Christophe Rhodes

Goldsmiths, University of London

Wednesday 4th April

«O>r «F»r <

it
a
i

DA™



0 Introduction
Motivation
Sequences
9 Design

Utility
Incompatibility

Implementability

g Futu re WOrk

O <Fr o«

it
v

o>



e Ever seen foo-position-if in code?
e flexichain: nb-elements, element*
e climacs: size, buffer-position-if
e trees: size, reduce, position
e rucksack: p-length, p-replace, p-delete-if
e cxml: dom:length, dom:item
e |dentify simple building blocks of sequence functionality, to
make it easy to have full range of functions available.

e Validate the “programmable programming language”
claim.

«O>r «Fr <

it
v

a

i
v

it

DA™



e Ever seen foo-position-if in code?
flexichain: nb-elements, elementx*
climacs: size, buffer-position-if
trees: size, reduce, position

rucksack: p-length, p-replace, p-delete-if
cxml: dom:length, dom:item

e Identify simple building blocks of sequence functionality, to
make it easy to have full range of functions available.

e Validate the “programmable programming language”
claim.

«O>r «F»r <

it

v

a

i
v
it

DA™



User-
extensible
sequences in
Common Lisp

Christophe
Rhodes

Motivation

Sequences

Utility

Incompatibility

Implementability

Motivation

e Ever seen foo-position-if in code?

flexichain: nb-elements, elementx*

climacs: size, buffer-position-if

trees: size, reduce, position

rucksack: p-length, p-replace, p-delete-if
cxml: dom:length, dom:item

o Identify simple building blocks of sequence functionality, to
make it easy to have full range of functions available.

e Validate the “programmable programming language”
claim.



Experiment: can we get Common Lispers to agree on anything?

«O>r «F»r <

it
a
i

DA™



Data type: a finite ordered collection of elements.

Sequence has a size (length) and elements are addressable by
single-integer position.

Examples:

e linked list, vector

doubly-linked-list, queue, gap buffer
DOM node

compiler basic blocks

«4O)>r «Fr «=)>r 4

it
it
S
o
i)



User-
extensible
sequences in
Common Lisp

Christophe
Rhodes

Motivation
Sequences

Utility

Incompatibility

Implementability

Sequences

Data type: a finite ordered collection of elements.

Sequence has a size (length) and elements are addressable by
single-integer position.

Examples:

e linked list, vector

doubly-linked-list, queue, gap buffer
DOM node
compiler basic blocks



Fundamentals I:
* length
o elt, (setf elt)

<O <Fr <

it
v
i
v

o>



Operations:
e count, count-if, count-if-not
e find{,-if{,-not}}, position{,-if{,-not}}
e sort, fill, map-into ...
e remove{ -if{,-not}}, delete{, -if{,-not}}
e remove-duplicates, delete-duplicates

map, merge, coerce, make-sequence, concatenate

«O>r «F»r <

it
v
a
i
v
it

DA™



Operations:
e count, count-if, count-if-not
e find{ -if{,-not}}, position{,-if{,-not}}
e sort, fill, map-into ...
e remove{ -if{,-not}}, delete{,-if{,-not}}
e remove-duplicates, delete-duplicates

e map, merge, coerce, make-sequence, concatenate

«O>r «F»r <

it
v
a
i
v
it

DA™



Operations:
e count, count-if, count-if-not
e find{ -if{,-not}}, position{,-if{,-not}}
e sort, fill, map-into ...
e remove{ -if{,-not}}, delete{,-if{,-not}}
e remove-duplicates, delete-duplicates

® Mmap, merge, coerce, make—sequence, concatenate

«Or «F»r «

i
v
a

it

v

it

DA™



Fundamentals I:
e length

o elt, (setf elt)
Fundamentals Il:

¢ make-sequence-like (creation of new sequence)

e adjust-sequence (adjusting of existing sequence if possible)

«O>r «F»r <

i
v

DA™



e Usefulness

e Convenience

e Minimize incompatibility with existing standards
e Implementability

«O>r «F»r <

i
v

DA™



- Usefulness and Convenience

extensible
sequences in
Common Lisp

Christophe

Rhodes
o e Users may define subclasses of c1:sequence. To do so,
ERp— they must also write methods on
e e sequence:length, sequence:elt, (setf
tility
Incompatibility sequence:elt)
Implementability .

e sequence:make-sequence-like
sequence:adjust-sequence

That's it! No more is necessary. Can then call standard
Common Lisp functions.
e May also customize
e lteration: a set of coupled generic functions to specialize.
e Existing CL sequence functions: generic function analogue
in sequence package.



Implement a kons type, which is like a cons except

e only kons or nil in the kdr: no dotted pairs.
e a kons knows its length.

(defclass kons (sequence standard-object)

((length :reader sequence:length :initarg :length)
(kar :accessor kar :initarg :kar)

(kdr :accessor kdr :initarg :kdr :type (or kons null))))
(defmethod (setf kdr)

:after (new-value (k kons))
(setf (slot-value k ’length) (1+ (length new-value))))
(defun kons (kar kdr)

(make-instance

’kons :kar kar

:kdr kdr

:length (1+ (length kdr))))

«O>r «F»r <

it
a
i

DA™



extonsble Example: Class definition
sequences in
Common Lisp

Christophe
Rhod . . .

oo Implement a kons type, which is like a cons except
S e only kons or nil in the kdr: no dotted pairs.
Sequences .

‘ ¢ a kons knows its length.
Utility

Incompatibility

(defclass kons (sequence standard-object)
((length :reader sequence:length :initarg :length)
(kar :accessor kar :initarg :kar)
(kdr :accessor kdr :initarg :kdr :type (or kons null))))

Implementability



extonsble Example: Class definition
sequences in
Common Lisp

Christophe
Rhod . . .

oo Implement a kons type, which is like a cons except
S e only kons or nil in the kdr: no dotted pairs.
Sequences .

‘ ¢ a kons knows its length.
Utility

Incompatibility

(defclass kons (sequence standard-object)
((length :reader sequence:length :initarg :length)
(kar :accessor kar :initarg :kar)
(kdr :accessor kdr :initarg :kdr :type (or kons null))))

Implementability

(defmethod (setf kdr) :after (new-value (k kons))
(setf (slot-value k ’length) (1+ (length new-value))))



extensibe Example: Class definition
sequences in
Common Lisp

Christophe

Rhodes Implement a kons type, which is like a cons except
e e only kons or nil in the kdr: no dotted pairs.
e e a kons knows its length.
Utility

Incompatibility

(defclass kons (sequence standard-object)
((length :reader sequence:length :initarg :length)
(kar :accessor kar :initarg :kar)
(kdr :accessor kdr :initarg :kdr :type (or kons null))))

Implementability

(defmethod (setf kdr) :after (new-value (k kons))
(setf (slot-value k ’length) (1+ (length new-value))))

(defun kons (kar kdr)
(make-instance ’kons :kar kar :kdr kdr
:length (1+ (length kdr))))



With that class definition, c1:1length (but nothing else) works
Get cl:elt and (setf cl:elt) working with
(defmethod sequence:elt ((k kons) n)

(if (= n 0) (kar k) (elt (kdr k) (1- n))))

(defmethod (setf sequence:elt) (nv (k kons) n)
(if (=n 0)

(setf (kar k) nv)
(setf (elt (kdr k) (1- n)) nv)))

This is enough to support iteration without changing the

sequence structure: £ill, sort, every, nsubstitute, count,
find, position, a loop path...

«O>r «F»r <

it

v

a
i
v

DA™



User-
extensible
sequences in
Common Lisp

Christophe
Rhodes

Motivation

Sequences

Utility
Incompatibility

Implementability

Example: Method definitions |

With that class definition, c1:1length (but nothing else) works.
Get cl:elt and (setf cl:elt) working with

(defmethod sequence:elt ((k kons) n)
(if (= n 0) (kar k) (elt (kdr k) (1- n))))
(defmethod (setf sequence:elt) (nv (k kons) n)
(if (=n 0)
(setf (kar k) nv)
(setf (elt (kdr k) (1- n)) nv)))



User-
extensible
sequences in
Common Lisp

Christophe
Rhodes

Motivation

Sequences

Utility

Incompatibility

Implementability

Example: Method definitions |

With that class definition, c1:1length (but nothing else) works.
Get cl:elt and (setf cl:elt) working with

(defmethod sequence:elt ((k kons) n)
(if (= n 0) (kar k) (elt (kdr k) (1- n))))
(defmethod (setf sequence:elt) (nv (k kons) n)
(if (=n 0)
(setf (kar k) nv)
(setf (elt (kdr k) (1- n)) nv)))

This is enough to support iteration without changing the
sequence structure: £ill, sort, every, nsubstitute, count,
find, position, a loop path...



User-
extensible
sequences in
Common Lisp

Christophe
Rhodes

Motivation

Sequences

Utility

Incompatibility

Implementability

Example: Method definitions |l

Two distinct missing pieces:
e make new sequences (substitute, subseq, coerce...)

(defmethod sequence:make-sequence-like
((k kons) length &key initial-contents initial-element)
(unless initial-contents
(setq initial-contents
(make-list length :initial-element initial-element)))
(reduce #’kons initial-contents :from-end t :initial-value nil))

e alter existing sequences (delete, delete-duplicates)

(defmethod sequence:adjust-sequence
((k kons) length &key &allow-other-keys)
(cond
((= length 0) nil)
((= length 1)
(setf (slot-value k ’length) 1 (kdr k) nil) k)
((< length (length k))
(setf (slot-value k ’length) length)
(sequence:adjust-sequence (kdr k) (1- length))
k)))



Now all sequence functionality works!

(inefficiently. Iteration implemented by default as index-based,
which will be O(N?) for kons-like data structures.)

Iteration protocol in paper can be customized to recover
efficiency for particular data structures. Also allow for
customization of individual sequence functions.

«O>r «Fr <

it
v
a
i
v
it

DA™



Now all sequence functionality works!

(inefficiently. Iteration implemented by default as index-based,
which will be O(N?2) for kons-like data structures.)

Iteration protocol in paper can be customized to recover
efficiency for particular data structures. Also allow for
customization of individual sequence functions.

«O>r «F»r <

it
v
a
i
v
it

DA™



User-
extensible
sequences in
Common Lisp

Christophe
Rhodes

Motivation

Sequences

Utility

Incompatibility

Implementability

Example: Issues

Now all sequence functionality works!

(inefficiently. Iteration implemented by default as index-based,
which will be O(N?) for kons-like data structures.)

Iteration protocol in paper can be customized to recover
efficiency for particular data structures. Also allow for
customization of individual sequence functions.



Only known incompatibility of the whole proposal with ANS is
in make-sequence: see CDR 3 for gory details.

The type sequence not specified as (or list vector)
Some potential issues with user code:

(defun foo (sequence)

(etypecase sequence
(list ...)

(vector ...)))

but that code will continue to work on lists and

vectors; it will
just not work with arbitrary sequences.

«O>r «F»r <

it
v
a
i
v
it

DA™



User-
extensible
sequences in
Common Lisp

Christophe
Rhodes

Motivation
Sequences

Utility
Incompatibility

Implementability

Incompatibility

Only known incompatibility of the whole proposal with ANS is
in make-sequence: see CDR 3 for gory details.

The type sequence not specified as (or list vector)
Some potential issues with user code:

(defun foo (sequence)
(etypecase sequence
(1ist ...)
(vector ...)))

but that code will continue to work on lists and vectors; it will
just not work with arbitrary sequences.



User-
extensible
sequences in
Common Lisp

Christophe
Rhodes

Motivation
Sequences

Utility
Incompatibility

Implementability

Implementability

SBCL implementation features:

optimizing for unchanged performance of existing code
trampoline strategy

cl:length distinct from sequence:length

defined MIT loop path

minor modification to CLOS implementation

more invasive modifications to type system knowledge

Why two packages?



extensibe Implementability
sequences in
Common Lisp

Christophe

el Other possible implementations:
N e simple: cl:length eql to sequence:length. Potentially
e pays cost of generic function dispatch (but this can be a
Utilit small cost, and compiler macros can make this cost go
imlementabilty away for arguments whose type is known at compile-time).

e defadvice: calls to cl:1ength wrapped by advice
function, calling sequence:length if arg is extended
sequence, otherwise calling original function. Potential
problem with interfering compiler macros.

e new CL package: new-cl:find. OK but likely to run into
trouble in corner cases, particularly in compiler macros or
the type system; lack of interoperability with even
generically-written third-party code.



User-
extensible
sequences in
Common Lisp

Christophe
Rhodes

Motivation

Sequences

Utility

Incompatibility

Implementability

Future Work

Future Work

Get proposal used (and implemented for other CL
implementations)

Sort out some issues: what to do about sequences with
invariants that are potentially violated by (setf elt)?

Collections (hash-tables): convenient to have unified
framework, but don't have established names to work with

Work out other user-subclassable things. function and
stream well served. number, real?



Resources:

e SBCL home page: http://www.sbcl.org/
e Manual: http://www.sbcl.org/manual/

e CDR 3: http://cdr.eurolisp.org/document/3
Extensible sequences: dragging CL into the 1990s.

«O>» «4F)»r « =>»

<

it
v

DA™


http://www.sbcl.org/
http://www.sbcl.org/manual/
http://cdr.eurolisp.org/document/3

	Introduction
	Motivation
	Sequences

	Design
	Utility
	Incompatibility
	Implementability

	Future Work
	Summary

