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ABSTRACT 

A cursory examination of the history of Artificial 
Intelligence, AI, serves to highlight several strong claims from 
its researchers, especially in relation to the populist form of 
computationalism that holds, ‘any suitably programmed 
computer will instantiate genuine conscious mental states 
purely in virtue of carrying out a specific series of 
computations’ . 
 
The argument to be presented in this paper develops ideas first 
outlined in Hilary Putnam’s 1988 monograph, “Representation 
& Reality” , then developed by the author in, “Dancing with 
Pixies” , (2002a) and “Counterfactuals Cannot Count” , (2002b). 
This work further extends these ideas into a novel thesis against 
computationalism which, if correct, has important implications 
for Cognitive Science; both with respect to the prospect of ever 
developing a computationally instantiated consciousness and 
more generally for any computational, (purely-functional), 
explanation of mind. 

 
INTRODUCTION 

Many people find the notion of machine phenomenology 
so difficult to accept that, in this aspect at least, arguments 
against computational consciousness target a straw man. Yet a 
quick search of AI literature reveals many eminent cognitive 
scientists, including Minsky, (1985), Moravec, (1998) and 
Kurzweil, (1998), who have speculated positively on the 
subject; with some of the ‘new-roboticists’ , Warwick (1996), 
O’Regan & Noe, (2001a, 2001b) and Harvey, (2002), 
specifically claiming that if devices exhibit appropriate sensori-
motor co-ordination then there is no ‘ in-principle’  barrier to 
conceiving of them as conscious devices and indeed that, we 
have already developed robots ‘as conscious as a slug’  
(Warwick, 2002). It is to this group that the following reductio 
is directed. 

 
The main argument presented here is not significantly original 
– it is a simple reflection upon that originally given by Hilary 
Putnam (Putnam 1988) and widely criticised by David 

Chalmers and others1. However, in what follows, instead of 
seeking to justify Putnam’s original claim that, “every open 
system implements every finite state automaton” , (FSA), and 
hence that psychological states of the brain cannot be functional 
states of a computer, I will seek to establish the weaker result 
that, over a finite time window every open system implements 
the trace of a particular FSA Q, as it executes with known input 
(x). That this result leads to panpsychism is clear as, equating Q 
(x) to a specified program that is claimed to instantiate 
phenomenal states as it executes, and following Putnam’s 
procedure, identical computational (and ex-hypothesi 
phenomenal) states can be found in every open physical 
system.  
 
The route-map for this endeavour is as follows. In the first part 
of the paper I review the Dancing with Pixies reductio ad 
absurdum argument, (Bishop, 2002a), against computationally 
instantiated conscious states; then I review several responses to 
the argument and conclude by showing how, if the reductio 
holds, it undermines not just the notion of machine 
consciousness but more generally any computational 
explanation of mind.  

 
BACKGROUND 

In recent years the most well known arguments against 
computational explanations of mind have come from John 
Searle, in the Chinese Room, (Searle, 1980) and Roger 
Penrose’s application of the Godelian argument to the analysis 
of how, “mathematicians in general provide their ‘unassailable 
demonstrations’  of the truth of certain mathematical 
assertions” , (Penrose, 1989 & 2002). However, less well known 
outside the field, is Hilary Putnam’s conclusion that, “ if true, 
functionalism implies behaviourism”, published as an appendix 
to his 1988 monograph, “Representation & Reality” 2. 

 
Central to Putnam’s conclusion is his proof of the theorem, 

“Every ordinary open system is a realization of every abstract 
                                                           

1 See Chalmers (1994, 1996a, 1996b) and also the special issue, What is 

Computation? of Minds and Machines, (vol.4, no.4, November 1994).  
2 Ironically Putnam is widely considered to be the father of Functionalism 

as a philosophical theory of Mind. 
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finite automaton” . This theorem has attracted much debate, 
with a special edition, (1994, 4:4), of the journal ‘Minds & 
Machines’  devoted to teasing out the notion of exactly ‘What is 
computation?’  Subsequently, in a Synthese article published in 
1996(b), David Chalmers seemed to fatally undermine 
Putnam’s attack on functionalism by demonstrating that, if an 
open system is to fully realise even the simplest computation 
with input, “ in a very short time, the system will be larger than 
the known universe” . 

 
DANCING WITH PIXIES, (DWP) 

In 2002 the author’s paper, Dancing with Pixies, sought to 
obviate Chalmers response to Putnam’s theorem with respect to 
any claimed phenomenal states of a putative conscious 
computer/robot. The essence of DWP is the following reductio 
ad absurdum: 

  
1. If it, (our assumed claim), is true, “ that an 

appropriately programmed computer really has 
genuine cognitive states”  

 
2. Then “panpsychism holds” . 

 
3. However, against the backdrop of our immense 

scientific knowledge of the physical world, and 
the corresponding widespread desire to explain 
everything ultimately in physical terms, 
panpsychism has come to seem an implausible 
view. 
 
Hence we should reject the assumed claim (1). 

 
Clearly the core work of the reductio is to establish the 

implication linking steps [1] and [2]. This is achieved by a 
tightly constrained application of Putnam’s theorem. I.e. We do 
not seek to establish that, “every ordinary open system is a 
realization of every abstract finite automaton” , simply the 
weaker result that, “over a finite time period, everything 
implements the trace of Finite State Automata Q as it operates 
on fixed input (x)” . 

 
In DWP it is shown that this weaker result does not lead to 

the combinatorial explosion in required physical states that 
Chalmers demonstrated a complete implementation of an FSA 
with input would require and hence that Putnam’s theorem, 
mapping logical states of a computation to physical states of 
any open system, holds and panpsychism is true. 
 
THE NEXUS OF PUTNAM’S THEOREM 

1. The computational states of a system are always 
relative to the observed function and the 
underlying physics of the system. i.e. Unlike say 
mass or form, computational states are not 
intrinsic to physical states of matter but always 
require a mapping from physical state to logical 
state. 

 
2. Domain A: The phenomenal states of a putative 

conscious computational system are independent 
of the underlying computational hardware; 
specific phenomenal state sequences are 

instantiated by specific sequences of 
computational modal state transitions. 

 
3. Domain B: The behaviour of any open physical 

system can be described by a series of modal state 
transitions. 

 
4. Over a finite bounded interval there exists a 

simple reliable mapping between these two 
domains. I.e. In line with any computational 
system there is mapping from the hardware [the 
open physical system] and the computational 
states generated as the program executes:- the 
Putnam mapping. 

 
5. Hence if a suitably programmed computer 

genuinely experiences phenomenal states as the 
program executes then so does any open system; 
Panpsychism is true. 

 
COMPUTATION IS NOT INTRINSIC TO PHYSICS 

In any computer logical states are always mapped onto 
physical states of the system. For example in a computer built 
using TTL (Transistor-Transistor Logic), the convention is that 
0V maps to logic FALSE and +5V maps to TRUE. In the 
construction of computers this has mapping not always been the 
one used; other logic systems, (e.g. RS232), have represented 
logic TRUE is by a voltage between -15V to -3V and a logic 
FALSE by +3V to +15V. 

 
COMPUTATIONAL STATES ARE NOT 
INTRINSICALLY ELECTRICAL 

It is exactly the observer-relative mapping of 
computational states onto physical states that allows different 
modalities of computation; computers do not have to be 
electrical. For example Babbage’s Difference & Analytical 
Engines were mechanical devices that mapped logical states 
onto mechanical states, (see figure below). 
 

 
A portion of Charles Babbage’s Analytic Engine, (Science 

Museum London) 
 
… as did Weizenbaum’s toilet roll and pebble ‘machine’  that 
played a simple game, (Weizenbaum 1976, pp.51ff). More 
recently extremely fast computing systems are being developed 
that use light instead of electricity to represent logical states. 
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INPUTLESS FINITE STATE AUTOMATA, (FSA) 
An input-less FSA is specified by a set of formal states 

{ S1, S2, .. Sn} , and by a set of state-transition relations which 
specify for each state the next state that must follow. Given the 
initial condition(s) an input-less FSA will transit a series of 
states before eventually entering a cyclic terminal state 
sequence of one (or more) states. 

 
HOW TO IMPLEMENT ANY INPUTLESS THREE 
STATE FINITE STATE AUTOMATA WITH A SIMPLE 
COUNTER 

Fundamentally, a system can be said to implement an 
input-less FSA over a given time-period, if there is a mapping f 
from physical states of the system to computational states of the 
FSA such that: if the system is in physical state p during the 
time-period, this causes it to transit into a state q such that 
computational state f (p) transits to computational state f (q) in 
the specification of the FSA. 

 
Over the time interval [T1 to T6] a simple digital counter 

transits the states, { C1, C2, C3, C4, C5, C6} . Over the same time 
interval an input-less FSA Q generates the finite linear series of 
state transitions labelled, { Q1, Q2, Q3, Q1, Q2, Q3} . Hence to 
implement the input-less FSA Q by the counter we need to use 
the following mapping, f, from counter states to computational 
states: 

 
• Map FSA state Q1 to the disjunction (C1 v C4). 
• Map FSA state Q2 to the disjunction (C2 v C5). 
• … and FSA state Q3 to (C3 v C6). 

 
As is usual for any computational system the mapping simply 
assigns a logical, computational state onto a physical state of 
the system. However, by adopting this mapping any simple 
digital counter will generate the required state transition 
sequence of our input-less FSA, { Q1, Q2, Q3, Q1, Q2, Q3} , over 
the specified time interval. 
 

Note, after Chalmers, that the above counting system will 
only implement one particular path through the FSA state 
structure – there may be other state transition sequences that 
have not emerged in this execution trace. To circumvent this 
problem Chalmers suggests using a [counter] system with an 
extra dial – a sub-system with an arbitrary number of states, 
[C[dial-state, counter-state]].  

 
Now, as Chalmers suggests, we associate dial-state [1] 

with the first run of the FSA. The initial state will then be [C[1, 

1]] and we associate this with an initial state of the FSA. We 
then associate system states [C[1, 2]], [C[1, 3]] with associated 
FSA states using the Putnam mapping described earlier. If at 
the end of this process some FSA states have not come up, we 
choose a new FSA state, Q’ , increment the dial to position [2] 
and associate this new state [C[2, 1]] with Q’  and proceed as 
before. By repeating this process all of the states of the FSA 
will eventually be exhausted. Then, for each state of the FSA 
there will be a non-empty set of associated counter system 
states. To obtain the FSA implementation mapping we use 
Putnam’s mapping once more and the disjunction of these 
states is mapped to the FSA state as before. Chalmers remarks:  

 
“ It is easy to see that this system satisfies all the strong 

conditionals in the strengthened definition of 
implementation. For every state of the FSA, if the system is 
(or were to be) in a state that maps onto that formal state, 
the system will (or would) transit into a state that maps 
onto the appropriate succeeding formal state. So the result 
is demonstrated” , (Chalmers 1996a, p.317).  

 
 
THE PHYSICAL STATE OF THINGS 

Physics typically describes the time evolution of a complex 
system via a set of dynamic equations. By selecting appropriate 
intervals a system’s behaviour can be quantised into a series of 
modal state transitions between regions of phase space. Hence a 
physical system can be characterised by a series of discrete 
states that evolve over time. 

 
E.g. A simple three state characterisation of water heating 

in a kettle may be (1) that the water goes from a cold state to a 
warm state; (2) to a hot state; (3) to a boiling state, (and perhaps 
eventually to a ‘cup-of-tea’  state). 

 
Due to influence of cosmic rays, gravitational fields etc. 

any Open Physical System is characterised by a series of non 
repeating states that evolve over time, { S1, S2, S3, S4, S5, S6 .. 
S∞} . This non-cyclic behaviour is analogous to that exhibited 
by an infinite counter, (i.e. one that never repeats states). 

 
THE TEA GOD 

Consider that an open physical system, (eg, a cup of tea), 
over the period [T1 .. Tn] is described by the physical state 
transitions { S1, S2, .. Sn} . With correct knowledge of initial 
conditions and system boundary conditions, a Laplacian 
Supermind, (The Tea God), can reliably map from system state 
S at T to S’  at T’  to S’ ’  at T’ ’ . i.e. Given an initial state of the 
system and the boundary conditions that pertain, The Tea God 
can reliably predict the future state of the tea at any time.  

 
THEOREM: ‘ANY OPEN PHYSICAL SYSTEM 
IMPLEMENTS ANY INPUTLESS FSA’ 

Over the time interval [T1 to T6] an input-less FSA Q 
generates the finite linear series of state transitions labelled, 
{ Q1, Q2, Q3, Q1, Q2, Q3} . Any open physical system, (e.g. a cup 
of tea), transits system states, { S1, S2, S3, S4, S5, S6} , in same 
time period. 

 
To implement any input-less FSA Q by an open physical 

system: 
 

• Map FSA state Q1 to the disjunction (S1 v S4). 
• Map FSA state Q2 to the disjunction (S2 v S5). 
• … and FSA state Q3 to (S3 v S6). 

 
Once again we add a dial, (perhaps implemented as a 

scratch on the cup), to ensure all possible traces through the 
FSA are implemented; now, as in any computational system, 
the Putnam mapping simply maps a logical, computational 
state, from the physical state of the system. 
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By using this mapping any open physical system will 
generate the required state transition sequence, { Q1, Q2, Q3, Q1, 
Q2, Q3} , over the specified time interval3. 
 

Chalmers remains unfazed at this result because he states 
that inputless FSA’s are simply an “ inappropriate formalism” 
for a computationalist theory about the mind:  

 
“To see the triviality, note that the state-space of an 

inputless FSA will consist of a single unbranching 
sequence of states ending in a cycle, or at best in a finite 
number of such sequences. The latter possibility arises if 
there is no state from which every state is reachable. It is 
possible that the various sequences will join at some point, 
but this is as far as the ‘structure’  of the state-space goes. 
This is a completely uninteresting kind of structure” , (ibid., 
p.318). 
 

CHALMERS: COMPUTING WITH INPUT AND OUTPUT 
The behaviour, (state evolution), of a Finite State 

Automaton with input, output and memory, (an abstract model 
of a modern digital computer), is specified by a complex tree of 
potential input, memory and computational state contingencies. 
Chalmers demonstrated, (ibid), that to fully implement this 
form of contingent state structure with an open physical system 
and a Putnam style mapping an exponential number of system 
states, (as a function of elapsed time), are required. Hence, as 
run-time increments, this value rapidly becomes larger than the 
number of atoms in the known universe and functionalism is 
preserved… 

 
COMPUTING LIKE CLOCKWORK 

Because, in any real computer system memory is finite, the 
memory state and computational state can be conjoined to form 
a finite set of ‘super-states’  of the automata. Further, full 
knowledge of the input will collapse the complex branching 
state structure of the automaton to a simple linear path. 

 
E.g. If we are in super-state {A} and the state transition 

rules specify that: if (input = ‘b’ ) we enter super-state {B}; 
(input = ‘c’ ) we enter super-state {C}; if (input = ‘d’ ) we enter 
super-state {D} and if we know the input is defined as (‘ b’ ), 
then we can replace this contingent branching structure by a 
simple state transition {A} � {B}. 

 
Further, over any finite interval, all circular (iterative) state 

transition paths can be unfolded to produce a finite linear series 
of state transitions. 

 
E.g. Consider the loop cycling through states {Q1, Q2, Q3,} 

over nine time steps. The iterative loop structure can simply be 
replaced by the linear series of state transitions, {Q1, Q2, Q3, 
Q1, Q2, Q3, Q1, Q2, Q3}. 

 
Hence, with its input fixed over a finite time period, an 

automaton with finite memory simply functions ‘ like 
clockwork’ . 

 

                                                           
3 See Chalmers (1996a) for discussion of reliability and initial conditions. 

MECHANICAL BODIES - HAPPY MINDS? 
Can a machine, (a robot), be happy? Can a machine 

experience genuine phenomenal states purely in virtue of 
executing an appropriate program? 

 
Let the robot’s behaviour, given input (x), be defined by 

the Finite State Automata Q (x). Consider the action of Q (x) 
over the interval [T1 .. Tn]. As input is fixed (x), the state 
transition diagram can be unfolded to a linear path. i.e. Q (x) 
will generate a finite linear series of state transitions at clock 
intervals of Q, { Q1, Q2, Q3 .. Qn} . It is the claim of Artificial 
Consciousness Researchers that during this time interval, as the 
robot FSA executes, genuine phenomenal states, (e.g. 
happiness), are ‘mechanically’  realised by the machine. 

 
HAPPY TEA? 

Is a cup of tea happy? Can a ‘cup of tea’  experience 
genuine phenomenal states purely in virtue of traversing a 
specific series of modal state transitions? 

 
Clearly over any specified time interval [T1 .. Tn] we can 

map ‘cup of tea’  states { S1, S2, .. Sn}  to robot FSA states { Q1, 
Q2 .. Qn} , using the Putnam transform. 

 
Just as for the robot FSA, the ‘cup of tea’  state transitions 

are modal, (the state transitions are forced; given initial 
conditions { S1} , boundary conditions and elapsed time, we can 
predict any future state of the tea, { Sn} ). 

 
Hence, if the claims of Artificial Consciousness 

Researchers are true, (and the robot experiences phenomenal 
states - e.g. happiness - purely in virtue of its transit through an 
appropriate sequence of modal state transitions), then so does a 
‘cup of tea’  and disembodied consciousness lurks in every open 
physical system; little pixies are dancing everywhere… 

 
OBJECTION 1: HOFSTADTER, “ THIS IS NOT 
SCIENCE”  

It has been claimed that such a-posteriori mappings do not 
qualify as genuine mappings as we can only perform them once 
we know the input(s) to the robot over the specified time 
interval. Reflecting on Searle’s use of a similar a-posteriori 
device Doug Hofstadter (1981), once famously declared, “ this 
is not science!”  

 
However consider two identical experiments, (exptA & 

exptB), performed one after the other for the same period of 
time on the same ‘conscious’  robot starting from the same 
initial state and given input (xA) and (xB) where (xB = xA). 

 
In both exptA and exptB, as the input and initial conditions 

are identical and the robot is fully deterministic, it must execute 
an identical series of computational state transitions. Hence 
there is no principled reason why a-priori knowledge of the 
input to the robot, (as occurs in exptB), could cause any 
putative phenomenal states to differ from those it experienced 
in exptA; with the same input and initial conditions pertaining 
in each experiment the robot must execute the same 
computational state transitions and hence realise identical 
‘phenomenal states’ . 
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However with a-priori knowledge of input to the robot we 
can collapse the contingent branching state structure onto an 
un-branching series of modal state transitions and hence 
perform the Putnam mapping onto any open physical system. 

 
OBJECTION 2: FLETCHER, “ THIS IS NOT 
CORRECTLY IMPLEMENTING THE FSA”  

Putnam’s mapping merely realises one specific series of 
state transitions, a particular FSA execution trace, and does 
not capture the full power of the FSA. To illustrate this 
consider the following experiment. 

 
Consider a FSA to recognise a string in a given language. 

Just getting answer right once is not enough to say of the FSA 
that it recognises the string. What matters is the sequence of 
states the machine would enter if it had been presented with 
other strings4. 

 
But this conflates the clearly functional property, 

‘ recognition of a string’ , with the clearly experiential property 
of ‘ instantiating genuine phenomenal states’ . 

 
If the property of ‘ recognition of a string’  is only positively 

defined for an FSA that gets it right in all contingencies, then 
clearly it will be necessary to implement its full contingent FSA 
structure. However, no such definition is implicit in the notion 
of experiencing a phenomenal state5. 

 
OBJECTION 3: CHALMERS, “ LACK OF 
COUNTERFACTUALS”  

It is obvious that Putnam’s mapping does not reproduce a 
full isomorph of an FSA with input; in particular it lacks ability 
to correctly implement counterfactuals. This lack of input 
sensitivity/counterfactual-behaviour is extremely significant 
hence there is no sound reason to suppose that the phenomenal 
states of two robots - one controlled by an open physical system 
and a suitable Putnam mapping; the second controlled by a 
FSA executing a suitable ‘Artificial Consciousness program’  – 
would be the same; if so, the DWP reductio must fail. 

 
However, consider two experiments in which just such two 

robots are asked to report the colour of say, a bright red square 
presented as input: 

 
• [Racp] is controlled by a FSA executing a 

putative ‘Artificial Consciousness Program’ . 
• [Rput] is controlled by an ‘open physical system’  

and suitable Putnam mapping. 
• Input is identical (Xacp = Xput = ‘a bright red 

square’ ). 
 
Now imagine building a large number of robots, [Racp .. 

Rn .. Rput], which serve to morph [Racp] into [Rput] by 
incrementally replacing each branching state transition in Racp, 

                                                           
4 Personal communication, Dr. Peter Fletcher, Dept. Computing, 

University of Keele. 
5 Even if it were the case that to feel pleasure it is necessary to feel pain; 

there is no reason to suppose that one, who for some reason could not feel 
pleasure, when given a painful stimulus, would not still experience something. 

 

with a linear state transition, (contingent on the current input), 
in Rput, e.g. 

 
IF (I > 0) THEN { A}  � { B}  ELSE { A}  � { C}  
 
Given input (I = 1) the above contingent state transition 

simply reduces to { A}  � { B} .  
 

COUNTERFACTUALS CAN’T COUNT 
Now consider the putative phenomenal experience of Rn - 

what is it like to be Rn? If Rput does not have phenomenal 
experience as Chalmers claims then Rn’ s experience must either 
gradually fade, (e.g. say from bright red, to tepid pink to 
nothing), or suddenly disappear at some point. 

 
But either case implies the mere removal of a section of the 

FSA state structure that, given the known input, is not and 
never could be entered, somehow influences the phenomenal 
states experienced by the robot. And conversely the mere 
addition of a segment of [nonsense] FSA structure that, given 
the known input, is not and never could be entered, would 
equally affect the robot’s phenomenal experience... 

 
Hence the phenomenal states experienced by [Racp] and 

[Rput] must be the same; counterfactuals cannot count. 
 

MECHANICAL BODIES – MYTHICAL MINDS? 
If [Racp] experiences phenomenal states as its program 

executes then so must [Rput]. But if [RPUT] experiences 
phenomenal states then Panpsychism is true, because, using the 
Putnam mapping, we can generate the appropriate modal state 
transitions in any open physical system. 

 
Thus, via the reductio, [Racp] cannot experience genuine 

phenomenal states purely in virtue of executing a particular 
series of modal state transitions and the Artificial 
Consciousness project must fail. 

 
CONCLUSIONS 

In his 1992 book, ‘The Rediscovery of Mind’  Searle 
suggests that, “The study of the mind is the study of 
consciousness, in much the same sense that biology is the study 
of life”  and concludes that “consciousness is a prerequisite for 
mental states” , since via the Connection Principle: “… any 
mental state must be, at least in principle, capable of being 
brought to conscious awareness” , (ibid). 

 
Hence, since the DWP reductio suggests that genuine 

phenomenal states are not instantiated by the mere execution of 
any computer program, ‘machines’  are therefore incapable of 
carrying genuine mental states purely in virtue of executing the 
appropriate program and any computational account of mind 
must ultimately be found lacking. 

 
So although it is time, as Chalmers suggests, (1996b), to 

“ take Consciousness seriously” , the mystery of consciousness 
is not explained by the execution of any computer program, for 
the DWP reductio demonstrates that if a computer instantiates 
consciousness purely in virtue of executing a program, then 
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consciousness is all pervading and little pixies are dancing 
everywhere. 
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