
1 1

1 1

ISSN 0252–9742

Bulletin
of the

European Association for
Theoretical Computer Science

EATCS

EA
T

C
S

Number 106 February 2012

2 2

2 2

3 3

3 3

C  

E A 

T C S

P: B M G
V P: G A I

D S U K
P S G

T: D J B
B E: M S S

L A I
S A G
J B T N
J D́ S
Z́ É H
F F N
L F USA
L A G U K
M H A
G F. I I
C K G
J K̈ F

A K C R
J  L T N
E M S
C P F
D P I
G P I
J-E P F
V S U K
RW S
TW G
GW̈ T N

P P:
M N (1972–1977) M P (1977–1979)
A S (1979–1985) G R (1985–1994)
W B (1994–1997) J D́ (1997–2002)
M N (2002–2006) G A (2006–2009)

4 4

4 4

EATCS CM
 

Luca Aceto . luca@ru.is
Susanne Albers albers@informatik.hu-berlin.de
Giorgio Ausiello . ausiello@dis.uniroma1.it
Jos Baeten . josb@win.tue.nl
Josep Díaz . diaz@lsi.upc.es
Zoltán Ésik . ze@inf.u-szeged.hu
Fedor Fomin . fomin@ii.uib.no
Lance Fortnow fortnow@eecs.northwestern.edu
Leslie Ann Goldberg L.A.Goldberg@liverpool.ac.uk
Monika Henzinger monika.henzinger@univie.ac.at
Giuseppe F. Italiano italiano@disp.uniroma2.it
Dirk Janssens . Dirk.Janssens@ua.ac.be
Christos Kaklamanis . kakl@ceid.upatras.gr
Juhani Karhumäki . karhumak@cs.utu.fi
Antonin Kucera . tony@fi.muni.cz
Jan van Leeuwen . jan@cs.uu.nl
Elvira Mayordomo . elvira@unizar.es
Burkhard Monien . bm@upb.de
Catuscia Palamidessi catuscia@lix.polytechnique.fr
David Peleg . peleg@wisdom.weizmann.ac.il
Giuseppe Persiano . giuper@dia.unisa.it
Jean-Eric Pin Jean-Eric.Pin@liafa.jussieu.fr
Don Sannella . dts@dcs.ed.ac.uk
Vladimiro Sassone . vs@ecs.soton.ac.uk
Maria Serna . mjserna@lsi.upc.edu
Paul Spirakis . spirakis@cti.gr
Roger Wattenhofer . wattenhofer@tik.ee.ethz
Thomas Wilke wilke@ti.informatik.uni-kiel.de
Gerhard Wöeginger g.j.woeginger@math.utwente.nl

5 5

5 5

Bulletin Editor: Maria Serna, Barcelona, Spain
Cartoons: DADARA, Amsterdam, The Netherlands

The bulletin is entirely typeset by TEX and CTEX in TX. The Editor
is grateful to Ivan Couto for his support.

All contributions are to be submitted electronically through the Bulletin’s web
site and must be prepared in LATEX 2ε using the class beatcs.cls (a version
of the standard LATEX 2ε article class). All sources, including figures, and a
reference PDF version must be included in the submission.
Pictures are accepted in EPS, JPG, PNG, TIFF, MOV or, preferably, in PDF.
Photographic reports from conferences must be arranged in ZIP files layed out
according to the format described at the Bulletin’s web site. Those reports will
appear only in the electronic edition of the Bulletin.

We regret we are unfortunately not able to accept submissions in other for-
mats, or indeed submission not strictly adhering to the page and font layout
set out in beatcs.cls. We shall also not be able to include contributions not
typeset at camera-ready quality.

The details can be found at http://www.eatcs.org/bulletin, including
class files, their documentation, and guidelines to deal with things such as
pictures and overfull boxes. When in doubt, email bulletin@eatcs.org.

Deadlines for submissions of reports are January, May and September 15th,
respectively for the February, June and October issues. Editorial decisions
about submitted technical contributions will normally be made in 10/15 weeks.
Accepted papers will appear in print as soon as possible thereafter.

The Editor welcomes proposals for surveys, tutorials, thematic issues of the
Bulletin dedicated to currently hot topics, and letters to the editor, as well as
suggestions for new regular sections.

The EATCS home page is http://www.eatcs.org

6 6

6 6

7 7

7 7

i

Table of Contents

EATCS MATTERS

Letter from the President . 3

Letter from the Bulletin Editor . 6

InMemoriam Sheng Yu (1950�2012) . 7

INSTITUTIONAL SPONSORS . 11

EATCS NEWS

News from Latin America, by A. Viola . 17

News from New Zealand, by C.S. Calude . 19

THE EATCS COLUMNS

The Computational Complexity Column, by V. Arvind

Ironic Complicity: Satisfiability Algorithms and Circuit

Lower Bounds, by R. Santhanam . 31

The Distributed Computing Column, by P. Fatourou

Understanding Non-Uniform FailureModels, by P. Kuznetsov 53

The Logic in Computer Science Column, by Y. Gurevich

Type Inference inMathematics by J. Avigad . 78

REPORTS FROM CONFERENCES

The 13th International Colloquium on Automata and Formal

Languages (AFL 2011), by M. Kudlek . 101
The 20th International Colloquium on Concurrency,

Specification and Programming (CS&P 2011) , by M. Kudlek 105
Workshop on the Dynamics of Complex Systems (DISCO 2011),

by A. Moreira . 107

EATCS LEAFLET . 111

8 8

8 8

ii

9 9

9 9

EATCSMatters

EA
T

C
S

10 10

10 10

11 11

11 11

3

Letter from the President

Dear EATCS members,

I hope that you all have had an excellent
start into the year 2012 and I take the
opportunity to wish you all the best and
much success for your work.

As usual, I would like to inform you with
this letter about recent developments
regarding our association. One of the news
concerns the establishment of the so called
European Forum for Information and
Communication Sciences and Technologies
(ICST) which was established on November
7th, 2011 in Milan by a joint action of
seven leading organizations and societies
in ICT in Europe (ACM Europe, CEPIS, EAPLS,
EASST, EATCS, ERCIM, and Informatics
Europe). The Forum is intended to be an
open platform for cooperation among the
scientific ICT societies in Europe and the
mission statement is formulated as follows:
"The development of common viewpoints and
strategies for ICST in Europe and, whenever
appropriate or needed, a common
representation of these viewpoints and
strategies at the international level." I
had reported about the preceding meetings
in Brussels (March 17th, 2011) and Prague
(October 13th, 2010) during the General
Assembly at ICALP’2011. The executive
board of the forum consists of the
President Jan van Leeuwen (ACM Europe,
EATCS, Informatics Europe) and the two
Vice-Presidents Keith Jeffery (ERCIM) and
Paul Spirakis (EATCS). For more information
I refer to the corresponding webpage
http://www.cs.uu.nl/groups/AD/forum.html.

The organization of the next ICALP in

12 12

12 12

BEATCS no 106 EATCS MATTERS

4

Warwick is proceeding well. We are very
pleased that we have again an increase
according to the submission numbers:
Overall we have 433 submissions for ICALP
2012, 249 for track A, 105 for track B, and
79 for track C. This is a big step forward
for track C and a slight increase at a high
level for track A and B compared to the
numbers of the last three ICALP’s, whereas
the ICALP in Reykjavik in 2008 has set an
absolute high in recent years which seems
to be difficult to beat. A particular
highlight of ICALP 2012 promises to be the
Turing Talk which will be given by David
Harel from the Weizmann Institute and which
will be part of the celebration of the
centennial of the birth of A.M. Turing.
Moreover, at ICALP 2012 we will have again
a special award session where the EATCS
community will have the chance to listen to
the talks of the 2012 winners of the
Gödel-Prize, the EATCS-Award, and the
Presburger-Award. In this context, let me
remind you that EATCS, in cooperation with
Springer provides sponsorship for ten
500-Euro student scholarships. The
scholarships will be used to support
participation of students in ICALP 2012 by
covering early registration and possibly
some of the local expenses. The
applications will be reviewed by the ICALP
2012 conference and PC chairs. Preference
will be given to PhD students from
countries where access to funds is limited
and who will present papers at the
conference.

The organization of ICALP 2013 has already
started. ICALP will be organized next year
in Riga by Rusins Freivalds and his team.
The conference will have the same tracks as

13 13

13 13

The Bulletin of the EATCS

5

in 2012, and in the meantime we have
successfully completed the search for the
Program Chairs for ICALP 2013. We are very
pleased that we could win our first choice
candidates Fedor Fomin (track A), Marta
Kwiatkowska (track B) and David Peleg
(track C) to act as PC chairs of the
scientific program of ICALP 2013.

Finally, all that remains for me is to
encourage you to participate at next ICALP
and I hope we meet in Warwick!

Burkhard Monien, Paderborn
February 2012

14 14

14 14

6

Letter from the Bulletin Editor

Dear Reader,

First of all, I wish all of you a happy and
successful 2012. Let it be a fruitful year for
each of you, for theoretical computer science, and
for EATCS.
Our columns deliver the usual richness and variety
of interesting contents. We start with a
discussion on the recent progress in the
connections between SAT algorithms and circuit
lower bounds by Rahul Santhanam (“Computational
Complexity Column”). A survey on recent results in
distributed systems under non-uniform failure
models by Petr Kuznetsov (“Concurrency Column”),and
an excursion on some of the mechanisms for type
inference used by the "Mathematical Componnets"
project by Jeremy Avigad (“Logic in Computer
Science Column”).

Let me draw your attention to the reports on
activities and conferences included in this issue,
and express my thanks to the authors in keeping
track of the main ideas discussed at them.

I have to end this letter with a sad message. On
January 23nd, 2011, our friend and colleague Sheng
Yu passed away. I wish to express his family and
all his colleagues the deepest mourning of our
community. You can find an in memoriam note by
Arto Salomaa in this bulletin issue.

I hope you’ll enjoy the contents of this Bulletin
issue,

Maria Serna, Barcelona
February 2012

15 15

15 15

Bulletin of the EATCS no 106, pp. 7�9, February 2012

©c European Association for Theoretical Computer Science

IM

S Y
(1950-2012)

A wonderful scientist, most diligent collaborator and close friend of mine, Sheng
Yu, passed away on January 23nd, the New Year of the Dragon, just before his
62nd birthday. His death was very unexpected: only a few days earlier we were
still corresponding about referee reports concerning our joint work, and Sheng’s
letters contained no mention of a possible illness. Sheng is missed by his wife
Lizhen, his family in China, notably his old mother, as well as by numerous friends
and colleagues.

Sheng worked day after night after day and wanted to check all the details of
a proof. He taught the same rigorous approach and work ethic to his students and
postdocs. After a late dinner he still used to go to the university to continue his
work. Nobody can tell how much the resulting deprivation of sleep contributed to
his untimely death.

This writing contains mostly my personal thoughts and memories. However, I
am convinced that everybody who got to know Sheng more closely, be it as a col-
laborator, teacher or in some other role, has similar experiences and recollections
of his warm and helpful personality.

Sheng’s studies were delayed by the cultural revolution and he was not very
young anymore when he began graduate studies in Waterloo. That’s where I met
him the first time. He was a student in my course on recursive functions in 1982,
obtaining the grade 105%. Karel Culik and the late Derick Wood were in those
days in Waterloo. Sheng was in contact with both of them, and became a Ph.D.
student of Karel Culik. Karel writes about him:“Sheng was not only my best Ph.D.
student and valuable collaborator, he was also our family friend."

I lived in the same building with Sheng, so he became acquainted also with my
wife. He wanted to cook for us. I remember him bringing all the supplies needed
on his bicycle. Sheng was very helpful in our move back to Finland.

After finishing his Ph.D., Sheng spent half a year in 1986 as a postdoc in
Turku. Our earliest joint work, on the equivalence of derivation (Szilard) lan-
guages and on a special public-key cryptosystem, dates back to his visit. Sheng
was also one of the first users of email, if not the very first, at the university of

16 16

16 16

BEATCS no 106 EATCS MATTERS

8

Turku. Also my family and many friends got to know him. We enjoyed his cook-
ing many times. His skill and expertise in many areas, including sauna heating,
became apparent to us. Sheng was even interviewed by the local newspaper Tu-
run Sanomat because he was regularly playing table tennis in a local club. The
interview had a big picture of Sheng and the coach of the club discussing “the
philosophy of table tennis".

Sheng was teaching at Kent State University for some years at the end of the
80’s. Then he moved to the University of Western Ontario in London, where he
has stayed afterwards. UWO is a school very familiar to me, already in 1966-
68 I was visiting there. My cooperation with Sheng got a new beginning in the
early 90’s. From 1991 to 2011 I have visited Sheng at UWO every year, with
only two exceptions. Sheng also visited Turku frequently and, apart from scien-
tific collaboration, served as the opponent and external examiner of several Ph.D.
candidates.

Sheng was a wonderful person to work with. Both insightful and diligent, he
was also willing to do most of the writing of papers and the correspondence in
submitting them. In discussions he often had a crucial idea from which the so-
lution could be deduced. Altogether I had 26 papers with Sheng. Sometimes we
had coauthors: Yo-Sub Han, Tao Jiang, Efim Kinber, Alexandru Mateescu, Kai
Salomaa and Derick Wood. Of the topics covered, the following come to mind:
undecidability of the inclusion problem for pattern languages, codes with a fi-
nite delay and the P=NP problem, definition and study of Parikh matrices and the
resulting subword histories and subword conditions, primality types of PCP solu-
tions, commutativity conditions for languages, prime decomposition of languages
versus length codes, state complexity of reversal and of combined operations.

The matters described above represent only a small part of Sheng’s scientific
activity. He had 74 coauthors, and the topics covered extend far beyond the limits
of theoretical computer science. His interests were unusually broad, and his work
ranged from object-oriented programming and parallel processing to computer
architecture. He was widely quoted, notably because of his seminal work in state
complexity. In fact, Sheng was for several years planning a Handbook of State
Complexity, with several coauthors. The book was already in the program of the
publisher Springer-Verlag but Sheng always had to postpone the project because
of other duties.

Sheng’s chapter on regular languages in the Handbook of Formal Languages
is one of the basic references in the field. A special issue of the journal TCS was
published for Sheng’s 60th birthday, as a token of appreciation in the scientific
community.

Many of Sheng’s numerous Ph.D. students have become well-known scientists
or have leading positions in industry. Sheng took very good care of each of them.

17 17

17 17

The Bulletin of the EATCS

9

Our discussions were often interrupted because Sheng met a Ph.D. student. For
such meetings Sheng had a weekly schedule. Sheng helped students in every
possible way, including the details of writing papers, as well as, various intricacies
of everyday life.

The courses given by Sheng were by no means restricted to theory. When one
looks at the list of the courses taught by him, the title of a recent book, Rainbow of
Computer Science, comes to mind. Although never the Department Head, Sheng
had all the time numerous administrative duties. Sheng was a member or the chair
in roughly half of the some 30 departmental committees in 2011. He was always
busy with a heavy work load. Because he was so conscientious, the result was
long work days. The best time to reach him by phone was midnight in his office.

Sheng was an invited speaker, program committee member or chair in many
leading conferences. He was the originator and steering committee chair of the
international CIAA conference series on Implementation and Application of Au-
tomata. Under Sheng’s guidance the CIAA conferences have become well-estab-
lished as the premier venue for research on new types of applications of automata
theory. Sheng organized the big DLT (Developments in Language Theory) confer-
ence in London in 2010. By his initiative, the conference Fifty Years of Automata
Theory was organized in London in 2000. Sheng was also an editor of several
journals and took on editorial and refereeing tasks with the same dedication that
characterized his own research.

Sheng was amazingly knowledgeable in classical music. We often went to
concerts together, both in London and in Turku. Recently our music discussions
concerned mostly Bruckner and Mahler. Apart from music, Sheng had many other
interests. When discussing religion, sports, politics or personal relations, Sheng
always expressed original ideas, sometimes very strongly.

One could write a book about Sheng’s hospitality and willingness to help. I am
not the only person who has experienced this; there are many others, for instance
my good friend Grzegorz Rozenberg. Sheng and Lizhen organized big dinner
parties, often in their home or in the Springbank Park. Sheng was always looking
after me, driving me around, helping me in stairs, carrying my bag. The Sheng
number indicates how many times Sheng took me to or from my hotel during my
stay in London. In 2009 and 2010 the Sheng number was 30 and 32, respectively.
In 2011 it was only 22 because my stay was shorter.

Sit tibi terra levis. Ollos iäti muistettu.

Turku, January 2012, Arto Salomaa

18 18

18 18

19 19

19 19

Institutional

Sponsors

20 20

20 20

21 21

21 21

BiCi, Bertinoro international Center for informatics
Bertinoro, Italy

CTI, Computer Technology Institute
Greece

Elsevier
Amsterdam, The Netherlands

MADALGO, Center for Massive Data Algorithmics
Aarhus, Denmark

Microsoft Research
Cambridge, United Kingdom

Springer-Verlag
Heidelberg, Germany

22 22

22 22

23 23

23 23

EATCS News

24 24

24 24

25 25

25 25

17

News from Latin America

by

Alfredo Viola

Instituto de Computación, Facultad de Ingeniería
Universidad de la República

Casilla de Correo 16120, Distrito 6, Montevideo, Uruguay
viola@fing.edu.uy

In this issue I present the 1st Latin American Theoretical Informatics School
and the call for papers of Latincrypt 2012. At the end I present a list of the
main events in Theoretical Computer Science to be held in Latin America in the
following months.

1st Latin American Theoretical Informatics School

This will be a first of, what will hopefully be, a series of Schools on topics related
to Theoretical Computer Science which are expected to take place in conjunction
with the Latin American Theoretical Computer Science Symposium (LATIN). In
particular, the first version of the School will be co-located and run in parallel to
LATIN2012 on April 16 - 20 at Arequipa, Perú.

The School’s objectives are to encourage attendance of Latin American stu-
dents to the LATIN Symposium, to expose them to recent research developments,
to give them the opportunity of learning recently developed advanced topics, and
to facilitate their interaction with researchers working in and outside Latin Amer-
ica. The target audience are graduate students and advanced undergraduate stu-
dents, in particular those studying in Latin America.

The scheduled courses are

26 26

26 26

BEATCS no 106 EATCS NEWS

18

• "Information Spreading in Distributed Systems" by Keren Censor-Hillel
(MIT, USA).

• "Applications of Analytic Combinatorics to the Analysis of Algorithms: An
introduction" by Conrado Martínez (UPC, Spain).

• "Discrete and Computational Geometry (with Applications to Routing, Clus-
tering, and others)", by Jorge Urrutia (UNAM, México).

The Scientific Committee members are David Fernández-Baca (USA), Marcos
Kiwi (Chile), Gonzalo Navarro (Chile), and Sergio Rajsbaum (México), while the
local organizers are María Pilar Rondón and Ernesto Cuadros-Vargas. For more
information you may consult at http://latinschool2012.dim.uchile.cl/.

Call for papers: Latincrypt 2012
Latincrypt 2012 is the Second International Conference on Cryptology and Infor-
mation Security in Latin America, and will take place from October 7th to October
10th 2012 in Santiago, Chile. Latincrypt 2012 is being organized by CLCERT at
the Univ. of Chile, in cooperation with The International Association for Cryp-
tologic Research (IACR). Original papers on all technical aspects of cryptology
are solicited for submission to Latincrypt 2012. The conference seeks original
contributions on new cryptographic primitive proposals, cryptanalysis, security
models, hardware and software implementation aspects, cryptographic protocols
and applications, as well as submissions about cryptographic aspects of network
security, complexity-theoretic cryptography, information theory, coding theory,
number theory, and quantum computing.

The submission deadline is May 4, 2012, and the web page of the conference
is http://2012.latincrypt.org/.

Regional Events
• April 16 - 20, 2012, Arequipa, Perú: Latin American Symposium on Theo-

retical Informatics (LATIN2012). http://latin2012.cs.iastate.edu/.

• April 16 - 20, 2012, Arequipa, Perú: 1st Latin American Theoretical Infor-
matics School. http://latinschool2012.dim.uchile.cl/.

• October 7 - 10, 2012, Santiago, Chile: Second International Conference
on Cryptology and Information Security in Latin America (LATINCRYPT
2012). http://2012.latincrypt.org/.

27 27

27 27

19

News from New Zealand

by

C. S. Calude

Department of Computer Science, University of Auckland
Auckland, New Zealand

cristian@cs.auckland.ac.nz

1 Scientific and Community News
0. The meeting Analysis and Randomness, http://www.cs.auckland.ac.nz/
~nies/ARAhome.html, organised by A. Nies, was held in Auckland on 12–13
December 2011. Speakers: Laurent Bienvenu, Willem Fouche, Cameron Freer,
Rupert Hölzl, A. Melnikov, Kenshi Miyabe, Jason Rute, Tom ter Elst, and Dan
Turetsky.
1. The 12th Asian Logic Conference, http://msor.victoria.ac.nz/
Events/ALC2011/WebHome, was held 15–20 December 2011 in Wellington. Ple-
nary Speakers: Hiroakira Ono, Mic Detlefsen, Akito Tsuboi, Noam Greenberg,
Simon Thomas, Isaac Goldbring, Grigor Sargsyan and Wu Guohua. Several
special sessions have been organised, including Algorithmic Randomness (by
R. Downey and A. Nies), and Computability and Algebraic Structures (by R.
Downey).
2. The latest CDMTCS research reports are (http://www.cs.auckland.ac.
nz/staff-cgi-bin/mjd/secondcgi.pl):

407. K. Svozil. Neutrino Dispersion Relation Changes Due to Radiative Cor-
rections as the Origin of Faster-than-Light-in-Vacuum Propagation in a
Medium. 09/2011

28 28

28 28

BEATCS no 106 EATCS NEWS

20

408. A.A. Abbott, C.S. Calude and K. Svozil. On Demons and Oracles. 11/2011

409. C.S Calude and E. Calude. The Complexity of Euler’s Integer Partition
Theorem. 11/2011

410. C.S Calude and E. Calude. The Complexity of Mathematical Problems: An
Overview of Results and Open Problems. 11/2011

411. L. Staiger. On Oscillation-free Chaitin h-random Sequences. 11/2011

412. L. Staiger. Asymptotic Subword Complexity. 11/2011

413. D.H. Bailey, J.M. Borwein, C.S. Calude, M.J. Dinneen, M. Dumitrescu and
A. Yee. An Empirical Approach to the Normality of π. 11/2011

414. S. Datt and M.J. Dinneen. Towards Practical P Systems: Discovery Algo-
rithms. 12/2011

415. R. Nicolescu. Parallel and Distributed Algorithms in P Systems. 12/2011

416. M. Burgin, C.S. Calude and E. Calude. Inductive Complexity Measures for
Mathematical Problems. 12/2011

2 A Dialogue with Reinhard Wilhelm about Com-
piler Construction and Dagstuhl

Reinhard Wilhelm is professor and leader of the chair for programming languages
and compiler construction at Saarland University and the scientific director of the
Leibniz Center for Informatics at Schloss Dagstuhl since its inception in 1990.

Professor Wilhelm has obtained numerous results in compiler construction,
static program analysis, embedded real time systems, animation and visualization
of algorithms and data structures. He is one of the co-developers of the MUG1,
MUG2 and OPTRAN compiler generators, which are based on attribute gram-
mars. He is a co-founder of the European Symposium on Programming, ESOP,
and the European Joint Conferences on Theory and Practice of Software, ETAPS,
a member of the ACM SIGBED Executive Committee and a member of the Scien-
tific Advisory Board of CWI.

Professor Wilhelm is a fellow of the ACM (2000) and a member of Academia
Europaea (2008); he was awarded the Alwin-Walther medal (2006), the Prix Gay-
Lussac-Humboldt (2007), the Konrad-Zuse medal (2009), the Cross of the Order
of Merit of the Federal Republic of Germany and the ACM Distinguished Ser-
vice Award (2010); he has honorary doctorates from RWTH Aachen and Tartu
University (2008).

29 29

29 29

The Bulletin of the EATCS

21

Cristian Calude: You studied mathematics, physics and mathematical logic at
University of Münster, computer science at Technical University Munich and
Stanford University and obtained your PhD at TU Munich, quite a broad back-
ground. Please reminiscence about this period.

Reinhard Wilhelm: I studied at a time when the first curricula in computer sci-
ence were being established. As a native of Westphalia, Westfälische Wilhelms
Universität Münster with its strong tradition in Mathematics and Mathematical
Logic was a natural starting point. Josef Stör, a numerical analyst from my home
town, on the faculty of USC San Diego, recommended to switch to computer
science, an advice I followed after passing the Vordiplom exam in Münster. At
TH, later TU Munich, I was among the first students of the new curriculum in
computer science. I finished this obtaining a Diploma degree, already oriented to-
wards compiler construction. The German Academic Exchange Service (DAAD)
offered one-year fellowships to study computer science in the US as they felt that
the CS curricula did not yet have the same quality as the American curricula. I ob-
tained such a fellowship and studied at Stanford University for one year. It was an
exciting year with courses taught by Robert Floyd, Donald Knuth, Zohar Manna,
John McCarthy, Robin Milner, and Niklaus Wirth. Looking back, the semantics
people, Floyd, Manna, and McCarthy, seemed to have had the strongest influ-
ence on me. I gathered practical experience in compiler construction with my MS
project, part of the port of the Zurich Pascal compiler to the IBM 360 machine.

CC: You discovered connections between code selection and regular tree au-
tomata, which are relevant for code generation.

RW: My group at Saarland University developed a formally-based approach to
compiler optimizations expressed as transformations of attributed trees. The nec-
essary tree pattern-matching algorithm—identifying places where transformations
could be applied—used a subset construction on non-deterministic tree automata
as I learned later from Helmut Seidl. I found some informal proposals in the
literature proposing to express code selection by tree parsing. This led to a beau-
tiful and efficient approach using deterministic bottom-up tree automata, which
could be nicely combined with dynamic programming to identify least-cost code
sequences. However, reality, i.e. processor-architecture design, made this beau-
tiful approach obsolete as real processor architectures did not offer the required
regularity.

CC: Although your research is quite practical, the theoretical component is strong.
How do you manage this?

RW: Well, the colleagues in the CS department at Saarland University have a
strong conviction, that nothing is as practical as a good theory. This conviction
has been a recipe for success. Our curriculum has always had a strong theoretical

30 30

30 30

BEATCS no 106 EATCS NEWS

22

foundation on which one could build solid practical work.

CC: Reinhard Wilhelm and Dieter Maurer’s book Compiler Design—written in
German and translated into English and French—is a good illustration of the in-
terplay between theory and applications: it offers a solid theoretical foundation for
compilers for imperative, object oriented, functional and logic-based languages.

RW: I was not content with the Dragon Book, the dominant compiler textbook,
which was and is by and large void of the theoretical foundations for compiler
design. The underlying theory, however, is quite beautiful. So, I decided to write
a book that I would like to teach from. I was fortunate to have Dieter Maurer in
my group, who coauthored the first two editions. Currently, I cooperate with Hel-
mut Seidl and Sebastian Hack on a rather complete rewrite for the third edition.
The virtual machines in this third edition are made more uniform. The code-
optimization part introducing static program analysis and program transforma-
tions has been largely extended. The code-generation chapters will be completely
restructured and rewritten due to new insights into the code-generation process
obtained in Sebastian Hack’s dissertation.

CC: Please explain the shape analysis based on three-valued logic you designed.

RW: Static program analysis, which received most of its theoretical foundations
by Patrick and Radhia Cousot in the 70s, computes invariant properties of all
behaviors of a program. Abstract interpretation, as the Cousots formulated it,
uses an abstraction of the semantics of the programming language to determine
these invariants at all program points. Due to the impossibility to be sound and
complete at the same time, sound static analysis approximate these properties;
they give up completeness, but maintain soundness.

A largely unexplored area was the static analysis of heap-manipulating pro-
grams. These offer particular challenges, namely dynamically created anonymous
objects and linked data structures of unbounded size. During a sabbatical I spent
in Israel I was fortunate to meet Mooly Sagiv, then a student at the Technion.
He asked me for a good thesis topic, and I proposed to develop a specification
language for static program analyses. Mooly and I cooperated on this topic for
something like 16 years, joined by Tom Reps, whom I knew from our attribute-
grammar times.

The breakthrough in our research came with the discovery that predicate logic
was a good basis to express program semantics, and that a reinterpretation of the
same semantics over a 3-valued logical domain—the third value expressing don’t
know—could be used as an abstract interpretation. Our approach was parametric
in the abstraction properties, i.e., different sets of predicates could be used to
obtain different abstractions, which would (approximately) different properties of
the program.

31 31

31 31

The Bulletin of the EATCS

23

The shapes occurring in the name Shape Analysiswere somethin like general-
ized types of data structures in the heap. Example are singly-linked list without
shared nodes, balanced binary tree etc.

CC: Your ACM fellowship citation refers to your research on compiler construc-
tion and program analysis. Can you discuss one or two important results in this
area?

RW: A result of my group that had quite some impact is the development of an
approach to derive run-time guarantees for real-time embedded systems, that is,
to show that such systems satisfy their timing constraints. These are often quite
tight; in the automotive domain, they range down to microseconds. At the same
time, the execution platforms used to realize these systems have a huge variability
of execution times: the execution time of an instruction depends on the state of
the platform and may vary by a factor of 100 or more.

The engineers at Airbus in Toulouse called us to help them because they knew
that their traditional methods, based on measurement, were not sound for the new
architectures they were deploying in their planes. We were able to solve this prob-
lem and provide tools through a spinoff company, AbsInt, that Airbus could use.
The meanwhile long cooperation between Airbus, AbsInt, and my group at the
University was so successful that several time-critical subsystems of the Airbus
A380, the big Airbus, were certified with the AbsInt tool, which thereby became
the only tool worldwide to be validated for the certification of these avionics ap-
plications. This work is considered as one of the major success stories of formal
methods.

CC: How do you see your book Informatics: 10 Years Back. 10 Years Ahead
(Springer 2001), 10 years after its publication?

RW: That is hard to answer! I would have to reread the prognoses contained in
it. In the domain of verification, I have recently coauthored a manifesto, Formal
Methods—Just a Euroscience? attempting to describe the state of the art. This
could be compared with the articles in the monograph you refer to.

CC: Please summarise your manifesto.

RW: The manifesto gives an overview of how far different formal methods, in par-
ticular the verification methods, have been taken up by industry. There are notable
differences between hardware and software industries and also some between Eu-
rope and America. The acceptance of verification methods is related to the costs
of potential failures. The chip manufacturers have broadly adopted verification
methods after the Pentium bug cost Intel a lot of money. The Ariane 5 disaster
due to a software bug was very helpful to raise problem awareness in some parts
of the embedded-systems industry. There is a somewhat surprising distribution of

32 32

32 32

BEATCS no 106 EATCS NEWS

24

strongholds for the different verification methods; model checking is stronger in
the US, abstract interpretation stronger in Europe, deductive verification initially
stronger in the US, but now strong in Europe.

One particular insight I gained in my work with industry and which is de-
scribed in the manifesto is that the different verification techniques have a different
distribution of roles, researcher, tool developer, user. In academia, typically the
researcher also develops the tools based on his findings, and, of course, he is an
enthusiastic user of his own tools. Some of the biggest disappointments resulted
from the expectations raised by enthusiastic researchers/tool developers when the
tools were deployed in industry and engineers could not use them.

CC: Since 1990 you have been the scientific director of the Leibniz Center for
Informatics at Schloss Dagstuhl. What was the initial motivation of starting this
center? How did it evolve in the last twenty years?

RW: The Leibniz Center for Informatics was formed after the famous Mathemat-
ics Research Institute in Oberwolfach, in the Black Forest. Theoretical computer
scientists had been guests there for a number of years and felt the desire to have
an Oberwolfach for Informatics. The German Informatics Society (GI) set up a
search committee to identify an appropriate place for it. Several offers were made
by the states Baden-Württemberg, Rheinland-Pfalz, and Saarland. The search
committee selected Schloss Dagstuhl, a late-baroque mansion, at that time a re-
tirement home run by a nuns order. The Saarland government agreed to buy the
ensemble for the center and the German National Science Council supported the
decision to set the center up in Dagstuhl.

Apparently, the Informatics community had waited for this center. Against my
expectations it filled up rather quickly. An extension building was opened in 1995
together with a new kitchen and a restaurant. The greater capacity also filled up
quickly so that lead times of far more than a year became common. You must
know that meetings in Dagstuhl, the so-called Dagstuhl Seminars, result from
successful applications to a Scientific Directorate, which meets twice a year to
decide about the submitted proposals.

CC: Yes, I indeed know as I was privileged to be invited to a few seminars. As a
participant to both Oberwolfach and Dagstuhl, I noted similarities but also differ-
ences...

RW: Definitely, Oberwolfach was our role model when we set up Dagstuhl. When
I had been convinced to run Dagstuhl, I went to Oberwolfach together with my
colleague on the administrative side, Wolfgang Lorenz, to get advice from Martin
Barner, the long-time director of the Mathematical Research Institute, on what
to do and, even more importantly, what not to do. Among the latter was his
recommendation not to establish entailed estates, that is, long running series of

33 33

33 33

The Bulletin of the EATCS

25

meetings, which ran too long to be ever stopped. We, therefore, established an
iron rule that the organizing team of a series had to, at least incrementally, change
from instance to instance. This was not always well received by organizing teams,
but proved fruitful in the long run.

Another notable difference to Oberwolfach was that we charged participation
fees right from the beginning. Computer scientists usually are better funded than
mathematicians, and our fees were more symbolic than covering real costs.

Let me report an anecdote about where Dagstuhl profited from Oberwolfach. I
was amazed by the fantastic music room on Oberwolfach. Great instruments and
an extensive musical library! Actually, I had met Don Knuth and told him about
our plans for Dagstuhl, and he had sent me a letter saying that he had always
enjoyed playing the grand piano in Oberwolfach. The White Hall in Dagstuhl,
a beautiful baroque hall, offered itself for our music room. I set out to buy in-
struments, a grand piano—not as grand as the one in Oberwolfach—, a decent
violin, a cello. The executive in the ministry in charge of supervising our efforts
complained about us acquiring a grand piano. I sent him a copy of Knuth’s letter
to prove that luminaries like him would find their way to Dagstuhl because of the
grand piano. This stopped the complaints.

Another anecdote on setting up the music library in Dagstuhl. Musical scores
are very expensive. So I thought about how to save on buying a basic library. I
knew that the German publishers had licensed editions to the Eastern countries not
meant to be reimported, at least not large scale. At that time I was playing with
a Hungarian pianist. I told him my problem and asked him to see how he could
import Eastern editions of scores for Dagstuhl. Next time, a friend of his came to
visit him, he had the trunk of his car full with scores, somewhat biased towards
Southeast Europe, all that for just 1000 DEM. I was nervous about what would
happen to the fellow and the smuggled scores at the Austro-Hungarian border,
and, in fact, Austrian customs asked the fellow to open the trunk of his car. On
top of all the scores, there was a twelve-pack of cigarettes. They made him pay a
fine for smuggling cigarettes.

CC: In addition to the music, the dedication to the fine arts is visible in Dagstuhl.
What is the origin for this?

RW: Although I have a sister who is an artist my connection to the fine arts was not
very strong. That changed when the extension building in Dagstuhl was finished.
It is, I think, a beautiful modern architecture based on a traditional concept, a
monasterial building. The architects saw Dagstuhl as a scientific monastery. Our
monastery has a cloister, a very nice opportunity for arts exhibitions. But what
got me really involved with fine art and not so fine artists was the procedure for
equipping the new building with artistic objects. Germany has a law requiring that
public buildings should be furnished with pieces of art. A certain percentage of

34 34

34 34

BEATCS no 106 EATCS NEWS

26

the construction money should go to the arts. A jury was set up, some groups of
artists were asked to submit proposals. The architect and I were made members
of the jury. When the submissions were discussed, I felt that something fishy was
going on. I didn’t know what. The jury, against my vote, selected some proposal
that would deal with computer science in a pubertal way. I was quite upset and
told the jury that this work would never see the center. I was declared a philistine,
ignorant of modern trends in the fine arts. A four month battle behind the scenes
led to the rejection of the jury’s proposal by the minister in charge. As a revenge,
the jury decided to let the money in the arts budget fall back to the construction
budget. We were left with empty walls! I then invented an arts donation scheme,
see http://www.dagstuhl.de/en/about-dagstuhl/kunst/, which, with a
little help by our friends, has helped us to acquire quite a few nice pieces mostly
from exhibitions we have had in the cloisters.

CC: What is the “job description” of the scientific director of the Leibniz Center
for Informatics?

RW: The Scientific Director is responsible for the scientific program in Schloss
Dagstuhl. That is the primary duty. Unlike a conference hotel, the Scientific
Directorate, and the whole scientific staff at Schloss Dagstuhl feel responsible to
guarantee high-quality meetings. The participants, who spend considerable effort
to travel to this remote place, expect a high return for this travel investment. A
disappointed participant will most likely not accept another invitation.

The Scientific Director chairs the Scientific Directorate at its meetings, mod-
erates the discussion, and executes the decisions taken.

He also develops or takes up new directions and functions of the center. The
Leibniz Center has extended its activities beyond the original function in several
directions. It has become an open-access publisher. The high-quality conference
series, LIPIcs, provides a low-cost, open-access alternative to established publish-
ers, who, under financial pressure of their owners, were forced to change their
publication policy to increase their revenue.

Another new direction is the cooperation with DBLP, the renowned biblio-
graphic database established by Michael Ley at the University of Trier. The Leib-
niz Center has agreed to secure the long-term existence of this important source
of information for computer science. With support from the Leibniz Association
and the Klaus Tschira Foundation, DBLP has strongly increased the coverage of
computer science publications.

CC: Over the years you have witnessed many interesting events in Schloss
Dagstuhl. Are there any such memories which you would like to share with us?

RW: Let me report about two events, one rather sad, one positive. We scheduled a
meeting on Computer Science and Astronomy at the time of last total solar eclipse

35 35

35 35

The Bulletin of the EATCS

27

covering central Europe. This meeting included computer scientists, astronomers,
and historians. As it brought together different communities that would hardly
meet anywhere else it was a quite typical event for Dagstuhl.

One particular talk attempted to refute the then popular claim of some pseudo-
historians that three centuries, around 700–1000 ad, had been invented. A histo-
rian had collected recordings about solar and lunar eclipses from that time. These
were checked against an exciting software reproducing the planetary constella-
tions at any time and any location. And indeed, all recorded eclipses were prop-
erly reproduced by this software. Another exciting experience at this event was
that we selected exactly the right place to watch the eclipse. More or less all others
in Britain, in France, and in Germany did not see anything due to rain and clouds
while we had a 20 minutes hole in the clouds through which we could perfectly
watch the eclipse.

Now to the sad side. As we know from history, total solar eclipses were always
seen as bringing with them mischief, catastrophes, and plagues. To support this
old superstition, one participant had an accident coming to the meeting, one fell
ill during the meeting, and one had to leave early because his father died.

As mentioned above, it is very common that Dagstuhl meetings bring together
different communities that don’t have any conference where they would meet.
Dagstuhl thus often establishes absolutely necessary communication. Let me re-
port about a meeting about Scheduling. Scheduling is an important topic, which
occurs in manufacturing and in logistics—this is typically dealt with in the Op-
erations Research community—, but also in computer science, and in computer
science again in different subdomains, e.g. real-time scheduling, compilation, and
algorithms. A meeting in 2010 brought together the algorithms community, the
real-time scheduling community, and the operations-research community. Some
real-time scheduling participants were asked to list their most interesting open
problems, which were unknown to the algorithms community. They wrote up
a report about their most urgent open problems, and in the proposal to the suc-
cessor meeting the proposers proudly presented 10 publications that had resulted
from this meeting solving at least 5 of the listed open problems of the real-time
scheduling community.

CC: Many thanks.

36 36

36 36

37 37

37 37

The EATCS

Columns

38 38

38 38

39 39

39 39

Bulletin of the EATCS no 106, pp. 31�52, February 2012

©c European Association for Theoretical Computer Science

T C C C


V. A

Institute of Mathematical Sciences, CIT Campus, Taramani
Chennai 600113, India
arvind@imsc.res.in

http://www.imsc.res.in/~arvind

The 1980’s was a golden period for Boolean circuit complexity lower bounds.
There were major breakthroughs. For example, Razborov’s exponential size
lower bound for monotone Boolean circuits computing the Clique function and
the Razborov-Smolensky superpolynomial size lower bounds for constant-
depth circuits with MODp gates for prime p. These results made researchers
optimistic of progress on big lower bound questions and complexity class sep-
arations. However, in the last two decades, this optimism gradually turned into
despair. We still do not know how to prove superpolynomial lower bounds for
constant-depth circuits with MOD6 gates for a function computable in expo-
nential time.

Ryan Williams’ exciting lower bound result of 2011, that nondeterministic
exponential time does not have polynomial-size unbounded fanin constant-
depth circuits with MODm gates for any composite m, has renewed optimism
in the area. The best part is that his approach is potentially applicable to other
lower bound questions.

In this wonderful article, Rahul Santhanam explores this theme of connec-
tions between improved SAT algorithms and circuit lower bounds.

40 40

40 40

BEATCS no 106 THE EATCS COLUMNS

32

I C: S A
 C L B

Rahul Santhanam
University of Edinburgh
rsanthan@inf.ed.ac.uk

Abstract

I discuss recent progress in developing and exploiting connections be-
tween SAT algorithms and circuit lower bounds. The centrepiece of the
article is Williams’ proof that NEXP * ACC0, which proceeds via a new
algorithm for ACC0-SAT beating brute-force search. His result exploits a
formal connection from non-trivial SAT algorithms to circuit lower bounds.
I also discuss various connections in the reverse direction, which have led to
improved algorithms for k-SAT, Formula-SAT and AC0-SAT, among other
problems.

1 Introduction
Theoretical computer science suffers from a dichotomy between the algorithmic
endeavour and the complexity-theoretic endeavour. Algorithmists strive to de-
sign the most efficient algorithms for problems of interest, while complexity the-
orists investigate which problems are hard to solve, and why. Algorithmists focus
on concrete problems, while complexity theorists often work in a more abstract
framework, proving general theorems about computation. Algorithmists use con-
structive methods, while the enterprise of proving complexity lower bounds seems
an inherently non-constructive one.

But is this dichotomy fundamental? At some level, algorithmists and com-
plexity theorists are studying two sides of the same question: which is the most
efficient solution for a problem? A priori, one would imagine that a deep under-
standing of the structure of a computational problem would assist both in design-
ing the most efficient solution possible, as well as proving that no more efficient
solution exists. In part because the theory of computation is still at a fairly early
stage in its development, and in part because the basic questions seem to be very
difficult, this has not often been the case so far. The algorithms community and

41 41

41 41

The Bulletin of the EATCS

33

the complexity theory community have pursued their research programs more or
less independently.

Recent developments have the potential to change this, opening the possibility
of greater interaction and accelerated progress in both areas. These developments
hint at a complicity between algorithms and lower bounds, which is ironic in that
these endeavours seem superficially to be in opposition.

The most significant such development is the recent work of Williams [37, 38]
proving that NEXP * ACC0. This work has attracted a great deal of interest, since
lower bound breakthroughs are rare. Though the result is interesting in itself,
what is more interesting is the conceptual message of Williams’ work, which is
that algorithms for Satisfiability (SAT) can be used to prove lower bounds, and
that there are strong connections between the two endeavours.

In this article, I give a sampler of work in the past couple of decades which
shares this message. I make no claim that this is an exhaustive survey of the
connections between SAT algorithms and lower bounds. Rather, I aim to give
illustrations of the various connections that exist, and an indication of what the
most promising research directions might be. This is a very actively growing area,
and my hope is that this article could serve as a rough “road-map” for researchers
wishing to work in this area, or else as a quick digest for those who are curious
about the recent developments.

1.1 Historical Context
The connection between lower bounds and algorithms can be traced back to the pi-
oneering work of Yao [39] and Blum & Micali [8] on pseudo-random generators.
They showed how to construct cryptographic pseudo-random generators based on
strong average-case circuit lower bounds. Cryptographic pseudo-random genera-
tors can be used to define sub-exponential time algorithms for problems in BPP,
beating the trivial brute-force bound. Indeed, this implication was explicitly noted
in Yao’s paper [39].

Yao’s connection is in a sense a byproduct of a conceptual machinery de-
signed for cryptographic problems. In an influential paper, Nisan & Wigderson
[28] adapted the notion of a pseudo-random generator to the context of complexity
theory, and gave tighter implications from circuit lower bounds to pseudo-random
generators, and vice versa. Since then, a sequence of papers [23, 26, 20], have
established progressively tighter and more refined versions of these implications,
and it is now known that circuit lower bounds for E (linear exponential time)
against a class C of circuits are more or less equivalent to pseudo-random gen-
erators which are resilient to statistical tests from C, for essentially any natural
class C of circuits. While pseudo-random generators imply improved determin-
istic simulations for problems in BPP, the converse is not the case. However,

42 42

42 42

BEATCS no 106 THE EATCS COLUMNS

34

Kabanets & Impagliazzo [24] have shown that sub-exponential time algorithms
for the Polynomial Identity Testing (PIT) problem actually imply circuit lower
bounds against arithmetic circuits. A weak converse of this result is known as
well, showing a deep connection between algorithms and circuit lower bounds in
this setting.

Though these results in the theory of pseudo-randomness are fairly strong, the
connections haven’t led to much progress either on lower bounds or on algorithms.
The reason is that the known algorithmic ideas for solving PIT fall well short of
having implications for pseudo-random generators, and hence for lower bounds.
We won’t discuss the pseudo-randomness literature further in this survey, but we
note that it heavily influenced the formation of the connections we will discuss
both historically, as well as methodologically.

There are other areas of theoretical computer science where progress on hard-
ness results has gone hand-in-hand with new algorithms. This is the case, for
example, with the recent work on semi-definite programming algorithms and the
Unique Games conjecture [31], with the caveat that the notion of hardness there
is conditional, i.e., based on reductions from presumed hard problems rather than
on proven lower bounds. There is also the sophisticated and ambitious Geometric
Complexity Theory (GCT) approach of Mulmuley & Sohoni [27] towards proving
complexity lower bounds, which relies ultimately on algorithmic conjectures. We
do not discuss these other examples of complicity between algorithms and lower
bounds, but they do add to the evidence that there is something fundamental about
this phenomenon.

1.2 Plan of the Article

Following on a short section establishing relevant notation, there are three main
sections to this article discussing recent work, and a final section speculating on
future research directions. The first section discusses a series of papers by Paturi,
Zane and others proving structural theorems about CNF formulas which were then
exploited both in an algorithmic context and to prove lower bounds. These were
the earliest papers showing connections between exact algorithms for Satisfiabil-
ity and circuit lower bounds. The middle section discusses the breakthroughs of
Williams, which demonstrate and use a formal connection from SAT algorithms
to lower bounds. The final section discusses various subsequent works which ex-
ploit connections in the reverse direction to give new and improved algorithms for
variants of SAT such as Formula-SAT and AC0-SAT.

Throughout this article, I will favour heuristic arguments over precise ones in
cases where the former are more helpful in establishing intuition.

43 43

43 43

The Bulletin of the EATCS

35

2 Preliminaries
I assume knowledge of the basic concepts of complexity theory. The book by
Arora and Barak [1] and the Complexity Zoo (which can be found at the address
http://qwiki.caltech.edu/wiki/ComplexityZoo) are good references.

I will be dealing with several variants of Satisfiability. For a positive integer
k, k-SAT is the satisfiability problem for k-CNFs. CNF-SAT is the satisfiability
problem for CNFs without any restriction on clause size. Formula-SAT is the
satisfiability problem for formulas over the De Morgan basis. Circuit-SAT is the
satisfiability problem for Boolean circuits. In general, given a class C of circuits,
C-SAT is the satisfiability problem for circuits in C. I will refer simply to “SAT”
when I wish to speak of the Satisfiability problem generally rather than of a spe-
cific variant.

Definition 1. A parametric problem p-L consists of a language L ⊆ {0, 1}∗ to-
gether with a parameter function n : {0, 1}∗ → N. Given a function t : N×N→ N,
we say that p-L is solvable (resp. probabilistically solvable) in time t if there is a
deterministic (resp. probabilistic) algorithm which decides L correctly and runs
in time t(|x|, n(x)) on all inputs x.

I will only be considering parametric versions of SAT variants, and for these
problems there is a very natural notion of parameter: the number of variables in
the formula. For any SAT variant L, p-L is the parametric problem corresponding
to L.

The notion of “non-trivial” solvability of SAT can now be defined.

Definition 2. A SAT variant L is said to have a non-trivial algorithm if p-L is
solvable in time t, where t(m, n) = O(poly(m)2n−ω(log(n))).

There is a natural notion of the "savings" an algorithm for SAT achieves over
brute-force search. Note that the brute-force search algorithm operates in time
2npoly(m).

Definition 3. Given a function c : N × N → N, a SAT variant L is said to have
savings (resp. probabilistic savings) c if p-L is solvable (resp. probabilistically
solvable) in time t, where t(m, n) = O(poly(m)2n−c(m,n)).

Thus a non-trivial algorithm achieves savingsω(log(n)), and NP = P iff 3-SAT
has savings n − O(log(n)).

For information on the best known upper bounds for variants of SAT, refer to
the survey by Dantsin and Hirsch [11]. Here I only discuss upper bound tech-
niques and results which connect in some way to lower bounds.

However, it might be useful to say something about the common algorith-
mic paradigms for SAT. There are essentially two commonly used paradigms: the

44 44

44 44

BEATCS no 106 THE EATCS COLUMNS

36

DLL paradigm and the local search paradigm. Algorithms belonging to the DLL
paradigm operate as follows. At each stage in the algorithm, a fixed rule is used
to select a variable in the formula and a value to assign to it. With the variable set
accordingly, the formula is simplified according to standard simplification rules,
and the algorithm proceeds to the next stage. If at any stage, the formula simpli-
fies to “true”, the algorithm halts, since a satisfying assignment has been found. If
it simplifies to “false”, the algorithm “backtracks” by re-setting the most recently
set variable to the other possible value and recursing. Intuitively, a DLL proce-
dure explores a tree of candidate satisfying assignments, where nodes correspond
to variables and edges to values which can be assigned to a given variable, with
leaves being labelled “true” or “false”. The procedure aims to construct and ex-
plore this tree in the most efficient possible manner, and the number of leaves of
the tree gives a bound on the running time.

Algorithms belonging to the local search paradigm operate as follows. An
initial assignment is chosen, and if this assignment is not already satisfying, the
algorithm explores the space of assignments by changing the value of one vari-
able at a time, with the variable whose value is to be changed determined by using
some local measure of “progress”. This exploration continues for a fixed num-
ber of steps, unless a satisfying assignment is found in the process. “Re-starts”
are also allowed, with the algorithm choosing a new assignment and starting its
exploration from scratch.

It seems as though other kinds of algorithmic ideas could potentially be useful
as well, but there has been little rigorous analysis of alternatives to DLL and local
search. One exception, jumping ahead, is Williams’ algorithm for ACC0-SAT
[38], which uses dynamic programming.

3 Algorithms for k-SAT and Lower Bounds for
Depth-3 Circuits

To the best of my knowledge, the first instance in the literature where a connection
is explicitly drawn between upper bounds for SAT and circuit lower bounds is a
paper by Paturi, Pudlak and Zane [30] giving probabilistic savings n/k for k-SAT.
They also derandomize their algorithm to achieve savings n/2k. The inspiration
for their algorithm and analysis is a lemma which they call the "Satisfiability Cod-
ing Lemma". This lemma is then used by them to give tight bounds for the circuit
size of unbounded fan-in depth-3 circuits computing Parity.

Before describing their ideas, it might be good to step back a bit and give
some general intuition for why there are connections between non-trivial SAT
algorithms and circuit lower bounds. Suppose we wish to design a non-trivial al-

45 45

45 45

The Bulletin of the EATCS

37

gorithm for C-SAT, where C is some natural class of circuits. For example, k-SAT
corresponds to C being the class of depth-2 circuits with bottom fan-in bounded
by k, and CNF-SAT corresponds to C being the class of depth-2 circuits. Intu-
itively, in order to design and analyze a non-trivial algorithm, we require some
understanding of the structure of instances. Suppose we are able to isolate some
special property that the instances to our problem share, eg., some property com-
mon to all k-CNFs, then we might be able to exploit this to achieve savings over
brute-force search. The point is that the same property also indicates some lim-
itation of the circuit class C under consideration, and by identifying a Boolean
function f which does not have this property, we can prove a lower bound against
C. Thus, it is fundamental to this connection between upper bounds and lower
bounds that SAT is a meta-algorithmic problem - the instances to the problem are
themselves computational objects, such as formulas or circuits.

Of course, the key to achieving good upper bounds as well as tight lower
bounds is identifying the right property. The Satisfiability Coding Lemma shows
that isolated solutions to k-CNFs have short descriptions on average, and hence
that there can’t be too many of them. Here an isolated solution is a satisfying
assignment such that none of its neighbours in the Hamming cube are satisfying
assignments to the same formula. Note that the property identified in the Satisfia-
bility Coding Lemma is rather specialized. Parity, for example, has 2n−1 isolated
solutions. Indeed Parity is in a sense the function that violates the property in
the Satisfiability Coding Lemma most drastically, and intuitively this is why the
Lemma is also useful in proving tight circuit size lower bounds for Parity.

To describe the Lemma more precisely, we need some notation. Given a for-
mula φ on n variables and an integer j, 0 6 j 6 n, call a satisfying assignment w
to the variables of φ j-isolated if exactly j neighbours of y in the Hamming cube
are not satisfying assignments to φ. An isolated solution is one that is n-isolated.

Lemma 4. [30] There are polynomial-time computable functions Enc and Dec
such that the following holds. Let φ be a k-CNF formula on n variables, and w be a
j-isolated solution to the variables, where 0 6 j 6 n. Then Dec(Enc(φ, π,w)) = w
for any permutation π on [n], and moreover, on average over uniformly random
choice of π, |Enc(φ, π,w)| 6 n − n/k.

The intuition behind the proof of Lemma 4 is that isolated solutions lead to
many critical clauses. Given a solution w, a critical clause is one for which exactly
one of the literals is true. An isolated solution w has at least n critical clauses, one
for each assignment to a variable in w. If there were a variable without a critical
clause corresponding to it, then flipping the value of that variable would result in
a satisfying assignment, contradicting the fact that w is isolated.

Critical clauses can be used to save on variables when searching the space of
solutions. Let w be an isolated solution. Imagine a process where variables are

46 46

46 46

BEATCS no 106 THE EATCS COLUMNS

38

chosen in a random order and set in φ to their value in w, excepting when there’s
a unit clause containing that variable. If there’s a unit clause, the variable is set
to satisfy that clause. The point is that if variables are chosen in random order,
then for a critical clause of length k, there is a probability at least 1/k that the
variable (say x) corresponding to the true literal in that clause is chosen last. In
this case, the clause has already been reduced to a unit clause by the time x is set,
and therefore x is forced rather than having to be set by w. So we don’t need to
store the value of x in w - in some sense, it can be recovered from the formula
itself. Since there at least n critical clauses, on average at least n/k variables are
forced in this process, and hence an isolated solution can be compressed to only
store values of variables that are not forced, which saves n/k bits. In general, for a
j-isolated solution, j/k bits are saved, using the same argument. This essentially
gives the proof of Lemma 4.

It is easy to imagine how Lemma 4 can be used to achieve savings for Unique-
k-SAT, the version of k-SAT where there’s a promise that the input formula has
either zero or one satisfying assignments. Clearly, any satisfying assignment in
such a case is isolated, and hence it can be compressed on average. Intuitively,
one just needs to search the compressed representations to find a solution if one
exists, and this reduces the size of the search space to 2n−n/k from 2n.

A variation of this argument actually gives the same upper bound for k-SAT
without any restriction on number of satisfying assignments. Consider a k-CNF
φ. If there is a solution w which is j-isolated for large j, then it can be compressed
by Lemma 4 and hence can be found much more quickly than brute-force search.
If on the other hand, if all solutions are only j-isolated for small j, then intuitively
there are many solutions, which means that a random solution is likely to work.
In the paper by Paturi, Pudlak and Zane, this tradeoff idea is exploited nicely to
prove the following result.

Theorem 5. [30] k-SAT has probabilistic savings n/k.

This was a huge improvement over the previous best known result for general
k, which only gave savings n/g(k) for some exponential function g. Because I
wished to highlight how the algorithmic result takes advantage of the Satisfiability
Coding Lemma, I focussed on the ideas in the analysis, and wasn’t specific about
the actual algorithm used. In fact, the algorithm designed by Paturi, Pudlak and
Zane is a very natural and simple DLL algorithm. The algorithm repeatedly does
the following: set the variables in φ in a random order to random values, except
when there is a unit clause and the current variable is forced. It is no coincidence
that this algorithm is similar to the encoding process used to prove Lemma 4!

Lemma 4 implies that there are at most 2n−n/k isolated solutions to a k-CNF,
and this can be used to give depth-3 circuit size lower bounds for Parity, where
the circuits have bottom fan-in bounded by k. The argument is very simple: a

47 47

47 47

The Bulletin of the EATCS

39

depth-3 circuit with bottom fan-in bounded by k is an OR of k-CNFs (the circuit
can be assumed to have top gate OR without loss of generality). Since Parity has
2n−1 isolated solutions but each k-CNF can only have 2n−n/k isolated solutions, the
circuit needs to have at least 2n/k−1 gates. This bound is tight up to a constant
factor. By a slightly more involved argument, Paturi, Pudlak and Zane show the
following for general depth-3 circuits computing Parity.

Theorem 6. [30] The depth-3 circuit size of Parity is θ(n1/42
√

n).

The upper bound in Theorem 6 is given by a very natural divide-and-conquer
strategy: break the variables up into blocks of size

√
n − log(n)/4, compute the

parity within each block, and then compute the parity of the resulting values.
Paturi, Pudlak, Saks and Zane [29] showed an improvement to Theorem 5

by using Resolution in a pre-processing step before applying the Paturi-Pudlak-
Zane algorithm. Essentially, they try to increase the number of critical clauses in a
formula. Note that if some variable in an isolated solution occurs in more than one
critical clause, then in a random permutation of variables, the probability that it
occurs last in some critical clause is larger than 1/k, and so better compression of
isolated solutions can be achieved than in Lemma 4. They prove that the repeated
use of Resolution to derive all possible clauses of some bounded width (where the
bound is o(log(n))) from the original formula actually does yield benefits.

Theorem 7. [29] For each k > 3, there is a constant µk > 1 such that k-SAT has
probabilistic savings µkn/(k − 1).

As with the Paturi-Pudlak-Zane result, the proof of this theorem gives a struc-
tural characterization of k-CNFs in terms of the maximum possible number of
sufficiently isolated solutions. Here a sufficiently isolated solution is one such
that there is no other solution within a given distance of it. This characterization
was used to give the first depth-3 circuit size lower bound of the form 2c

√
n for an

explicit function, where c > 1.

Theorem 8. [29] There is an explicit Boolean function f in P such that f does
not have depth-3 circuits of size 2π

√
n/
√

6−
√

n/ log(log(n)).

A further example of a structural property of CNFs which is relevant both to
algorithmic questions and to lower bounds is the Sparsification Lemma of Im-
pagliazzo, Paturi and Zane [22] which says that every k-CNF can be written as
the disjunction of 2εn linear-sized k-CNFs, for arbitrarily small ε > 0. I do not
discuss this further here because the Sparsification Lemma does not directly give
an improved algorithm for a natural variant of SAT. However, it has been quite
influential in the structural theory of SAT, specifically with regard to the robust-
ness of the Exponential Time Hypothesis (ETH), which states that 3-SAT is not
solvable in time 2o(n). It is also useful in proving certain kinds of depth-3 circuit
lower bounds.

48 48

48 48

BEATCS no 106 THE EATCS COLUMNS

40

4 From Algorithms for Circuit-SAT to Circuit Lower
Bounds

In the previous section, I described an informal connection between SAT algo-
rithms and lower bounds - the Satisfiability Coding Lemma can be used both to
analyze a natural algorithm for k-SAT and to prove tight lower bounds on the size
of depth-3 circuits solving Parity. In this section, the spotlight is on the recent
breakthroughs of Ryan Williams [37, 38]. Williams made two major contribu-
tions. First, he proved that non-trivial algorithms for C-SAT imply that NEXP * C
for a wide range of natural circuit classes C. This makes the connection between
algorithms and circuit lower bounds formal, and also generic, in the sense that it
opens up the possibility of using the algorithmic approach to prove a variety of
new circuit lower bounds. Second, he gave a “proof-of-concept” for this novel ap-
proach by using it to show that NEXP * ACC0, a brand-new circuit lower bound.
This involved designing and analyzing a non-trivial algorithm for ACC0-SAT.

To give intuition for the formal connection from SAT algorithms to circuit
lower bounds, I first describe a simpler version of the result, which has an easy
proof. Williams’ connection is best understood as a refinement of this simpler
result.

Suppose we have a polynomial-time algorithm for SAT. Then it is easy to see
that EXP does not have polynomial-size circuits. If EXP ⊆ SIZE(poly), then by
the classical Karp-Lipton-Meyer theorem [25] relating non-uniform inclusions of
EXP to uniform collapses, EXP ⊆ Σ

p
2 . Now, by our assumption that SAT is in

P, we have that NP = P, and hence that Σ
p
2 = P. But these collapses together

imply that EXP = P, which is a contradiction to the deterministic time hierarchy
theorem [18, 19]. Hence the assumption that EXP ⊆ SIZE(poly) must be false.

This is an example of an indirect diagonalization argument. An implication
is proved by showing that its negation implies a contradiction to a hierarchy the-
orem. Such arguments have proven very useful in various contexts in structural
complexity theory, including uniform lower bounds for the permanent [2], time-
space tradeoffs [13, 12], a Karp-Lipton style result for NEXP [20] and separations
against advice [6].

How far can this argument be stretched? If we try and use it to show that EXP
does not have subexpontial-size circuits, we run into the issue that subexponential
functions are not closed under composition. Indeed, if SAT is in SUBEXP, we
have that NP ⊆ SUBEXP, but this does not imply that Σ

p
2 ⊆ SUBEXP. The best

we can say is that ΣP
2 ⊆ NSUBEXP, by replacing the inner co-nondeterministic

polynomial-time part of a Σ
p
2 computation with a deterministic subexponential-

time computation. But this is not enough to derive a contradiction to a hierarchy
theorem, as all we get using the additional assumption that EXP ⊆ SIZE(poly) is

49 49

49 49

The Bulletin of the EATCS

41

that EXP ⊆ NSUBEXP.
Perhaps we can salvage a superpolynomial size circuit lower bound for NEXP

instead? Indeed this is the case. As hinted before, the analogue of the Karp-
Lipton-Meyer theorem for NEXP is known - it was proved by Impagliazzo, Ka-
banets and Wigderson [20]. Their argument is a clever indirect one using pseudo-
randomness in a critical way (though the statement of the result itself does not
mention randomness!). At this point, we just need the result, not the proof tech-
nique. However, as we shall see, the Impagliazzo-Kabanets-Wigderson proof
technique plays an important role in the derivation of Williams’ connection.

Let us now re-do the old argument to establish a circuit lower bound from the
weaker assumption that there is an algorithm for SAT running in time 2no(1)

. The
circuit lower bound we get from this assumption is that NEXP * SIZE(poly).
Assume, to the contrary, that NEXP ⊆ SIZE(poly). Then, by the Impagliazzo-
Kabanets-Wigderson result, we have that NEXP = Σ

p
2 . Now, SAT in time 2no(1)

implies that NP ⊆ SUBEXP, and therefore that Σ
p
2 ⊆ NSUBEXP. Combining

this with the collapse for NEXP, we have that NEXP ⊆ NSUBEXP, which is a
contradiction to the non-deterministic time hierarchy theorem [10, 35, 41, 14].

The implication we have just proved is folklore. It wasn’t given much sig-
nificance because it does not represent a viable route to proving circuit lower
bounds - few believe that SAT can be solved in sub-exponential time. Indeed, the
Exponential-Time Hypothesis of Impagliazzo, Paturi and Zane [22] stating that
3-SAT cannot be solved in time 2o(n) is widely believed.

On the surface, it doesn’t look like there is much hope for getting an impli-
cation for circuit lower bounds from a much weaker algorithmic assumption for
SAT, such as solvability in time 2n/2. Such a simulation seems “fragile” in that it
doesn’t compose with polynomial-time reductions to give a non-trivial simulation
for all of NP, so it seems unlikely that the method of indirect diagonalization can
be used.

However, it turns out that is is still possible to use the method, and a key factor
in getting things to work is the parametric view of SAT, i.e., making a distinction
between the size of the instance and the number of variables. Williams [37] proved
the following theorem.

Theorem 9. [37] If there is a non-trivial algorithm for Circuit-SAT, then NEXP *
SIZE(poly).

It is somewhat surprising that such a weak algorithmic assumption already
yields lower bounds, and just the implication is interesting in itself. But what
makes it more interesting is the possibility of actually proving circuit lower bounds
this way. As per the current state of knowledge, there is no indication that Circuit-
SAT is unlikely to have a non-trivial algorithm. After all, we are only asking
to save over brute-force search by a superpolynomial factor in the running time.

50 50

50 50

BEATCS no 106 THE EATCS COLUMNS

42

Indeed, as it later turned out, a more general version of Theorem 9 yielded new
lower bounds against ACC0.

The proof of Theorem 9 combines several known facts and ideas in a clever
way, including the completeness of the Succinct-3SAT problem for NEXP, local
checkability and the easy witness method [20].

The high-level idea is still to use indirect diagonalization. Consider an arbi-
trary language L ∈ NTIME(2n), and assume that NEXP ⊆ SIZE(poly). We use the
presumed non-trivial algorithm for Circuit-SAT to solve L non-deterministically
in time 2n/ω(1). This contradicts the non-deterministic time hierarchy theorem,
which has as a consequence the existence of a language L in NTIME(2n) but not
in NTIME(2n/ω(1)).

Let x be an instance for the language L such that |x| = n. We first use the
NEXP-completeness of the Succinct-3SAT problem to reduce x in polynomial
time to a circuit C of size poly(n) with n + O(log(n)) input bits. C implicitly
encodes a 3CNF formula φC of size 2npoly(n) such that φC is satisfiable iff x ∈
L. By an implicit encoding here, we mean that given an index i into the binary
representation of the formula φC, C outputs the i’th bit of the representation of φC.

We can’t apply the presumed Circuit-SAT algorithm directly to φC since it is
too large. Instead, we will work with the implicit encoding. The easy witness
method [20] shows that if NEXP ⊆ SIZE(poly), then every positive Succinct-
SAT instance has a succinct witness, meaning that there is a circuit C′ of size
poly(n) and with n + O(log(n)) inputs such that C′ is the implicit encoding of a
satisfying assignment to the formula encoded by the instance. Applying this to our
context, we have that there is a circuit C′ of size poly(n) which implicitly encodes
a satisfying assignment to φC.

Now we can apply the guess-and-check paradigm: guess a circuit C′ and check
that the assignment encoded by C′ indeed satisfies φC. The check that the assign-
ment satisfies the formula can be done naturally in co-non-deterministic polyno-
mial time: Universally guess a clause of φC and check using three calls to the
circuit C′ (each call recovering one bit of the succinct witness) that the clause is
indeed satisfied by the assignment encoded by C′. The key point here is that this
is a co-non-deterministic computation with only n + O(log(n)) guess bits, since
that many guess bits suffice to identify a clause of φC.

At this point, we use our algorithmic assumption and replace the co-non-
deterministic computation by a deterministic one. Using the non-trivial algorithm
for Circuit-SAT, we can implement the co-non-deterministic computation in time
2n/ω(1), since the co-non-deterministic computation is equivalent to solving a
Circuit-SAT instance of size poly(n) with parameter n + O(log(n)). By putting to-
gether the guess of the circuit C′ with this computation, we get a non-deterministic
algorithm which decides correctly whether x ∈ L in time 2n/ω(1) as desired, yield-
ing a contradiction to the non-deterministic hierarchy theorem.

51 51

51 51

The Bulletin of the EATCS

43

Hopefully, this description clarifies how this argument is a much more refined
version of the arguments giving the simpler implications. The Karp-Lipton-Meyer
collapse appears here implicitly in our use of local checkability, and we use a
much tighter version of the non-deterministic time hierarchy than is required for
the simpler implications. The explicit use of the easy witness method is a new
ingredient, though it appeared indirectly in our earlier argument since it underlies
the Karp-Lipton-Meyer style collapse for NEXP [20].

Though Theorem 9 is interesting, it hasn’t yielded any lower bounds yet as we
do not know any non-trivial algorithms for Circuit-SAT. In the follow-up paper
[38] which showed NEXP * ACC0, Williams significantly generalized Theorem
9 to apply to any circuit class satisfying some natural conditions.

Theorem 10. [38] Let C be any circuit class which is closed under composition,
contains AC0 and is contained in the class of general Boolean circuits. If C-SAT
has a non-trivial algorithm, then NEXP does not have polynomial-size circuits
from C.

Examples of classes C to which Theorem 10 applies include AC0, ACC0 and
NC1. Thus it gives a generic approach towards proving circuit lower bounds of
interest.

Why doesn’t the proof technique of Theorem 9 suffice to establish Theorem
10? The reason is that the reduction from x ∈ L to a circuit C doesn’t yield cir-
cuits that are structured enough. It is unclear whether the variant of Succinct-SAT
where the circuits encoding the exponential-length formula are constant-depth cir-
cuits is still NEXP-complete. Williams gets around this by using the assumptions
that C-SAT has a non-trivial algorithm and that NEXP has polynomial-size cir-
cuits from C a second time in a clever way.

More specifically, assume for the purpose of contradiction that NEXP has
polynomial-size circuits from C, and that C-SAT has a non-trivial algorithm.
Since C is a sub-class of Boolean circuits, we have that NEXP ⊆ SIZE(poly).
As before, we consider an arbitrary language L ∈ NTIME(2n) and reduce a given
instance x of L to a circuit C encoding an exponential-length CNF such that the
CNF is satisfiable iff x ∈ L. The circuit C is not in general an ACC0 circuit,
and this is where the new idea comes in: we guess an equivalent polynomial-size
ACC0 circuit D and check during the co-non-deterministic computation that D is
in fact equivalent to C by using local checkability together with the non-trivial
algorithm for ACC0-SAT. We also guess a polynomial-size ACC0 circuit D′ repre-
senting an “easy witness”. The point is that since by assumption NEXP ⊆ ACC0,
we also have that P ⊆ ACC0 and this implies that the circuits C and C′ in the old
proof have equivalent ACC0 circuits D and D′. In the case of D, we actually need
to check that it is equivalent to C, but as mentioned, this can be done using the
algorithmic assumption. The rest of the argument is the same as before - once

52 52

52 52

BEATCS no 106 THE EATCS COLUMNS

44

we have D and D′ which are ACC0 circuits, the co-non-deterministic computation
checking if the easy witness satisfies the formula encoded by D can be simulated
deterministically in time 2n/ω(1) using the assumption of a non-trivial algorithm
for ACC0-SAT. Note that D and D′ are guessed together, and the check of whether
D is equivalent to C is performed before the check of whether the assignment
encoded by D′ satisfies the 3CNF encoded by D. What we get in the end is a
non-deterministic algorithm for deciding x which runs in time 2n/ω(1), yielding a
contradiction to the non-deterministic time hierarchy as before.

While Theorem 10, it could have been the case that for some fundamental
reason, this approach to new lower bounds was not viable. Williams’ greatest
contribution was to give a “proof of concept” by using his approach to show that
NEXP * ACC0. The biggest circuit class for which super-polynomial size lower
bounds were known for NEXP previously was AC0[p] - the class of constant-
depth circuits with modular counting gates where the modulus is a prime. In fact,
the lower bounds against AC0[p] are for explicit Boolean functions in P [32, 36],
however the full power of NEXP seems necessary to achieve Williams’ lower
bound.

Williams’ algorithm for ACC0-SAT is innovative even from the algorithmic
viewpoint, as it uses algorithmic ideas which hadn’t been explored before in the
context of algorithms for SAT. The first algorithm he came up with was a rather
involved one using a result of Coppersmith about matrix multiplication. Following
on a suggestion of Bjorklund, he later came up with a much simpler algorithm
which uses dynamic programming, and this is the one I discuss. The algorithm
relies on a well-known structural property of polynomial-size ACC0 circuits [40,
9, 2] - the fact that they can be simulated by quasi-polynomial-size depth-2 SYM+

circuits. A SYM+ circuit is a circuit where the bottom layer is composed only of
ANDs of small fan-in and the top gate is a symmetric gate. An additional property
that is required is that these depth-2 SYM+ circuits can be constructed efficiently
from the original ACC0 circuits, and the top symmetric gate can be efficiently
evaluated.

The algorithm is not non-trivial in the sense we defined before, but using the
proof of Theorem 10, it does imply that NEXP ⊆ ACC0 since it runs in time
2n−ω(log(n)) on circuits of size poly(n).

Theorem 11. [38] There is an algorithm for p-ACC0-SAT running in time O(2n−nΩ(1)
)

when m = poly(n).

I now sketch the proof. Let C be an ACC0 circuit of size m 6 nc with n
inputs, where c is a constant. Let l < n be a parameter which will be fixed later.
First, convert C to an equivalent circuit C′ of size m2l on t = n − l variables by
enumerating all possible assignments on the first l variables and taking a big OR
of the resulting 2l copies of C. Note that C′ is still an ACC0 circuit. Let s = m2l.

53 53

53 53

The Bulletin of the EATCS

45

Next, convert C′ to an equivalent depth-2 circuit C′′ of size s′ = slogk(s), where k
is a constant. This can be done in time O(slogO(1)(s)) using a result of Allender and
Gore [2].

The key lemma is that a SYM+ circuit of size s′ on t variables can be evaluated
on all possible truth assignments to the variables in time O((s′ + 2t)poly(t)). Note
that this is superior to brute-force search in that the circuit size and the 2t term are
related additively rather than multiplicatively. This gives a significant advantage
when the circuit size s′ is large, as it is in our case.

Given the key lemma, we are done by choosing l = nε for ε sufficiently small.
This is because, by the lemma, the SYM+ circuit can be evaluated on all possible
truth assignments in time O((2nε+kε+o(1)

+ 2n−nε)poly(n)), which is O(2n−nε) when
ε = 1/(k + 2).

To prove the key lemma, we use dynamic programming. Essentially, we need
to keep track of which AND gates evaluate to 1, in order to evaluate the symmetric
function. We initialize a look-up table which states for every subset S of the input
variables, the number f (S) of AND gates which have precisely this subset as
input. This initialization can be done in time O((s′+ 2t)poly(t)). We then compute
the zeta transform g of f using a standard dynamic programming algorithm, where
for any subset T , g(T) is the sum over all subsets S ⊆ T of f (T). For each
T , g(T) is the number of AND gates evaluating to 1 on the input which is 1 for
precisely those input bits in T . This gives all the information required to evaluate
the symmetric gate on that input. Thus we simultaneously obtain the answers of
the circuit for all candidate assignments in time O((s′ + 2t)poly(t)), proving the
key lemma.

The Williams results raise the intriguing question of whether there are inherent
barriers to proving lower bounds in this fashion. Progress on lower bounds using
more traditional techniques has been halted by several barriers, including the rel-
ativization barrier [7], the natural proofs barrier [33] and the algebrization barrier
[4]. None of these barriers seem to apply directly to the approach via algorithms.
This is not necessarily cause for hope, but it is cause not to be pessimistic!

Of course, the viability of the approach depends on the existence of non-trivial
algorithms (or algorithms at least good enough to be able to apply Theorem 10 for
C-SAT, where C is a broader class of circuits than ACC0. The jury is still out on
this, but there’s certainly a strong motivation now to develop the structural theory
of the exact complexity of SAT variants, with the goal of understanding in which
situations non-trivial algorithms are likely to exist.

54 54

54 54

BEATCS no 106 THE EATCS COLUMNS

46

5 Improved SAT Algorithms using Lower Bound
Techniques

The results of Williams discussed in the previous section take advantage of a for-
mal connection from algorithms to lower bounds. It is natural to ask whether there
is a connection in the reverse direction - can lower bound techniques be used to
design and analyze SAT algorithms?

In Section 4, I described structural properties of CNFs which were useful both
in designing algorithms and proving lower bounds. The results in this section will
have a slightly different flavour. Standard lower bound techniques will be used as
inspiration to design SAT algorithms improving on brute-force search. No formal
connection will be established, but using lower bounds as inspiration will have
significant payoffs nevertheless.

While k-SAT and CNF-SAT have been widely studied, and improvements over
brute-force search are known, until recently nothing non-trivial was known for
Formula-SAT, where there is no restriction on the depth of the input formula. A
year and a half ago, Santhanam [34] gave a simple deterministic algorithm which
achieved savings Ω(n3/m2) for Boolean formulae over the de Morgan basis. Note
that the savings is Ω(n) for linear-size formulae. Santhanam also gave a different
algorithm which achieved savings Ω(n2/(m log(n))) on formulae over an arbitrary
basis.

Theorem 12. [34] Formula-SAT has savings Ω(n3/m2).

The same savings applies to the problem of counting the number of satisfying
assignments of a Boolean formula, using the same analysis.

The proof technique of Theorem 12 also yields a new lower bound conse-
quence.

Corollary 13. [34] Any linear-size sequence of formulae fails to compute Parity
correctly on at least a 1/2−1/2Ω(n) fraction of inputs of length n, for all but finitely
many n.

The algorithm underlying the proof of Theorem 12 is very simple indeed. It
is a DLL algorithm where the variable to be set is chosen as the most frequently
occurring variable in the current formula, and the value to which it is set is cho-
sen arbitrarily. This is a purely deterministic algorithm, however the analysis is
probabilistic and uses the popular random restriction lower bound method as in-
spiration.

The random restriction method has been used to prove lower bounds in various
settings, including for constant-depth circuits and Boolean formulae [3, 15, 16, 5,
17]. The basic idea is as follows. Suppose we are trying to prove a lower bound

55 55

55 55

The Bulletin of the EATCS

47

against a class C of circuits. We look at what happens when a circuit from the
class is “hit” with a random restriction, meaning that some of the variables are
set in a specific way. For the present, we deal with pure random restrictions.
A pure random restriction with parameter p is a probability distribution on partial
assignments to inputs which sets each variable independently to 1 with probability
(1 − p)/2, to 0 with probability (1 − p)/2 and leaves it unset with probability p.
We try to argue that when a pure random restriction is applied to the inputs of a
circuit from C, the circuit “simplifies” drastically. For constant-depth circuits, this
is done using the Switching Lemma [16], which says that the induced function
is constant with high probability, where the meaning of “high” depends on the
choice of p. For Boolean formulae over the de Morgan basis, this is done by
analyze the shrinkage exponent, which is the largest constant γ so that a formula
of size L shrinks to a formula of size O(pγL) under a restriction with parameter
p. Subbotovskaya [5] proved that the shrinkage exponent is at least 1.5, and there
was a sequence of papers obtaining improvements until Hastad proved that the
shrinkage exponent is exactly 2 [17]. Indeed, the current best formula size lower
bound of n3−O(1) for an explicit function is based on Hastad’s result.

How do random restrictions connect to DLL algorithms? There is a superfi-
cial similarity in that processes involve variables being set incrementally, but in
fact the connection goes deeper. In both processes, the notion of “simplification”
is important. A DLL algorithm stops when the formula simplifies to “true” and
backtracks when it simplifies to “false”. The hope is that not too much backtrack-
ing is required before finding a satisfying assignment, if one exists. In the case
of random restrictions, simplification of the formula is key to the technique being
usable to prove lower bounds. The more drastic the simplification, the more lim-
ited the circuit class is, in some sense, and hence the better the lower bounds that
can be shown. Quick simplification is also useful for DLL algorithms, as it means
less backtracking and hence better savings over brute-force search.

This intuition can be made precise in the analysis of the DLL algorithm de-
scribed above for FormulaSAT. We analyze a slightly different kind of random
restriction - an adaptive restriction. In a pure restriction, the choice of which
variables to set is made uniformly at random, and so too which values to set vari-
ables to. In an adaptive restriction, while the choice of values remains uniform,
the choice of which variables to set is done adaptively depending on which vari-
ables are already set and how this setting has simplified the formula. It makes
sense to study adaptive restrictions where the variables are set in the same order
as they are set in the algorithm for FormulaSAT, as this gives a natural corre-
spondence between properties of the restriction and efficiency of the algorithm.
Subbotovskaya’s analysis of pure random restrictions can be refined to show a
concentration bound for simplification of formulae under such adaptive restric-
tions, and this concentration bound can then be used to bound the running time of

56 56

56 56

BEATCS no 106 THE EATCS COLUMNS

48

the DLL algorithm. Details can be found in the paper [34].
As with the results in Section 4, the analytical technique exposes a structural

property of small formulae - they have decision trees that are not too large. This
property can be exploited to prove Corollary 13, as it is easy to see that Parity
requires decision trees of size 2n. Indeed, any leaf of a decision tree that is not
at depth n is uncorrelated with Parity, which is why this argument gives a strong
correlation lower bound.

The random restriction method and the DLL algorithmic paradigm have both
been the subject of much interest, so it is natural to wonder whether the connec-
tion between them can be exploited further. Santhanam conjectured that an anal-
ogous argument to his could yield an improved algorithm for AC0-SAT, as well
as new correlation bounds against AC0 circuits. There has been a spate of recent
work on this. Beame, Impagliazzo and Srinivasan (manuscript) have consider-
ably improved an old correlation bound of Ajtai [3], and designed the current best
deterministic algorithm for AC0-SAT. Independently, Impagliazzo, Matthews and
Paturi [21] came up with a probabilistic DLL algorithm for AC0-SAT achieving
savings close to linear.

Theorem 14. [21] AC0-SAT has probabilistic savings Ω(n/(log(m/n))d−1).

The analysis of the Impagliazzo-Matthews-Paturi algorithm extends and re-
fines the Hastad switching lemma, and gives a new structural characterization of
AC0 functions in terms of partitions of the Hamming cube into subcubes where
the function is constant. An optimal correlation bound for Parity against constant-
depth circuits follows from this characterization, in a similar way to how Corollary
13 follows from Theorem 12.

Corollary 15. [21] AC0 circuits of size s fail to compute Parity correctly on at
least a 1/2 − 1/2Ω(n/(log(m/n))d−1) fraction of inputs, for n large enough.

A similar correlation bound was obtained independently by Hastad (manu-
script). The above results exploit a connection between DLL algorithms and ran-
dom restrictions. Are there other lower bound techniques that can be harnessed
algorithmically? This is an intriguing question about which little is known. San-
thanam’s algorithm for formulae over an arbitrary basis can be interpreted as uti-
lizing a connection between the algorithmic paradigm of memoization and the
Neciporuk lower bound technique in complexity theory, but I do not know of any
other results along this direction.

6 Speculation
The recent papers on SAT algorithms and lower bounds have opened up what
promises to be a very fruitful area of research. There are many research directions

57 57

57 57

The Bulletin of the EATCS

49

that look interesting, and in this section I will give a personal selection.

Perhaps the most exciting questions arise from the work of Williams. His
lower bound against ACC0 circuits is for a Boolean function in NEXP. The lower
bounds we know against weaker classes are all for functions in P. This is a ma-
jor discrepancy - can we prove a similar lower bound for a much more explicit
function? It seems that techniques somewhat different from Williams’ will be re-
quired. Perhaps the limitations of the circuit class ACC0 which are exposed by
his algorithm for ACC0-SAT could be exploited in a more direct fashion, giving a
more explicit bound.

Another very natural question is to derive lower bounds against larger classes
of circuits. This motivates the exploration of new algorithmic paradigms for SAT,
such as dynamic programming and graph sparsification.

In terms of the reverse connection from lower bounds to algorithms, it would
be interesting to identify if there is any “algorithmic content” in other common
lower bound techniques such as the polynomial method and the Khrapchenko
method. New analyses for DLL algorithms have been found by constructivizing
the proofs that random restrictions simplify formulae, and perhaps other lower
bound proofs could be constructivized in a similar way. In an optimistic scenario,
this would lead to new algorithmic methods that could be used elsewhere.

In the Boolean complexity world, the connections between algorithms and
lower bounds have only been studied so far in the context of the Satisfiability
problem. There are various other NP-hard problems, such as Clique, Colouring,
Subset Sum etc. for which improved algorithms beating brute-force search are
an active topic of study. Could any of the lower bound connections help in ana-
lyzing these problems? An immediate obstacle to doing this is that none of these
problems are inherently meta-algorithmic, unlike SAT. But maybe the use of al-
ternative notions of complexity, such as graph complexity, could provide some
insight here.

Connections analogous to those in the Boolean complexity setting could exist
in the arithmetic complexity setting as well. Specifically, it is quite conceivable
that algorithms for the Polynomial Identity Testing problem marginally beating
brute force search could lead to new arithmetic complexity lower bounds, and this
possibility ought to be explored further.

To reiterate, the complicity between lower bounds and algorithms could pro-
vide a way around the obstacles to which complexity theorist, and to a lesser extent
algorithmists, are so accustomed. But the maps we can draw at this stage are of
necessity rough, unformed. All we can do is to believe that the deep mysteries
mask a deeper sense.

58 58

58 58

BEATCS no 106 THE EATCS COLUMNS

50

References
[1] S. Arora and B. Barak. Complexity Theory: A Modern Approach. Cambridge Uni-

versity Press, Cambridge, 2009.

[2] Eric Allender and Vivek Gore. A uniform circuit lower bound for the permanent.
SIAM Journal on Computing, 23(5):1026–1049, 1994.

[3] Miklos Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic,

24:1–48, 1983.

[4] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity
theory. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(STOC ’08) 731–740, 2008.

[5] B.A.Subbotovskaya. Realizations of linear functions by formulas using and, or, not.
Soviet Mathematics Doklady, (2):110–112, 1961.

[6] Harry Buhrman, Lance Fortnow, and Rahul Santhanam. Unconditional lower
bounds against advice. In Proceedings of 36th International Colloquium on Au-
tomata, Languages and Programming, pages 195–209, 2009.

[7] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP
question. SIAM Journal on Computing, 4(4):431–442, 1975.

[8] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequence
of pseudo-random bits. SIAM Journal on Computing, 13:850–864, 1984.

[9] Richard Beigel and Jun Tarui. On ACC. Computational Complexity, 4:350–366,
1994.

[10] Stephen Cook. A hierarchy for nondeterministic time complexity. In Conference
Record, Fourth Annual ACM Symposium on Theory of Computing, pages 187–192,
Denver, Colorado, 1–3 May 1972.

[11] Evgeny Dantsin and Edward Hirsch. Worst-case upper bounds. In H.van Maaren
A.Biere, M.Heule and T.Walsh, editors, Handbook of Satisfiability. 2008.

[12] Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anastasios Viglas.
Time-space lower bounds for satisfiability. Journal of the ACM, 52(6):833–865,
2005.

[13] L. Fortnow. Time-space tradeoffs for satisfiability. Journal of Computer and System
Sciences, 60(2):337–353, April 2000.

[14] Lance Fortnow and Rahul Santhanam. Robust simulations and significant separa-
tions. In Proceedings of the 38th International Colloquium on Automata, Languages
and Programming, pages 569–580, 2011.

[15] Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13–27, April 1984.

[16] Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

59 59

59 59

The Bulletin of the EATCS

51

[17] Johan Hastad. The shrinkage exponent of de morgan formulas is 2. SIAM Journal
on Computing, 27(1):48–64, 1998.

[18] Juris Hartmanis and Richard Stearns. On the computational complexity of algo-
rithms. Trans. Amer. Math. Soc. (AMS), 117:285–306, 1965.

[19] Frederick Hennie and Richard Stearns. Two-tape simulation of multitape Turing
machines. Journal of the ACM, 13(4):533–546, October 1966.

[20] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy
witness: Exponential time vs. probabilistic polynomial time. Journal of Computer
and System Sciences, 65(4):672–694, 2002.

[21] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability
algorithm for AC0. In Proceedings of Symposium on Discrete Algorithms, page To
appear, 2012.

[22] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? Journal of Computer and System Sciences,
62(4):512–530, 2001.

[23] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential cir-
cuits: Derandomizing the XOR lemma. In Proceedings of the 29th Annual ACM
Symposium on the Theory of Computing, pages 220–229, 1997.

[24] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. In Proceedings of the 35th Annual ACM
Symposium on the Theory of Computing, pages 355–364, 2003.

[25] Richard Karp and Richard Lipton. Turing machines that take advice.
L’Enseignement Mathématique, 28(2):191–209, 1982.

[26] Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponen-
tial size proofs unless the polynomial hierarchy collapses. SIAM Journal of Com-
puting, 31(5):1501–1526, 2002.

[27] Ketan Mulmuley. On p vs np and geometric complexity theory: dedicated to sri
ramakrishna. Journal of the Association of Computing Machinery, 58(2), 2011.

[28] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer
and System Sciences, 49(2):149–167, 1994.

[29] Ramamohan Paturi, Pavel Pudlak, Mike Saks, and Francis Zane. An improved
exponential-time algorithm for k-sat. In Proceedings of 39th International Sym-
posium on Foundations of Computer Sciece (FOCS), pages 628–637, 1998.

[30] Ramamohan Paturi, Pavel Pudlak, and Francis Zane. Satisfiability coding lemma. In
Proceedings of 38th International Symposium on Foundations of Computer Science
(FOCS), pages 566–574, 1997.

[31] Prasad Raghavendra. Optimal algorithms and inapproximability results for every
csp? In ACM Symposium on Theory of Computing (STOC), pages 245–254, 2008.

60 60

60 60

BEATCS no 106 THE EATCS COLUMNS

52

[32] Alexander Razborov. Lower bounds on the size of bounded-depth networks over
the complete basis with logical addition. Mathematical Notes of the Academy of
Sciences of the USSR, 41(4):333–338, 1987.

[33] Alexander Razborov and Steven Rudich. Natural proofs. Journal of Computer and
System Sciences, 55(1):24–35, 1997.

[34] Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and
QBF satisfiability. In Proceedings of 51st Annual IEEE Symposium on Foundations
of Computer Science, pages 183–192, 2010.

[35] Joel Seiferas, Michael Fischer, and Albert Meyer. Separating nondeterministic time
complexity classes. Journal of the ACM, 25(1):146–167, January 1978.

[36] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Proceedings of the 19th Annual Symposium on Theory of
Computing, pages 77–82, 1987.

[37] Ryan Williams. Improving exhaustive search implies superpolynomial lower
bounds. In Proceedings of the 42nd Annual ACM Symposium on Theory of Comput-
ing, pages 231–240, 2010.

[38] Ryan Williams. Non-uniform ACC circuit lower bounds. In Proceedings of 26th
Annual IEEE Conference on Computational Complexity, pages 115–125, 2011.

[39] Andrew Yao. Theory and application of trapdoor functions. In Proceedings of the
23rd Annual IEEE Symposium on Foundations of Computer Science, pages 80–91,
1982.

[40] Andrew Yao. On ACC and threshold circuits. In Proceedings of the 31st Annual
Symposium on Foundations of Computer Science, pages 619–627, 1990.

[41] Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer Science,
26(3):327–333, October 1983.

61 61

61 61

Bulletin of the EATCS no 106, pp. 53�77, February 2012

©c European Association for Theoretical Computer Science

T D C C


P F

Department of Computer Science, University of Crete
P.O. Box 2208 GR-714 09 Heraklion, Crete, Greece

and
Institute of Computer Science (ICS)

Foundation for Research and Technology (FORTH)
N. Plastira 100. Vassilika Vouton

GR-700 13 Heraklion, Crete, Greece
faturu@csd.uoc.gr

62 62

62 62

BEATCS no 106 THE EATCS COLUMNS

54

U N-U F M

Petr Kuznetsov
TU Berlin/Deutsche Telekom Laboratories

petr.kuznetsov@tu-berlin.de

Abstract

Traditionally, models of fault-tolerant distributed computing assume that
failures are “uniform”: processes are equally probable to fail and a fail-
ure of one process does not affect reliability of the others. In real systems,
however, processes may not be equally reliable. Moreover, failures may be
correlated because of software or hardware features sharedby subsets of
processes. In this paper, we survey recent results addressing the question of
what can and what cannot be computed in systems with non-identical and
non-independent failures.

L’égalité sera peut-être un droit,
mais aucune puissance humaine ne
saura le convertir en fait.1

Honoré de Balzac

1 Introduction

A distributed system is a collection of computing units, called processes. The
principal challenge of distributed computing is to devise protocols that correctly
operate in the presence of failures of processes and asynchrony. A failure model
describes the assumptions on where and when failures might occur. The classical
“uniform” failure model assumes that processes fail with equal probabilities, in-
dependently of each other. This enables reasoning about themaximal number of
processes that may, with a non-negligible probability, fail in any given execution
of the system. It is natural to ask questions of the kind: whatproblems can be
solvedt-resiliently, i.e., assuming that at mostt processes may fail. In particular,

1Equality may perhaps be a right, but no human power can ever turn it into a fact.

63 63

63 63

The Bulletin of the EATCS

55

thewait-free((n−1)-resilient, wheren is the number of processes) model assumes
that any subset of processes may fail.

However, in real systems, processes do not always fail in theuniform man-
ner. Processes may be unequally reliable and prone to correlated failures. A
software bug makes all processes using the same build vulnerable, a router’s fail-
ure may makes all processes behind it unavailable, a successful malicious attack
on a given process increases the chances to compromise processes running the
same software, etc. Thus, understanding how to deal with non-uniform failures is
crucial.

Adversaries. Consider a system of three processes,p, q, andr. Suppose thatp
is very unlikely to fail, and otherwise, all failure patterns are allowed. Since we
only exclude executions in whichp fails, the set of correct processes in any given
execution must belong to{p, pq, pr, pqr}2.

Now we give an example of correlated failures. Suppose thatp andq share
a software componentx, p andr share a software componenty, andq andr are
built atop the same hardware platformz (Figure 1). Further, letx, y, andz be
prone to failures, but suppose that it is very unlikely that two failures occur in the
same execution. Hence, the possible sets of correct processes in our system are
{pqr, p, q, r}.

q

p r

x

y

z

Figure 1: A system modeled by the adversary{pqr, p, q, r}: p andq share com-
ponentx, p and r share componenty, andq and r run atop the same hardware
platformz.

The notion of a genericadversaryintroduced by Delporte et al. [9] intends
to model such scenarios. An adversaryA is defined as a set of possible correct
process subsets. E.g., thet-resilient adversaryAt-res in a system ofn processes
consists of all sets ofn − t or more processes. We say that an execution isA-
compliantif the set of processes that are correct in that execution belongs toA.
Thus, an adversaryA describes a model consisting ofA-compliant executions.

2For brevity, we simply writepqr when referring to the set{p, q, r}.

64 64

64 64

BEATCS no 106 THE EATCS COLUMNS

56

The formalism of adversaries [9] assumes that processes fail only by crashing,
and adversaries only specify thesetsof processes that may be correct in an execu-
tion, regardless of the timing of failures. Of course, this sorts out many kinds of
possible adversarial behavior, such as malicious attacks or timing failures. How-
ever, it is probably the simplest model that still captures important features of
non-uniform failures.

Distributed tasks. In this paper, we focus on a class of distributed-computing
problems calledtasks. A task can be seen as a distributed variant of a function
from classical (centralized) computing: given a distributed input (aninput vector,
specifying one input value for every process) the processesare required to pro-
duce a distributed output (anoutput vector, specifying one output value for every
process), such that the input and output vectors satisfy thegiventask specification.

The classical theory of computational complexity theory categorizes functions
based on their inherent difficulty (e.g., with respect to solving them on a Turing
machine). In the distributed setting, the difficulty in solving a task also depends
on the adversary we are willing to consider. There are tasks that can be trivially
solved on a Turing machine, but are not solvable in the presence of some dis-
tributed adversaries. For example, the fundamental task ofconsensus, in which
the processes must agree on one of the input values, cannot besolved assuming
the 1-resilient adversaryA1-res [11, 28]. More generally, the task ofk-set con-
sensus [8], where every correct process is required to output an input value so
that at mostk different values are output, cannot be solved in the presence of
Ak-res [21, 30, 4].

Most of this paper deals withcolorlesstasks (also called convergence tasks [5]).
Informally, colorless tasks allow every process to adopt aninput or output value
from any other participating process. Colorless tasks include consensus [11],k-set
consensus [8] and simplex agreement [22].

The relative power of an adversary. This paper primarily addresses the fol-
lowing question. Given a taskT and an adversaryA, isT solvable in the presence
ofA?

Intuitively, the more sets an adversary comprises, the moreexecutions our sys-
tem may expose, and, thus, the more powerful is the adversaryin “disorienting”
the processes. In this sense, thewait-freeadversaryAwf = An−1-res is the most
powerful adversary, since it describes the set ofall possible executions.

In contrast, a “singleton” adversaryA = {S} that consists of only one set
S ⊆ P is very weak. For example, we can use any process inS as the “leader”
that never fail. This allows us to solve consensus or implement any sequential
data type [18].

65 65

65 65

The Bulletin of the EATCS

57

But in general, there are exponentially many adversaries defined for n pro-
cesses that are not related by containment. Therefore, it isdifficult to say a priori
which of two given adversaries is stronger.

Superset-closed adversaries.We start with recalling the model ofdependent
failuresproposed by Junqueira and Marzullo [25], defined in terms ofcoresand
survivor sets. In brief, a survivor set is a minimal subset of processes that can
be the set of correct processes in some execution, and a core is a minimal set of
processes that do not all fail in any execution.

We show that, in fact, the formalism of [25] describes a special class ofsuperset-
closedadversaries: every superset of an element of such an adversary A is also
an element ofA. The minimal elements ofA (no subset of which are inA) are
the survivor sets of the resulting model.

It turns out that the power of a superset-closed adversaryA in solving colorless
tasks is precisely characterized by the size of its minimal core, i.e., the minimal-
cardinality set of processes that cannot all fail in anyA-compliant execution. A
superset-closed adversary with minimal core sizec allows for solving a colorless
taskT if and only if T can be solved (c − 1)-resiliently. In particular, ifc = 1,
then any task can be solved in the presence ofA, and ifc = n, thenA only allows
for solving wait-free solvable tasks. Thus, all superset-closed adversaries can be
categorized inn classes, based on their minimal core sizes.

We present two ways of deriving this result: first, using the elements of modern
topology (proposed by Herlihy and Rajsbaum [20]) and second, through shared-
memory simulations (proposed by Gafni and Kuznetsov [16]).

Characterizing generic adversaries. The dependent-failure formalism of [25]
is however not expressive enough to capture the task solvability in generic non-
uniform failure models. It is easy to construct an adversarythat has the minimal
core sizen but allows for solving tasks that can cannot be wait-free solved. One
example is the “bimodal” adversary{pqr, p, q, r} (Figure 1) that allows for solving
2-set consensus.

Therefore, to characterize the power of a generic adversary, we need a more
sophisticated criterion than the minimal core size. Surprisingly, such a criterion,
that we callset consensus power, is not difficult to find. Suppose that we can
partition an adversaryA into k sub-adversaries, each powerful enough to solve
consensus. We conclude thatA allows for solvingk-set consensus: simply runk
consensus algorithms in parallel, each assuming a distinctsub-adversary. More-
over, we show that the set consensus power ofA, defined as the minimal such
number of sub-adversaries, precisely characterizes the power ofA in solving col-
orless tasks.

66 66

66 66

BEATCS no 106 THE EATCS COLUMNS

58

Therefore, generic adversaries defined onn processes can still be split inton
equivalence classes. Each classj consists of adversaries of set consensus powerj
that agree on the set of colorless tasks they allow for solving: namely, tasks that
can be solved (j−1)-resiliently and notj-resiliently. In particular, classn contains
adversaries that only allow for solving tasks that can be solved wait-free, and class
1 allows for solving consensus and, thus, any task.

Roadmap. We begin with a background section that states recalls the basics
of our model and the notion of a distributed task. Then we discuss several ap-
proaches to model non-uniform failures: dependent failuremodel of Junqueira
and Marzullo [25], adversaries of Delporte et alii [9], and asymmetric progress
conditions by Imbs et alii [24].

Then we present a complete characterization of superset-closed adversaries.
The result is first shown using elements of combinatorial topology [20] and then
through simple shared-memory simulations [16].

We then characterize generic (not necessarily superset-closed) adversaries us-
ing the notion of set consensus power and relate it with thedisagreement power
proposed by Delporte et alii [9].

We conclude with a brief overview of open questions, primarily related to
solving generic (not necessarily colorless) tasks in the presence of generic (not
necessarily superset-closed) adversaries.

The results described in this paper originally appeared in [9, 14, 20, 16, 24,
31].

2 Background

In this section, we briefly state our system model and recall the notion of a dis-
tributed task and two important constructs used in this paper: Commit-Adopt and
BG-simulation.

2.1 Model

We consider a systemΠ of n processes,p1, . . . , pn, that communicate via reading
and writing in the shared memory. We assume that the system isasynchronous,
i.e., relative speeds of the processes are unbounded. Without loss of generality, we
assume that processes share anatomic snapshotmemory [1], where every process
may update its dedicated element and take atomic snapshot ofthe whole memory.

A process may only fail by crashing, and otherwise it must respect the algo-
rithm it is given. Acorrectprocess never crashes.

67 67

67 67

The Bulletin of the EATCS

59

2.2 Tasks

In this paper, we focus on a specific class of distributed computing problems,
calledtasks[22]. In a distributed task [22], every participating process starts with
a unique input value and, after the computation, is expectedto return a unique
output value, so that the inputs and the outputs across the processes satisfy certain
properties. More precisely, ataskis defined through a setI of input vectors (one
input value for each process), a setO of output vectors (one output value for each
process), and a total relation∆ : I 7→ 2O that associates each input vector with a
set of possible output vectors. An input⊥ denotes anot participatingprocess and
an output value⊥ denotes anundecidedprocess.

For example, in the task ofk-set consensus, input values are in{⊥, 0, . . . , k},
output values are in{⊥, 0, . . . , k}, and for each input vectorI and output vectorO,
(I ,O) ∈ ∆ if the set of non-⊥ values inO is a subset of values inI of size at most
k. The special case of 1-set consensus is calledconsensus[11].

We assume that every process runs afull-information protocol: initially it
writes its input value and then alternates between taking snapshots of the memory
and writing back the result of its latest snapshots. After a certain number of such
asynchronous rounds, a process may gather enough state todecide, i.e., i.e., to
produce an irrevocable non-⊥ output value.

In colorlesstask (also calledconvergencetasks [5]) processes are free to use
each others’ input and output values, so the task can be defined in terms of input
and outputsetsinstead of vectors.3 Thek-set consensus task is colorless.

Note that to solve a colorless task, it is sufficient to find a protocol (a decision
function) that allows just one process to decide. Indeed, ifsuch a protocol exists,
we can simply convert it into a protocol that allows every correct process to decide:
every process simply applies the decision function to the observed state of any
other process and adopts the decision.

2.3 The Commit-Adopt protocol

One tool extensively used in this paper is thecommit-adoptabstraction (CA) [12].
CA exports one operationpropose(v) that returns (commit, v′) or (adopt, v′), for
v′, v ∈ V, and guarantees that

(a) every returned value is a proposed value,

(b) if only one value is proposed then this value must be committed,

3Formally, letval(U) denote the set of non-⊥ values in a vectorU. In a colorless task, for
all input vectorsI and I ′ and all output vectorsO andO′, such that (I ,O) ∈ ∆, val(I) ⊆ val(I ′),
val(O′) ⊆ val(O), we have (I ′,O) ∈ ∆ and (I ,O′) ∈ ∆.

68 68

68 68

BEATCS no 106 THE EATCS COLUMNS

60

(c) if a process commits on a valuev, then every process that returns adoptsv
or commitsv, and

(d) every correct process returns.

The CA abstraction can be implemented wait-free [12]. Moreover, CA can be
viewed as a way to establishsafetyin shared-memory computations.

For example, consider a protocol where every processes goesthrough a series
of instances of commit-adopt protocols,CA1,CA2, . . ., one by one, where each
instance receives a value adopted in the previous instance as an input (the initial
input value forCA1). One can easily see that once a valuev is committed in
some CA instance, no value other thanv can ever be committed (properties (a)
and (c) above). One the other hand, if at most one value is proposed to some CA
instance, then this value must be committed by every processthat takes enough
steps (property (b) above).

This algorithm can be viewed as asafeversion of consensus: every committed
value is a proposed value and no two processes commit on different values (prop-
erties (a), (b) and (c) above). Given that every correct process goes from one CA
instance to the other as long as it does not commit (property (d) above), we can
boost the liveness guarantees of this protocol using external oracles.

In fact, the algorithmper seguarantees termination in everyobstruction-free
execution, i.e., assuming that eventually at most one process is taking steps. More-
over, we can build a consensus algorithm that terminatesalmost alwaysif we
allow processes to toss coins when choosing an input value for the next CA in-
stance [2]. Also, if we allow a process to access anoracle (e.g., theΩ failure
detector of [6]) that eventually elects a correct leader process, we get a live con-
sensus algorithm.

2.4 The BG-simulation technique.

Another important tool used in this paper isBG-simulation[4, 5]. BG-simulation
is a technique by whichk + 1 processess1, . . . , sk+1, calledsimulators, can wait-
free simulate ak-resilient(Ak-res-compliant) execution of any protocolAlg on m
processesp1, . . . , pm (m> k). The simulation guarantees that each simulated step
of every processp j is either agreed upon by all simulators, or one less simulator
participates further in the simulation for each step which is not agreed on.

The central building block of the simulation is theBG-agreementprotocol.
BG-agreement reminds consensus: processes propose valuesand agree one of the
proposed values at the end. Indeed, the BG-agreement protocol ensures safety of
consensus—every decided value was previously proposed, and no two different
values are decided— but not liveness. If one of the simulators slows down while

69 69

69 69

The Bulletin of the EATCS

61

executing BG-agreement, the protocol’s execution at othercorrect simulators may
“block” until the slow simulator finishes the protocol. If the slow simulator is
faulty, no other simulator is guaranteed to decide.

Suppose the simulation tries to promotem > k simulated processes in a fair
(e.g., round-robin) way. As long there is a live simulator, at leastm− k simulated
processes performs infinitely many steps ofAlg in the simulated execution.

Recently the technique of BG-simulation was extended to show that any col-
orless task that can be solved assuming the (k − 1)-resilient adversary can also be
solved using read-write registers andk-set consensus objects [13].

3 Non-uniform failures in shared-memory systems

In this section, we overview several approaches to model non-uniform failures:
dependent failure model of Junqueira and Marzullo [25], adversaries of Delporte
et alii [9], and asymmetric progress conditions by Imbs et alii [24] and Tauben-
feld [31].

3.1 Survivor Sets and Cores

Junqueira and Marzullo [26, 25] proposed to model non-uniform failures using
the language ofsurvivor setsandcores. A survivor setS ⊆ Π if a set of processes
such that:

(a) in some execution,S is the set of correct processes, and

(b) S is minimal: for every proper subsetS′ of S, there is no execution in which
S′ is the set of correct processes.

A collectionS of survivor sets describes a system such that the set of correct
processes in every execution contains a set inS.

Respectively, acore C is a set of processes such that:

(a) in every execution, some process inC is correct, and

(b) C is minimal: for every proper subsetC′ of C, there is an execution in which
every process inC′ fails.

Thus, a core is a minimal set of processes that cannot be all faulty in any execution
of our system. Note that the set of cores is unambiguously determined by the set
of survivor sets.

A core is actually aminimal hitting setof the set system built of survivor sets,
and a core of smallest size is a corresponding minimum hitting set. Determining
minimum hitting set of a set system is known to be NP-complete[27].

70 70

70 70

BEATCS no 106 THE EATCS COLUMNS

62

The language of cores [26, 25] proved to be convenient in understanding the
ability of a system with non-uniform failures to solve consensus or build a fault-
tolerant replicated storage.

3.2 Adversaries

A more general way to model non-uniform failures was proposed by Delporte et
al. [9]. Formally, anadversarydefined for a set of processesΠ is a non-empty
set of process subsetsA ⊆ 2Π . We say that an execution isA-compliantif the
correct set, i.e., the set of correct processes, in that execution belongs toA. Thus,
assuming an adversaryA, we only consider the set ofA-compliantexecutions.4

By convention, we assume that in every execution, at least one process is correct,
i.e., no adversary contains∅.

Given a taskT and an adversaryA, we say thatT isA-resiliently solvableif
there is a protocol such that in every execution, the outputsmatch the inputs with
respect to the specification ofT, and in everyA-compliant execution, each correct
process eventually produces an output.

It is easy to see that the language of survivor sets of [25] describes a special
class ofsuperset-closedadversaries. Formally, the setSC of superset-closed ad-
versaries consists of allA such that for allS ∈ A andS ⊆ S′ ⊆ Π, we have
S′ ∈ A.

For example, consider thet-resilient adversaryAt-res = {S ⊆ Π, |S| ≥ n − t}.
By definition,At-res ∈ SC. The survivor sets ofAt-res are all sets ofn− t processes,
and the cores are all sets oft+1 processes. The (n−1)-resilient adversaryAWF =

An−1-res is also calledwait-free. An AWF-resilient task solution must ensure that
every process obtains an output in a finite number of its own steps, regardless of
the behavior of the rest of the system.

Another exampleALp = {S ⊆ Π|p ∈ S} ∈ SC describing a system in whichp
never fails.ALp has one survivor set{p} and one core{p}. Intuitively, p may then
act as a correct leader in a consensus protocol. Thus, every task can be solved in
the presence ofALp [18].

Thek-obstruction-freeadversaryAk-OF is defined as{S ⊆ Π | 1 ≤ |S| ≤ k}.
In particular,AOF = A1-OF allows for solving consensus [10]. Clearly,Ak-OF for
1 ≤ k < n is not inSC.

The “bimodal” adversary{pqr, p, q, r} (Figure 1) is not inSC either: it con-
tains the singletonp but not its supersetspq andpr.

4Note that in the original definition [9], an adversary is defined as a collection offaulty sets, i.e.,
the sets of processes that can fail in an execution. For convenience, we chose here an equivalent
definition based oncorrect sets.

71 71

71 71

The Bulletin of the EATCS

63

3.3 Failure patterns and environments

An adversary is in fact a special case of afailure environmentintroduced by Chan-
dra et alii [6]. An environmentE is a set offailure patterns. For a given run, a
failure patternF is a map that associates each time valuet ∈ T with a set of pro-
cesses crashed by timet. The set of correct processes, denotedcorrect(F) is thus
defined asΠ − ∪t∈TF(t).

Since an adversaryA only defines sets of correct processes and does not spec-
ify the timing of failures, it can be viewed as a specific environmentEA that is
closed under changing the timing of failures. More precisely,EA = {F | correct(F) ∈
A}. Clearly, if F ∈ EA andcorrect(F) = correct(F′), thenF′ ∈ EA.

Thus, we can rephrase the statement “taskT can be solvedA-resiliently” as
“task T can be solved in environmentEA”. It is shown in [15] that, with respect
to colorless tasks, all environments can be split inton equivalence classes, and
each classj agrees on the set of tasks it can solve: namely, tasks that canbe
solved (j − 1)-resiliently and notj-resiliently. Therefore, by applying [15], we
conclude that each adversary belongs to one of such equivalence class. However,
this characterization does not give us an explicit algorithm to compute the class to
which a given adversary belongs.

3.4 Asymmetric progress conditions

Imbs et alii [24] introducedasymmetric progress conditionsthat allow us to spec-
ify different progress guarantees for different processes. Informally, for sets of
processesX andY, X ⊆ Y ⊆ Π, (X,Y)-liveness guarantees that every process in
X makes progress regardless of other processes (wait-freedom for processes inX)
and every process inY − X makes progress if it is eventually the only process in
Y − X taking steps (obstruction-freedom for processes inY− X).

With respect to solving colorless tasks, it is easy to represent (X,Y)-liveness
using the formalism of adversaries. The equivalent adversary AX,Y consists of all
subsets ofΠ that intersect withX and all sets{pi} ∪ S such thatpi ∈ Y − X and
S ⊆ Π − Y. It is easy to see that a colorless task is (read-write) solvable assuming
(X,Y)-liveness if and only if it is solvable in the presence ofAX,Y.

Taubenfeld [31] introduced a refined condition that associates each process
pi with a setPi of process subsets (each containingpi). Then pi is expected to
make progress (e.g., output a value in a task solution) only if the current set of
correct processes is inPi. Similarly, with respect to the question of solvability
of colorless tasks, every such progress condition can be modeled as an adversary,
defined simply as the union∪iPi.

72 72

72 72

BEATCS no 106 THE EATCS COLUMNS

64

4 Characterizing superset-closed adversaries

Intuitively, the size of a smallest-cardinality core of an adversaryA, denoted
csize(A), is related to its ability to “confuse” the processes (preventing them from
agreement). Indeed, since in every execution, at least one process in a minimal
coreC is correct, we can treatC as a collection of leaders. But for a superset-
closed adversary, every non-empty subset ofC can betheset of correct processes
in C in some execution. Therefore, intuitively, the system behaves like a wait-free
system onc = |C| processes, wherec quantifies the “degree of disagreement” that
we can observe among all the processes in the system.

In this section, we show thatcsize(A) precisely captures the power ofA with
respect to colorless tasks. We overview two approaches to address this question,
each interesting in its own right: using combinatorial topology and using shared-
memory simulations.

4.1 A topological approach

Herlihy and Rajsbaum [20] derived a characterization of superset-closed adver-
saries using the Nerve Theorem of modern combinatorial topology [3]. A set of
finite executions is modeled as asimplicial complex, a geometric (or combina-
torial) structure where each simplex models a set of local states (views) of the
processes resulting after some execution. This allows for reasoning about the
power of a model using topological properties (e.g., connectivity) of simplicial
complexes it generates.5

The model of [20] is based oniteratedcomputations: each processpi proceeds
in (asynchronous) rounds, where every roundr is associated with a shared array
of registersM[r, 1], . . . ,M[r, n]. Whenpi reaches roundr, it updatesM[r, i] with
its current view and takes an atomic snapshot ofM[r, .]. In the presence of a
superset-closed adversaryA, the set of processes appearing in a snapshot should
be an element ofA. We call the resulting set of executions theA-compliant
iterated model.

Naturally, given an adversaryA, it is easy to implement an iterated model with
desired properties in the classical (non-iterated) sharedmemory model. To imple-
ment a round of the iterated model, every process writes its value in the memory
and takes atomic snapshots until all processes in some survivor set (minimal ele-
ment inA) are observed to have written their values. The result of this snapshot is
then returned. In anA-compliant execution, this allows for simulating infinitely
many iterated rounds.

5For more information on the applications of algebraic and combinatorial topology in dis-
tributed computing, check Maurice Herlihy’s lectures at Technion [19].

73 73

73 73

The Bulletin of the EATCS

65

Surprisingly, we can also use theA-compliant iterated model to simulate an
A-compliant execution in the read-write model wheresomeparticipating set of
processes inA takes infinitely many steps (please check the wonderful simulation
algorithm proposed recently by Gafni and Rajsbaum [17]). Inparticular, for the
wait-free adversaryAWF, the simulation isnon-blocking: at least one participating
process accepts infinitely many steps in the simulated execution.

Note that if the simulatedA-compliant execution is used for anA-resilient
protocol solving a given task, then we are guaranteed that atleast one process
obtains an output. But to solve a colorless task it is sufficient to produce an output
for one participating process (all other participants may adopt this output). Thus:

Theorem 1. [17] hosted LetA be a superset-closed adversary. A colorless task
can be solved in theA-compliant iterated model if and only if it can be solved in
theA-compliant model.

This result allows us to apply the topological formalism as follows. The set
of r-round executions of theA-compliant iterated model applied to an initial sim-
plexσ generates aprotocol complexKr(σ). By a careful reduction to the Nerve
Theorem [3],Kr(σ) can be shown to be (c− 2)-connected, i.e.,Kr(σ) contains no
“holes” in dimensionsc− 2 or less (any (c− 2)-dimensional sphere can be contin-
uously contracted to a point). The Nerve theorem establishes the connectivity of
a complex from the connectivity of its components.

Roughly, the argument of [20] is built by induction onn, the number of pro-
cesses. For a given adversaryA on n processes with the minimal core sizec,
theA-compliant protocol complexKr(σ) can be represented as a union of pro-
tocol complexes, each corresponding to a sub-adversary ofA on n− 1 processes
with core sizec−1. By induction, each of these sub-adversaries is at least (c−3)-
connected. Applying the Nerve theorem, we derive thatKr(σ) is (c−2)-connected.
The base casen = 1 andc = 1 is trivial, since every non-empty complex is, by
definition, (−1)-connected.

Thus,Kr(σ) is (c−2)-connected. Hence, no task that cannot be solved (c−1)-
resiliently, in particular (c − 1)-set consensus, allows for anA-resilient solu-
tion [22].

Using the characterization of [22], we can reduce the question ofA-resilient
solvability of a colorless taskT = (I,O,∆) to the existence of a continuous map
f from |skelc−1(I)|, the Euclidean embedding of the (c− 1)-skeleton(the complex
of all simplexes of dimensionc − 1 and less) of the input complexI, to |O|, the
Euclidean embedding of the output complexO, such thatf is carried by∆, i.e.,
f (σ) ⊆ ∆(σ). Indeed, the fact that ofKr(σ) is (c − 2)-connected (and thusd-
connected for all 0≤ d ≤ c− 2) implies that every continuous map fromd-sphere
of Kr(σ) extends to the (d + 1)-disk, for 0≤ d ≤ c − 2. Intuitively, we can thus

74 74

74 74

BEATCS no 106 THE EATCS COLUMNS

66

inductively construct a continuous map from|skelc−1(I)| to |O|, starting from any
map sending a vertex ofI to a vertex ofO (for d = 0).

On the other hand, it is straightforward to construct anA-resilient protocol
solving a colorless taskT, given a continuous map from the (c−1)-skeleton of the
input complex ofT to the output complex ofT. Thus:

Theorem 2. [20] An adversaryA ∈ SC with the minimal core size c allows for
solving a colorless task T= (I,O,∆) if and only if there is a continuous map from
|skelc−1(I)| to |O| carried by∆.

Therefore, two adversaries inA,B ∈ SC with the same minimal core sizec
agree on the set of tasks they allow for solving, which is exactly the set of tasks
that can be solved (c− 1)-resiliently (sincecsize(A(c−1)-res) = c).

4.2 A simulation-based approach

It is comparatively straightforward to characterize superset-closed adversaries us-
ing classical BG-simulation [4, 5], and we present a complete proof below.

Theorem 3. [14] Let A be a superset-closed adversary. A colorless task T is
A-resiliently solvable if and only if T is(c− 1)-resiliently solvable, where c is the
minimal core size ofA.

Proof. Let a colorless taskT be (c − 1)-resiliently solvable, and letPc be the
corresponding algorithm. LetC = {q1, . . . , qc} be a minimal-cardinality core ofA
(|C| = c).

Let the processes inC BG-simulate the algorithmPc running on all processes
in Π. Here each simulatorqi tries to use its input value of taskT as an input value
of every simulated process [4, 5]. SinceC is a core ofA, in everyA-compliant
execution, at mostc− 1 simulators may fail. Since a faulty simulator results in at
most one faulty simulated process, the produced simulated execution is (c − 1)-
resilient. SincePc gives a (c − 1)-resilient solution ofT, at least one simulated
process must eventually decide in the simulated execution.The output value is
then adopted by every correct process. Moreover, the decided value is based on
the “real” inputs of some processes. SinceT is colorless, the decided values are
correct with respect to the input values and, thus, we obtainanA-resilient protocol
to solveT.

For the other direction, suppose, by contradiction that there exists anA-
resilient protocolPA to solve a colorless taskT, but T is not possible to solve
(c− 1)-resiliently.

We claim thatA(c−1)-res ⊆ A, i.e., each (c − 1)-resilient execution isA-
compliant. Suppose otherwise, i.e., some setS of n − c + 1 processes is not in

75 75

75 75

The Bulletin of the EATCS

67

A. SinceA is superset-closed, no subset ofS is inA (otherwise,S would be in
A). No process inS belongs to any set inA, thus, the smallest core ofAmust be
a subset ofΠ − S. But |Π − S| = c− 1—a contradiction with the assumption that
the size of a minimal cardinality core ofA is c.

Thus, every (c−1)-resilient execution is alsoA-compliant, which implies that
PA is in fact a (c−1)-resilient solution toT—a contradiction with the assumption
thatT is not (c− 1)-resiliently solvable. �

Theorem 3 implies that adversaries inSC can be categorized inton equiva-
lence classes,SC1, . . ., SCn, where classSCk corresponds to cores of sizek. Two
adversaries that belong to the same classSCk agree on the set of colorless tasks
they are able to solve, and it is exactly the set of all colorless task that can be
solved (k− 1)-resiliently.

5 Measuring the Power of Generic Adversaries

Let us come back to the “bimodal” adversaryABM = {pqr, p, q, r} (Figure 1). Its
only core is{p, q, r}. Does it mean thatABM only allows for solving trivial (wait-
free solvable) tasks? Not really: by splittingABM in two sub-adversariesAFF =

{pqr} andAOF = {p, q, r} and running two consensus algorithms in parallel, one
assuming no failures (AFF) and one assuming that exactly one process is correct
(AOF), gives us a solution to 2-set consensus.

5.1 Solving consensus withABM

But can we solve more in the presence ofABM? E.g., is there a protocolAlg that
solves consensusABM-resiliently? We derive that the answer is no by showing
how processes,s0 and s1, can wait-free solve consensus through simulating an
ABM-compliant execution ofAlg. Initially, the two processes act as BG simula-
tors [4, 5] trying to simulate an execution ofAlg on all three processesp, q, and
r. When a simulatorsi (i = 0, 1) finds out that the simulation of some step is
blocked (which means that the other simulators1−i started but has not yet com-
pleted the corresponding instance of BG-agreement),si switches to simulating a
solo executionof the next process (in the round-robin order) in{p, q, r}. If the
blocked simulation eventually resolves (s1−i finally completes the instance of BG-
agreement), thensi switches back to simulating allp, q andr.

If no simulator blocks a simulated step forever, the simulated execution con-
tains infinitely many steps of every process, i.e., the set ofcorrect processes in it
is {p, q, r}. Otherwise, eventually some simulated process forever runs in isolation
and the set of correct processes in the simulated execution is {p}, {q}, or {r}. In

76 76

76 76

BEATCS no 106 THE EATCS COLUMNS

68

both cases, the simulated execution ofAlg isABM-compliant, and the algorithm
must output a value, contradicting [11, 28]. This argument can be easily extended
to show thatABM cannot allow for solving any colorless task that cannot be solved
1-resiliently.

5.2 Disagreement power of an adversary

Thus, we need a more sophisticated criterion to evaluate thepower of a generic
adversaryA. Delporte et alii [9] proposed to evaluate the “disorienting strength”
of an adversaryA via itsdisagreement power.

Definition 1. [9] The disagreement power of an adversaryA is the largest k such
that k-set consensus cannot be solved in the presence ofA.

It is shown in [9] that adversaries of the same disagreement power agree on
the sets of colorless task they allow for solving. The resultis derived via a three-
stage simulation. First, it is shown how an adversary can simulate anydominating
adversary, where the domination is defined through an involved recursive inclu-
sion property. Second, it is shown that every adversaryA that does not dominate
thek-resilient adversary6 is strong enough to implement the anti-Ωk failure detec-
tor that, in turn, can be used to solvek-set consensus [34]. Finally, it is shown
that vector-Ωk (a failure detector equivalent to anti-Ωk) can be used to solve any
colorless task that can be solvedk-resiliently. Thus, the largestk such thatk-set
consensus cannot be solvedA-resiliently indeed captures the power ofA.

The characterization of adversaries proposed in [9] does not give a direct way
of computing the disagreement power of an adversaryA and it does not provide
a directA-resilient algorithm to solve a colorless taskT, whenT isA-resiliently
solvable.

In the rest of this section, we give a simple algorithm to compute the dis-
agreement power of an adversary. For convenience, we introduce notion ofset
consensus power, i.e., the smallestk such thatk-set consensus can be solved in
the presence ofA. Clearly, the disagreement power ofA is the set consensus
power ofAminus 1.

5.3 Definingsetcon

LetA be an adversary and letS ⊆ P be any subset of processes. ThenAS denotes
the adversary that consists of all elements ofA that are subsets ofS (including
S itself if S ∈ A). E.g., forA = {pq, qr, q, r} andS = qr, AS = {qr, q, r}. For

6Recall that thek-resilient adversary consists of all subsets ofΠ of size at leastn− k.

77 77

77 77

The Bulletin of the EATCS

69

S ∈ A anda ∈ S, let AS,a denote the adversary that consists of all elements ofAS

thatdo notincludea. E.g., forA = {pq, qr, q, r}, S = qr, anda = q,AS,a = {r}.
Now we define a quantity denotedsetcon(A), which we will show to be the set

consensus power ofA. Intuitively, our goal is to splitA into the minimal number
k of sub-adversaries, such that every sub-adversary allows for solving consensus.
ThenA allows for solvingk-set consensus, but not (k − 1)-set consensus (other-
wise,k would not be minimal).

Definition 2. setcon(A) is defined as follows:

• If A = ∅, then setcon(A) = 0

• Otherwise, setcon(A) = maxS∈Amina∈S setcon(AS,a) + 1

Thus,setcon(A), for a non-empty adversaryA, is determined assetcon(AS̄,ā)+
1 whereS̄ is an element ofA and ā is a process inS̄ that “max-minimize”
setcon(AS,a). Note that forA , ∅, setcon(A) ≥ 1.

We say thatS ∈ A is proper if it is not a subset of any other element inA.
Let proper(A) denote the set of proper elements inA. Note that since for all
S′ ⊂ S, mina∈S′ setcon(AS′,a) ≤ mina∈S setcon(AS,a), we can replaceS ∈ A with
S ∈ proper(A) in Definition 2.

q r

rq

{pqr, pq, pr, p}

p q r

{q, r}

p

Figure 2: AdversaryA = {pqr, pq, pr, p, q, r} decomposed in two sub-adversaries,
{pqr, pq, pr, p} and{q, r}, each withsetcon= 1.

5.4 Calculatingsetcon(A): examples

Consider an adversaryA = {pqr, pq, pr, p, q, r}. It is easy to see thatsetcon(A) =
2: for S = pqr anda = p, we haveAS,p = {q, r} andsetcon(AS,a) = 1. Thus,
we decomposeA into two sub-adversaries{pqr, pq, pr, p} and{q, r}, each strong
enough to solve consensus (Figure 2). Intuitively, in an execution where the cor-
rect set belongs toA − AS,a = {pqr, pq, pr, p}, processp can act as a leader

78 78

78 78

BEATCS no 106 THE EATCS COLUMNS

70

for solving consensus. If the correct set belongs toAS,a = {q, r} (eitherq or r
eventually runs solo) thenq andr can solve consensus using an obstruction-free
algorithm. Running the two algorithms in parallel, we obtain a solution to 2-set
consensus. The reader can easily verify that any other choice ofa ∈ pqr results in
three levels of decomposition.

As another example, consider thet-resilient adversaryAt-res = {S ⊆ Π, |S| ≥
n − t}. It is easy to verify recursively thatsetcon(At-res) = t + 1: at each level
1 ≤ j ≤ t + 1 of recursion we consider a setS of n − j + 1 elements, pick up a
processp ∈ S and delegate the set ofn− j processes that do not includep to level
j+1. At levelt+1 we get one set of sizen−t and stop. Thus,setcon(At-res) = t+1.

More generally, for any superset-closed adversaryA (A ∈ SC), setcon(A) =
csize(A), the size of a smallest-cardinality core ofA. To show this, we pro-
ceed by induction. The statement is trivially true for an empty adversaryA
with csize(A) = setcon(A) = 0. Now suppose that for all 0≤ j < k and all
A′ ∈ SC with csize(A′) = j, we havesetcon(A′) = j. ConsiderA ∈ SC such
that csize(A) = k. Note that the only proper element ofA is the whole set of
processesΠ. Thus,setcon(A) = mina∈Π setcon(AΠ,a) + 1. By the induction hy-
pothesis and the fact thatcsize(A) = k, we have mina∈Π setcon(AΠ,a) = k − 1.
Thus,setcon(A) = k.

Thus, by Theorem 3,setcon() indeed characterizes the disorienting power of
adversariesA ∈ SC: a task isA-resiliently solvable if and only if it is (c − 1)-
resiliently solvable, wherec = setcon(A). In the rest of this section, we extend
this result fromSC to the universe of all adversaries.

5.5 Solving consensus withsetcon= 1

Before we characterize the ability of adversaries to solve colorless tasks, we con-
sider the special case of adversaries ofsetcon= 1.

Consider an adversaryA andS ∈ A. Supposecsize(AS) = 1, and let{a} be
a core ofAS. Obviously,AS,a = ∅. On the other hand, ifAS,a = ∅, then{a} is a
core ofAS. Thus,setcon(A) = 1 if and only if∀S ∈ A, csize(AS) = 1

Supposesetcon(A) = 1. If S is the only proper element ofA, then we can
easily solve consensus (and, thus, any other task [18]), by deciding on the value
proposed by the only member of a core ofAS. The process is guaranteed to be
correct in every execution.

Now we extend this observation to the case whenA contains multiple proper
elements. The consensus algorithm, presented in Figure 3, is a “rotating coordi-
nator” algorithm inspired by by Chandra and Toueg [7].

The algorithm proceeds in rounds. In each roundr, every processpi first tries
to commit its current decision estimate in a new instance of commit-adoptCAr .
If pi succeeds in committing the estimate, the committed value iswritten in the

79 79

79 79

The Bulletin of the EATCS

71

Shared variables:
D, initially ⊥
R1, . . . ,Rn, initially ⊥

propose(v)
1 est:= v
2 r := 0
3 S := P
4 repeat
5 r := r + 1
6 (flag, est) := CAr .propose(est)
7 if flag= committhen
8 D := est; return(est) {Return the committed value}
9 Ri := (est, r)
10 wait until ∃S ∈ A, ∀p j ∈ S: Rj = (v j , r j) wherer j ≥ r or D , ⊥

{Wait until a set inA moves}
11 if pr mod n+1 ∈ S then
12 est:= vr mod n+1 {Adopt the estimate of the current leader}
13 until D , ⊥
14 return(D)

Figure 3: Consensus with a “one-level” adversaryA, setcon(A) = 1

80 80

80 80

BEATCS no 106 THE EATCS COLUMNS

72

“decision” registerD and returned. Otherwise,pi adopts the returned value as
its current estimate and writes it inRi equipped with the current round numberr.
Thenpi takes snapshots of{R1, . . . ,Rn} until either a setS ∈ A reaches roundr or
a decision value is written inD (in which case the process returns the value found
in D). If no decision is taken yet, thenpi checks if the coordinator of this round,
pr mod n, is in S. If so, pi adopts the value written inRr mod n and proceeds to the
next round.

The properties of commit-adopt imply that no two processes return different
values. Indeed, the first round in which some process commitson some value
v (line 8) “locks” the value for all subsequent rounds, and no other process can
return a value different fromv.

Suppose, by contradiction, that some correct process neverreturns in some
A-compliant executione. Recall thatA-compliant means that some set inA is
exactly the set of correct processes ine. If a process returns, then it has previ-
ously written the returned value inD. Since, in each round, a process performs
a bounded number of steps, by our assumption, no process everwrites a value
in D and every correct process goes through infinitely many rounds in e without
returning.

Let S̄ ∈ A be the set of correct processes ine. After a roundr ′ when all
processes outsidēS have failed, every element ofA evaluated by a correct process
in line 10 is a subset of̄S. Finally, since the minimal core size ofAS̄ is 1, all these
elements ofA overlap on some correct processp j.

Consider roundr = mn+ j ≥ r ′−1. In this round,p j not only belongs to all sets
evaluated by the correct processes, but it is also the coordinator (j = r mod n+1).
Thus, the only value that a process can propose to commit-adopt in roundr + 1 is
the value previously written byp j in Rj. Hence, every process that returns from
commit-adopt in roundr + 1 must commit and return—a contradiction. Thus:

Theorem 4. [14] If setcon(A) = 1, then consensus can be solvedA-resiliently.

5.6 Adversarial partitions

One way to interpret Definition 2 is to say thatsetcon(A) captures the size of
a minimal-cardinality partitioning ofA into sub-adversariesA1

, . . . ,Ak, each of
setcon= 1.

Indeed, for a proper setS ∈ A, selecting an elementa ∈ S allows for splitting
AS into two sub-adversariesAS−AS,a andAS,a. AS−AS,a is the set of elements
of AS that containa and, thus,setcon(AS − AS,a) = 1 (a can act as a leader).
Moreover, selectinga so thatsetcon(AS,a) is minimized makes sure thatAS,a =

setcon(AS) − 1.

81 81

81 81

The Bulletin of the EATCS

73

Intuitively,A1, the first such sub-adversary, is the union ofAS − AS,a, for all
such properS ∈ A anda ∈ S. AdversariesA2, . . . ,Ak are obtained by a recursive
partitioning of allA−A1. (A detailed description of this partitioning can be found
in [14].)

Thus, given an adversaryA such thatsetcon(A) = k, we derive thatA allows
for solvingk-set consensus. Just take the described above partitioningofA in to k
sub-adversaries,A1

, . . . ,Ak such that, for allj = 1, . . . , k, setcon(A j) = 1. Then
every process can runk parallel consensus algorithms, one for eachA j, propos-
ing its input value in each of these consensus instances (such algorithm exist by
Theorem 4). Since the set of correct processes in everyA-compliant execution
belongs to someA j, at least one consensus instance returns. The process decides
on the first such returned value. Moreover, at mostk different values are decided
and each returned value was previously proposed. Thus:

Theorem 5. [14] If setcon(A) = k, thenA allows for solving k-set consensus.

5.7 Characterizing colorless tasks

But can we solve (k−1)-set consensus in the presence ofA such thatsetcon(A) =
k? As shown in [14], the answer is no:A does not allow for solving any colorless
task that cannot be solved (k − 1)-resiliently. The result is derived by a simple
application of BG simulation [4, 5].

The intuition here is the following. Suppose, by contradiction, that we are
given an adversaryA such thatsetcon(A) = k and a colorless taskT that is
solvableA-resiliently but not (k− 1)-resiliently. LetAlg be the correspondingA-
resilient algorithm. Then we can construct a (k − 1)-resilient simulation of anA-
compliant execution ofAlg. Roughly, we build upon BG-simulation, except that
theorder in which steps ofAlg are simulated is not fixed in advance to be round-
robin. Instead, the order is determined online, based on thecurrently observed set
of participating processes.

We start with simulating steps of processes inS ∈ A such thatsetcon(AS) = k
(by Definition 2, suchS exists). If the outcome of a simulated step of some pro-
cessa cannot be resolved (the corresponding BG-agreement is blocked), we pro-
ceed to simulating processes in an elementS′ ∈ AS,a with the largestsetcon(if
there is any). As soon as the blocked BG-agreement on the stepof a resolves,
the simulation returns to simulatingS. Sincesetcon(A) = k, we can obtain ex-
actly k levels of simulation. Therefore, in a (k − 1)-resilient execution, at most
k − 1 simulated processes (each in a distinct sub-adversary ofA) can be blocked
forever. SinceA allows fork such sub-adversaries, at least one set inA accepts
infinitely many simulated steps. The resulting execution isthusA-compliant, and

82 82

82 82

BEATCS no 106 THE EATCS COLUMNS

74

we obtain a (k− 1)-resilient solution forT—a contradiction (detailed argument is
given in [14]).

In fact, the set of colorless tasks that can be solved given anadversaryA such
thatsetcon(A) = k is exactlythe set of colorless tasks that can be solved (k − 1)-
resiliently, but notk-resiliently. Indeed,A allows for solvingk-set consensus,
and we can employ the generic algorithm of [13] that solves any (k − 1)-resilient
colorless task using thek-set consensus algorithm as a black box. Thus:

Theorem 6. [14] Let A be an adversary such that setcon(A) = k and T be a
colorless task. ThenA solves T if and only if T is(k − 1)-resiliently solvable.

Recall that the set consensus power of an adversaryA is the smallestk such
thatA can solvek-set consensus. Theorem 6 implies:

Corollary 7. The set consensus power ofA is setcon(A), and the disagreement
power ofA is setcon(A) − 1.

By Theorem 3, determiningsetcon(A) may boil down to determining the min-
imum hitting set size ofA, and thus, by [27]:

Corollary 8. Determining the set consensus power of an adversary is NP-complete.

6 Concluding remarks

This survey primarily talks about colorless tasks (consensus, set agreement, sim-
plex agreement, et cetera) in the read-write shared memory systems where pro-
cesses may fail by crashing in a non-uniform (non-identicaland correlated) way.
We modeled such non-uniform failures using the language of adversaries [9]
and we derived a complete characterization of an adversary via its set consensus
power [14] (or, equivalently its disagreement power [9]).

The techniques discussed here can be extended to models where processes
may also communicate through stronger objects than just read-write registers
(e.g.,k-process consensus objects). In particular, BG-simulation is used in [14] to
capture the ability of leveled adversaries of [31] to prevent processes from solving
consensus amongn processes usingk-process consensus objects (k < n).

Combinatorial topology proved to be a powerful instrument in analyzing a
special class of superset-closed adversaries and colorless tasks, not only in read-
write shared-memory models [20], but also in a variety of other models, including
message-passing models and iterated models withk-set consensus objects.

However, the power of adversaries with respect to generic (not necessarily)
colorless tasks is still poorly understood. Consider, for example, a taskTpq which
requires processesp andq (in a system of three processesp, q, andr) to solve

83 83

83 83

The Bulletin of the EATCS

75

consensus and allowsr to output any value. The task is obviously not colorless:
the output ofr cannot always be adopted byp or q. The 2-obstruction-free ad-
versaryA2-OF = {pq, pr, qr, p, q, r} does not allow for solvingTpq: otherwise,
we would get a wait-free 2-process consensus algorithm. On the other hand,
Apq = {pqr, pq, p, r} (p is correct wheneverq is correct) allows for solvingTpq

(just usep as a leader forp andq). But setcon(A2-OF) = setcon(Apq) = 2!
One may say that the taskTpq is “asymmetric”: it prioritizes outputs of some

processes with respect to the others. Maybe our result wouldextend to symmetric
tasks whose specifications are invariant under a permutation of process identi-
fiers? Unfortunately, there are symmetric colored tasks that exhibit similar prop-
erties [33]. So we need a more fine-grained criterion than setconsensus power to
capture the power of adversaries with respect to colored tasks.

Finally, this paper focuses on non-uniformcrashfaults in asynchronous shared-
memory systems. Non-uniform patterns of generic (Byzantine) types of faults
are explored in the context of Byzantine quorum systems [29](see also a survey
in [32]) and secure multi-party computations [23]. Both approaches assume that a
faulty process can deviate from its expected behavior in an arbitrary (Byzantine)
manner. In particular, in [29], Malkhi and Reiter address the issues of non-uniform
failures in the Byzantine environment by introducing the notion of a fail-prone
system(adversarial structurein [23]): a setB of process subsets such that no ele-
ment ofB is contained in another, and in every execution someB ∈ B contains all
faulty processes. Determining the set of tasks solvable in the presence of a given
generic adversarial structure is an interesting open problem.

References

[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir
Shavit. Atomic snapshots of shared memory.Journal of the ACM, 40(4):873–890,
1993.

[2] Michael Ben-Or. Another advantage of free choice: Completely asynchronous
agreement protocols (extended abstract). InPODC ’83: Proceedings of the annual
ACM symposium on Principles of distributed computing, pages 27–30, 1983.

[3] A. Björner. Topological methods, pages 1819–1872. MIT Press, Cambridge, MA,
USA, 1995.

[4] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-
resilient asynchronous computations. InSTOC, pages 91–100. ACM Press, May
1993.

[5] Elizabeth Borowsky, Eli Gafni, Nancy A. Lynch, and Sergio Rajsbaum. The BG
distributed simulation algorithm.Distributed Computing, 14(3):127–146, 2001.

84 84

84 84

BEATCS no 106 THE EATCS COLUMNS

76

[6] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus.Journal of the ACM, 43(4):685–722, July 1996.

[7] Tushar Deepak Chandra and Sam Toueg. Unreliable failuredetectors for reliable
distributed systems.Journal of the ACM, 43(2):225–267, March 1996.

[8] Soma Chaudhuri. Morechoicesallow morefaults: Set consensus problems in totally
asynchronous systems.Information and Computation, 105(1):132–158, 1993.

[9] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Andreas Tiel-
mann. The disagreement power of an adversary.Distributed Computing, 24(3-
4):137–147, 2011.

[10] Faith Ellen Fich, Victor Luchangco, Mark Moir, and Nir Shavit. Obstruction-free
algorithms can be practically wait-free. InProceedings of the International Sympo-
sium on Distributed Computing, pages 493–494, 2005.

[11] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process.Journal of the ACM, 32(2):374–382,
April 1985.

[12] Eli Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony
and asynchrony. InProceedings of the 17th Symposium on Principles of Distributed
Computing, 1998.

[13] Eli Gafni and Rachid Guerraoui. Generalized universality. In Proceedings of the
22nd international conference on Concurrency theory, CONCUR’11, pages 17–27,
Berlin, Heidelberg, 2011. Springer-Verlag.

[14] Eli Gafni and Petr Kuznetsov. Turning adversaries intofriends: Simplified, made
constructive, and extended. InOPODIS, pages 380–394, 2010.

[15] Eli Gafni and Petr Kuznetsov. On set consensus numbers.Distributed Computing,
24(3-4):149–163, 2011.

[16] Eli Gafni and Petr Kuznetsov. RelatingL-Resilience and Wait-Freedom via Hitting
Sets. InICDCN, pages 191–202, 2011.

[17] Eli Gafni and Sergio Rajsbaum. Distributed programming with tasks. InOPODIS,
pages 205–218, 2010.

[18] Maurice Herlihy. Wait-free synchronization.ACM Transactions on Programming
Languages and Systems, 13(1):123–149, January 1991.

[19] Maurice Herlihy. Advanced topics in distributed algorithms. Technion Lecture,
2011. http://video.technion.ac.il/Courses/Adv_Topics_in_Dist_Algorithms.html.

[20] Maurice Herlihy and Sergio Rajsbaum. The topology of shared-memory adversaries.
In PODC, pages 105–113, 2010.

[21] Maurice Herlihy and Nir Shavit. The asynchronous computability theorem fort-
resilient tasks. InProceedings of the 25th ACM Symposium on Theory of Computing,
pages 111–120, May 1993.

85 85

85 85

The Bulletin of the EATCS

77

[22] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous com-
putability. Journal of the ACM, 46(2):858–923, 1999.

[23] Martin Hirt and Ueli M. Maurer. Complete characterization of adversaries tolera-
ble in secure multi-party computation (extended abstract). In PODC, pages 25–34,
1997.

[24] Damien Imbs, Michel Raynal, and Gadi Taubenfeld. On asymmetric progress con-
ditions. InPODC, 2010.

[25] Flavio Junqueira and Keith Marzullo. A framework for the design of dependent-
failure algorithms. Concurrency and Computation: Practice and Experience,
19(17):2255–2269, 2007.

[26] Flavio Paiva Junqueira and Keith Marzullo. Designing algorithms for dependent
process failures. InFuture Directions in Distributed Computing, pages 24–28, 2003.

[27] Richard M. Karp. Reducibility among combinatorial problems.Complexity of Com-
puter Computations, pages 85–103, 1972.

[28] M.C. Loui and H.H. Abu-Amara. Memory requirements for agreement among unre-
liable asynchronous processes.Advances in Computing Research, 4:163–183, 1987.

[29] Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems. Distributed
Computing, 11(4):203–213, 1998.

[30] Michael Saks and Fotios Zaharoglou. Wait-freek-set agreement is impossible: The
topology of public knowledge. InProceedings of the 25th ACM Symposium on
Theory of Computing, pages 101–110. ACM Press, May 1993.

[31] Gadi Taubenfeld. The computational structure of progress conditions. InDISC,
2010.

[32] Marko Vucolíc. The origin of quorum systems.Bulletin of EATCS, 101:125–147,
June 2010.

[33] Piotr Zieliński. Sub-consensus hierarchy is false (for symmetric, participation-aware
tasks). https://sites.google.com/site/piotrzielinski/home/symmetric.pdf.

[34] Piotr Zieliński. Anti-omega: the weakest failure detector for set agreement.Dis-
tributed Computing, 22(5-6):335–348, 2010.

86 86

86 86

Bulletin of the EATCS no 106, pp. 78�98, February 2012

©c European Association for Theoretical Computer Science

T L  C S C


Y G

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

gurevich@microsoft.com

T I M

Jeremy Avigad∗

Abstract

In the theory of programming languages, type inference is the process
of inferring the type of an expression automatically, often making use of
information from the context in which the expression appears. Such mecha-
nisms turn out to be extremely useful in the practice of interactive theorem
proving, whereby users interact with a computational proof assistant to con-
struct formal axiomatic derivations of mathematical theorems. This article
explains some of the mechanisms for type inference used by the Mathe-
matical Components project, which is working towards a verification of the
Feit-Thompson theorem.

∗This work has been partially supported by NSF grants DMS-0700174 and DMS-1068829.
During the 2009–2010 academic year I spent a sabbatical year working on the verification of
the Feit-Thompson theorem with the Mathematical Components group at INRIA-Microsoft Joint
Research Centre in Orsay, and I am grateful to Georges Gonthier and the center for support. I am
also grateful to Yuri Gurevich, Assia Mahboubi, Enrico Tassi, and an anonymous referee for many
helpful comments, corrections, and suggestions.

87 87

87 87

The Bulletin of the EATCS

79

1 Introduction
Consider the following mathematical assertions:

• For every x in R, ex =
∑∞

i=0
xi

i! .

• If G and H are groups, f is a homomorphism from G to H, and a and b are
in G, then f (ab) = f (a) f (b).

• If F is a field of nonzero characteristic p, and a and b are in F, then

(a + b)p =

p∑
i=0

(
p
i

)
aibp−i = ap + bp.

There is nothing unusual about these statements, but, on reflection, one notices
that substantial background knowledge and assumptions are needed to parse them
correctly. For example, in the first statement, we take it that the index of the
summation i ranges over natural numbers, or, equivalently, nonnegative integers.
Hence i! is also an integer. Since x is explicitly flagged as a real number, the
expression xi/i! involves division of two different types of objects, taking into
account that any integer can be viewed as a real number. In the second statement,
G and H are groups, which is to say, each is a set of elements equipped with a
group operation and an identity element; so when we write that a and b are in G,
we really mean that a and b are elements of the underlying set. The notation ab
denotes multiplication in G, while the notation f (a) f (b) can only be understood in
terms of the multiplication in H. In the third statement, p is a nonnegative integer
(in fact, a prime number, since nonzero field characteristics are prime). But unlike
the summation symbol in the first statement, here the summation symbol refers
to addition in F. In the third statement,

(
p
i

)
is an integer, while ai and bp−i are

elements of the field. How do we interpret multiplication in that case? One way
is to notice that there is a canonical map from the integers to any ring with a 0 and
a 1. Alternatively, any abelian group can be viewed as a Z-module, which means
that it supports scalar multiplication by integers, with all the expected properties;
and the additive part of a ring is an abelian group.

Inferences like these are used not only to parse basic mathematical expres-
sions, but also to reason about them correctly. For example, some “multiplica-
tions” and “additions” are commutative, and multiplication often distributes over
the corresponding addition. Common manipulations with summations depend on
such facts. Understanding mathematics presupposes the ability to keep track of
the various domains that objects belong to and variables range over, as well as the
relevant operations on those domains and their properties. Our faculties for doing

88 88

88 88

BEATCS no 106 THE EATCS COLUMNS

80

this are so ingrained that we are scarcely aware of the background knowledge we
bring to the table when we read an ordinary mathematical text.

The problem is that such background knowledge has to be brought to the fore-
ground when it comes to formalizing mathematics. Broadly speaking, formal
verification is the practice of using formal methods to verify correctness, such as
verifying that a circuit description, an algorithm, or a network or security protocol
meets its specification. In this article, I will be concerned, instead, with the verifi-
cation of mathematical theorems. To be sure, there is no sharp distinction between
verifying mathematical statements and verifying claims about hardware and soft-
ware systems, since the latter are typically expressed in mathematical terms. But
ordinary mathematical theorems have a special character, and raise distinct issues
and challenges.

Specifically, I will focus on interactive theorem proving, which involves work-
ing interactively with a proof assistant to provide enough information for the
system to confirm that the theorem in question has, indeed, a formal proof. In
fact, many systems actually construct a formal proof object, a complex piece of
data that can be verified independently. Systems with substantial mathematical
libraries include Coq [5] (including the Ssreflect extension [21]), HOL [24], HOL
light [28], Isabelle [37], and Mizar [25]. In September 2004, assisted by some stu-
dents at Carnegie Mellon, I verified a proof of the Hadamard/de la Vallée Poussin
prime number theorem [3], using the Isabelle proof assistant. Since then number
of nontrival theorems have been formalized.

, including the four-color theorem [18], the prime number theorem [3, 30],
the Jordan curve theorem [26, 33], Gödel’s first incompleteness theorem [42, 38],
Dirichlet’s theorem on primes in an arithmetic progression [29], the Cartan fixed-
point theorems [9], and various theorems of measure theory [31, 35]. There are,
moreover, some interesting large-scale verification projects underway. Thomas
Hales is heading the Flyspeck project [27], which aims to verify a number of
results in discrete geometry, including the Kepler conjecture. Georges Gonthier
is heading the Mathematical Components project [17, 19], which aims to verify
the Feit-Thompson theorem. Fields medalist Vladimir Voevodsky has launched a
project to develop “univalent foundations” for algebraic topology, providing the
basis for formal verification in a theorem prover like Coq.

Checking the details of a mathematical proof is by no means the most interest-
ing or important part of mathematics, and formal verification is not meant to serve
as a substitute for mathematical creativity and understanding. But it is generally
recognized that the mathematical literature is filled with misstatements, gaps, am-
biguities, overlooked cases, omitted hypotheses, and so on, and that the lack of
reliability is problematic [36]. Moreover, an increasing number of proofs today
rely on extensive calculation, and there are currently no standards to ensure that
mathematical software is sound. Mathematicians always strive for correctness,

89 89

89 89

The Bulletin of the EATCS

81

and formal verification is simply a technology that is designed to support that
goal.

Despite the achievements to date, however, formal verification is still not
“ready for prime time.” There is a steep learning curve to working with an in-
teractive theorem prover, and verifying even straightforward mathematical results
can be frustrating and time consuming. We need better libraries, automated meth-
ods, and infrastructure to support verification efforts. This is an exciting time for
a young and rapidly evolving field.

In this article, I will focus on one small aspect of formal verification, namely,
type inference. In the mathematical setting, the challenge of type inference,
roughly speaking, is to keep track of the kinds of objects that appear in a mathe-
matical statement and put that information to good use. What is common to the
previous examples is that in each case the relevant information can be inferred
from context:

• In the expression “a is in G,” the object of the word “in” is expected to be a
set.

• In “ab,” multiplication takes place in the group that a and b are assumed to
be an element of.

• In “xi/i!,” one expects the arguments to be elements of a common structure,
for which a division operation is defined.

Type inference thus involves not only inferring type information, but also inferring
data and facts from type considerations. Of course, type inference is central to the
theory of programming languages [39], and many of the ideas and methods that
have been developed there have been transferred to the mathematical setting. But,
as will become clear, mathematical type inference has a distinct flavor. Here I
will focus primarily on the approach to type inference used in the Mathematical
Components project, which relies on a proof language, Ssreflect, and the Coq
theorem prover.

In Section 2, I will consider what is desired from a mathematical perspective.
In Section 3, I will discuss some of the underlying axiomatic frameworks, and
dependent type theory in particular. In Section 4, I will describe some of the
mechanisms in Coq that are designed to meet the challenges posed in Section 2.
In Section 5, I will describe the way some of these mechanisms are used in the
Mathematical Components library, and in Section 6, I will briefly indicate some
alternative approaches.

90 90

90 90

BEATCS no 106 THE EATCS COLUMNS

82

2 Mathematical type inference

One hallmark of modern mathematics is the tendency to identify mathematical
objects as elements of algebraically characterized structures. Such structures, and
classes of such structures, can be related in various ways:

• Structures in one class may be viewed as elements of a broader one. For
example, every abelian group is, more generally, a group, and every group
is, more generally, a monoid. Sometimes the inclusions are obtained by
taking reducts, which is to say, ignoring parts of the structure. For example,
the additive part of a ring is an abelian group, while the multiplicative part
is a monoid.

• A particular structure or a structure in one class can often be embedded in
a larger structure. For example, the integers can be embedded in the reals,
and every integral domain can be embedded in its field of fractions.

• Uniform constructions can be used to build elements of one class of struc-
tures from elements of another. For example, the units in any ring form a
group, under the associated multiplication; the set of automorphisms of a
field (or those fixing some chosen subfield) form a group under composi-
tion; any metric space gives rise to a topological space determined by the
metric; the field of fractions of any integral domain is a field; and the quo-
tient of a group by a normal subgroup is again a group.

What makes this perspective useful is that it allows one to transfer insights and
results gained from one domain to another, and apply background knowledge and
expertise uniformly in different settings. The challenge for interactive proof assis-
tants is to reap these benefits.

There are various ways that algebraic methods promote efficiency:

• They allow us to reuse notation. For example, one may wish to use the
symbols 0 and + with respect to the integers, the reals, and arbitrary rings.

• They allow us to reuse constructions. For example, summation
∑

i∈I ai in
the integers, reals, and an arbitrary ring can be viewed as instances of the
same construction, namely an iteration of the corresponding addition. In
fact, various “big” operations, including multiplication, logical operations
of conjunction and disjunction, lattice operations of meet and join, and so
on can be viewed as iterations of an associative operation in an arbitrary
monoid.

91 91

91 91

The Bulletin of the EATCS

83

• They allow us to reuse facts. Various identities involving big operations can
be viewed as instances of general laws that can be instantiated in the dif-
ferent settings. For example, some identities involving summations presup-
pose that the addition is commutative. Other identities hold in the presence
of a multiplication that distributes over addition. We implicitly recognize
that such facts hold at various degrees of generality, and instantiate them as
appropriate.

Any proof assistant that is designed to formalize contemporary mathematical ar-
guments should support these types of reuse.

In the theory of programming languages, type inference allows users to omit
information that can be inferred from context. For example, if we write f (i) and i
is known to range over the integers, we can infer that f is a function from the inte-
gers to some other domain. Various kinds of “polymorphism” allow one to reuse
symbols and code across different domains. In the context of formally verified
mathematics, there are really two types of information that can be inferred:

• data: for example, the appropriate multiplication in an expression a · b, or
the appropriate summation operation in an expression

∑
i∈A f (i).

• facts: for example, the fact that (a · b) · c is equal to a · (b · c), when the
multiplication in the relevant structure is associative.

In the next section, we will see that in certain formulations of logic, these two can
be understood as instances of a common phenomena. In other words, inferring a
fact can be viewed as inferring a special kind of data, namely “evidence” or “the
fact” that the associated claim is true.

To summarize, in interactive theorem proving, type inference may be invoked
when the system parses an expression, but also when the user applies a lemma,
or searches for a lemma to apply. The goal of type inference is to allow the user
to omit information systematically when such information can be inferred from
context. Not only does this save time and energy and reduce tedium, but it also
ensures that the expressions we type look like the mathematics we are familiar
with, lending support to the claim that our formalizations adequately “capture”
informal mathematical practice.

3 Dependent type theory
In order to verify mathematical proofs in a given domain, one has to first choose
a formal axiomatic framework that is flexible enough to model arguments in that
domain. Experience from the last century has shown that the Zermelo-Fraenkel

92 92

92 92

BEATCS no 106 THE EATCS COLUMNS

84

axioms of set theory provides a remarkably robust foundation for mathematics.
Indeed, the Mizar system [25], which has perhaps the most extensive mathemat-
ical library, is based on an extension of ZF known as Tarski-Groethendieck set
theory.

But, in set theory, every object is a set, meaning that the axiomatic framework
does not distinguish between numbers, functions, structures, and other objects.
For the purposes of type inference, it is often useful to have such distinctions built
into the underlying formal system. A number of proof assistants today, including
HOL [24], HOL light [28], and Isabelle [37], are based on formulations of higher-
order logic like Church’s simple type theory [8]. One starts with basic types,
such as a type nat of natural numbers and a type bool of boolean truth values,
and adds constructors for forming new types. The most important of these are
function types: whenever A and B are types, so is A → B, intended to denote the
type of functions from A to B. One can also allow, for example, product types
A × B, denoting the type of ordered pairs from A and B. Most proof systems have
additional mechanisms to support the definition of common mathematical data
types and structures, and allow “polymorphic” variables ranging over types.

The problem with simple type theory, however, is that it is too simple, since
ordinary mathematical structures often depend on parameters. For example, for
each n, Rn is a vector space, and for every n ≥ 1, the integers modulo n form a
ring. Thus one may wish to have types

• list A n, denoting sequences of objects of type A, with length n; and

• Zmod n, denoting the ring of integers modulo n.

In dependent type theory, types can depend on parameters in this way. Notice that
such a move tends to blur the distinction between types and terms. For example,
in list A n, the first argument is supposed to denote a type, whereas the second
argument is supposed to be a term of type nat. In some presentations of type
theory, this is achieved by having special types, called universes, whose terms
are also construed as types (see, for example, the presentation of Martin-Löf type
theory in [47, Section 7.1]). Contemporary presentations more often take types
to be inhabitants of a third level of syntactic objects, known as “sorts” or “kinds”
(see [4]). The specific details need not concern us here; only the fact that terms as
well as types can depend on parameters that are again terms or types.

In dependent type theory, the type A→ B of functions which take an argument
in A and return a value in B can be generalized to a dependent product

∏
x:A B(x),

where B(x) is a type that can depend on x. Intuitively, elements of this type are
functions that map an element a of A to an element of B(a). When B does not
depend on x, the result is just A → B. Similarly, product types A × B can be
generalized to dependent sums

∑
x:A B(x). Intuitively, elements of this type are

93 93

93 93

The Bulletin of the EATCS

85

pairs (a, b), where a is an element of A and b is an element of B(a). When B
does not depend on x, this is just A × B.

In the next section, we will consider one particular theorem prover, Coq. Coq’s
underlying logic is a dependent type theory known as the calculus of inductive
constructions, or CIC [12], which extends the original calculus of constructions
due to Coquand and Huet [11]. The calculus of inductive constructions has four
distinguishing features:

• It is a powerful and expressive dependent type theory.

• It incorporates the “propositions as types” correspondence.

• It is constructive, in that every expression in the system has a computational
interpretation.

• The computational interpretation of terms is used in type checking.

• Type checking is decidable.

These features are not to everyone’s taste, and we will see in Section 6 that other
proof assistants can reject any or all of them. I will elaborate on each, in turn.

One striking feature of the Calculus of Inductive Constructions is that there
are only two basic type-forming operations: dependent products and inductive
types. We have already discussed dependent products. Inductive types allow one
to define structures that can be characterized as the closure of a set under some
basic operations, like the natural numbers, or lists and trees over a type. But, in
the CIC, the construction is general enough to include dependent sums, as well
as to interpret basic logical notions, like conjunction, disjunction, universal and
existential quantification, and equality. In fact, the system has the logical strength
of strong systems of set theory [49].

In order to interpret logical operations in terms of type-theoretic constructions,
the CIC relies on what has come to be known as the Curry-Howard “propositions
as types” correspondence. The point is that logical operations look a lot like
operations on datatypes. For example, in propositional logic, from A and B one
can conclude A ∧ B. One can read this as saying that given a proof a of A and a
proof b of B of B one can “pair” them to obtain a proof (a, b) of A ∧ B; or given
the “fact” a that A holds, and the fact b that B holds, one obtains the fact (a, b)
that A ∧ B holds. Moreover, from the fact that A ∧ B holds, one can extract the
fact that A holds, and, similarly, B. If you replace A ∧ B by A × B, this is nothing
more than a characterization of the product type. In other words, if we posit a new
collection Prop of types and take the product constructor to map elements A :
Prop and B : Prop to A × B : Prop, the rules governing products for elements
of Prop are exactly the desired logical rules for conjunction.

94 94

94 94

BEATCS no 106 THE EATCS COLUMNS

86

Under this correspondence, implications A→ B are just instances of function
types, and bounded universal quantifiers ∀x : A. B(x) are just instances of the
dependent product construction. In other words, a proof of ∀x : A. B(x) can
be viewed as a procedure which, given any object a : A returns a proof of
B(a). This explains Coq’s notation forall x : A, B x for dependent prod-
ucts. Similarly, the logical construction ∃x : A. B(x) is just an instance of the
dependent sum. Using inductively defined types, given any type A one can form
IA(x,y) : Prop which, intuitively, denotes the proposition that x is equal to y
as elements of A.

One can take the propositions-as-types as expressing a deep insight into the
nature and meaning of logical operations [34, 48]. But one can just as well view
it as a notational convenience which, moreover, allows a proof assistant to treat
logical and mathematical operations uniformly. For example, one can take the
transitivity of inequality on the natural numbers, leq_trans, to be a term of type

∀x:nat, y:nat, z:nat, x ≤ y→ y ≤ z→ x ≤ z.

This last expression, in turn, it a term of type Prop. One can view leq_trans not
just as the fact that less-than-or-equal is transitive, but also as a function which,
given elements x, y, and z in the natural numbers as well as the facts that x ≤ y and
y ≤ z, return the fact that x ≤ z. Thus, given a : nat, b : nat, and c : nat,
the term leq_trans a b c denotes the implication a ≤ b → b ≤ c → a ≤ c.
Moreover, we can express that H is the fact that a ≤ b by writing H : a ≤ b, in
which case leq_trans a b c H denotes the implication b ≤ c→ a ≤ c.

The propositions-as-types correspondence is particularly popular as a founda-
tion for constructive mathematics, where assertions are expected to have direct
computational significance. Every term in Coq can be viewed as a computational
object, subject to evaluation. For example, if π0 and π1 denote the two projections
from a product type A × B, the a term π0(a, b) can be “reduced” or “evaluated”
to a. In fact, every term in Coq can, at least in principle, be reduced to a canonical
normal form. In particular, if t is a closed term of type nat, then t reduces to
a numeral. Coq, moreover, makes use of this computational interpretation when
checking types. For example, If C(x) is a type that depends on a value x of type
A, the system can recognize that C(π0(a, b)) is the same type as C(a).

The decidability of type checking amounts to the fact that given a term, t, and
a type, T, the type-checker can, deterministically, decide whether or not t has type
T. This is clearly a useful property to have, though we will see, in Section 6, that
it imposes strong restrictions. Under the propositions-as-types correspondence,
the decidability of type checking takes on additional significance. Suppose P is a
term of type Prop, expressing, for example, Fermat’s last theorem. Then a term t
of type P is a proof that P is true. Proving Fermat’s last theorem thus amounts to

95 95

95 95

The Bulletin of the EATCS

87

constructing a term of type P, and the decidability of type checking implies that
such a term can be recognized, algorithmically, as a valid proof.

4 Type inference in Coq

Now that we have a sense of Coq’s axiomatic framework, let us explore some of
the mechanisms the system offers to address the challenges raised in Section 2.
Generally speaking, type inference is triggered when the system is called on to
determine the type of a term, or to check that a term has an appropriate type,
when some information has been left implicit. But because dependent types de-
pend on the values of their parameters, inferring a type can entail inferring such
values. Recall that in Section 2 we distinguished between two types of informa-
tion that can be inferred, namely, data and facts. With the propositions-as-types
correspondence in place, inferring a fact—such as the fact that multiplication is
associative—is a matter of inferring a value of a type P, which is in turn of type
Prop, where P expresses the expected associativity property.

We will consider three principal mechanisms. Implicit arguments allow users
to systematically leave information out of an expression when this information
can be inferred from context. Coercions allow users to cast, implicitly, objects of
one type to objects of another. Finally, canonical structures let the user register
certain objects as components of a larger structure, providing useful information
to the type inference process.1

It will be helpful to illustrate these with a running example. The following
definition declares a new type, group:

Record group : Type := Group
{
carrier : Type;
mulg : carrier -> carrier -> carrier;
oneg : carrier;
invg : carrier -> carrier;
mulgA : forall x y z : carrier,
mulg x (mulg y z) = mulg (mulg x y) z;

...
}.

1For more detail than is provided below, see Coq’s online reference manual. All three mech-
anisms were initially introduced to Coq by Amokrane Saïbi [32, 40, 41], who credits the idea of
using implicit arguments in the theorem proving context to Peter Aczel. Implicit arguments were
further extended by Hugo Herbelin and Matthieu Sozeau. Canonical structures received little at-
tention until they were revived and used aggressively by Gonthier; see, for example, [17].

96 96

96 96

BEATCS no 106 THE EATCS COLUMNS

88

According to this type declaration, group is a record type, consisting of a carrier,
a multiplication, an identity, and an inverse. These are assumed to satisfy the
requisite axioms, such as the associativity of multiplication. If G has type group,
that is, G : group, then the components of G are carrier G, mulg G, oneg G,
and so on. Conversely, given elements my_carrier, my_mul, my_one and so on
of the right type, the term Group my_carrier my_mul my_one ... denotes
the corresponding group.

Notice that we are relying on dependent type theory here. The type group
is a classic example of a dependent sum, since, for example, the type of the
second component, carrier -> carrier -> carrier, depends on the value
carrier of the first component. The arguments of the corresponding projec-
tions bear the associated dependences. For example, the term mulg, which picks
out the the second component, has type forall G : group, carrier G ->
carrier G -> carrier G, a dependent product.

Notice also that the proposition-as-types correspondence is being put to good
use. For example, the type of the fifth component, mulgA, is the proposition that
mulg is associative. Assuming G : group, the term mulgA G has type

forall x y z : carrier G,
mulg G x (mulg G y z) = mulg G (mulg G x y) z

which is itself a term of type Prop. Thus mulgA G denotes the fact that multipli-
cation in mulg G is associative, a fact that can be applied to elements of the carrier
of G just as in the example of leq_trans above. In this way, the propositions-
as-types correspondence provides a natural and convenient way to think of the
group structure as including not only the relevant data—the carrier of the group
and group operations—but also the relevant properties.

In a context where we have G : group, g : carrier G, and h : carrier
G, the term mulg G g h represents the product of g and h under the multiplica-
tion operation of G. The implicit arguments mechanism in Coq allows us to write
mulg _ g h, replacing the first argument by an underscore. Doing so means that
we expect the type inference algorithm to infer the value of that argument from
context, by finding a solution to the constraints imposed by the fact that the re-
sulting term should be well typed. The algorithm proceeds by instantiating the
first element with a variable, ?. The term mulg ? then has type carrier ? ->
carrier ? -> carrier ?. Since this term is applied to g : carrier G, to
get the types to work out the system has to solve a simple unification problem,
namely, instantiating ? to unify carrier ? with carrier G. Thus ? is instanti-
ated to G, and the algorithm has inferred the relevant parameter. With this in mind,
one can introduce a new notation:

Notation "g * h" := (mulg _ g h).

97 97

97 97

The Bulletin of the EATCS

89

This enables one to write g * h for multiplication in any group, allowing the
group in question to be inferred from the type of g.

In this example, the implicit argument mechanism was used to infer a param-
eter in the application of a function, mulg. But the mechanism can be used just as
well to infer parameters during the application of a lemma. For example, recall the
transitivity lemma leq_trans from the last section. This takes five arguments—
three natural numbers, x, y, z, and the facts x ≤ y and y ≤ z—and returns the fact
x ≤ z. Suppose we declare the first three arguments to be implicit. Then given H1
: a ≤ b and H2 : b ≤ c, the term leq_trans H1 H2 has type a ≤ c. Moreover,
when we are building a proof interactively in Coq, if we apply leq_trans H1 to
a subgoal a ≤ c, type inference similarly infers the missing arguments and leaves
the us with the goal b ≤ c.

Coercions are commonly used in programming languages, for example, when
adding a real and an integer triggers the coercion of the integer to a real. In the
context of mathematical theorem proving, coercions have other uses as well. In
our running example, one would ordinarily write g : carrier G to specify that
g is an element of the carrier of G. Writing g : G instead yields an error, because
the system expects something of type Type on the right side of the colon, and G
has type group. But declaring

Coercion carrier : group >-> Type.

informs Coq that the function carrier can always be used to coerce a group to
a type. If one then enters g : G, the algorithm finds itself facing a group on the
right side of the colon but expecting a type, and readily inserts the coercion.

The last feature that we will discuss, canonical structures, provides an inverse
to coercion, of sorts. In the example above, we used the carrier function to
coerce a record structure to one of its projections. Canonical structures makes
it possible for the type inference algorithm to pass in the other direction, and
recognize a particular object as the projection of a larger structure. To illustrate,
suppose we define

IntGroup := Group int addi zeroi negi addiA ...

thereby declaring the integers with addition to be an instance of a group. Some-
what perversely, this will allow us to write mulg IntGroup i j instead of i +
j, when we have i j : int. Less perversely, this will allow us to apply general
theorems about groups to this particular instance. But what happens now when we
write i * j? This expression is shorthand for mulg _ i j. After instantiating
the first argument to a variable, ?, the type inference algorithm is faced with the
unification problem carrier ? = int, and gets stuck. Declaring

Canonical Structure IntGroup.

98 98

98 98

BEATCS no 106 THE EATCS COLUMNS

90

registers the fact carrier IntGroup = int with the system for use in type in-
ference. One can view this as a “hint” to the unification process [2]. Now when
the type inference algorithm gets stuck as above, it can appeal to a table of such
hints, and use the relevant one to recognize that the integers can be viewed as the
carrier of the IntGroup structure. The algorithm then replaces int by carrier
IntGroup and solves the unification problem.

The mechanisms just described are not exceedingly complicated, but we will
see in the next section that they are remarkably robust with respect to the chal-
lenges posed in Section 2. Canonical structures can, moreover, be used in clever
ways to trick the type inference algorithm into carrying out various kinds of useful
automation [23].

To summarize, type checking is triggered when the user enters an expression
or applies a lemma, possibly leaving some arguments and facts implicit. Coq’s
type inference engine has four resources at its disposal to fill in the remaining
information:

1. unification can be used to infer implicit arguments;

2. coercions can be inserted to resolve a type mismatch;

3. the unification algorithm can refer to a database of unification hints to solve
unification problems involving a projection of a canonical structure; and

4. when all else fails, the algorithm can simplify terms or unfold definitions
according to the CIC’s computational interpretation of terms, and then retry
the previous steps.

Generally speaking, implicit arguments can trigger arbitrary instances of higher-
order unification, which is known to be undecidable [14]. So, at best, type in-
ference can only aim to search a reasonable fragment of the space of possible
instantiations for an implicit argument. And even within decidable fragments,
unpacking definitions and unfolding terms can easily lead to combinatorial explo-
sion. Nonetheless, Coq’s type inference algorithm consists, essentially, of iter-
ating the steps above, relying on heuristics to limit the possibilities in the fourth
step.

5 The mathematical components library
This section provides a brief indication of some of the ways that the mechanisms
for type inference discussed in Section 4 have been used towards Gonthier’s for-
malization of the Feit-Thompson theorem [15], which asserts that finite groups of

99 99

99 99

The Bulletin of the EATCS

91

odd order are solvable. These examples only scratch the surface; for more detail,
see [6, 17, 18, 21, 22].

Recall that Coq’s logic is constructive. In contrast, many principles and meth-
ods that are commonly used in contemporary mathematics are not constructively
valid. For example, constructively, one cannot assume the law of the excluded
middle, or prove the existence of an x satisfying a property P by assuming there
is no such x and deriving a contradiction. Extensionality fails: one cannot, in
general, prove that two functions f and g from A to B are equal by proving that
f (x) = g(x) for every x. Choice fails as well: even if one has proved that for every
x in A there is a y in B such that some property holds, one cannot assume that
there is a function f that picks out such a y for every x.

On the other hand, these properties generally hold in finite domains. Since the
Feit-Thompson theorem is an extended exploration of properties of finite groups,
one would like to take advantage of these features when they are available. Thus,
in the Ssreflect library, there are general structures for types with a decidable
equality relation (that is, ones where the relation can be computed by a function
returning a boolean value of “true” or “false,” ensuring that it satisfies the law of
the excluded middle); finite structures; and structures that can be equipped with
choice functions. For example, one can define a structure for types with decidable
equality as follows:

Record eqType : Type := EqType
{
carrier : Type;
rel : carrier -> carrier -> bool;
ax : forall x y, (x = y) = (rel x y)

}.

In the last line of the record, the expression rel x y of type bool is coerced to the
proposition that the value of this expression is equal to true. In other words, ax
is the proposition that rel x y holds if and only if x = y. Declaring carrier to
be a coercion allows one to write x : Twhenever we have T : eqType. Implicit
arguments allow one to use the notation x == y in place of rel T x y whenever
x and y are elements of the carrier of such a T. Finally, canonical structures allow
one to associate the relevant boolean equality relation with the natural numbers,
so that one can write x == y when we have x y : nat, as well. (This is a slight
simplification of the implementation in the Ssreflect library [17].)

Section 2 noted that “big operations” such as
∑

,
∏

,
⋂

,
⋃

,
∧

,
∨

can all be
viewed as instances of iterations of an associative binary operation. But such op-
erations come in many different flavors: one can sum over a list, a numeric range,
or a finite set, and these summations will satisfy different properties depending
on whether the underlying structure is a semigroup, an abelian semigroup, or a

100 100

100 100

BEATCS no 106 THE EATCS COLUMNS

92

ring. Ssreflect comes with an overarching “bigop” library, and once again type
inference plays a key role in making it work [6].

Type inference is also used to manage algebraic class inclusions (between
rings, commutative rings, fields, and son on) and algebraic constructions: for ex-
ample, the set of n by n matrices over a ring forms a ring when n > 0, and the set
of polynomials over a commutative ring again forms a commutative ring. Type
inference ensures that the relevant algebraic facts are readily available, and allows
a uniform use of notation [17, 20]. Definitions in the Ssreflect library have been
carefully chosen so that if G and H are groups of the same type (more precisely,
subgroups of some ambient group type), then the quotient notation G / H makes
sense; but when H is in fact a normal subgroup of G, as in the usual construction
of a quotient group, G / H is a group with all the expected properties [22]. For
another example, when a group G happens to be abelian, it is often treated as a Z-
module and written additively. So, for example, one can write g *+ n for scalar
multiplication of g by n whenver g is an element of the group and n is a natu-
ral number. Type inference is used to mediate between these two “views” of an
abelian group.

Type inference also helps with mundane mathematical conventions. For ex-
ample, Section 2 noted the conflation of groups with sets. If G and H are subgroups
of an ambient finite group, and A is a subset of that group, then G∩ H and C_G(A)
(the centralizer of A in G) are both groups. But they are also just sets with the
ambient group operation; an element x is in G ∩ H if and only if it is in G and
H, and x is in C_G(A) if and only if x is in G and commutes with every element
of A. Type inference mediates between these two views of a construction—that
is, of yielding both a group and a set—allowing one to apply lemmas involving
groups in some instances and lemmas involving sets in others. For another exam-
ple, a homomorphism between groups G and H is a function between G and H
equipped (using a record type) with additional properties. Coercion allows one
to use ordinary function notation with morphisms, such as f x and f ◦ g. In the
other direction, canonical structures automatically infer the fact that f ◦ g is a ho-
momorphism when f and g are, giving f◦g a similarly dual status as function and
morphism.

Canonical structures can even be used to make sense of mildly abusive mathe-
matical notation. For example, if U and W are subspaces of a vector space V , it is
common to write U + W for set {u + w | u ∈ U,w ∈ W}. Mathematicians will often
say “U + W is a direct sum” when U and W have trivial intersection, ignoring the
fact that this is a property of the pair (U,W) which is impossible to read off from
the U + W alone. Gonthier has shown, however, that canonical structures provide
a convenient way of supporting this abuse of language [20].

101 101

101 101

The Bulletin of the EATCS

93

6 Limitations and other approaches
The mechanisms supporting type inference that were described in Section 4 are
not the only ones available in Coq. In particular, Coq now has a “type class”
mechanism [44]. Type classes and canonical structures serve similar purposes, but
whereas canonical structures are handled within the type inference loop described
at the end of Section 4, the type class mechanism collects constraints that are
passed to a separate inference engine at the end of the process. Spitters and van der
Weegen [45] have experimented with type classes in the context of mathematical
type inference, with positive results.

But one may wish to stray even further from Coq’s mindset. Recall some of
the key features of that proof assistant:

• An elaborate type theory is built in to the underlying axiomatic framework.

• Using the propositions-as-types correspondence, data and facts are handled
in the same way, so theorems can be applied to arguments and hypotheses
just as functions are applied to arguments.

• The underlying logic is constructive, and every term has computational sig-
nificance.

• Type checking makes use of the computational interpretation of terms.

• Type checking is decidable.

These are very strong constraints, which interact with each other in subtle ways
and place strong restrictions on the way mathematics is represented and carried
out. Not every proof assistant adopts such a framework. In fact, most reject the
third, allowing classical reasoning that is ubiquitous in contemporary mathemat-
ics. Similarly, the propositions-as-types correspondence is usually linked to con-
structive theories, though there is no reason that it cannot be adopted in classical
frameworks as well.

Although the mechanisms for type inference described in this article scale rea-
sonably well, their use in real mathematical settings can be complex and delicate.
Moreover, when an expression fails to typecheck, error messages from the sys-
tem are often uninformative, and it can be frustrating and difficult to diagnose
the problem. There are, moreover, rigid limitations to dependent type theory that
stem from the commitment to keep type checking decidable. This is so because
type checking algorithms are constrained to focus on syntactic structure, without
incorporating background knowledge. For example, if list A n denotes the type
of vectors of elements of A of length n, and we have t : list A (0 + n), then,

102 102

102 102

BEATCS no 106 THE EATCS COLUMNS

94

in Coq, t also typechecks as an element of list A n. In other words, Coq rec-
ognizes these two types as being the same. But entering t : list A (n + 0)
yields a type error; Coq refuses to recognize that list A (n + 0) is the same as
list A n. What is going on is that addition in Coq is defined by recursion on the
first argument, so that the the term 0 + n reduces to n under the computational
interpretation. But the fact that n + 0 is equal to 0 is a mathematical fact, and
there is no general way to incorporate arbitrary mathematical information in type
checking while maintaining decidability.

Still, some have explored ways of making type judgments more flexible while
maintaining decidability [1, 7, 46]. An alternative is to give up the decidability
of type checking, and accept the fact that some type judgments will require proof
from the user. This is the path chosen by NuPrl [10] and PVS [43]. Yet another
alternative is to jettison type theory altogether, and move to an axiomatic sys-
tem like set theory, which offers maximum flexibility while relinquishing all the
benefits of types; and then try to recapture some of those benefits by adding an
extra layer of automation to register and manage domain information outside the
axiomatic theory. Such “soft typing” mechanisms can be found, for example, in
Mizar [25].

This article has focused on the modeling of mathematical language from the
point of view of contemporary interactive theorem provers. Others [13, 16] have
come at the problem from the perspective of natural language processing. In the
long run, it seems likely that the various approaches will converge.

Inferring domain information is essential to modeling mathematical language
and reasoning. Gonthier’s work on the Feit-Thompson theorem shows that it is
possible to model full-blown algebraic reasoning in an interactive proof systems.
But other approaches should also be explored, and continued experimentation and
innovation is needed to develop better support for verifying ordinary mathematical
proofs.

References
[1] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equality,

now! In Aaron Stump and Hongwei Xi, editors, Proceedings of the ACM Workshop
Programming Languages meets Program Verification (PLPV) 2007, pages 57–68.
ACM, 2007.

[2] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. Hints
in unification. In Theorem Proving in Higher Order Logics (TPHOLs) 2009, pages
84–98. Springer, Berlin, 2009.

[3] Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff. A formally verified
proof of the prime number theorem. ACM Trans. Comput. Logic, 9(1):2, 2007.

103 103

103 103

The Bulletin of the EATCS

95

[4] Henk Barendregt. Introduction to generalized type systems. Journal of Functional
Programming, 1(2):125–154, 1991.

[5] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment: Coq’Art: The Calculus of Inductive Constructions. Springer, Berlin,
2004.

[6] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canonical big
operators. In Theorem Proving in Higher Order Logics (TPHOLs) 2008, pages 86–
101. Springer, Berlin, 2008.

[7] Frédéric Blanqui, Jean-Pierre Jouannaud, and Mitsuhiro Okada. The calculus of
algebraic constructions. In 10th International Conference on Rewriting Techniques
and Applications (RtA) 1999, pages 301–316. Springer, Berlin, 1999.

[8] Alonzo Church. A formulation of the simple theory of types. J. Symbolic Logic,
5:56–68, 1940.

[9] Gianni Ciolli, Graziano Gentili, and Marco Maggesi. A Certified Proof of the Cartan
Fixed Point Theorems. J. Autom. Reasoning, 47(3):319–336, 2011.

[10] Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof Devel-
opment System. Prentice-Hall, Englewood Cliffs, NJ, 1986.

[11] Thierry Coquand and Gérard Huet. The calculus of constructions. Inform. and
Comput., 76(2-3):95–120, 1988.

[12] Thierry Coquand and Christine Paulin. Inductively defined types. In International
Conference on Computer Logic (COLOG) 1988, pages 50–66. Springer, Berlin,
1990.

[13] Marcos Cramer, Peter Koepke, and Bernhard Schröder. Parsing and disambiguation
of symbolic mathematics in the Naproche system. In Davenport, James H. (ed.) et
al., eds., Intelligent computer mathematics. Springer, Berlin, 2011.

[14] Gilles Dowek. Higher-order unification and matching. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 16,
pages 1009–1062. Elsevier Science, Amsterdam, 2001.

[15] Walter Feit and John G. Thompson. Solvability of groups of odd order. Pacific
Journal of Mathematics, 13:775–1029, 1963.

[16] Mohan Ganesalingam. The Language of Mathematics. PhD thesis, University of
Cambridge, 2009.

[17] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence Rideau. Pack-
aging mathematical structures. In Theorem Proving in Higher Order Logics
(TPHOLs) 2009, pages 327–342. Springer, Berlin, 2009.

[18] Georges Gonthier. Formal proof—the four-color theorem. Notices Amer. Math. Soc.,
55(11):1382–1393, 2008.

104 104

104 104

BEATCS no 106 THE EATCS COLUMNS

96

[19] Georges Gonthier. Advances in the formalization of the odd order theorem. In
Marko C. J. D. van Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk,
editors, Interactive Theorem Proving (ITP) 2011, page 2. Springer, Berlin, 2011.

[20] Georges Gonthier. Point-free, set-free concrete linear algebra. In Marko C. J. D. van
Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, Interactive
Theorem Proving (ITP) 2011, pages 103–118. Springer, Berlin, 2011.

[21] Georges Gonthier and Assia Mahboubi. An introduction to small scale reflection in
Coq. J. Formaliz. Reason., 3(2):95–152, 2010.

[22] Georges Gonthier, Assia Mahboubi, Laurence Rideau, Enrico Tassi, and Laurent
Théry. A modular formalisation of finite group theory. In Theorem Proving in
Higher Order Logics (TPHOLs) 2009, pages 86–101. Springer, Berlin, 2007.

[23] Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek Dreyer. How to
make ad hoc proof automation less ad hoc. In Manuel M. T. Chakravarty, Zhenjiang
Hu, and Olivier Danvy, editors, International Conference on Functional Program-
ming (ICFP) 2011, pages 163–175. ACM, 2011.

[24] M. J. C. Gordon and T. F. Melham, editors. Inroduction to HOL: A Theorem Proving
Environment for Higher-Order Logic. Cambridge University Press, 1993.

[25] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Mizar in a nutshell.
J. Formaliz. Reason., 3(2):153–245, 2010.

[26] Thomas C. Hales. The Jordan curve theorem, formally and informally. Amer. Math.
Monthly, 114(10):882–894, 2007.

[27] Thomas C. Hales, John Harrison, Sean McLaughlin, Tobias Nipkow, Steven Obua,
and Roland Zumkeller. A revision of the proof of the Kepler conjecture. Discrete
Comput. Geom., 44(1):1–34, 2010.

[28] John Harrison. HOL light: a tutorial introduction. In Mandayam Srivas and Al-
bert Camilleri, editors, Proceedings of the First International Conference on Formal
Methods in Computer-Aided Design, pages 265–269, 1996.

[29] John Harrison. A formalized proof of Dirichlet’s theorem on primes in arithmetic
progression. J. Formaliz. Reason., 2(1):63–83, 2009.

[30] John Harrison. Formalizing an analytic proof of the prime number theorem. Journal
of Automated Reasoning, 43:243–261, 2009.

[31] Johannes Hölzl and Armin Heller. Three chapters of measure theory in Is-
abelle/HOL. In Marko C. J. D. van Eekelen, Herman Geuvers, Julien Schmaltz,
and Freek Wiedijk, editors, Interactive Theorem Proving (ITP) 2011, pages 135–
151. Springer, Berlin, 2011.

[32] Gérard Huet and Amokrane Saïbi. Constructive category theory. In Gordon Plotkin,
Colin P. Stirling, and Mads Tofte, editors, Proof, language, and interaction: essays
in honour of Robin Milner, pages 235–275. MIT Press, Cambridge, MA, 2000.

105 105

105 105

The Bulletin of the EATCS

97

[33] Artur Korniłowicz. A proof of the Jordan curve theorem via the Brouwer fixed point
theorem. Mechanized Mathematics and Its Applications, 6(1):33–40, November
2007.

[34] Per Martin-Löf. An intuitionistic theory of types: predicative part. In H. E. Rose and
J. C. Shepherdson eds., Logic Colloqium ’73, North-Holland, Amsterdam, 1973.

[35] Tarek Mhamdi, Osman Hasan, and Sofiène Tahar. Formalization of entropy mea-
sures in hol. In Marko C. J. D. van Eekelen, Herman Geuvers, Julien Schmaltz, and
Freek Wiedijk, editors, Interactive Theorem Proving (ITP) 2011, pages 233–248.
Springer, Berlin, 2011.

[36] Melvyn B. Nathanson. Desperately seeking mathematical proof. Notices Amer.
Math. Soc., 55(7):773, 2008.

[37] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL. A Proof
Assistant for Higher-Order Logic. Springer, Berlin, 2002.

[38] Russell O’Connor. Essential incompleteness of arithmetic verified by Coq. In The-
orem Proving in Higher Order Logics (TPHOLs) 2005, pages 245–260. Springer,
Berlin, 2005.

[39] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge,
MA, 2002.

[40] Amokrane Saïbi. Typing algorithm in type theory with inheritance. In Symposium
on Principles of Programming Languages (POPL) ’97, pages 292–301. ACM, 1997.

[41] Amokrane Saïbi. Outils Génériques de modélisation et de démonstration pour la
Formalisation des Mathématiques en théorie des Types, Application à la théorie des
catégories. Ph.D. thesis, Universiy of Paris 6, 1999.

[42] Natarjan Shankar. Metamathematics, machines, and Gödel’s proof. Cambridge
University Press, Cambridge, 1994.

[43] Natarajan Shankar and Sam Owre. Principles and pragmatics of subtyping in PVS.
In D. Bert, C. Choppy, and P. D. Mosses, editors, Recent Trends in Algebraic Devel-
opment Techniques (WADT) 1999, pages 37–52. Springer, Berlin, 2000.

[44] Matthieu Sozeau and Nicolas Oury. First-class type classes. In Theorem proving in
higher order logics (TPHOLs) 2008, pages 278–293. Springer, Berlin, 2008.

[45] Bas Spitters and Eelis van der Weegen. Type classes for mathematics in type theory.
Mathematical Structures in Computer Science, 21(4):795–825, 2011.

[46] Pierre-Yves Strub. Coq modulo theory. In Anuj Dawar and Helmut Veith, edi-
tors, 19th EACSL Annual Conference on Computer Science Logic, pages 549–543.
Springer, Berlin, 2010.

[47] A. S. Troelstra and Dirk van Dalen. Constructivism in Mathematics, volume 2.
North-Holland, Amsterdam, 1988.

106 106

106 106

BEATCS no 106 THE EATCS COLUMNS

98

[48] William W. Tait. Truth and proof: the Platonism of mathematics. Synthese, 69:341–
370, 1986. Reproduced in W. D. Hart, editor, The philosophy of mathematics, Ox-
ford University Press, Oxford, 1996, pages 142–167.

[49] Benjamin Werner. Sets in types, types in sets. In Theoretical aspects of computer
software, pages 530–546. Springer, Berlin, 1997.

107 107

107 107

Reports from

Conferences

108 108

108 108

109 109

109 109

Bulletin of the EATCS no 106, pp. 101�104, February 2012

©c European Association for Theoretical Computer Science

R  AFL 2011
13th International Colloquium on Automata and Formal Languages

17-22 August 2011, Debrecen, Hungary

Manfred Kudlek

AFL 2011, the 13th conference in this series, founded by I́ P́ in 1980,
took place in D from August 17-22, 2011. Conference site was D
A́ B́ (DAB), the house of the D A S.

It was organized by I  M  I, C 
N́́, I M, U  S, F M-
, U  D, and D R C   H-
 A  S.

The organizing committee consisted of P́ D̈̈ (chair), A E-N,
J́ F, S́ F, G́ H́, S I́, Z K́,
Z́M, B N, Z N, G̈ V, and V B, as
well as É D̈̈-R́, M́ K́, K P́.

AFL 2011 was supported by I M  I, C-
  N́́, I  I, S U, D R-
 C  HA  S, N C, and
C-H B R P.

The conference was attended by 62 participants from 13 countries:

HU 29 JP 5 CA 2 IN 1 UK 1
DE 8 FR 3 AT 1 IT 1
CZ 6 US 3 FI 1 SK 1

The scientific program consisted of 5 invited talks, and 25 contributions (22
long, 3 short), selected from 31 submissions (another one was withdrawn) from 13
countries. Apart from the contribution by M́ D J́ L́, G
B-E, A G, all were presented by one of the authors.

C I S AL AS C I S AL AS C I S AL AS
CA 4 1

12 3 7
12 FR 2 5

6
5
6 SK 11

4
1
4

CZ 5 2 HU 25
6 2 1 5

12 UK 3 1
3 1 7

12
DE 1 5 51

4 IN 1 1
3 1 US 1 11

2 11
2

ES 1 1
6 11

2 JP 1 3 3
FI 1

2
1
2 RO 1 1

2
1
4

Σ 5 31 22 3
W 1

110 110

110 110

BEATCS no 106 REPORTS FROM CONFERENCES

102

The program of AFL 2011 can be found at http://www.nyf.hu/afl11/.

The conference was opened on Wednesday morning by G̈ G́, vice-
rector for science and innovation of N́́ College, talking on I́ P́,
the history of AFL, 13 as the luckiest prime, the Debrecen flower festival, thanking
P́ D̈̈, for the organization, and wishing success and good weather for AFL.

J-É P, with the first invited lecture ‘Equational Descriptions of Lan-
guages’, presented an excellent survey on history and motivations of the field,
ranging over 45 years, (S̈, MN, E, B,
I. S, T, also showing pictures of them). Starting with Birkhoff’s, Rei-
termann’s, and Eilenberg’s theorems on varieties, he talked on syntactic orders
(B, P, W) and preorders, C-varieties, equational theories of lattices, pre-
sented examples, and finished with dreams for home work, and ’Whole thing so
abstract, probably useless’.

In the good second one, ‘K-Restricted Duplication Closure of Languages’,
M I presented interesting results on the closure properties of language
classes under K-restricted duplication, contextfree being closed whereas regular
in general not.

In the third one, AM (co-authors PG, M
H, A J̇, DQ) with ‘Notes on Hyper-minimization’ gave a
very good overview on the history of a new area of hyper-minimization, on hyper-
minimization (kernel states, almost equivalent and merging states), on hyper-
optimization, as well as on algorithms and their complextity for them, and their
restrictions and limitations.

CC (co-author SG), in the forth invited talk ‘On
Relations of Finite Words over Infinite Alphabets’, presented a good and interest-
ing survey on background and context of the area of first order theories on word
relations (E, E, S, prefix of, equal length, last letter, etc.),
keeping the notion of finite automata, of first order logic, and showing results of
decidable and undecidable theories.

With the fifth invited lecture ‘Open Problems on Avoidable Patterns in Par-
tial Words’, F B-S presented a good and interesting overview
on the area, namely on pattern avoidance (Thue-Morse word, avoidability in-
dex, K-(un)avoidability, classification of binary patterns, ternary patterns, avoid-
ing Abelian squares and other powers, insertion of arbitrary many holes), and on
subword complexity (minimal Sturm’ian partial words, deBruijn partial words).

Also to mention are the very good presentations by J B on
quotient complexity of star-free languages, and by S S on character-
izations of bounded semilinear languages by 1- and 2-way deterministic automata,
as well as the good and interesting ones by G J́́ on quotient complex-
ity of bifix-, factor-, subword-free regular languages, by AM (due to

111 111

111 111

The Bulletin of the EATCS

103

an accident his coauthor couldn’t come) on hyper-minimization of deterministic
weighted FA over semifields, by F O on deterministic pushdown-CD
systems of stateless deterministic R(1)-automata, by H U on new small
2-dimensional cellular automata for firing squad synchronization, and by S
N on operations preserving primitivity of partial words with 1 hole. A very
fast presentation was given by K V K.

A special birthday session took place on Sunday morning, celebrating 5 an-
niversaries. P́D̈̈ held the first laudatio in honour of M I’s 70th birth-
day (* 1941 December 17), mentioning research of more than 40 years (codes,
semigroups Q), and M’s hobby of travelling with trains.

The second laudatio was given by Z́ É honouring W K’s
70th birthday (* 1941 June 17), talking on the scientific CV and research (contin-
uous, inductive, partial Conway semirings, automata theory, algebraic series) of
the honoured.

S́ H́ presented the third in honour of C C’s 65th

birthday (* 1946 May 5), talking on his long personal cooperations with C-
 who speaks many languages, and on the research of the honoured (rational
relations, combinatorics, Presburger logic, algebra, number theory, and ’so much
much more’).

In reverse, Z́ É’s 60th birthday (* 1951 June 25) was honoured in the
fourth laudatio by WK, who presented Z́’s scientific CV, in partic-
ular the cooperation with S B who passed away on October 14, 2010,
on equational fix point theories, and finished with ’Ad multos annos!’.

Finally, B N gave the fifth laudatio honouring M K’s 50th

anniversary (1961 August 18), presenting the scientific CV (cellular automata,
descriptional complexity) of the jubilee, illustrated with photos.

All jubilees received presents as e.g.Hungarian wine.

The conference was closed on Monday early afternoon with some concluding
remarks by M K, A́ Á́, K V K, and P́
D̈̈.

The proceedings, edited by P́ D̈̈ and S I́, containing all con-
tributions and invited lectures, unfortunately that by C C only as
extended abstract, have been published by I  M  I-
, C  N́́.

In the coffee breaks coffee, tea, mineral water, juice, and snacks were offered.
Lunch was served in the university restaurant N É, at 10 minutes
walking distance from the conference site.

Wireless access to internet was available in the conference building.

The social program started on Wednesday evening with a reception in the uni-

112 112

112 112

BEATCS no 106 REPORTS FROM CONFERENCES

104

versity restaurant. A warm buffet, mineral water, juice, beer, Hungarian wine
N́ (white, rosé, red) were offered. It lasted well until 22 h.

The excursion on Friday afternoon brought us to H́, about 35 km west
of Debrecen, and famous for the traditional Hungarian herdsmen, inparticular
cowboy (csikos) culture, horse riding and excursions into P (unfortunately
we didn’t have time for that). We could walk around, buy Hungarian souvenirs at
a big market, or have some recreation in one of the cafeterias or in the Big Csárda
(N́).

After that, from 18 till 22 h we had the conference dinner at L́́́ C́
(Watching Picture Inn), where we got typical Hungarian dishes, wine, mineral
water and coffee. A music band was perfoming (not only Hungarian) gipsy tunes.

On Sunday we could watch the procession of the traditional Flower Festival
(D V́ K́) for which we got free tickets. It lasted from 8 till 12
h. In the afternoon we could visit some of the many other events such as folklore
performances with dance and music, or typical Hungarian dishes.

Most participants not from Debrecen stayed in the academy house, in one
of the three buildings of K L K́ on the university campus, or
in hotels in town. Pictures of AFL 2011 are available on the web site of the
conference. Weather was hot and sunny, with highest temperatures above 30◦ C.

Thus AFL 2011 was a successful conference again, well organized and in a
hospitable atmosphere. Viszontlátásra Debrecen!.

113 113

113 113

Bulletin of the EATCS no 106, pp. 105�106, February 2012

©c European Association for Theoretical Computer Science

R  CS&P 2011

20th International Workshop on Concurrency, Specification
and Programming, 28-30 September 2011, Pułtusk, Poland

Manfred Kudlek

CS&P 2011, the in this series of conferences, alternating between Germany
and Poland, took place in the historical town P at river N in the re-
gion M (M), 60 km north of Warszawa, from September 28 to 30,
2011. Conference site was Z P (P ) serving as hotel and
conference place (H D P, P is the Polish diaspora). It is a 16th

century building, partly destroyed in 2nd world war and restored after it.
CS&P 2011 was organized and supported by U V (F-

  I), H U̈  B (F̈ ̈ M-
, I  M), together with P B and
NCBR (PNC R D) project SYNAT
( N  ).

The conference was attended by 65 participants from 7 countries, as given in
the following table:

DE 14 IT 3 PL 39 RU 4
SA 3 SK 1 UK 1

The scientific program consisted of 54 accepted (another 3 withdrawn, 2 re-
jected) papers as shown in the following table:

DE 101
3 FR 5

8 IT 37
8 PL 277

8 RU 3 2
3

SA 21
8 SE 1 SK 2 UA 1 UK 1 1

2

The program can be found on the website of CS&P 2011:

http://www.csp2011.mimuw.edu.pl.

The workshop was run in two parallel tracks, roughly theoretical and applied,
in S K and S K. On Friday due to a commercial meet-
ing, one track was shifted to S B.

The presentation by O Y was cancelled. Due to a medical opera-
tion the contribution of R R̧ was presented by L C.

The workshop was opened on Wednesday by M S, giving useful
information, in particular ’You may suffer terrible pains with the internet’ (there
were problems with access), and L C, saying some words on CS&P.

114 114

114 114

BEATCS no 106 REPORTS FROM CONFERENCES

106

To mention are good presentations by J̈ B on characterizations of
Petri net languages, by I L on compositionality of boundedness and
liveness for nested Petri nets, and on cellular resource-driven automata, by F
H on liveness and reachability for elementary object nets, and restrictions
of generalized state machines, by M K́ on finite model property of in-
finitary action logics, and by D S on entropy production in special
algorithms.

An interesting contribution on letter frequency distribution in the Voynich
manuscript was presented by G J́.

The proceedings, edited by L C, M K, A
S, and M S, containing all contributions, have been published
in electronic form on CD and USB stick, and are also available on the workshop
website. Pictures of CS&P 2011 can be found on the conference web site.

In the coffee breaks coffee, tea, juice, mineral water and snacks were offered.
Breakfast, lunch and dinner were served in the castle restaurant.

The social program consisted of a guided sightseeing tour through the old
town on Thursday afternoon. It started with a tour through the castle, built in 16th

century, from the tower of which there is a nice view over the town with its long
market square and big town hall, and continued with a walk through the town with
a visit to the 15th century Gothic church B Z NMP (Mary’s
Announcement).

The conference dinner took place in the evening in T in the castle
grounds, where we had an open fire (useful for repelling mosquitos), barbecue,
salads, bigos, bread, draught beer, mineral water, coffee, and tea. It ended by
21:30 h.

All participants stayed in the castle hotel. Weather was nice, sunny with occa-
sional rainfall, and highest temperatures at 20◦ C.

CS&P 2011 was successful again, in an interesting and recreational area.
CS&P 2012 will be held in B.

115 115

115 115

Bulletin of the EATCS no 106, pp. 107�110, February 2012

©c European Association for Theoretical Computer Science

R  DISCO 2011

Workshop on the Dynamics of Complex Systems
24-26 November 2011, Valparaíso, Chile

Andrés Moreira

The workshop DISCO 2011 on the Dynamics of Complex Systems (named af-
ter its Spanish title, “DInámica de Sistemas COmplejos”) took place in the Chilean
port of Valparaíso between the 24th and 26th of November. It was held to cele-
brate the 60th birthday of Eric Goles, and its venue was the Instituto de Sistemas
Complejos de Valparaíso (ISCV).

The organizing committee consisted of Anahí Gajardo and Julio Aracena from
the Universidad de Concepción, Andrés Moreira from the Universidad Técnica
Federico Santa María, and Ricardo Espinoza from the Pontificia Universidad Ca-
tólica de Valparaíso, with a strong support from the staff at the ISCV. The meeting
was supported by the project IMSA (Conicyt ACT-88) as well as other institutions
listed at the conference web site (http://www.ci2ma.udec.cl/disco/).

The celebration congregated more than 18 Chilean researchers, 32 colleagues
from other countries, and 14 students. The foreign visitors came mostly from
France, a token of Eric Goles’ long-standing relationship with that country, but a
number of other countries were also represented. Since Automata 2011, the yearly
meeting on the theory of cellular automata and discrete dynamical systems, took
place in Santiago in the first days of the same week, many participants made the
best of their plane tickets and attended both events.

The career of Eric Goles spans the last three decades and has been mostly de-
voted to automata networks and related discrete dynamical systems, ranging from
discrete neural networks to sand piles to cellular automata; his interest has been in
the dynamics (bounds on attractors and transients) and computational capabilities
of these systems. He has also created scientific centers (the Center for Mathemat-
ical Modeling at the Universidad de Chile, and the ISCV itself), directed many
large projects, and presided the Chilean office for science and technology for six
years. This time, however, it was his research that was celebrated, and hence the
topics of most of the talks fell within or around the areas mentioned above.

The list of the speakers of the first day, along with brief descriptions of their
topics, are listed below:

• Andrés Moreira opened the meeting with an overview of Dr Goles’ career,
showing the growth of his network of collaborators and describing the topics
that dominated each period.

116 116

116 116

BEATCS no 106 REPORTS FROM CONFERENCES

108

• Cristian Calude discussed the complexity of mathematical problems de-
fined by computable predicates, and which would therefore be solved by an
oracle for the halting problem.

• Dominique Perrin described recent results on the relation between bifix
codes, Sturmian words and subgroups of free groups.

• Guillaume Theyssier recounted several results on the limit behaviour of
cellular automata, in terms of both the possible and the typical configura-
tions appearing after arbitrarily long runs.

• Ioan Todinca gave positive and negative results, as well as many open ques-
tions, on a model of frugal computation on a graph to which a universal
vertex is added.

• Iván Rapaport reported results on the computational power of graph-based
models of distributed computing in which each node additionally has (lim-
ited) access to a global whiteboard.

• Michel Cosnard talked about directed acyclic graphs with the unique di-
rected path property, applied to the problem of minimizing the number of
wavelengths used for routing.

• Marcos Kiwi presented a result on the growth of the number of perfect
matchings of cubic bridgeless planar graphs, obtained through the study of
the Ising model on their associated triangulations.

• Martín Matamala showed an alternative proof of a lemma by N. Thiant,
arriving to it in terms of the existence of a winning strategy for a special
two-player domino game.

The first day continued with a cocktail at the Lord Cochrane Museum, with a
splendid view over the harbor and several delicious birthday cakes. A subset of
the participants went on to finish the evening with an unofficial social activity at
the typical Bar Cinzano, where a certain 60 years old mathematician is rumoured
to have joined the singers. The second day of the workshop comprised the talks
listed here:

• Petr Kůrka discussed fast arithmetical algorithms for “Möbius number sys-
tem”, which are representations of the unitary circle in terms of sequences
of Möbius transformations.

• Eric Rémila talked about the avalanches and fixed points of the Kadanoff
sand pile model.

117 117

117 117

The Bulletin of the EATCS

109

• Jarkko Kari answered a question first formulated by Stanislaw Ulam, sho-
wing a 1-D cellular automaton which, starting from a finite configuration,
produces all possible finite patterns over its alphabet.

• Gregory Chaitin mentioned part of his work towards a mathematical un-
derstanding of biological evolution, and commented on some other scien-
tific novelties.

• Gregory Lafitte gave a talk on cellular automata and games.

• Bruno Durand provided an overview of the difficulties of performing uni-
versal computation in faulty cellular automata, and of even defining the
problem properly.

• Eric Goles reminisced about his early research and its intellectual context,
and went on to describe some of the main topics of his career and the ques-
tions guiding it.

• Alejandro Maass reviewed a number of rigidity results on cellular au-
tomata; in particular, results on the iteration of measures and on invariant
measures.

• Hans Herrmann in his “Apollonian variations” described his work on con-
structing space-filling Apollonian packings of bearings where contiguous
discs rotate in opposite senses.

• Sergio Rica described his recent work with Eric and Nicolás Goles on
Schelling’s social segregation model; he discussed qualitative and quanti-
tative observations from a physical point of view.

• Pablo Marquet, an ecologist, talked about several mathematical models on
which he has worked, ranging from the formation of plant stripes in the
desert to mitigation strategies for climate change.

The last day of the meeting was a Saturday, and the program finished with a
barbecue for lunch. The crowd waited for it by listening to the last set of talks:

• Bruno Martin sketched a “how-to” for the construction of universal com-
putation, by describing and comparing the strategies and chains of simula-
tion used in several of Eric Goles’ results.

• Nicolas Ollinger showed his construction of aperiodic tile sets based on
2×2 substitution systems, and related it to the work “hidden” in an appendix
of Robert Berger’s 1966 thesis.

118 118

118 118

BEATCS no 106 REPORTS FROM CONFERENCES

110

• Nicolas Schabanel gave some reflexions on the relation between computer
science and complex systems theory, discussing different ways in which the
first has contributed (and still can contribute) to the second.

• Henning Mortveit described how the tools from group theory may be used
to assess the long-term dynamics of asynchronous discrete dynamical sys-
tems.

• Julio Aracena talked about update schedules in Boolean networks, and how
their relation to the dynamics can be studied through the “update digraphs”
they induce.

• Jacques Demongeot made a tour de force through several levels of bio-
logical complexity, discussing the requisites for the robustness of different
systems. In addition, he shared some memories of the early 80’s in Greno-
ble, when Eric Goles was first a student and then a CNRS researcher.

In summary, it was a successful meeting, with great contributions by all the
participants (and here we do not refer to the bottle of wine which was required
as the sole registration fee). The talks dealt with a number of areas in theoretical
computer science and discrete mathematics; there were even some forays into
other disciplines. However, a sense of unity was provided by their relation to the
research done in the last 30 years by Eric Goles and his collaborators, both in the
wide world and in the “Chilean school” that has flourished under his guidance.

The slides from the talks can be found at the workshop’s web site. Videos of
the talks are available through the web site of the ISCV (http://www.iscv.cl).
In addition, a special issue of Theoretical Computer Science will be published,
based on the research and surveys presented during the meeting.

119 119

119 119

E u r o p e a n

A s s o c i a t i o n f o r

T h e o r e t i c a l

C o m p u t e r

S c i e n c e

EA
T

C
S

E A T C S

120 120

120 120

BEATCS no 106 EATCS LEAFLET

112

EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.
Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
and a Treasurer. Policy guidelines are determined by the Council and the General Assembly of
EATCS. This assembly is scheduled to take place during the annual International Colloquium on
Automata, Languages and Programming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;
- Publication of the “Bulletin of the EATCS;”
- Award of research and academic careers prizes, including the “EATCS Award,” the “Gödel Prize”
(with SIGACT) and best papers awards at several top conferences;
- Active involvement in publications generally within theoretical computer science.
Other activities of EATCS include the sponsorship or the cooperation in the organization of vari-
ous more specialized meetings in theoretical computer science. Among such meetings are: ETAPS
(The European Joint Conferences on Theory and Practice of Software), STACS (Symposium on
Theoretical Aspects of Computer Science), MFCS (Mathematical Foundations of Computer Sci-
ence), LICS (Logic in Computer Science), ESA (European Symposium on Algorithms), SPAA
(Symposium on Parallel Algorithms and Architectures), Workshop on Graph Theoretic Concepts
in Computer Science, International Conference on Application and Theory of Petri Nets, Interna-
tional Conference on Database Theory, Workshop on Graph Grammars and their Applications in
Computer Science.

Benefits offered by EATCS include:
- Subscription to the “Bulletin of the EATCS;”
- Reduced registration fees at various conferences;
- Reciprocity agreements with other organizations;
- 25% discount when purchasing ICALP proceedings;
- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”
- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”
- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”

(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and now
customarily taking place during the second or third week of July. Typical topics discussed during
recent ICALP conferences are: algorithms, computational complexity, game theory, automata the-
ory, formal language theory, logic, semantics, and theory of programming languages, foundations
of networked computation, parallel, distributed, and external memory computing, foundations of
logic programming, models of concurrent, distributed and mobile systems, software specification,
computational geometry, data types and data structures, models for complex networks, theory of
security.

121 121

121 121

The Bulletin of the EATCS

113

S  ICALP :

- Paris, France 1972
- Saarbrücken, Germany 1974
- Edinburgh, Great Britain 1976
- Turku, Finland 1977
- Udine, Italy 1978
- Graz, Austria 1979
- Noordwijkerhout, The Netherlands 1980
- Haifa, Israel 1981
- Aarhus, Denmark 1982
- Barcelona, Spain 1983
- Antwerp, Belgium 1984
- Nafplion, Greece 1985
- Rennes, France 1986
- Karlsruhe, Germany 1987
- Tampere, Finland 1988
- Stresa, Italy 1989
- Warwick, Great Britain 1990
- Madrid, Spain 1991
- Wien, Austria 1992

- Lund, Sweden 1993
- Jerusalem, Israel 1994
- Szeged, Hungary 1995
- Paderborn, Germany 1996
- Bologne, Italy 1997
- Aalborg, Denmark 1998
- Prague, Czech Republic 1999
- Genève, Switzerland 2000
- Heraklion, Greece 2001
- Malaga, Spain 2002
- Eindhoven, The Netherlands 2003
- Turku, Finland 2004
- Lisbon, Portugal 2005
- Venezia, Italy 2006
- Wrocław, Poland 2007
- Reykjavik, Iceland 2008
- Rhodes, Greece 2009
- Bordeaux, France 2010
- Zürich, Switzertland 2011

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium for rapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D.-Theses;
- Entertainments and pictures related to computer science.

Contributions to any of the above areas are solicited, in electronic form only according to for-
mats, deadlines and submissions procedures illustrated at http://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email at bulletin@eatcs.org.

(3) OTHER PUBLICATIONS

EATCS has played a major role in establishing what today are some of the most prestigious pub-
lication within theoretical computer science.
These include the EATCS Texts and the EATCS Monographs published by Springer-Verlag and
launched during ICALP in 1984. The Springer series include monographs covering all areas of
theoretical computer science, and aimed at the research community and graduate students, as well
as texts intended mostly for the graduate level, where an undergraduate background in computer
science is typically assumed.
Updated information about the series can be obtained from the publisher.
The editors of the series are W. Brauer (Munich), J. Hromkovic (Aachen), G. Rozenberg (Leiden),
and A. Salomaa (Turku). Potential authors should contact one of the editors.

122 122

122 122

BEATCS no 106 EATCS LEAFLET

114

EATCS members can purchase books from the series with 25% discount. Order should be sent to:
Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

The journal Theoretical Computer Science, founded in 1975 on the initiative of EATCS, is pub-
lished by Elsevier Science Publishers. Its contents are mathematical and abstract in spirit, but it
derives its motivation from practical and everyday computation. Its aim is to understand the nature
of computation and, as a consequence of this understanding, provide more efficient methodologies.
The Editors-in-Chief of the journal currently are G. Ausiello (Rome), D. Sannella (Edinburgh),
G. Rozenberg (Leiden), and M.W. Mislove (Tulane).

ADDITIONAL EATCS INFORMATION
For further information please visit http://www.eatcs.org, or contact the President of EATCS:

Prof. Dr. Burkhard Monien, Department of Computer Science
Universität Paderborn, Fürstenalle 11, 33102 Paderborn, Germany
Email: president@eatcs.org

EATCS MEMBERSHIP

DUES

The dues are e 30 for a period of one year. A new membership starts upon registration of the
payment. Memberships can always be prolonged for one or more years.
In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS for e 25 per year. Additional e 25 fee is required for ensuring the air mail
delivery of the EATCS Bulletin outside Europe.

HOW TO JOIN EATCS

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
site www.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, a subscription form can be downloaded from www.eatcs.org to
be filled and sent together with the annual dues (or a multiple thereof, if membership for multiple
years is required) to the Treasurer of EATCS:

Prof. Dr. Dirk Janssens, Dept. of Math. and Computer Science, University of Antwerp
Middelheimlaan 1, B-2020 Antwerpen, Belgium
Email: treasurer@eatcs.org, Tel: +32 3 2653904, Fax: +32 3 2653777

The dues can be paid (in order of preference) by VISA or EUROCARD/MASTERCARD credit
card, by cheques, or convertible currency cash. Transfers of larger amounts may be made via the
following bank account. Please, adde 5 per transfer to cover bank charges, and send the necessary
information (reason for the payment, name and address) to the treasurer.

Fortis Bank, Jules Moretuslei 229, B-2610 Wilrijk, Belgium
Account number: 220–0596350–30–01130
IBAN code: BE 15 2200 5963 5030, SWIFT code: GEBABE BB 18A

