
Software 
Development’s 
Low Hanging Fruit

www.construx.com



Copyright Notice

These class materials are © 2007-2008 Construx Software 
Builders, Inc.

All Rights Reserved. No part of the contents of this seminar may
be reproduced or transmitted in any form or by any means without
the written permission of Construx Software Builders, Inc.



Why Talk About Low 
Hanging Fruit?



Why Talk About Low Hanging Fruit?

Numerous Good 
Practices Have Existed 
for Decades



5

Best Practices 
(year first available)

Project planning and 
management 
practices

Automated 
estimation tools 
(1973)
Evolutionary delivery 
(1988)
Measurement (1977)
Productivity 
environments (1984)
Risk-management 
planning (1981)

Requirements 
engineering 
practices 

Change board (1978)
Throwaway user 
interface prototyping 
(1975)
JAD sessions (1985)



6

Best Practices 
(year first available, cont.)

Design practices
Information hiding 
(1972)
Design for change 
(1979)

Construction 
practices

Source code control 
(1980)
Incremental 
integration (1979)

Quality assurance 
practices

Branch-coverage 
testing (1979)
Inspections (1976)

Process 
improvement

SW-CMM (1987)
Software Engineering 
Process Groups 
(1988)



Why Talk About Low Hanging Fruit?

ROI of Good Software 
Practices is Well 
Established



8

ROI for Selected Practices

7.52.3JAD Workshops

5.02.0Prototyping (full)

122.5Formal code inspections

5.51.2Management training

103.5Formal design inspections

5.00.9Technical staff training

6.01.5Process assessments

122.5Cost and quality estimation tools

36-month 
ROI

12-month 
ROI

Practice

Source: Capers Jones, Assessment and Control of Software Risks, Prentice Hall, 1994. 



9

ROI

Improved software practices pay an 
average ROI of 5-to-1 (including false 
starts), and continued improvement is 
sustainable for many years
The best organizations have sustained 
ROIs of 9-to-1 on software improvement 
initiatives for many years

Source: James Herbsleb, et al, “Benefits of CMM Based Software Process 
Improvement: Initial Results,” Pittsburgh: Software Engineering Institute, 
Document CMU/SEI-94-TR-13, August 1994.



Why Talk About Low Hanging Fruit?

These Practices Should 
Have Been Adopted Long 
Ago…



11

Cycle for Diffusion of Innovations

Innovators

Early Adopters

Early Majority Late Majority

Laggards

The “Chasm”

Adoption Sequence



12

Normal Risk/Reward Structure

High risk /
high payoff

Moderate-high risk /
moderate-high payoff

Moderate-low risk /
moderate payoff

Low risk /
moderate payoff

Low risk /
low payoff

Decreasing Risk

Decreasing Reward



13

Software’s Unusual Risk/Reward 
Structure

High risk /
high payoff

Moderate risk /
high payoff

Low risk /
high payoff

Moderate risk /
low payoff

High risk /
low payoff

Decreasing Risk

Decreasing Reward

Increasing Risk



Why Talk About Low Hanging Fruit?

… but Many Good Practices 
Have Not Been Commonly 
Adopted



15

Some Software Examples

 

New practices 
(not mentioned in

this talk)

Most Low
Hanging Fruit

Code-and-fix 
development

SW-CMM Waterfall lifecycle 
model 

Decreasing Risk 

Decreasing Reward 

Increasing Risk 



16

State of the Practice

Lots of proven practices are available
Risk of not using these practices is 
substantially higher than of using them
Many of these tried-and-true practices 
are readily available, easy to adopt, and 
provide immediate returns



Why Talk About Low Hanging Fruit?

Does It Seem Like We’re 
Always Talking About Long 
Term Improvements?



18

Number of
months to move to
the next CMM
Level

26
19

Level 1 to 2
76 Orgs

Level 2 to 3
56 Orgs

75

50

30

18

0

Largest observed value that is
not an outlier

Median

Smallest observed value that is
not an outlier

25th Percentile

75th Percentile

Schedule Required to Move Up 
One CMM Level



19

Example Process Improvement 
Results

Median Results (13 organizations)
Duration: 3.5 years
Productivity gain per year: 35% (185% total)
Schedule reduction per year: 19% (52% total)
Reduction in post-release defect reports per 
year: 39% (82% total)
Business Value of the Investment: 5.0 to 1



Why Talk About Low Hanging Fruit?

A Low Hanging Fruit 
Hypothesis



21

Hypothesis:

The industry focus on “long term 
improvements” has created the 
impression that improvements are 
attainable only in the long term. In 
fact, many significant improvements 
are attainable in the short term!



Low Hanging Fruit 
(LHF)



23

Criteria for LHF

Low cost of adoption
Good or very good chance of first-time 
success
Excellent chance of long term success
Short time to positive ROI



24

Candidates for LHF

Software Best Practices
Software Fundamentals that aren’t 
currently being used



25

LHF Candidates, part 1
4GLs
Architectural design
Buy vs. build planning
Change board
Cleanroom
development
Coding standards
Customer orientation
Daily build and smoke 
test
Defect tracking, full 
lifecycle
Designing for change

Education, management 
Education, technical 
staff 
Error-prone modules, 
identification of
Estimating tools, use of 
automated
Estimation and 
scheduling, accurate
Evolutionary-delivery 
lifecycle model
Evolutionary-prototyping 
lifecycle model
Feature-set control



26

LHF Candidates, part 2

Goal setting
Hiring top talent
Inspections
Incremental Planning
Incremental Integration 
Joint Application Design 
(JAD)
Lifecycle model 
selection
Measurement
Milestones, miniature

Minimal specification
Motivation
Outsourcing
Planning tools, 
automated
Principled negotiation
Productivity 
environments
Productivity tools
Rapid-development 
languages (RDLs)



27

LHF Candidates, part 3
Requirements scrubbing
Reuse
Risk management, 
active
Signing up
Software configuration 
management, full
Software engineering 
process group (SEPG)
Source code control
Spiral lifecycle model
Staff specialization
Staged-delivery lifecycle 
model

Team structure, 
matching to project type
Test-first coding
Theory-W management
Throwaway prototyping
Timebox development
Tools group
Top-10 risks list
Project Tracking, Active
Up-front Design 
Up-front Planning 
Up-front Requirements
User-interface 
prototyping



28

Is Everything 
Low Hanging Fruit?

There are many good candidates for 
LHF (58!)
What will constitute LHF from one 
organization to the next will vary

Low cost of adoption
Good or very good chance of first-time 
success
Excellent chance of long term success
Short time to positive ROI



29

Examples of Fruit That Isn’t Low 
Hanging

No evidence of positive ROI
Not a high chance of long-term success

Pair Programming

Not a short time to positive ROI
Not a high chance of first-time success or 

long-term success

Developing Code for 
Reuse

Not a high chance of first-time successSpiral Lifecycle Model

More like a whole tree than individual fruit
Not low cost to adopt
Not high chance of first-time success

RUP

Why Not LHF?Practice



30

Examples of Fruit That Isn’t Low 
Hanging (cont.)

Not a high chance of first-time success 
or long-term success

Major Milestones

Not a high chance of first-time success 
or long-term success

Use Cases

It’s great fruit, just not low hanging, i.e., 
not a short time to positive ROI

Statistical Process 
Control

Not low cost to adopt
Not a high chance of first-time success 

or long-term success

CASE Tools

Why Not LHF?Practice



Where Do You Start?



32

Where Do You Start?

Depends on who “you” are:
Developer
Technical Lead
Manager
Organization (Executive)



33

A Developer’s LHF

Assumptions
LHF cannot require more than one 
contributor
LHF doesn’t create any direct expense
LHF must not create “atomic” work that 
would show up on a task list
LHF is minimally visible to management



34

A Developer’s LHF

Can Own:
Coding Standards
Test-First Coding
Designing for Change
Incremental Integration
Throwaway Prototyping
Up-Front Design

Can Contribute to:
Error-Prone Modules, 
Identification of
Defect Tracking, full 
lifecycle
Daily Build and Smoke 
Test
Architectural Design
User-Interface 
Prototyping
Evolutionary Delivery
Source Code Control 
Tool



35

A Developer’s LHF
Observations

ROI of developer-level LHF is relatively 
low, but lots of LHF is easily within reach
Lots of LHF is partially reachable
Construx has found violent agreement in 
upper management that developers 
should be using LHF
Most of these practices are invisible to 
upper management



36

A Technical Lead’s LHF

Assumptions
LHF is primarily technical in nature
LHF doesn’t create any direct expense
LHF may require more than one contributor
LHF may affect detailed task assignments, 
task ordering, etc.
LHF is minimally visible to upper 
management, the customer, or other project 
stakeholders



37

A Technical Lead’s LHF

Can Own:
Coding Standards
Test-First Coding
Designing for Change
Incremental Integration
Throwaway Prototyping
Up-Front Design
Error-Prone Modules, 
Identification of
Daily Build and Smoke 
Test
Defect Tracking, full 
lifecycle

Architectural Design
User-Interface 
Prototyping
Evolutionary Delivery
Lifecycle Model 
Selection
Inspections
Requirements 
Scrubbing
Planning, Incremental
Change Control, Formal
Top-10 Risks List



38

A Technical Lead’s LHF (cont.)

Can Contribute to:
Source Code 
Control Tool
Miniature Milestones
Timebox
Development
Up-Front 
Requirements
Planning, Up-Front 



39

A Technical Lead’s LHF
Observations

Most LHF is reachable by the technical 
lead
Again, most LHF is invisible to executive 
management, and implicitly supported 
by executive management
Most of it will work better with project 
management and executive support
Problem at this level is really choosing 
which of numerous options is best—
that’s what expert help is for!



40

A Manager’s LHF

Assumptions
LHF is not highly technical in nature
LHF may create direct expenses
LHF may affect more than one contributor
LHF may affect detailed task assignments, 
task ordering, etc.
LHF may be visible to upper management, the 
customer, or other project stakeholders
LHF does not require multiple-project span of 
control



41

A Manager’s LHF

Can Own:
Inspections
Requirements 
Scrubbing
Planning, Incremental
Change Control, 
Formal
Top-10 Risks List
Feature-Set Control
Source Code Control 
Tool

Miniature Milestones
Timebox Development
Up-Front 
Requirements
Theory-W 
Management
Planning, Up-Front
Buy Vs. Build 
Planning
Joint Application 
Design (JAD)



42

A Manager’s LHF (cont.)

Can Contribute to:
Throwaway Prototyping
Defect Tracking, full 
lifecycle
Up-Front Design
User-Interface Prototyping
Evolutionary Delivery
Lifecycle Model Selection
Staff Specialization
Education, Technical Staff
Education, Management



43

A Manager’s LHF
Observations

Most LHF is reachable by the manager
Most of the detailed work on the LHF will 
need to be done by technical staff
Main problem here again is too many 
choices



44

An Organization’s LHF

Assumptions
LHF is not highly technical in nature
LHF may create direct expense
LHF may affect more than one project
LHF may degrade single-project 
performance to boost overall 
organization performance



45

An Organization’s LHF

Can Own:
Staff Specialization
Education, Technical 
Staff
Education, Management
Planning, Up-Front
Buy Vs. Build Planning
Change Control, Formal
Top-10 Risks List
Joint Application Design 
(JAD)

Can Contribute to:
Planning, Incremental
Defect Tracking, full 
lifecycle
Timebox Development
Up-Front Requirements
Theory-W Management



46

An Organization’s LHF
Observations

Most organization-level LHF has high ROI, but 
longer lead times (opposite of developer-level 
LHF)
Most detailed work still needs to be done by 
technical staff

Bottom Line
Most of the work to harvest LHF occurs at the 
technical lead levels, but that work 
significantly benefits from support at the 
manager, organization, and developer level



A Low Hanging Fruit 
Basket



48

LHF that are the Fastest to Adopt

Coding Standards
Daily Build and Smoke Test
Source Code Control Tool
Top 10 Risks List
User Interface Prototyping



49

LHF that are the Lowest Risk to 
Adopt

Daily Build and Smoke Test
Defect Tracking
Education, Technical Staff
Inspections
Planning, Incremental
Source Code Control Tool
Top 10 Risks List



50

LHF that will Not be Resisted by 
Individual Contributors

Change Control, Formal
Planning, Incremental
Source Code Control Tool
Top 10 Risks List
Up-front Design
Up-front Requirements



51

LHF that will Not be Resisted by 
Upper Management

Coding Standards
Incremental Integration
User Interface 
Prototyping
Defect Tracking
Up-Front Design
Architectural Design
Inspections
Test-First Coding

Designing for Change
Error-Prone Modules, 
Identification of
Daily Build and Smoke 
Test
Evolutionary Delivery
Lifecycle Model 
Selection
Planning, incremental
Planning, up-front

Executives can’t resist LHF they can’t see!



Summary



53

Good News

Practically everything in software 
development is fundamentals. There are 
no advanced practices.
(This isn’t quite true, but it’s pretty close)
The worse off your organization is now, the 
higher the ROI of good practices will be!
If you’re not currently making substantial 
use of good practices, focus on doing 
anything; don’t let “the best” become the 
enemy of “the good”



54

More Good News

Low hanging fruit is just the beginning. 
Once you harvest that, there is still more 
fruit higher up
LHF can help an organization “learn how 
to change”—which is one of the hardest 
aspects of longer-term process 
improvement
Construx specializes in helping 
organizations identify which LHF is best 
for them



55

Construx 
Consulting Support

Audits, Benchmarks, and Recommendations
(we identify your LHF)
Improvement Roadmaps
Project Chartering Workshops
Project Planning Workshops
Requirements Workshops
Project Scoping & Estimation Workshops
Best-Practice Deployment Workshops
Project Recovery

www.construx.com



Construx Software is committed to helping 
individuals and organizations improve their 
software development practices. For information 
about our training and consulting services, contact 
stevemcc@construx.com.

Seminar Schedule: www.construx.com/calendar

10900 NE 8th Street, Suite 1350
Bellevue, WA 98004
+1 (866) 296-6300
www.construx.com


