
User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

User-extensible sequences in Common Lisp

Christophe Rhodes

Goldsmiths, University of London

Wednesday 4th April



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Outline

1 Introduction
Motivation
Sequences

2 Design
Utility
Incompatibility
Implementability

3 Future Work



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Motivation

• Ever seen foo-position-if in code?
• flexichain: nb-elements, element*
• climacs: size, buffer-position-if
• trees: size, reduce, position
• rucksack: p-length, p-replace, p-delete-if
• cxml: dom:length, dom:item

• Identify simple building blocks of sequence functionality, to
make it easy to have full range of functions available.

• Validate the “programmable programming language”
claim.



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Motivation

• Ever seen foo-position-if in code?
• flexichain: nb-elements, element*
• climacs: size, buffer-position-if
• trees: size, reduce, position
• rucksack: p-length, p-replace, p-delete-if
• cxml: dom:length, dom:item

• Identify simple building blocks of sequence functionality, to
make it easy to have full range of functions available.

• Validate the “programmable programming language”
claim.



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Motivation

• Ever seen foo-position-if in code?
• flexichain: nb-elements, element*
• climacs: size, buffer-position-if
• trees: size, reduce, position
• rucksack: p-length, p-replace, p-delete-if
• cxml: dom:length, dom:item

• Identify simple building blocks of sequence functionality, to
make it easy to have full range of functions available.

• Validate the “programmable programming language”
claim.



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Metamotivation

Experiment: can we get Common Lispers to agree on anything?



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Sequences

Data type: a finite ordered collection of elements.
Sequence has a size (length) and elements are addressable by
single-integer position.
Examples:

• linked list, vector

• doubly-linked-list, queue, gap buffer

• DOM node

• compiler basic blocks

• ...



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Sequences

Data type: a finite ordered collection of elements.
Sequence has a size (length) and elements are addressable by
single-integer position.
Examples:

• linked list, vector

• doubly-linked-list, queue, gap buffer

• DOM node

• compiler basic blocks

• ...



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Sequences

Fundamentals I:

• length

• elt, (setf elt)



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Sequences

Operations:

• count, count-if, count-if-not

• find{,-if{,-not}}, position{,-if{,-not}}

• sort, fill, map-into ...

• remove{,-if{,-not}}, delete{,-if{,-not}}

• remove-duplicates, delete-duplicates

• map, merge, coerce, make-sequence, concatenate



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Sequences

Operations:

• count, count-if, count-if-not

• find{,-if{,-not}}, position{,-if{,-not}}

• sort, fill, map-into ...

• remove{,-if{,-not}}, delete{,-if{,-not}}

• remove-duplicates, delete-duplicates

• map, merge, coerce, make-sequence, concatenate



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Sequences

Operations:

• count, count-if, count-if-not

• find{,-if{,-not}}, position{,-if{,-not}}

• sort, fill, map-into ...

• remove{,-if{,-not}}, delete{,-if{,-not}}

• remove-duplicates, delete-duplicates

• map, merge, coerce, make-sequence, concatenate



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Sequences

Fundamentals I:

• length

• elt, (setf elt)

Fundamentals II:

• make-sequence-like (creation of new sequence)

• adjust-sequence (adjusting of existing sequence if possible)



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Desiderata

• Usefulness

• Convenience

• Minimize incompatibility with existing standards

• Implementability



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Usefulness and Convenience

• Users may define subclasses of cl:sequence. To do so,
they must also write methods on

• sequence:length, sequence:elt, (setf
sequence:elt)

• sequence:make-sequence-like,
sequence:adjust-sequence

That’s it! No more is necessary. Can then call standard
Common Lisp functions.

• May also customize
• Iteration: a set of coupled generic functions to specialize.
• Existing CL sequence functions: generic function analogue

in sequence package.



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Example: Class definition

Implement a kons type, which is like a cons except

• only kons or nil in the kdr: no dotted pairs.

• a kons knows its length.

(defclass kons (sequence standard-object)

((length :reader sequence:length :initarg :length)

(kar :accessor kar :initarg :kar)

(kdr :accessor kdr :initarg :kdr :type (or kons null))))

(defmethod (setf kdr) :after (new-value (k kons))

(setf (slot-value k ’length) (1+ (length new-value))))

(defun kons (kar kdr)

(make-instance ’kons :kar kar :kdr kdr

:length (1+ (length kdr))))



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Example: Class definition

Implement a kons type, which is like a cons except

• only kons or nil in the kdr: no dotted pairs.

• a kons knows its length.

(defclass kons (sequence standard-object)

((length :reader sequence:length :initarg :length)

(kar :accessor kar :initarg :kar)

(kdr :accessor kdr :initarg :kdr :type (or kons null))))

(defmethod (setf kdr) :after (new-value (k kons))

(setf (slot-value k ’length) (1+ (length new-value))))

(defun kons (kar kdr)

(make-instance ’kons :kar kar :kdr kdr

:length (1+ (length kdr))))



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Example: Class definition

Implement a kons type, which is like a cons except

• only kons or nil in the kdr: no dotted pairs.

• a kons knows its length.

(defclass kons (sequence standard-object)

((length :reader sequence:length :initarg :length)

(kar :accessor kar :initarg :kar)

(kdr :accessor kdr :initarg :kdr :type (or kons null))))

(defmethod (setf kdr) :after (new-value (k kons))

(setf (slot-value k ’length) (1+ (length new-value))))

(defun kons (kar kdr)

(make-instance ’kons :kar kar :kdr kdr

:length (1+ (length kdr))))



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Example: Class definition

Implement a kons type, which is like a cons except

• only kons or nil in the kdr: no dotted pairs.

• a kons knows its length.

(defclass kons (sequence standard-object)

((length :reader sequence:length :initarg :length)

(kar :accessor kar :initarg :kar)

(kdr :accessor kdr :initarg :kdr :type (or kons null))))

(defmethod (setf kdr) :after (new-value (k kons))

(setf (slot-value k ’length) (1+ (length new-value))))

(defun kons (kar kdr)

(make-instance ’kons :kar kar :kdr kdr

:length (1+ (length kdr))))



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Example: Method definitions I

With that class definition, cl:length (but nothing else) works.
Get cl:elt and (setf cl:elt) working with

(defmethod sequence:elt ((k kons) n)

(if (= n 0) (kar k) (elt (kdr k) (1- n))))

(defmethod (setf sequence:elt) (nv (k kons) n)

(if (= n 0)

(setf (kar k) nv)

(setf (elt (kdr k) (1- n)) nv)))

This is enough to support iteration without changing the
sequence structure: fill, sort, every, nsubstitute, count,
find, position, a loop path...



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Example: Method definitions I

With that class definition, cl:length (but nothing else) works.
Get cl:elt and (setf cl:elt) working with

(defmethod sequence:elt ((k kons) n)

(if (= n 0) (kar k) (elt (kdr k) (1- n))))

(defmethod (setf sequence:elt) (nv (k kons) n)

(if (= n 0)

(setf (kar k) nv)

(setf (elt (kdr k) (1- n)) nv)))

This is enough to support iteration without changing the
sequence structure: fill, sort, every, nsubstitute, count,
find, position, a loop path...



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Example: Method definitions I

With that class definition, cl:length (but nothing else) works.
Get cl:elt and (setf cl:elt) working with

(defmethod sequence:elt ((k kons) n)

(if (= n 0) (kar k) (elt (kdr k) (1- n))))

(defmethod (setf sequence:elt) (nv (k kons) n)

(if (= n 0)

(setf (kar k) nv)

(setf (elt (kdr k) (1- n)) nv)))

This is enough to support iteration without changing the
sequence structure: fill, sort, every, nsubstitute, count,
find, position, a loop path...



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Example: Method definitions II

Two distinct missing pieces:

• make new sequences (substitute, subseq, coerce...)
(defmethod sequence:make-sequence-like

((k kons) length &key initial-contents initial-element)

(unless initial-contents

(setq initial-contents

(make-list length :initial-element initial-element)))

(reduce #’kons initial-contents :from-end t :initial-value nil))

• alter existing sequences (delete, delete-duplicates)
(defmethod sequence:adjust-sequence

((k kons) length &key &allow-other-keys)

(cond

((= length 0) nil)

((= length 1)

(setf (slot-value k ’length) 1 (kdr k) nil) k)

((< length (length k))

(setf (slot-value k ’length) length)

(sequence:adjust-sequence (kdr k) (1- length))

k)))



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Example: Issues

Now all sequence functionality works!
(inefficiently. Iteration implemented by default as index-based,
which will be O(N2) for kons-like data structures.)
Iteration protocol in paper can be customized to recover
efficiency for particular data structures. Also allow for
customization of individual sequence functions.



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Example: Issues

Now all sequence functionality works!
(inefficiently. Iteration implemented by default as index-based,
which will be O(N2) for kons-like data structures.)
Iteration protocol in paper can be customized to recover
efficiency for particular data structures. Also allow for
customization of individual sequence functions.



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Example: Issues

Now all sequence functionality works!
(inefficiently. Iteration implemented by default as index-based,
which will be O(N2) for kons-like data structures.)
Iteration protocol in paper can be customized to recover
efficiency for particular data structures. Also allow for
customization of individual sequence functions.



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Incompatibility

Only known incompatibility of the whole proposal with ANS is
in make-sequence: see CDR 3 for gory details.
The type sequence not specified as (or list vector)

Some potential issues with user code:

(defun foo (sequence)

(etypecase sequence

(list ...)

(vector ...)))

but that code will continue to work on lists and vectors; it will
just not work with arbitrary sequences.



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Incompatibility

Only known incompatibility of the whole proposal with ANS is
in make-sequence: see CDR 3 for gory details.
The type sequence not specified as (or list vector)

Some potential issues with user code:

(defun foo (sequence)

(etypecase sequence

(list ...)

(vector ...)))

but that code will continue to work on lists and vectors; it will
just not work with arbitrary sequences.



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Implementability

SBCL implementation features:

• optimizing for unchanged performance of existing code

• trampoline strategy

• cl:length distinct from sequence:length

• defined MIT loop path

• minor modification to CLOS implementation

• more invasive modifications to type system knowledge

Why two packages?



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Implementability

Other possible implementations:

• simple: cl:length eql to sequence:length. Potentially
pays cost of generic function dispatch (but this can be a
small cost, and compiler macros can make this cost go
away for arguments whose type is known at compile-time).

• defadvice: calls to cl:length wrapped by advice
function, calling sequence:length if arg is extended
sequence, otherwise calling original function. Potential
problem with interfering compiler macros.

• new CL package: new-cl:find. OK but likely to run into
trouble in corner cases, particularly in compiler macros or
the type system; lack of interoperability with even
generically-written third-party code.



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Future Work

• Get proposal used (and implemented for other CL
implementations)

• Sort out some issues: what to do about sequences with
invariants that are potentially violated by (setf elt)?

• Collections (hash-tables): convenient to have unified
framework, but don’t have established names to work with

• Work out other user-subclassable things. function and
stream well served. number, real?



User-

extensible

sequences in

Common Lisp

Christophe

Rhodes

Introduction

Motivation

Sequences

Design

Utility

Incompatibility

Implementability

Future Work

Summary

Summary

Resources:

• SBCL home page: http://www.sbcl.org/

• Manual: http://www.sbcl.org/manual/

• CDR 3: http://cdr.eurolisp.org/document/3

Extensible sequences: dragging CL into the 1990s.

http://www.sbcl.org/
http://www.sbcl.org/manual/
http://cdr.eurolisp.org/document/3

	Introduction
	Motivation
	Sequences

	Design
	Utility
	Incompatibility
	Implementability

	Future Work
	Summary

