de�nitions above will not
even allow us to di�erentiate between LinEuler, Lerp and Slerp. These curves are all C2 except
at the control points, where they are C0. Thus, it is not su�cient just to describe which class
of functions the interpolation curve should belong to.

6.3.3 The optimal interpolation

Smoothness considerations do not give adequate requirements to the de�nition of the interpola-
tion curve. We need an objective measure of how \nice" our curve is in rotation space.

We will again seek inspiration in the plane (see �gure 6.13). As mentioned earlier, cubic curves
are usually used to interpolate between a series of points. There are many kinds of cubic curves;
the B�ezier curve described in section 6.2 is an example. The most common class of curves is
splines.

57

a) b)

Figure 6.13: Interpolating with a spline in the plane. a) Simple linear interpolation. b) Inter-
polation with a spline.

Discussing splines we must, as any serious project dealing with splines, write a bit about ship
builders. Traditionally, when ship builders wanted to decide how to shape the curved parts of a
ship, a exible piece of metal was used. The piece of metal was �xed between a series of rivets.
The metal piece then adapted itself to the rivets, making a nice soft curve. The ship builders
called this tool a spline10.

Viewed physically, the above description of a spline corresponds to the piece of metal achieving
a minimum of inner tension forces subject to the constraints (the rivets). Mathematically, the
metal piece minimizes curvature.

In the plane, the curve can be described as follows. Given the control points (xi; yi) 2 R2 , de�ne
(t) 2 C2(I;R2), where t is the natural parameter11, such that (t) passes through the control
points and at the same time minimizes the expression

R
I k00(t)k2dt. Thus the square of the

curvature is minimized.

This simple formulation gives a non-ambiguous de�nition of the interpolation curve from a
general concept in di�erential geometry. We therefore choose to view the curve that minimizes
(the square of the) curvature as the optimal interpolation curve. As we shall see below, it is not
as simple to compute this curve in H1 as it is in the plane.

6.3.4 Curvature in H1

The interpolation curve lies on H1, which is a hypersphere in quaternion space. Normally the
curvature for a curve (t) is de�ned as k00(t)k, assuming that t is the natural parameter.
The interpolation curve Slerp yields a great arc on the quaternion unit sphere. A great arc in
H1 is equivalent to a straight line in the plane. Thus it is to expected be that a great arc does
not have any curvature. If the curvature is computed by k00(t)k, the curvature will not be zero,
but one: The curvature of the unit sphere. We therefore want to compute the curvature relative
to the quaternion unit sphere, and not relative to quaternion space. We will call this curvature
the local curvature.

The de�nition of local curvature for a curve that lies on a surface is based in di�erential geometry.
The local curvature in a point is de�ned as follows. Given the point on the surface, a coordinate
system (a map) is placed in the tangent plane. The local curvature of the curve is now the
curvature of the curve projected onto the tangent plane. This is also called tangential curvature.

10The ambitious project will obviously also note that modern-day architects use a re�ned version of the ships-
builder's spline to draw curves. According to an architect, however, this is a myth.

11i. e. the parameter de�ned from the curve length.

58

In di�erential geometry a great arc (the \straight line") is called a geodesic. Projected onto the
tangent plane, the geodesic becomes a straight line. Thus we see, as expected, that a great arc
does not have any local curvature.

0(t) (t) 00t (t)

00o (t)

a) b)

Figure 6.14: The division of 00(t) | an analogy in the plane. a) The position vector for the
curve (t) lies on the surface of the quaternion unit sphere. The tangential plane is orthogonal
to the position vector. b) 00(t) can be split in a component 00t (t) (in the tangential plane) and
a component 00o (t) (parallel with the position vector).

If a curve (t) lies on the surface of H1, we can split 00(t) into two parts (see �gure 6.14): a
component, 00t (t), in the tangential plane , and a component,

00
o (t), orthogonal to the tangential

plane. The desired part of the curvature is 00t (t). Thus, the local curvature � of the curve can
be obtained:

�(; t) = k00t (t)k = k00(t)� 00o (t)k

Since (t) lies on the surface of the unit sphere, 00o (t) will be parallel to (t). Thus we can �nd
00o (t) by projecting 00(t) onto (t). Thus:

00t (t) = 00(t)� 00o (t)

= 00(t)�
�
00(t)

�

(t)

k(t)k
�

(t)

k(t)k
= 00(t)� (00(t)

�

(t))(t)

De�nition 20.

Given (t) 2 C2(I;H1), the local curvature �(; t) is de�ned:

�(; t) = k00(t)� (00(t)
�

(t))(t)k

Note that t is not necessarily the natural parameter. Thus the above de�nition is not correct
in a strict di�erential geometric sense12. However, we are not only interested in the shape
(curvature) of the interpolation curve. We also want a \nice" angular velocity function, i. e. one
that minimizes angular acceleration (corresponding, from a physical viewpoint, to minimizing
the energy). In the above expression the angular acceleration is automatically included, exactly
because we do not reparameterize to the natural parameter.

12The curvature for a curve parameterised on the natural parameter can be written �(; t) = k00(t)k. In general
for a smooth curve, the correct expression from di�erential geometry is:

�(; t) =

00(t)

k0(t)k2
�

0(t)(00(t)
�

0(t))

k0(t)k4

59

6.3.5 Minimizing curvature in H1: Continuous, analytical solution

We de�ned the optimal interpolation curve in H1 as the curve that minimizes the square of
the curvature, but with the restriction that it must pass through the control points. We then
de�ned the relevant expression for curvature in H1. We thus get the following formulation of
the problem:

Given the control points q1; : : : ; qN 2 H1 we seek (t) 2 Ck(I;H1) such that there exist
t1; : : : ; tN 2 (I) that satisfy (ti) = qi, and such that this expression is minimized:

K() =

Z tN

t1

k�(; h)k2dh (6.17)

The problem of minimizing an integral of a function is called a calculus of variations problem.
Below, we will outline the basic method used for solving problems in the calculus of variations.

A necessary condition for K() to attain a minimum is that K 0() = 0. For � 2 R and
 2 Ck(I;H1) we look at the \derivative":

lim
�!0

K(+ �) �K()

�
= 0 (6.18)

In the above expression, � is called the variation of , and the function + � is called the
comparison function. A function (h) 2 Ck(I;H1) that satis�es the boundary conditions (i. e.
(ti) = qi for i = 1; : : : ; N) is called an admissible function.

We will now derive the requirements a solution to the variation problem must meet. We therefore
assume that both the solution and the comparison function + � are admissible, and that
K() is minimal.

For the comparison function + � to be admissible, it must be the case that

 (t1) = (t2) = ::: = (tN) = 0 (6.19)

Furthermore, since and + � lie on the surface of the unit sphere, we have that kk2 = 1
and k + � k2 = 1. Thus we have13:

1 = k + � k2
= kk2 + �2k k2 + 2�(

�

)

= 1 + �(�k k2 + 2
�

)

m

�

 = ��
2
k k2 (6.20)

13In the derivations below, it is possible to ignore the fact that the constituent expressions contain quaternion
functions. This is due to the fact that quaternion multiplication is not used (only the scalar product,

�

, is used).
Therefore, there are no problems with commutativity.

60

We want to use our knowledge of the \derivative" and examine K(+ �) �K():

K(+ �) �K()

=

Z tN

t1

k�(+ � ; h)k2 � k�(; h)k2 dh

=

Z tN

t1

k(+ �)00 � ((+ �)00
�

(+ �))(+ �)k2 � k00 � (00
�

)k2 dh

=

Z tN

t1

k00 + � 00 � (00
�

 + �00
�

 + �
�

 00 + �2 00
�

)(+ �)k2

� k00 � (00
�

)k2 dh

=

Z tN

t1

k[00 � (00
�

)] + �[00 � (00
�

) � (00
�

) � (00
�

)] + �2[: : :] + �3[: : :]k2

� k00 � (00
�

)k2 dh

In the above expression, we have collected terms according to the exponent of �. The goal of
the above derivations is to �nd the \derivative." In the expression for K(+ �)�K() terms
multiplied by �2 and �3 can be removed because they disappear when examining the limit, after
being divided by �. Thus the expression can be written:

K(+ �)�K() =

Z tN

t1

kA+ �Bk2 � kAk2 dh

=

Z tN

t1

�2kBk2 + 2�A
�

B dh

Here A = 00 � (00
�

) and B = 00 � (00
�

) � (00
�

) � (00
�

). Again we may omit
terms multiplied by �2, and we can rewrite the expression:

K(+ �) �K() =

Z tN

t1

2�[00 � (00
�

)]
�

[00 � (00
�

) � (00
�

) � (
�

 00)] dh

= 2�

Z tN

t1

00
�

 00 � (00
�

)(00
�

)� (00
�

)(00
�

)� (
�

 00)(00
�

)

� (00
�

)(
�

 00) + (00
�

)(00
�

)(
�

) + (00
�

)(00
�

)(
�

)

+ (00
�

)(
�

 00)(
�

) dh

We can now use the fact that
�

 = kk2 = 1, since lies on the surface of the unit sphere.

Furthermore, equation 6.20 is used to rewrite
�

 = � �
2k k2. We then get:

K(+ �)�K() = 2�

Z tN

t1

00
�

 00 � (00
�

)(00
�

 +
�

 00) + (00
�

)2(��
2
k k2) dh

= 2�

Z tN

t1

00
�

 00 � (00
�

)(00
�

 +
�

 00) dh

61

We have yet again ignored terms multiplied by �2.

After numerous rewritings, we have isolated � as a single factor. This factor will disappear in
the expression for the derivative when divided by �. We therefore now want to isolate terms
containing . This is attempted using partial integration. The expression is rewritten as follows:

K(+ �) �K() = 2�
N�1X
i=1

Li

Li =

Z ti+1

ti

00
�

 00 � (00
�

)(00
�

 +
�

 00) dh

=

Z ti+1

ti

(00 � (00
�

))
�

 00 � (00
�

)(00
�

) dh

= [(00 � (00
�

))
�

 0]
ti+1
ti

�
Z ti+1

ti

(
d

dh
f00 � (00

�

)g)
�

 0 � (00
�

)(00
�

) dh

= [(00 � (00
�

))
�

 0]
ti+1
ti

� [(
d

dh
f00 � (00

�

)g)
�

]
ti+1
ti

+

Z ti+1

ti

(
d2

dh2
f00 � (00

�

)g)
�

 � (00
�

)(00
�

) dh

Note that the above expression requires that is four time s di�erentiable. Now we can use that
 is zero in all the control points (equation 6.19) to see that the second term is zero:

Li = [(00 � (00
�

))
�

 0]
ti+1
ti

+

Z ti+1

ti

(
d2

dh2
f00 � (00

�

)g)
�

 � (00
�

)(00
�

) dh

We again consider the whole expression:

K(+ �) �K() = 2�
N�1X
i=1

Li

= 2�

N�1X
i=1

[(00 � (00
�

))
�

 0]
ti+1
ti

+2�
N�1X
i=1

Z ti+1

ti

(
d2

dh2
f00 � (00

�

)g)
�

 � (00
�

)(00
�

) dh

= 2�[(00 � (00
�

))
�

 0]tnt1

+2�

N�1X
i=1

Z ti+1

ti

(
d2

dh2
f00 � (00

�

)g � (00
�

)00)
�

 dh

The last rewriting uses continuity in the control points. We can �nd the \derivative"

lim
�!0

K(+ �) �K()

�
= 2[(00 � (00

�

))
�

 0]tNt1

+2

N�1X
i=1

Z ti+1

ti

(
d2

dh2
f00 � (00

�

)g � (00
�

)00)
�

 dh

62

Since the derivative must be zero (equation 6.18) for any , we get the following requirements
to the solution:

 2 C4((I);H1)

0 = 00(t1)� (00(t1)
�

(t1))(t1)

0 = 00(tN)� (00(tN)
�

(tN))(tN)

(00
�

)00 =
d2

dh2
f00 � (00

�

)g
= 0000 � (00

�

)00 � 2(00
�

)00 � (00
�

)00

The second and third requirements are equivalent with the local curvature being zero at the
end-points. The last requirement can be rewritten using

�

 = kk = 1:

0 = (1)00 = (
�

)00 = 200
�

 + 20
�

0 (6.21)

Now we can state the set of di�erential equations, that must be solved to �nd an analytical
solution to the desired optimal interpolation curve:

Proposition 31.

Given the control points q1; : : : ; qN 2 H1 the interpolation curve 2 C4(I;H1), where (ti) = qi
for ti 2 I, will minimize

R tN
t1

k�(h)k2dh if the following requirements are met:

1. �(t1) = 0

2. �(tN) = 0

3. For each interval ti < h < ti+1:
0000 + (0

�

0)00 + 2(0
�

0)00 + 2(0
�

0)00 = 0

Now \all" that remains is to solve the above fourth-order di�erential equation with the given
boundary values. This, unfortunately, is not possible with the existing mathematical knowledge.
This is con�rmed by J�rgen Sand14 and Gerd Grubb15.

6.3.6 Minimizing curvature in H1: Continuous, semi-analytical solution

The strict mathematical derivation of the desired optimal interpolation curve stranded on an
unsolvable di�erential equation.

We can, however, again seek inspiration in the plane. The corresponding di�erential equation
is here 0000 = 0, i. e. that the fourth derivative of the curve must be zero between the control
points. This corresponds to a third-order curve (a spline). If the solution is constrained to be a
third-order curve, the equations can be solved more easily.

14Associate Professor at the Institute of Computer Science, University of Copenhagen, specializing in the
solution of systems of equations.

15Professor at the Institute of Mathematics, University of Copenhagen, specializing in di�erential equations.

63

We could therefore restrict which family of functions we would like the interpolation curve to
belong to. This could, for example, be a kind of cubic splines. With this restriction on the set
of possible solutions, the optimization problem could be solved.

Depending on the choice of de�nition of the family of curves, this strategy for �nding a solution
will give a result corresponding to the basis for the construction of Squad .

To keep this report at a manageable size, we will not pursue this line of thought any further.

6.3.7 Minimizing curvature in H1: Discretized, numerical solution

Unfortunately, we cannot give an analytical expression for the optimal interpolation curve.
Therefore we will try to solve a discrete version of the problem using a numerical method.

We rewrite the problem in an equivalent discrete version. We then solve the new version of the
problem.

Discretization

Given the control points Q1; : : : ; Qk 2 H1 we sought an analytical solution (t) 2 Ck(I;H1)
such that there existed t1; : : : ; tk 2 (I), that (ti) = Qi, and such that the following expression
was minimized:

K() =

Z tk

t1

k�(; t)k2dt (6.22)

In the discrete version we will therefore attempt to solve the following problem. Given control
points Q1; : : : ; Qk 2 H1 we seek q1; : : : ; qN 2 H1 such that qit = Qt for t = 1; : : : ; k and such
that the following expression is minimized:

E =
NX
i=1

l(qi) k~�(qi)k2 (6.23)

The integral has been replaced by a sum. The \parameter width" of the interval we integrate
over is termed l(qi). It can be expressed as a centered average of the parameter width in the
intervals immediately before and after the i'th quaternion:

l(qi) =
kqi � qi�1k+ kqi � qi+1k

2
(6.24)

Another measure of the parameter distance between qi and qi�1 in the approximation for l(qi)
could be �i, where cos �i = qi

�

qi+1, instead of kqi � qi�1k.

In equation 6.23 ~� is the discrete version of the local curvature:

~�(qi) = q00i �
q00i � qi

qi
�

qi
qi (6.25)

64

Note that the denominator qi
�

qi is not omitted as in the de�nition of local curvature (page 59).
This is because the interpolated quaternions cannot be expected to be unit quaternions (this is
explained below). Therefore, the denominator is not in general equal to 1; thus it cannot be
omitted.

In equation 6.25 the second derivative of the discrete approximation of the interpolation curve
is used. A good centered approximation of the second derivative is ([Kincaid & Cheney, 1991],
[Barr et al., 1992]):

q00i =
qi�1 � 2qi + qi+1

l(qi)2
(6.26)

Gradient descent

The above equation (equation 6.23) can be minimized using gradient descent. In general terms,
gradient descent can be described as follows. Consider the function that is to be minimized
(commonly termed the energy function) as a hilly landscape, where the function value is the
height of a hill at each set of coordinates. The gradient of the function in that point points
in the steepest possible up-hill direction. Gradient descent is based on an initial guess at the
solution. From the initial guess the gradient is computed, and a small step is taken in the
opposite direction of the gradient (i. e. down-hill), resulting in a new point. This process is
repeated with the new point until the function value does not become smaller by taking a step.
In this fashion, the gradient descent method yields an approximate local minimum. It is outside
the scope of this report to describe the theory of gradient descent any further, but we will
describe the method in enough detail so that readers without prerequisites in the �eld will still
be able to follow the derivations.

When using numerical approximation methods such as gradient descent, it is often di�cult to
maintain restrictions on the solution space. Instead a term is added that makes the solution
more \expensive"16 if the solution lies outside the desired solution space. Thus, we seek a
function that can determine if the discrete version of the interpolation curve lives in H1, and
thus consists of unit quaternions. This can be done by:

g(q) = q
�

q � 1 (6.27)

Note that H1 = fq 2 H j g(q) = 0g. This measure for determining if the quaternions are unit
quaternions can be combined with the energy function E as follows:

F =

NX
i=1

l(qi) k~�(qi)k2 + c g(qi)
2 (6.28)

Assuming c 2 R suitably large, the energy function F will have a minimum approximately where
E has a minimum, and where all qi are approximately unit quaternions.

16We here assume \the cheaper, the better", which is not always the case in real life. Sometimes you have to
pay extra for quality. Red wine is a good example of this, although there are, of course, exceptions in this case,
too.

65

We want to �nd a minimum for F in equation 6.28 using gradient descent. We therefore have to
�nd the gradient. Below, we will write qi;x for the x'th coordinate (regarding a quaternion as a
four-dimensional vector) in the i'th quaternion in the discrete interpolation curve. The gradient
is 4n-dimensional. Each coordinate can be written:

@F

@qi;x
=

@

@qi;x

0
@ NX

j=1

l(qj) k~�(qj)k2 + c g(qj)
2

1
A

In equations 6.24, 6.25, and 6.26, qi is a term in the discrete versions of l(qi�1), l(qi), l(qi+1),
~�(qi�1), ~�(qi) and ~�(qi+1). The corresponding terms must appear in the partial derivative:

@F

@qi;x
=

@

@qi;x

�
l(qi�1) k~�(qi�1)k2 + l(qi) k~�(qi)k2 + l(qi+1) k~�(qi+1)k2 + c g(qi)

2
�

=
@

@qi;x

�
l(qi�1) ~�(qi�1)

�

~�(qi�1) + l(qi) ~�(qi)
�

~�(qi) + l(qi+1) ~�(qi+1)
�

~�(qi+1) + c g(qi)
2
�

=
@l(qi�1)

@qi;x
~�(qi�1)

�

~�(qi�1) +
@l(qi)

@qi;x
~�(qi)

�

~�(qi) +
@l(qi+1)

@qi;x
~�(qi+1)

�

~�(qi+1) +

2l(qi�1)~�(qi�1)
�

@ ~�(qi�1)

@qi;x
+ 2l(qi)~�(qi)

�

@ ~�(qi)

@qi;x
+ 2l(qi+1)~�(qi+1)

�

@ ~�(qi+1)

@qi;x
+

2c g(qi)
@ g(qi)

@qi;x
(6.29)

Below we will derive the partial derivatives for the sub-expressions of the above expression.

We introduce the notation 1x to be the vector with 1 in the x'th coordinate, and 0 in the other
coordinates. We can now look forward to deriving the partial derivatives of g(qi), l(qi�1), l(qi),
l(qi+1), q

00
i�1, q

00
i , q

00
i+1, ~�(qi), ~�(qi�1) and ~�(qi+1):

@ g(qi)

@qi;x
=

@

@qi;x
(qi

�

qi � 1)

= 2 qi
�

@ qi
@qi;x

= 2 qi;x (6.30)

@ l(qi�1)

@qi;x
=

@

@qi;x

kqi�1 � qi�2k+ kqi�1 � qik
2

=
1

2

@

@qi;x

�q
(qi�1 � qi�2)

�

(qi�1 � qi�2) +
q
(qi�1 � qi)

�

(qi�1 � qi)
�

=
1

2

0
@� 1x

�

(qi�1 � qi)q
(qi�1 � qi)

�

(qi�1 � qi)

1
A

=
1x
�

(qi � qi�1)

2 kqi�1 � qik (6.31)

66

@ l(qi)

@qi;x
=

@

@qi;x

kqi � qi�1k+ kqi � qi+1k
2

=
1

2

@

@qi;x

�q
(qi � qi�1)

�

(qi � qi�1) +
q
(qi � qi+1)

�

(qi � qi+1)
�

=
1

2

0
@ 1x

�

(qi � qi�1)q
(qi � qi�1)

�

(qi � qi�1)
+

1x
�

(qi � qi+1)q
(qi � qi+1)

�

(qi � qi+1)

1
A

=
1x
�

(qi � qi�1)

2 kqi � qi�1k +
1x
�

(qi � qi+1)

2 kqi+1 � qik (6.32)

@ l(qi+1)

@qi;x
=

@

@qi;x

kqi+1 � qik+ kqi+1 � qi+2k
2

=
1

2

@

@qi;x

�q
(qi+1 � qi)

�

(qi+1 � qi) +
q
(qi+1 � qi+2)

�

(qi+1 � qi+2)
�

=
1

2

0
@� 1x

�

(qi+1 � qi)q
(qi+1 � qi)

�

(qi+1 � qi)

1
A

=
1x
�

(qi � qi+1)

2 kqi+1 � qik (6.33)

@ q00i�1
@qi;x

=
@

@qi;x

qi�2 � 2qi�1 + qi
l2(qi�1)

=
l(qi�1)

2 @
@qi;x

(qi�2 � 2qi�1 + qi)� (qi�2 � 2qi�1 + qi)
@

@qi;x
l(qi�1)

2

l(qi�1)4

=
l(qi�1)

2 @
@qi;x

qi � (qi�2 � 2qi�1 + qi)2l(qi�1)
@

@qi;x
l(qi�1)

l(qi�1)4

=
l(qi�1)

2 1x � 2(qi�2 � 2qi�1 + qi)l(qi�1)
@

@qi;x
l(qi�1)

l(qi�1)4
(6.34)

@ q00i
@qi;x

=
@

@qi;x

qi�1 � 2qi + qi+1

l(qi)2

=
l(qi)

2 @
@qi;x

(qi�1 � 2qi + qi+1)� (qi�1 � 2qi + qi+1)
@

@qi;x
l(qi)

2

l(qi)4

=
l(qi)

2 @
@qi;x

(�2qi)� (qi�1 � 2qi + qi+1)2l(qi)
@

@qi;x
l(qi)

l(qi)4

= �
2l(qi)

2 1x + 2(qi�1 � 2qi + qi+1)l(qi)
@

@qi;x
l(qi)

l(qi)4
(6.35)

67

@ q00i+1

@qi;x
=

@

@qi;x

qi � 2qi+1 + qi+2

l(qi+1)2

=
l(qi+1)

2 @
@qi;x

(qi � 2qi+1 + qi+2)� (qi � 2qi+1 + qi+2)
@

@qi;x
l(qi+1)

2

l(qi+1)4

=
l(qi+1)

2 @
@qi;x

qi � (qi � 2qi+1 + qi+2)2l(qi+1)
@

@qi;x
l(qi+1)

l(qi+1)4

=
l(qi+1)

2 1x � 2(qi � 2qi+1 + qi+2)l(qi+1)
@

@qi;x
l(qi+1)

l(qi+1)4
(6.36)

@ ~�(qi�1)

@qi;x
=

@

@qi;x

�
q00i�1 �

q00i�1 � qi�1

qi�1
�

qi�1
qi�1

�

=
@ q00i�1
@qi;x

�
@q00i�1

@qi;x �

qi�1

qi�1
�

qi�1
qi�1 (6.37)

@ ~�(qi)

@qi;x
=

@

@qi;x

�
q00i �

q00i � qi

qi
�

qi
qi

�

=
@ q00i
@qi;x

� q00i � qi

qi
�

qi

@ qi
@qi;x

� @

@qi;x

�
q00i � qi

qi
�

qi

�
qi

=
@ q00i
@qi;x

� q00i � qi

qi
�

qi
1x � @

@qi;x

�
q00i � qi

qi
�

qi

�
qi

=
@ q00i
@qi;x

� q00i � qi

qi
�

qi
1x �

0
B@

@q00i
�

qi
@qi;x

qi
�

qi � @qi
�

qi
@qi;x

q00i � qi

(qi
�

qi)2

1
CA qi

=
@ q00i
@qi;x

� q00i � qi

qi
�

qi
1x �

0
@
�

@q00i
@qi;x �

qi + q00i �
@qi
@qi;x

�
qi
�

qi � 2
�
qi
�

@qi
@qi;x

�
q00i � qi

(qi
�

qi)2

1
A qi

=
@ q00i
@qi;x

� q00i � qi

qi
�

qi
1x �

0
@
�
@ q00i
@qi;x �

qi + q00i � 1x

�
qi
�

qi � 2
�
qi
�

1x
�
q00i � qi

(qi
�

qi)2

1
A qi(6.38)

@ ~�(qi+1)

@qi;x
=

@

@qi;x

�
q00i+1 �

q00i+1 �
qi+1

qi+1
�

qi+1
qi+1

�

=
@ q00i+1

@qi;x
�

@q00i+1
@qi;x �

qi+1

qi+1
�

qi+1
qi+1 (6.39)

We now have simple (but long) expressions for all the terms in the gradient. We return to
the gradient equation (equation 6.29). All the constituent terms have been derived, and the
gradient can be explicitly computed by substituting the derived terms for ~�(qi�1), ~�(qi), and

~�(qi+1) (equation 6.25) and the partial derivatives @~�(qi�1)
@qi;x

, @~�(qi)
@qi;x

and @~�(qi+1)
@qi;x

(equations 6.37,

6.38, and 6.39) into the equation of the gradient (equation 6.29).

68

The algorithm

We have now derived an explicit discrete expression for the gradient, and we can perform gradient
descent according to the following algorithm:

Initialization
Give a good initial guess q0 = (q1; : : : ; qN). An obvious way of doing this is by using one
of the methods described earlier (Slerp or Squad). The better the initial guess, the faster
the method converges.

Iteration
Write out the gradient using equation 6.29:

rF = ((
@F

@q1;1
;
@F

@q1;2
;
@F

@q1;3
;
@F

@q1;4
); :::; (

@F

@qN;1
;
@F

@qN;2
;
@F

@qN;3
;
@F

@qN;4
))

(We set the gradient to zero in all key frames.)

Perform the iteration on the solution guess: qi+1 = qi � erF , where e de�nes the step
length

Alternatively: Perform the iteration on the solution guess: qi+1 = qi � e rF
krFk . This

method can provide greater numerical stability.

Termination condition
Repeat the second step until a suitable termination condition has been reached. The
termination condition can be dependent on the number of iterations, the total energy, F ,
the energy F in relation to the number of control points, the size of the gradient, or more
advanced strategies.

Alternative methods for computing the norm of the interpolation curve

As noted above, we want the interpolation curve to lie in the space, H1, of unit quaternions. This
is ensured by using the penalty function g from equation 6.28. It can be di�cult to determine
when the weighting factor, c 2 R, of the penalty function (equation 6.28) is \suitably large." In
theory, c must be in�nite to ensure that qi 2 H1. Several methods exist to handle this problem:

Projection
There is a simple and well-de�ned connection between points inside and outside the solu-
tion space. As described previously, all quaternions on a line through the origin perform
the same rotation. Thus the solution guess can simply be projected into the solution
space by normalizing the generated quaternions. This can be done in each iteration or,
alternatively, after the last iteration.

Lagrange Multipliers
The penalty function g(qi) can also be introduced with a Lagrange Multiplier �i in the
following manner:

F = E +

NX
i=1

�ig(qi)

69

A solution to equation 6.22 is a singularity for F . However, the singularity will not be a
minimum, but instead a saddle point. Thus gradient descent is still an applicable method
for the constituent quaternions, but gradient ascent must be performed on the auxiliary
variables �i.

By including the penalty function both in equation 6.28 and a Lagrange Multiplier, the
method become more numerically robust and converges faster. The details of this method
can be found in [Platt & Barr, 1988] and in [Barr et al., 1992].

Polar coordinates
In the above method of solving the problem, we have reformulated the problem such that
the restrictions on the solution space are integrated into the energy function that is to
be minimized. However, we can restate the restriction on the solution space such that
the complexity of the expression to be minimized does not increase. This can be done
be representing the quaternions using polar coordinates. Thus a quaternion is written
q = [r; (�; �; �)], where r is the radius and �, �, and � are the three necessary rotation
angles.

Using this representation, it is very easy to maintain the restriction on the solution space.
This can be done by not performing gradient descent on the radius coordinate, that is kept
at a constant value of 1. Thus the restriction on the solution space is maintained.

Amongst the above representations, polar coordinates will ensure that the interpolation curve
stays in the space, H1, of unit quaternions. The use of Lagrange Multipliers would ensure a
more robust and faster converging algorithm. We will not pursue either possibility, since we want
the algorithm to be as simple as possible. We regard normalizing the generated quaternions as
\cheating" seen from a theoretical viewpoint. We will therefore not discuss any of the three
alternative methods any further.

Extensions to the algorithm

Generally, gradient descent is a method that is fairly easily expanded. The desired property
of the interpolation curve must simply be described as a zero-crossing for some function. For
example we might want to ensure constant angular velocity across the entire interpolation curve.
This can be obtained using yet another penalty function:

w(qi) = kqi�1 � qik � kqi � qi+1k (6.40)

Thus the penalty function increases with the di�erence between the previous and the following
step length. This penalty can simply be introduced into the algorithm by introducing it in the
original energy function (equation 6.28):

F =
NX
i=1

l(qi) k~�(qi)k2 + cg g(qi)
2 + cw w(qi)

2 (6.41)

An extra term must be added to the gradient. This is easily derived since w(qi) = 2l(qi) and
the derivative can thus be obtained using equation 6.32:

@ w(qi)

@qi;x
=

1x
�

(qi � qi�1)

kqi � qi�1k +
1x
�

(qi � qi+1)

kqi+1 � qik (6.42)

70

Adding the above penalty does not ensure constant speed in the interpolation curve. This is due
to the fact that the gradient contains other terms that a�ect the distance between the individual
key frames. As stated earlier, local curvature is de�ned such that both the geometric curvature
and the size of the angular acceleration of the interpolation curve are included. In practice, this
means that the angular velocity of the interpolation curve will be smaller around the key frames,
where the curvature of the interpolation curve is maximal17.

When the gradient contains terms that act in opposite directions, the algorithm becomes less
robust. Thus setting cw \suitably large" will not necessarily ensure approximately the same
distance between the interpolated frames. Instead this could lead to the method becoming
numerically unstable, producing unwanted results.

The implementation

The above description of the algorithm is purely theoretical. Since we did not want to analyze
the convergence and stability properties of the algorithm theoretically, there is no guarantee
that the method works in practice. We will therefore present a number of considerations to take
into account when implementing the algorithm.

Multi-step minimization

In practice, the algorithm behaves badly when given many frames. Each frame is only a�ected
by its neighbors, and only key frames are positioned correctly initially. Thus the adaption to
the key frames must propagate through all the frames between the keys and a given frame.
The more frames that lie in-between, the more iterations are necessary for the system to attain
an energy minimum. This give a practical upper bound on the acceptable number of frames
between each key frame.

An e�cient way of solving this problem is by minimizing in several steps. In the �rst step
relatively few frames are used, and the system attains an energy minimum after few steps. The
frames computed in the �rst step are used as key frames in the second step. In the second step
more in-between frames are added, and an energy minimum is again attained after a few steps.
This process may be repeated an arbitrary number of times, until the desired number of frames
has been reached.

In �gure 6.15 the result of the algorithm is seen with all frames placed during the �rst step. This
gives a bad approximation curve even after many iterations. The result bears great resemblance
to Slerp, which was used to generate the initial guess passed to the optimization algorithm.

If the multi-step algorithm is used, a much nicer interpolation curve is produced after fewer
iterations. In �gure 6.16 the intermediate result with few frames can be seen. This is used as
the initial con�guration for the second step, and the �nal interpolation curve can be seen in
�gure 6.17. The angular velocity graph is also nicer when the multi-step algorithm is used. If
the one-step method is used (see �gure 6.15), the velocity curve resembles an electrocardiogram,
while the velocity curve for the multi-step algorithm (6.17) is somewhat nicer, but still somewhat

17This is natural seen from a physical perspective. It is also necessary to drive slower through a sharp bend in
the road than it is on a straight section.

71

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350
Frame nr.

Angular Velocity
Key Frames

Figure 6.15: One-step iteration. The interpolation curve contains 350 frames, and is shown
after 500 iterations.

uneven. This is a weakness in our implementation, but we expect that a more robust algorithm
with better convergence properties will yield nicer velocity graphs.

All in all, 450 iterations are used for the multi-step method versus 500 in the original version.
The result is obviously nicer when the multi-step method is used.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25
Frame nr.

Angular Velocity
Key Frames

Figure 6.16: The multi-step algorithm, �rst step. In the �rst step only 22 frames and 200
iterations are used.

Simplifying the parameter width { l(qi)

In equation 6.24 a numerical approximation to the \parameter width" for the parameter of the
interpolation curve is given. In practice it turns out that this expression has no inuence on
the shape of the interpolation curve. The algorithm becomes less numerically stable with the
expression, however. We therefore use the simpler expression:

l(qi) = 1 (6.43)

72

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 6.17: The multi-step algorithm, �nal result. In the second step, 110 frames are in-
terpolated using 150 iterations. In the third and �nal step, 550 frames and 100 iterations are
used.

@ l(qi)

@qi;x
=

@ l(qi�1)

@qi;x

=
@ l(qi+1)

@qi;x

= 0 (6.44)

The expression for the gradient (equation 6.29) is simpli�ed correspondingly:

@F

@qi;x
= 2~�(qi�1)

�

@ ~�(qi�1)

@qi;x
+ 2~�(qi)

�

@ ~�(qi)

@qi;x
+ 2~�(qi+1)

�

@ ~�(qi+1)

@qi;x

+2c g(qi)
@ g(qi)

@qi;x
(6.45)

Weighting the curvature at the key frames

The analytical version of the minimization of curvature ensures that the curvature is minimized
by de�nition. The discrete numerical approach only gives an approximation of the solution
with minimized curvature. The validity of the approximation to the solution depends on the
approximations to the constituent mathematical expressions. For example the second derivative
of the interpolation curve is approximated with:

q00i =
qi�1 � 2qi + qi+1

l(qi)2

It is this approximation that is at the core of the approximation of the local curvature of
the interpolation curve. O�hand, it is di�cult to predict if this approximation introduces
\weaknesses" to the numerical solution when interpolating between key frames with certain
properties.

73

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200
Frame nr.

Angular Velocity
Key Frames

Figure 6.18: The multi-step algorithm used on a set of key frames with a sharp curve. 200
frames are interpolated.

In practice the numerical method is somewhat sensitive to sharp curves. For example the curve
in �gure 6.18 is too \sharp" in the middle key frame.

The approximation to the curvature does not adequately propagate across key frames. Let us
reexamine the gradient (the simpli�ed version, equation 6.45):

@F

@qi;x
= 2~�(qi�1)

�

@ ~�(qi�1)

@qi;x
+ 2~�(qi)

�

@ ~�(qi)

@qi;x
+ 2~�(qi+1)

�

@ ~�(qi+1)

@qi;x
+ 2c g(qi)

@ g(qi)

@qi;x

The last term makes sure that the quaternions remain unit quaternions. This can be ignored.
This leaves three considerations when determining the gradient, and thus the movement of the
individual frame during the iteration. These are the changes in curvature in the quaternion
itself, and in both its neighbors.

It is tempting to think that it is enough to consider curvature in the quaternion itself. However,
if the neighbors are not taken into consideration, the result will be trivial, namely Slerp. Here
every frame except the key frames has zero curvature. Therefore no compensation will be made
for the large curvature in the key frames.

Thus minimizing curvature at the key frames depends only on that the immediate neighbors of
each key frame must \take note of" the curvature of their neighbors. This is ensured by the
terms 2~�(qi�1)

�

@ ~�(qi�1)
@qi;x

and 2~�(qi+1)
�

@ ~�(qi+1)
@qi;x

. As shown by the example in �gure 6.18, this

is not quite su�cient.

The approximation of the second derivative of the interpolation curve is therefore not a good
approximation in this particular case. The approximation is too local, and should have a wider
domain. Since this is not a report on numerical calculation methods, we have not attempted to
�nd an optimal approximation expression.

The problem we have described can be eliminated simply, though. Each key frame can simply
\ask" its neighbors to be more \considerate." This means that we add a weighting function to

74

each expression in the gradient. The weight is dependent on whether or not a given frame is a
neighbor of a key frame. For example, 2~�(qi�1)

�

@ ~�(qi�1)
@qi;x

will be replaced by ck2~�(qi�1)
�

@ ~�(qi�1)
@qi;x

,

if qi�1 is a key frame. In practice, a good value for ck is about 1.2. The e�ect of the weighting
function can be seen in �gure 6.19.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200
Frame nr.

Angular Velocity
Key Frames

Figure 6.19: The multi-step algorithm with a set of key frames with a sharp curve. 200 frames
are interpolated, and the curvature around the key frames are weighted with a factor 1.2

Adding a constant to the algorithm \by eye" is at odds with our stated purpose of deriving
an interpolation curve from objective criteria. The alternative is to analyze the properties of
di�erent numerical approximations. This, like the properties of convergence and stability, is
outside the scope of this project.

Remaining details

We have not described the termination requirements for the algorithm described above. In the
implementation we have chosen the simplest possible: The number of iterations.

Correspondingly, we have not de�ned the initial guess that the algorithm uses. We have elected
to use Slerp between each pair of key frames. This starting point is clearly not optimal. Quicker
convergence might be achieved using Squad . Since the purpose was to derive a interpolation
curve that is superior to Squad , it seemed to be more fair to use Slerp as the basis for the
iteration.

The remaining constants in the algorithm (the step size, e, in the iteration, and the penalty fac-
tor, c) can all be calculated from robustness and convergence criteria. As previously mentioned,
we will not describe these properties any further, and regard the constants as implementation
details (see the introduction to the program in appendix C).

The interpolation curve summarized

The modest purpose of this chapter was to develop the optimal interpolation from objective,
general criteria to the interpolation curve.

75

We �rst studied the more or less heuristic interpolation curves that are to be found in the
literature. These included the naive LinMat, LinEuler, Lerp, the simple Slerp, and �nally the
convincing Squad .

Using these simple interpolation curves as a basis we tried to de�ne which class of functions the
interpolation curve should belong to (page 56). We were not able to determine which de�nition
of smoothness was suitable to de�ne the class of desired functions.

We then attempted to de�ne an interpolation curve that minimized the integral of the local
curvature (de�ned in equation 6.17) of the interpolation curve. These derivations required
that the interpolation curve is four times di�erentiable with continuous derivatives (i. e. (t) 2
C4(I;H1)). This is noted on page 62 in section 6.3.5. Unfortunately, this derivation gave rise
to a fourth-order di�erential equation that we were unable to solve. Thus it is irrelevant to
consider the open questions from section 6.3.2: How many times di�erentiable should the curve
be and are singularities allowed?

Thus we settled for a discrete, numerical solution. We have presented a method based on
gradient descent. We examined and re�ned the method. The �nal result were some very pleasing
interpolation curves.

As our �nal interpolation algorithm we will choose the basic algorithm from section 6.3.7 with
the relative distribution of frames in the sub-intervals (see section 6.2.1 on page 55) and with
the weighting of the curvature around the key frames. This interpolation curve we will name
Spring (for Spherical Interpolation using Numerical Gradient descent). In �gure 6.20, the
e�ect of using Spring can be seen. The result is only marginally better than the version that
does not include special treatment of curvature at the key frames. In the next chapter we will
see examples where Spring much more clearly demonstrates its value.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 6.20: The e�ect of Spring. 550 frames have been interpolated and curvature is weighted
with a factor 1.3

76

Chapter 7

Squad and Spring

In chapter 6 we treated a series of interpolation algorithms. The most convincing among the
known algorithms was Squad . In this chapter we will compare Squad with our own algorithm
Spring .

The comparison will be based on a number of illustrative examples.

7.1 Example: A semi circle

First we check if Squad and Spring can produce nice rounded curves. We have placed the key
frames as corners in a spherical square. Around the center key frames the interpolation curve
should approximately be a semi circle. Figure 7.1 and 7.2 show that both curves meet this
requirement nicely.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 7.1: A simple curve with soft rounded corners interpolated with Squad. A total of 550
frames have been used in the interpolation.

77

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400 450
Frame nr.

Angular Velocity
Key Frames

Figure 7.2: A simple curve with soft rounded corners interpolated with Spring. A total of 430
frames and 700 iterations in the steps have been used. No extra weight on the curvature at the
key frames has been added (see section 6.3.7 page 73).

7.2 Example: A nice soft curve

This next example should be no real challenge for either of the algorithms. The expected
interpolation curve is simply a nice rounded curve with no sharp corners. The intersection in
the curve should pose no problem.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 7.3: Interpolation with Squad of a soft curve with an intersection. A total of 550 frames
have been used in the interpolation.

Both interpolation curves on �gure 7.3 and �gure 7.4 are nice. However, the curve has more
rounded corners for Spring than for Squad (even though no extra weight has been added to the
curvature at the key frames { see section 6.3.7 page 73). This means that the curve for Spring
has smaller curvature. Furthermore the velocity graph for Spring is more constant than for
Squad . This implies that Spring behaves as desired.

78

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 7.4: Interpolation with Spring of a soft curve with an intersection. A total of 550
frames and 700 iterations distributed over the interpolation steps. No extra weight is added to
the curvature around the key frames (see section 6.3.7 page 73)

7.3 Example: Interpolation curve with cusp

Squad can produce interpolation curves with quite pointy corners at the key frames.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200
Frame nr.

Angular Velocity
Key Frames

Figure 7.5: A curve with a cusp interpolated with Squad. 200 frames have been used.

The interpolation curve for Squad (�gure 7.5) reveals a nasty pointy curve. However, Spring is
able to produce a nice smooth rounded interpolation curve (�gure 7.6).

That the interpolation curve for Squad has a sharp corner does not contradict the proven fact
that Squad is di�erentiable (section 6.2.1 page 51). At the key frame with the sharp corner the
velocity of the curve is zero. Thereby the function Squad remains di�erentiable although the
geometric appearance of the curve is not intuitively di�erentiable.

79

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200
Frame nr.

Angular Velocity
Key Frames

Figure 7.6: A curve with a cusp interpolated with Spring. A total of 200 frames and 700
iterations distributed over three steps. The relative weight of the curvature around the key frames
is 1.3 (see section 6.3.7 page 73).

7.4 Example: A pendulum

We continue to investigate curves with large curvature. In this example we use a curve with
in�nite curvature - a pendulum motion. This is achieved with three key frames where the �rst
and last are equal.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250
Frame nr.

Angular Velocity
Key Frames

Figure 7.7: Squad displaying pendulum motion over 250 frames.

The desired behaviour of the interpolation curve is not intuitively obvious. Since all key frames
are on a arc one would expect the curve to remain on this arc.

The �gures (7.7 and 7.8) shows the same behaviour for both curves - the pendulum motion.
Note that Lerp and Slerp would produce the same curve.

80

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200 220
Frame nr.

Angular Velocity
Key Frames

Figure 7.8: Spring displaying pendulum motion over 200 frames and 700 iterations in three
steps. The relative weight of the curvature around the key frames is 1.5 (see section 6.3.7 page
73).

7.5 Example: A perturbed pendulum

Even though it is very reasonable that the interpolation curve remains on the same arc when
the key frames are all on an arc, this is not necessarily correct. In principle the curve has
in�nite curvature at the center key frame. Since Spring is supposed to minimize curvature this
is somewhat disappointing.

To understand this, it is necessary to bear the algorithm in mind. Using gradient descent, each
frame will move slightly in each step to decrease the curvature. But in which direction should
the frames close to the center key frame move? Since the curve is symmetric, the gradient at
each frame will be zero. The problem is that this does not imply a local minimum but a local
maximum instead.

Thus, the pendulum is an example of how it is possible to confuse Spring . We investigate this
further by perturbing the �rst and last key frames slightly so the curve is no longer a pure
pendulum. It is only just possible to see in the curve for Squad (�gure 7.9).

Figure 7.10 shows how the pure arc is no longer a (repelling) �x point for the gradient descent
algorithm Spring . The minimal perturbation allows the interpolation curve to be nice and
rounded at the center key frame.

7.6 Example: Global properties

The �nal example demonstrates a fundamental di�erence between Squad and Spring . In each
interval the interpolation curve for Squad is de�ned exclusively from the two previous and the
two following key frames | i. e. a local de�nition. In contrast, the interpolation curve for Spring
is globally de�ned.

81

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250
Frame nr.

Angular Velocity
Key Frames

Figure 7.9: The perturbed pendulum interpolated by Squad using 250 frames.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200
Frame nr.

Angular Velocity
Key Frames

Figure 7.10: The perturbed pendulum interpolated by Spring using 200 frames and 700 iterations
in three steps. The relative weight of the curvature around the key frames is 1.5 (see section
6.3.7 page 73)

Figure 7.11 shows the interpolation curve for Squad on a set of �ve key frames. The �rst three
key frames lie approximately on an arc and therefore the interpolation curve is an arc in the
�rst interval. Likewise the interpolation curve form an arc in the last interval.

In contrast the interpolation curve for Spring (�gure 7.12) is nice and smooth. The global
structure of the algorithm allows the curve to distribute the curvature evenly across all the
intervals. Instead of having excessive curvature at the center key frame, a part of the curvature
is propagated to the outer intervals.

It should be noted that it is necessary to add a relatively large weight to the curvature around
the key frames in this example. However, we have no doubt that an algorithm with a better
numerical approximation for the constituent expressions (in particular q00i in equation 6.26) would
produce the same result | without having to �t the parameters of the program to the example.

82

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 7.11: Squad producing pointy curve using 550 frames.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400 450
Frame nr.

Angular Velocity
Key Frames

Figure 7.12: Spring avoiding the pointy curve using 430 frames and 900 iterations. The relative
weight of the curvature around the key frames is 4 (see section 6.3.7 page 73).

83

7.7 Conclusion

The fundamental di�erences between the to methods are displayed below.

Property for the Characteristics for Squad Characteristics for Spring

Algorithm Simple Complex

Analytical Numerical

Continuous Discrete

Local Global

Interpolation curve Nice at simple curves.
Sharp corners at key frames with
large curvature

Nice at all examples.
The parameters of the program
must be �tted to some examples.

The choice between Squad and Spring is not obvious. If a simple algorithm yielding nice results in
most cases is needed, then the simple Squad will su�ce. If really nice interpolation is mandatory
in all cases the more complex Spring will be more appropriate.

84

Chapter 8

The Big Picture

In this �nal chapter we will �rst attempt to discuss our work in relation to the available literature
on quaternions and interpolation of rotations. Using this as a starting point we will point out
relevant topics for future work.

8.1 Comparison to previous work

This paper has covered �ve main topics:

� Rotation modalities (Section 3).

� Quaternion mathematics (Section 3.3).

� Curves for interpolation of rotations | Heuristic approach (Section 6.2).

� Curves for interpolation of rotations | Analytic minimization of the local curvature (Sec-
tion 6.3.5).

� Curves for interpolation of rotations { Numerical minimization of the tangential curvature
(Section 6.3.7).

For each of the main topics we will summarize our contributions compared to the previous work.

Quaternion mathematics

Quaternion mathematics has been treated several times in the literature ([Hamilton, 1853],
[Hamilton, 1899], [Pervin & Webb, 1992], [Shoemake, 1994b], [Maillot, 1990], and [Kim et al., 1996]).
[Pervin & Webb, 1992] should be noted for a treatment of the basic mathematical properties |
including the logarithm and exponential functions. In [Kim et al., 1996], a general framework
for di�erentiation is given (though the reader is referred to a di�erential geometry text for the
proof), and the derivative of exp is derived based on this framework. None of the articles have

85

given a complete treatment of the necessary mathematics. Di�erentiation of the quaternion
functions is very central in the study of the smoothness of the interpolation curves.

This report includes a comprehensive treatment of quaternion math. In particular, we have
derived all the di�erentiation equations necessary for proving the desired properties of the in-
terpolation curves (in section 3.3.8).

Curves for interpolation of rotations | Heuristic approach

Interpolation curves in the plane have inspired several interpolation curves for rotations. The two
most important are Slerp [Shoemake, 1985] and Squad [Shoemake, 1987]. Shoemake attempts
to prove the di�erentiability of Squad but the proof is awed1. In [Kim et al., 1996], a more
general result is given that entails the di�erentiability of Squad . Our result is derived using less
advanced mathematics, and may be more easily accessible.

This is the �rst report which contains a comprehensive treatment of the two most important
heuristic quaternion curves (section 6.2). All the known expressions for Slerp are stated and
the correctness of their properties is proven. For Squad we apply the derived di�erentiation
equations to prove the di�erentiability of the function.

Other heuristic approaches

Like Squad , a number of quaternion interpolation curves have been made from general spher-
ical cubic curves. These curves are �tted to the control points, thus yielding relatively nice
interpolation curves. Most often these curves are inspired by cubic curves in the plane.

Examples of this are the fairly simple spherical Catmull-Rom B-spline in [Schlag, 1994] and a
spherical B�ezier curve in [Shoemake, 1985].

In this report, we have not investigated this approach.

Curves for interpolation of rotations | Analytic approach

The �rst attempt to derive an optimal interpolation curve from a set of objective criteria can be
seen in [Barr et al., 1992]. The paper states an expression minimizing the tangential curvature
(in this paper also called the local curvature). However, the paper makes no attempt to state or
solve the di�erential equation, that corresponds to the optimal curve.

In this paper we state a set of objective criteria for the optimal interpolation curve (section
6.3.5) | inspired by [Barr et al., 1992]. We then derive the fourth order di�erential equation
whose solution will minimize the local curvature. Unfortunately, we are not able to solve the
di�erential equation analytically.

1As mentioned earlier [Shoemake, 1987] is unavailable but Shoemake himself has stated [Shoemake, 1997] that
the proof was awed.

86

Minimization of the local curvature | Numerical approach

A brief description of a numerical solution to the problem of minimizing the tangential curvature
is sketched in [Barr et al., 1992]. [Platt & Barr, 1988] contains a more sophisticated method
(using Augmented Lagrangian constraints in a Finite elements method). A method yeilding
faster convergence is presented in [Ramamoorthi & Barr, 1997].

We give a complete algorithm for �nding a discrete solution to the numerical version of the
minimization problem (section 6.3.7).

Complete treatment

To our knowledge, there exists no other complete treatment of quaternion mathematics and the
applications in interpolation of rotations.

This report combines a comprehensive overview including both a thorough treatment of the basic
quaternion mathematics and as well, the most important methods for interpolating orientations
is space. This is where quaternions really show their strength (see sections 3.3.6, 3.4, and chapter
6).

8.2 Future work

Obviously, it would be very nice to derive an analytic solution of the di�erential equation that
minimizes the local curvature of the interpolation curve. Since di�erential equations are centuries
old this is not very likely to happen in the immediate future. Therefore it would be more realistic
to establish a more robust numerical solution with a faster convergence. This is beyond the scope
of this report. An excellent starting point for this approach would be [Platt & Barr, 1988] and
[Ramamoorthi & Barr, 1997].

Another direction could be the development of more specialized applications. As an example,
the movements of a camera should not necessarily be interpolated in the same manner as the
moving object during animation. A stable horizon is possibly a desired feature for the camera
(i. e. the camera must not tilt upside down). Relevant introductions to this line of work are
[Shoemake, 1994b] and [Shoemake, 1994a].

Another example of specialization is applications where the interpolation need not be smooth.
For instance, in the plane the interpolation of a y or a UFO need not be smooth either. An
example of extraction of certain properties of interpolation curves in 3D (tension, continuity
and bias control) can be found in [Kochanek & Bartels, 1984].

Finally, yet another example of specialization of the interpolation curve can be studied in
[Barr et al., 1992]. In this method, the angular velocity can be given explicitly at the �rst and
last key frame (the authors call this Angular Velocity Constraints). An obvious generalization
of this would be the ability to supply the angular velocity at an arbitrary key frame.

87

Acknowledgements

We would like to thank Ken Shoemake, who patiently and enthusiastically helped with answers
to questions posed via e-mail. We also owe thanks to J�rgen Sand2, who o�ered comprehensive
suggestions concerning di�erential equations and the calculus of variations, and Gerd Grubb3,
who helped with di�erential equations.

For thorough proof reading of the Danish version we would like to thank Tommy H�jfeld Olesen.
We would like to thank Theo Engell for the illustration in the introduction. Finally we would
like to thank our advisor Knud Henriksen.

2Associate Professor at the Institute of Computer Science, the University of Copenhagen, specializing in the
solution of systems of equations.

3Professor at the Institute of Mathematics, the University of Copenhagen, specializing in di�erential equations.

88

Appendix A

Conventions

In this report we have used following conventions:

Coordinate system

We use a right-handed coordinate system. In computer graphics it is common to use
a left-handed coordinate system. This allows the z-axis to point \into" the screen which
seems natural. Since we primarily use coordinates for mathematical derivations we have
chosen to use the mathematical standard | the right-handed coordinate system.

Rotation

Still using the mathematical standard we rotate counter-clockwise. The direction of ro-
tation about an axis is obtained by the right-hand rule: Hold the axis with right hand
and the thumb pointing in the positive direction of the axis. A positive rotation will now
rotate in the direction of the �ngers (apart from the thumb).

This is illustrated below:

z

y

x

Rotation about z brings x into y
Rotation about y brings z into x
Rotation about x brings y into z

Euler angles

Rotation by Euler angles is de�ned by a rotation about each of the three coordinate axes.
To make this unambiguous it is necessary to de�ne the order of rotation.

The speci�c order of rotation is of no importance in this paper and we arbitrarily choose
x, y, z. Other conventions are described in [Craig, 1986].

89

Appendix B

Conversions

In this appendix we show the conversions between di�erent representations for rotation: Euler
angles, matrices, and quaternions.

B.1 Euler angles to matrix

Rotation about the x-axis by the angle � followed by rotation about the y-axis by the angle �
concluded by rotation about the z-axis by the angle is written in matrix1 notation:

R(�; �;) = Rz()Ry(�)Rx(�)

=

2
664

cos � sin 0 0
sin cos 0 0
0 0 1 0
0 0 0 1

3
775

2
664

cos� 0 sin� 0
0 1 0 0

� sin� 0 cos� 0
0 0 0 1

3
775

2
664

1 0 0 0
0 cos� � sin� 0
0 sin� cos� 0
0 0 0 1

3
775

=

2
664

cos� cos cos sin� sin� � cos� sin cos� cos sin� + sin� sin 0
cos� sin cos� cos + sin� sin� sin �(cos sin�) + cos� sin� sin 0
� sin� cos� sin� cos� cos� 0

0 0 0 1

3
775

B.2 Matrix to Euler angles

The rotation matrix derived above is the starting point for the conversion from matrix to Euler
angles. The conversion to Euler angles requires the inverse trigonometric functions. Neither
arcsin nor arccos will, by itself, yield values on the entire interval from �� to �. We therefore
want to establish both the sin and cos values for all the angles. Using both the sin and cos
values the original angles can be determined in the interval]� �; �] as v = sgn(sin v) arccos(v),
where sgn is de�ned: sgn(0) = 0 and sgn(x) = x

jxj .

1Using homogeneous matrices the rotation matrices are 4� 4.

90

We can directly determine sin� as �R31. Isolating cos � yields the following equations:

cos2 � = (�R11R32R31 �R33R21)=R12

cos2 � = (�R11R33R31 +R32R21)=R13

cos2 � = (�R32R31R21 +R11R33)=R22

cos2 � = (�R31R33R21 �R11R32)=R23

From this it is not possible to determine the sign of cos �. This means that we might as well
determine � directly from sin�. Either way it is only possible to determine � in the interval
[��

2 ;
�
2] corresponding to the assumption that cos � is positive.

Determining cos and sin for � and requires cos �. If the assumption that cos � is positive does
not hold, then also � and are determined incorrectly. Unfortunately this is the best that can
be done.

The equations for cos and sin for each of the constituent angles are shown below. From this the
angles can be determined as stated above.

� = arcsin(�R31) (Assuming � 2
h
��
2
;
�

2

i
)

cos� =
R33

cos�

sin� =
R32

cos�

cos =
R11

cos�

sin =
R21

cos�

Obviously this requires that cos � 6= 0. If cos � = 0 then � = ��
2 . This corresponds to gimbal

lock (see section 4.1) and therefore it is impossible to distinguish � from . Thus we arbitrarily
de�ne � 0. In this situation the angles can be determined:

� = arcsin(�R31) (assuming� 2
h
��
2
;
�

2

i
)

cos� = R22

sin� = �R23

 = 0

B.3 Quaternion to matrix

Rotation of the vector p = (x; y; z) with the quaternion q is done by the operation q [0; p] q�1.
We want to determine the corresponding matrix which multiplied on [x y z 1]T from the left
will yield the same result.

91

The product of two quaternions qv = [w; (a; b; c)] and qh = [s; (x; y; z)] (written in i; j;k-notation)
is:

qvqh = (w + ia+ jb+ kc)(s+ ix+ jy + kz)

= (ws� ax� by � cz) + i(as+ wx � cy + bz) +

j(bs+ wy + cx� az) + k(cs+ wz � bx+ ay)

Written as columns using sloppy notation2 this equals:

qvqh =

2
664
a
b
c
w

3
775�q

2
664
x
y
z
s

3
775 =

2
664

wx� cy + bz + as
cx+ wy � az + bs

�bx+ ay + wz + cs
�ax� by � cz + ws

3
775

From this we can write the matrices corresponding to multiplying from the left and from the
right with a quaternion. First we determine Vqv such that Vqvqh = qvqh, where qv and qvqh are
written as columns:

Vqv =

2
664

w �c b a
c w �a b

�b a w c
�a �b �c w

3
775

Then we write Hqh, such that Hqhqv = qvqh:

Hqh =

2
664

s z �y x
�z s x y
y �x s z

�x �y �z s

3
775

We are now ready to write the matrix M , such that Mp = q [0; p] q�1. Using q = [s; (x; y; z)]
and q�1 = [s; (�x;�y;�z)] we get:

M = VqHq�1

=

2
664

s �z y x
z s �x y

�y x s z
�x �y �z s

3
775
2
664

s �z y �x
z s �x �y

�y x s �z
x y z s

3
775

=

2
664

1� 2(y2 + z2) 2xy � 2sz 2sy + 2xz 0
2xy + 2sz 1� 2(x2 + z2) �2sx+ 2yz 0
�2sy + 2xz 2sx+ 2yz 1� 2(x2 + y2) 0

0 0 0 1

3
775

2The quaternion [s; (x; y; z)] is written as the column [x; y; z; s]T , and �q denotes quaternion multiplication

92

B.4 Matrix to Quaternion

Conversion from a rotation matrix to the corresponding unit quaternion uses the matrix M
derived above. First we �nd s:

M11 +M22 +M33 +M44 = 4� 4(x2 + y2 + z2)

= 4� 4(1� s2) Da s2 + x2 + y2 + z2 = 1

= 4s2

This yields s2. Now the other values follow:

s = � 1

2

p
M11 +M22 +M33 +M44

x =
M32 �M23

4s

y =
M13 �M31

4s

z =
M21 �M12

4s

The sign of s cannot be determined. Depending on the choice of sign for s the signs for x,
y and z change as well. This means choosing between a quaternion and the corresponding
negative quaternion. These quaternions yield the same rotation but the interpolation curve can
be inuenced by this choice.

Since the entire interpolation is calculated on quaternions this will pose no practical problem.
Therefore we simply choose the positive square root.

B.5 Between quaternions and Euler angles

These conversions can simply be achieved by going via matrices using the conversions stated
above.

Therefore the limitation on the � angle from the conversion between matrix and Euler angles
will hold for the conversion from quaternions to Euler angles as well. It is not possible to avoid
this limitation (or a similar one) using a direct conversion between quaternions and Euler angles.

93

Appendix C

Implementation

This chapter contains a brief description of the program we have developed for visualization
including the standard packages we have used.

quat displays in a window on the screen how an object (the letter \R") looks when it is rotated
in space. The desired key orientations are supplied through a resource �le together with various
parameters. The interpolation method is supplied as a command line parameter. The available
methods are:

lineuler Linear interpolation between Euler angles (section 6.1.1).
linmat Linear interpolation between rotation matrices (section 6.1.2).
lerp Linear interpolation between quaternions (section 6.1.3)
slerp Spherical linear interpolation between quaternions (section 6.1.5).
squad Spherical spline interpolation between quaternions (section 6.2.1)
slerpsvupti Minimization of the tangential curvature using a gradient descent

method with Slerp as initial solution (section 6.3.7).
squadsvupti Minimization of the tangential curvature using a gradient descent

method with Squad as initial solution (section 6.3.7).
justdoit Minimization of the tangential curvature using a gradient descent

method applied three times with Slerp as initial solution (section 6.3.7).

The curious names slerpsvupti, squadsvupti and justdoit are used for historical reasons.

We use the graphics library SPHIGS [Sklar & Brown, 1993] for displaying the animation on the
screen. However, we have added the ability to export the animation as a series of PPM �les. The
PPM �les are converted to an animated GIF using the program convert [ImageMagic, 1997].
A few examples of this can be seen at http://kantine.diku.dk/~myth/gif

The program quat produces a visualization of the interpolated quaternions and an approxi-
mation of the velocity (see chapter 5). The velocity is displayed as a two dimensional graph
generated by the program gnuplot [Williams & Kelley, 1993]. The visualization of the interpo-
lation curve is made using the ray tracer POV-ray [POV, 1997].

94

C.1 The basic structure of quat

We have used C++ for writing quat. The object oriented language allows us to implement
classes for each mathematical concept: matrix, vector, quaternion and so on. Apart from this
separate objects handle interpolation and visualization.

The source code can be obtained from the authors.

95

Bibliography

[Barr et al., 1992] Alan H. Barr, Bena Currin, Steven Gabriel, & John F. Hughes. Smooth inter-
polation of orientations with angular velocity constraints using quaternions. Computer
Graphics, 26(2):313{320, July 1992.

[Burtnyk & Wein, 1971] Nester Burtnyk & Marceli Wein. Computer generated keyframe ani-
mation. SMPTE, (80):149{153, March 1971.

[Craig, 1986] John J. Craig. Introduction to Robotics. Mechanics and Control, chapter 2.
Addison-Wesley, 1986.

[Euler, 1752] Leonhard Euler. Decouverte d'un nouveau principe de m�echanique. Opera omnia
(1957), Ser. secunda(Vol. 5):81{108, 1752. Orell F�usli Turici.

[Foley et al., 1990] James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes.
Computer Graphics Principles and Practice. Addison-Wesley, Reading, Massachusetts,
2nd. edition, 1990.

[Hallenberg et al., 1993] Niels Hallenberg, Martin Koch, & Ole Fogh Olsen. Vektorernes opst�aen
og udvikling (The construction and development of vector calculus). 1993.

[Hamilton, 1853] Sir W. R. Hamilton. Lectures on Quaternions. Hodges Smith & Co., Dublin,
1853.

[Hamilton, 1899] Sir W. R. Hamilton. Elements of Quaternions, volume 1-2. Longmans, Green
and Co., 1899.

[ImageMagic, 1997] ImageMagic. Convert. E. I. du Pont de Nemours and Company, 1997. Part
of the ImageMagic version 3.9.0 library. http://www.wizards.dupont.com/cristy-
/ImageMagick.html.

[Jakobsen, 1993] Hans Plesner Jakobsen. Course notes for Mathematics 3GE (di�erential ge-
ometry). Matematisk Notetryk, Institute of Mathematics, University of Copenhagen,
Denmark, Copenhagen, 1993.

[Kim et al., 1996] Myoung-Jun Kim, Myung-Soo Kim, & Sung Yong Shin. A compact dif-
ferential formula for the �rst derivative of a unit quaternion curve. The Journal of
Visualization and Computer Animation, 7:43{57, 1996.

[Kincaid & Cheney, 1991] David Kincaid & Ward Cheney. Numerical Analysis. Brooks/Cole
Publishing Company, Paci�c Grove, California, 1991.

96

[Kochanek & Bartels, 1984] Doris H. U. Kochanek & Richard H. Bartels. Interpolating splines
with local tension, continuity, and bias control. Computer Graphics, 18:33{41, July 1984.

[Lasseter, 1987] John Lasseter. Principles of traditional animation applied to 3D computer
animation. Computer Graphics, 21(4):35{44, July 1987.

[Madsen, 1991] Tage Gutmann Madsen. Course notes for Mathematics 1MA (calculus). Matem-
atisk Notetryk, Institute of Mathematics, University of Copenhagen, Denmark, Copen-
hagen, 1991.

[Maillot, 1990] Patrick-Gilles Maillot. Using quaternions for coding 3d transformations. In
Andrew Glassner, editor, Graphics Gems 1, chapter 10, pages 498{515. Academic Press,
Inc., 1990.

[McCool, 1995] Michael McCool. Orientation interaction tester.
http://www.cgl.uwaterloo.ca/Gallery/image html/gimbal.jpg.html, June 1995.

[Pervin & Webb, 1992] Edward Pervin & Jon A. Webb. Quaternions in Computer Vision and
Robotics. Carnegie-Mellon University, 1992.

[Platt & Barr, 1988] John C. Platt & Alan H. Barr. Constraint methods for exible models.
Computer Graphics, 22(4):279{288, August 1988.

[POV, 1997] POV-team. Persistence of Vision Ray Tracer, Febuary 1997.
http://www.povray.org.

[Ramamoorthi & Barr, 1997] Ravi Ramamoorthi & Alan H. Barr. Fast construction of accurate
quaternion splines. Computer Graphics, pages 287{292, 1997.

[Schlag, 1994] John Schlag. Using geometric constructions to interpolate orientation with
quaternions. Graphics Gems IV, pages 230{236, 1994.

[Schwarz, 1989] H. R. Schwarz. Numerical Analysis, A Comprehensive Introduction. John Wiley
& Sons, Chicester, 1989.

[Shoemake & Du�, 1994] Ken Shoemake & Tom Du�. Matrix animation and polar decomposi-
tion. ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/polar-decomp.ps.Z, 1994.

[Shoemake, 1985] Ken Shoemake. Animating rotation with quaternion curves. Computer Graph-
ics, 19(3):245{254, 1985.

[Shoemake, 1987] Ken Shoemake. Quaternion calculus and fast animation. SIGGRAPH Course
Notes, 10:101{121, 1987. Not available.

[Shoemake, 1994a] Ken Shoemake. Fiber bundle twist reduction. Graphics Gems IV, pages
230{236, 1994.

[Shoemake, 1994b] Ken Shoemake. Quaternions. ftp://ftp.cis.upenn.edu/pub/graphics/-
shoemake/quatut.ps.Z, 1994.

[Shoemake, 1997] Ken Shoemake. Re: Siggraph 1987 tutorial, June 1997. E-mail corre-
spondence June/July 1997.

97

[Sklar & Brown, 1993] David Frederick Sklar & Christopher R. Brown. Simple Programmer's
Hierarchical Graphics Standard (SPHIGS) for ANSI-C Version 1.0, March 1993. A
detailed description can be found in [Foley et al., 1990].

[Verplaetse, 1995] Christopher Verplaetse. Can a pen remember what it has written
using inertial navigation?: An evaluation of current accelerometer technology.
http://verp.www.media.mit.edu/projects/SmartPen/smartpen.html, May 1995.

[Watt & Watt, 1992] Alan Watt & Mark Watt. Advanced Animation and Rendering Techniques
Theory and Practice, chapter 15. Addsion-Wesley, Wokingham, England, 1992.

[Williams & Kelley, 1993] Thomas Williams & Colin Kelley. GNUPLOT
| An Interactive Plotting Program Version 3.4, June 1993.
http://science.nas.nasa.gov/~woo/gnuplot/gnuplot.html.

98

