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Abstract 
  
This paper focuses on the U.S. Billion-dollar Weather/Climate Disaster report by the National Oceanic and 
Atmospheric Administration’s National Climatic Data Center. The current methodology for the production of this 
loss dataset is described, highlighting its strengths and limitations including sources of uncertainty and bias. The 
Insurance Services Office/Property Claims Service, the U.S. Federal Emergency Management Agency’s National 
Flood Insurance Program and the U.S. Department of Agriculture’s crop insurance program are key sources of 
quantified disaster loss data, among others. The methodology uses a factor approach to convert from insured losses 
to total direct losses, one potential limitation. 
 
An increasing trend in annual aggregate losses is shown to be primarily attributable to a statistically significant 
increasing trend of about 5% per year in the frequency of billion-dollar disasters. So the question arises of how such 
trend estimates are affected by uncertainties and biases in the billion-dollar disaster data. The net effect of all biases 
appears to be an underestimation of average loss. In particular, it is shown that the factor approach can result in a 
considerable underestimation of average loss of roughly 10 to 15%. Because this bias is systematic, any trends in 
losses from tropical cyclones appear to be robust to variations in insurance participation rates.  Any attribution of the 
marked increasing trends in crop losses is complicated by a major expansion of the federally subsidized crop 
insurance program, as a consequence encompassing more marginal land.  Recommendations concerning how the 
current methodology can be improved to increase the quality of the billion-dollar disaster dataset include refining 
the factor approach to more realistically take into account spatial and temporal variations in insurance participation 
rates. 
 
Keywords: natural disasters; losses; statistics of extreme events; data sources  
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1. Introduction 

The U.S. Billion-dollar Weather/Climate Disaster report by the National Oceanic and Atmospheric 
Administrations’s National Climatic Data Center provides readers with an aggregated loss perspective for major 
weather and climate events since 1980 (NCDC 2012).  This report quantifies the loss from numerous weather and 
climate disasters including: tropical cyclones, floods, droughts / heat waves, severe local storms (e.g., tornado, hail, 
straight-line wind damage), wildfires, crop freeze events and winter storms. These loss estimates reflect direct 
effects of weather and climate events (i.e., not including indirect effects) and constitute total losses (i.e., both insured 
and uninsured). The insured and uninsured direct losses include:  physical damage to residential, commercial and 
government/municipal buildings, material assets within a building, time element losses (i.e., time-cost for businesses 
and hotel-costs for loss of living quarters), vehicles, public and private infrastructure, and agricultural assets (e.g., 
buildings, machinery, livestock).  Our disaster loss assessments do not take into account losses to natural 
capital/assets, healthcare related losses, or values associated with loss of life. 

 
Only weather and climate disasters whose losses exceed the billion-dollar threshold, in U. S. $ for the year 2011 

adjusted for inflation using the Consumer Price Index (CPI), are included in this dataset (Figure 1). While this 
threshold is somewhat arbitrary, these billion-dollar events account for roughly 80% of the total ($880B out of 
$1,100B) U.S. losses for all combined severe weather and climate events (Munich Re 2012, NCDC 2012). This 
adjustment does allow some disaster events that have nominal losses less than $1 billion to be counted, but these 
events reflect only 19 of 133 total events. The distribution of the damage and frequency of these disasters across the 
1980-2011 period of record is dominated by tropical cyclone losses (Table 1), but the frequency and loss totals from 
severe local storms increased the most over the last several years. 
 

First the current methodology for the production of the U.S. billion-dollar disaster loss dataset is described. The 
goal is to highlight strengths and limitations of this dataset, identifying potential sources of uncertainty and bias. 
Because most of the data sources provide only insured losses, a “factor approach” (based on approximate average 
insurance participate rates) is used for conversion into the corresponding total losses. A number of studies have 
concluded that that population growth, increased value of property at risk and demographic shifts are major factors 
behind the increasing losses from weather and climate disasters (Pielke et al. 2008; Downton et al. 2005; Brooks and 
Doswell 2001).  Nevertheless, the billion-dollar disaster dataset is only adjusted for inflation.  
 
 Figure 1 suggests apparent increasing trends in both the annual frequency of billion-dollar events and in the 
annual aggregate loss from these events. So another goal of the paper is to study how any trend estimates are 
affected by uncertainties and biases in the billion-dollar disaster data. Particular attention is devoted to the effects of 
the factor approach for conversion from insured to total loss. A final goal is to make recommendations concerning 
how the current methodology can be improved to increase the quality of the dataset. 
 

An outline of the paper is as follows. Sources of data for disaster losses are described in Section 2.  Next, the 
current method for estimating total direct loss, focusing on specific disaster examples, is presented in Section 3. The 
effects of uncertainties and biases on the detection and attribution of trends in losses are assessed in Section 4. 
Finally, Section 5 contains a discussion and conclusions, including recommendations for how the billion-dollar 
dataset can be improved. 
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Fig. 1  US Billion-dollar Weather and Climate Disaster time series from 1980-2011 indicates the number of annual 
events exceeding $1 billion in direct damages, at the time of the event and also adjusted to 2011 dollars using the 
Consumer Price Index (CPI) 
 
 

        Number of Disaster 
      Events  

 Adjusted  
Damages 

    ($ Billions) 

           Percent  
 Damage 

      Percent 
   Frequency 

 

Tropical Cyclones 31 417.9 47.4% 23.3% 

Droughts/Heatwaves 16 210.1 23.8% 12.0% 

Severe Local Storms 43 94.6 10.7% 32.3% 

Non-Tropical Floods 16 85.1 9.7% 12.0% 

Winter Storms 10 29.3 3.3% 7.5% 

Wildfires 11 22.2 2.5% 8.3% 

Freezes 6 20.5 2.3% 4.5% 

 

Total 133 881.2 100.0% 100.0% 
 
Table 1  Damage, percent damage, frequency, and percent frequency by disaster type across the 1980-2011 period 

for all billion-dollar events (adjusted for inflation to 2011 dollars) 
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2. Data Sources 
 

Estimating the total direct economic losses from a natural disaster event is an iterative process due to the 
number of datasets, public and private, needed to inform an assessment (Table 2). Economic loss estimates are often 
not reliable for several months to years after a major disaster due to the time it takes to receive, process and verify 
insurance claims in a complex post-disaster environment. Sources providing insured loss data following a disaster 
include the Insurance Services Office (ISO) Property Claim Services (PCS), Federal Emergency Management 
Agency (FEMA) National Flood Insurance Program (NFIP) and Presidential Disaster Declaration (PDD) assistance, 
and the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) & Risk 
Management Agency (RMA).  

 
Each of these data sources provides unique information as part of the overall disaster loss assessment. However, 
there is variance in what information is available for specific disaster types.  Table 2 is partitioned by the data 
sources we use to quantify the direct losses resulting from weather and climate disasters and the metadata attributes 
for each of the data sources.  This includes the data source disaster loss variables, the temporal period and spatial 
resolution of the data, report update cycles, changes in recording thresholds and the collection sources used to 
develop the data. For example, the ISO/PCS source provide insurance loss data for tropical cyclones, severe local 
storms, winter storms and wildfires, but not drought, crop freeze or flooding, as data for those events are provided 
by USDA and FEMA. The loss variables included for each of the data providers are also distinct.  PCS aggregates 
several sources of insured loss including residential and commercial property, business interruption losses, vehicles, 
boats, and inland marine losses, but does not include losses to agriculture, aviation, ocean marine or losses resulting 
from flooding.  Again, these categories of insured losses are detailed by USDA and FEMA data. The cost of the 
premiums and loss above limits are not traditionally included, which does create an under bias in losses, but we 
estimate this into our un(der)insured (i.e., uninsured and underinsured) loss adjustments, as discussed in Section 3.  
 

There have also been changes in disaster definitions and coverage limits for each of these data sources.  For 
example, in 1949 when the PCS data collection began, the insured loss threshold requirement was $1 million in 
damage within a single state, to be classified as a ‘disaster.’  This threshold increased to $5 million in January 1982 
and then increased to $25 million in January 1997. The current catastrophe definition is an event causing $25 million 
or more of insured property damage and having affected a significant number of policyholders and insurers (ISO 
2011). However, these changes do not particularly affect our analysis due to the relatively high, billion-dollar 
threshold.     

 
Another example is how the FEMA / NFIP residential and commercial coverage limits have increased several 

times, with policy revisions enacted in 1973, 1977, 1994, and 2004 (NFIP 2010). Likewise, participation in USDA 
crop insurance programs has also increased through time. The largest rise in crop insurance participation occurred 
after the Federal Crop insurance Reform Act of 1994, which introduced the catastrophe risk protection level of 
coverage, in which the premiums were completely subsidized and a modest processing fee was charged for each 
insured crop. Perhaps most important are the general increases in insurance participation over time and the rise in 
value of insured property, with respect to the reported insured data.  Better understanding the un(der)insured losses 
are a key challenge given the data.   
 



6 

 
 
Table 2  An overview of the metadata behind the data sources used in the billion-dollar event analysis 
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3. Method for estimating total direct losses 
 
a. Insurance Data as Basis for Estimation 

To estimate the total loss from disasters, we first consider public and private insurance coverage. Based on the 
data available, we employ a simplified factor method, which differs by disaster type (Table 3).  

FEMA / National Flood Insurance Program 

For example, residential and commercial flood insurance is most widely provided and managed by FEMA’s 
National Flood Insurance Program. Mortgage lenders require any residence within FEMA Special Flood Hazard 
Areas (SFHAs) to purchase flood insurance. The SFHAs are commonly referenced as those within the 100-year 
flood plain boundaries. However, the enforcement and participation is not uniform. The NFIP market is highly 
concentrated, as nearly 70% of policies are in five states - Florida, Texas, Louisiana, New Jersey and California, 
while Florida and Texas together represent more than 50% of the total NFIP active policies across all states 
(Kunreuther and Michel-Kerjan 2011). There is also a bias in NFIP participation depending on the number of single 
family houses that exist in the SFHAs where the mandatory purchase of flood insurance applies. Research by Dixon 
et al. (2006) found that the NFIP participation is 16% in communities with 500 or fewer homes in the SFHA, 56% in 
communities with 501 to 5,000 homes in the SFHA, and 66% in communities with > 5,000 homes in the SFHA 
zone.  

Given these differences, it is necessary to account for how NFIP participation varies across states and regions. 
One study by PricewaterhouseCoopers (1999) found in 1997 that the nationwide market participation for the NFIP 
across the U.S. was estimated at 26% of eligible parcels. Dixon et al. (2006) found that the chances of purchasing 
insurance are higher for SFHA communities subject to coastal flooding/storm surge (63%) versus communities more 
at risk to riverine flooding (35%).  Flood insurance coverage drops off steeply outside of the high risk flood areas, 
which is important as 25% of all flood insurance claims come from low-to-moderate-risk areas (FEMA 2011). The 
Dixon et al. study details how NFIP participation varies regionally inside and outside the SFHAs, showing high 
degrees of variability.  Participation rates in the SFHAs are relatively low in the Midwest (22%) and Northeast 
(28%) regions while higher in the South (61%) and West (60%).  However, NFIP policy participation outside the 
SFHAs in all U.S. regions is very low (< than 10%), as these reflect low-to-moderate flood risk areas where 
coverage is not required.  For our own comparison of the spatial variation in NFIP penetration, we have a county-
based NFIP penetration database provided to us by FEMA, but it also reflects spatial issues as discussed.  

It is also important to note that commercial and residential needs for flood insurance coverage exceeding the 
limits of NFIP policies can be fulfilled by specialized private sector flood insurers.  We rely on commercial flood 
losses estimates from Reinsurance companies to better understand these impacts not reported in the NFIP data. 
Personal and commercial vehicle flood damage is part of private comprehensive insurance, as reported by ISO/PCS. 
With the exception of some commercial, residential and most all vehicle policies the NFIP underwrites U.S. flood 
risk. 

Given the complexity of the data we use a regional approximation for NFIP coverage and apply a factor than 
corresponds with the NFIP participation rate.  This seeks to adjust for total flood damage potential for those 
properties not covered by NFIP insurance payments.  For example, if a region had approximately 25% policy 
protection we apply a factor of 4.0 to NFIP flood insurance payment totals for an inland flooding event. However, 
this factor is adjusted higher when widespread, prolonged flooding event takes place across a large area (e.g., 1993 
Midwest Flood), in which damage has occurred beyond the SFHAs where policy coverage is very sparse. 

ISO / Property Claim Services 

For severe local storms where high wind and hail cause property damage, we use a different methodology.  The 
widespread use of homeowners insurance provides coverage against many natural hazards including wind storm, 
hail, fire, lightning, snow, sleet, weight of ice, etc. Several surveys from the Insurance Information Institute (III) and 
the  National Association of Insurance Commissioners (NAIC) from the early 1980’s through 2011 report that 83%-
95% of residences obtained covered by multi-peril insurance policies (e.g., specific to wind, hail, lightning damage).  
However, lower income residences often do not have insurance and the 25% of society that rent largely do not have 
insurance for their possessions.  Given these caveats we have approximated that 80% of losses will be covered 
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during a typical severe weather outbreak, which PCS indicates is a good standard (ISO/Gary Kerney personal 
communication 2012).  PCS data reflect the residential, commercial and vehicle claims for high wind or hail 
damage.  As a result, we use PCS insured losses x 1.25 as one adjustment in the equation. However, not all 
structures have insurance coverage and others do not have enough coverage to replace structural, contents, and time 
element losses, which result during the most severe events. To better approximate insured losses from the most 
severe events causing extreme devastation (e.g., April 25-28, 2011 Southeast Super Outbreak), we approximate that 
only 70% of total losses will be covered by insurance and factor PCS insured losses x 1.42. This 70% factor is used 
when PCS insured loss amounts > $1 billion for a single state (CPI-adjusted) resulting from an outbreak of severe 
weather.  This is likely a conservative standard, but reflects the larger number of structures exposed to higher 
amounts of loss from the most destructive severe weather outbreaks. This has happened only rarely when tornadoes 
or large hail affects large suburban or urban areas (e.g., May 1999 Oklahoma City, OK; May 2011 Joplin, MO). 

USDA / Risk Management Agency       

Our disaster loss methodology also examines USDA/RMA crop insurance data to further adjust or supplement 
our total loss calculations. Farmers’ participation in the Federal crop insurance program is voluntary.   RMA has 
overall responsibility for supervising the Federal crop insurance program, which it administers in partnership with 
the private sector.  Insurance policies are sold and completely serviced through approved private insurance 
companies, and insurance policies cover losses due only to natural disasters.  The producer selects both the 
percentage of yield to be covered (i.e., 50% - 75%; 85% coverage is available for limited crops and in limited areas) 
and the percentage of the commodity price (55% - 100%).  USDA determines whether to insure a commodity on a 
crop by crop and county by county basis, based on the farmer demand for coverage, level of risk associated with the 
crop in the region, and if sufficient actuarial data are available.  The Federal crop insurance program is not available 
for all crops, types, and practices.  For commodities not insured under the federal crop insurance programs, USDA 
administers seven disaster assistance programs: Emergency Assistance for Livestock, Honey Bees, and Farm-raised 
Fish (ELAP); Emergency Forest Restoration Program (EFRP); Livestock Forage Program (LFP); Livestock 
Indemnity (LIP); Noninsured Crop Disaster Assistance Program (NAP); Supplemental Revenue Assistance 
Payments Program (SURE); Tree Assistance Program (TAP). 

Since USDA crop insurance indemnity data (loss payments) do not reflect the total value of crops 
damaged/destroyed during a disaster event we have developed a factor approach.  Assuming that on average 70% of 
eligible acres are insured and most producers select 70% of crop yield to be covered (USDA 2011) we approximate 
the total crop loss by applying a 2.0 factor to the RMA crop indemnity data; that is, 1/[(0.7)(0.7)]  = 2.04 ≈ 2.  
However, state-issued reports following a disaster event may supersede USDA crop indemnity data factorization in 
our analysis if they provide greater levels of detail. For example, state agency reports on crop loss events may be 
more useful as they often detail USDA data on yields, acres abandoned, and market price to estimate a value loss in 
dollars. State reports also compare the average crop yields vs. lost yield due to a disaster event (NOAA, 2008). 
States reporting often provides the following crop loss perspective:  Estimated (loss $) for each affected crop type = 
(Expected crop yield / acre) x (market price / acre) x (% of total acres yield loss / by crop) 
For long-duration disaster events such as drought, livestock losses are also calculated by incorporating increased 
feeding costs, which have an aggregative effect on dairy and meat market prices. If no detailed state reports are 
available for a disaster we then apply the 2.0 factor to the crop losses while also directly totaling additional losses 
when available (e.g., livestock, nurseries, commercial timber, etc). 
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Severe Storm or Winter Storm: when < $1 billion PCS total for each state =  
 (PCS x 1.25) + (FEMA_PDD if > PCS x 0.25)a +  (NFIP x 4.00)c + (State reportd  or USDA x 2.00) + (OTHER) 

Severe Storm or Winter Storm: when > $1 billion PCS total for each state =  
 (PCS x 1.42) + (FEMA_PDD if > PCS x 0.42)a + (NFIP x 4.00) c  + (State reportd  or USDA x 2.00) + (OTHER) 
Tropical Cyclone b =  (PCS x 2.00) + (FEMA_PDD if > PCS x 1.00) + (NFIP x 1.00) c  + (State reportd  or USDA x 2.00) + (OTHER) 
Non-tropical flooding =  (NFIP x 4.00) c  + (State reportd  or USDA x 2.00) + (FEMA_PDD) + (OTHER) 
Drought / Heatwaves = (State reportd  or USDA x 2.00) + (FEMA_PDD) + (OTHER) 
Wildfire = (PCS x 2.00) + (FEMA_PDD if > PCS x 1.00) + (State reportd  or USDA x 2.00) + (OTHER) 
Freezing Episode = (State reportd  or USDA x 2.00) + (FEMA_PDD) + (OTHER) 

 
a   Only incorporate the higher factor of PCS or FEMA_PDD in addition to original to represent underinsured loss 
b   For hurricane wind/water damage, state reports may inform how the PCS to NFIP insurance ratio is adjusted 
c   NFIP factor adjusted based on available data (i.e., NFIP participation rates, state or river basin assessments, etc.) 
d   State reports may supersede USDA crop loss data if it produces a more complete total agriculture loss estimate 
 
Table 3  Method for developing billion-dollar disaster event loss calculations by disaster type and data sources using 
a factor approach to convert from insured to total losses 
 
 
b. Estimating the loss from a tropical cyclone disaster 
 
Basis for Estimation 
 

The first event calculation details how we account for the direct economic losses due to tropical cyclone 
damage. The losses are challenging to estimate as damages from wind and water (e.g., storm surge, inland flooding) 
are insured by different private and public entities. For example, PCS provides a reliable assessment of wind-related 
losses for residential, commercial, vehicle lines of property insurance at the state level. However, a total, stable PCS 
loss estimate can range from six weeks after an event to more than one year due to the size and complexity of the 
wind vs. water damage and associated litigation. State-subsidized ‘wind-pools,’ that act as ‘insurers of last-resort’ 
when private sector providers do not provide enough or affordable insurance in hazardous, coastal or riverine areas, 
are also part of the PCS state-level loss estimates. Other relevant loss data not included in PCS totals are FEMA’s 
Presidential Disaster Declarations encompassing non-insured government disaster assistance. This includes public 
assistance (PA), individual assistance (IA), housing assistance (HA), and small business assistance (BA) for 
individuals, families, businesses, and municipalities who are un(der)insured for initial recovery and rebuilding 
where appropriate (NFIP 2010). Another data source is FEMA flood insurance payments through the NFIP.  
However, high value structures can be only insured up to NFIP coverage limits ($250k structure, $100k contents) for 
residential and ($500k structure, $500k contents) for commercial regardless if the property is located in a Special 
Flood Hazard Area (SFHA) or not. Other sources of loss information include USDA crop indemnity payments for 
crops destroyed by high wind or flooding associated with a tropical cyclone and offshore infrastructure and marine 
losses provided by other insurance reporting such as Munich Re. Given the insurance participation variance and 
coverage amounts across data sources, we employ a more general approach for loss analysis.  
 
Data Sources and Method 
 

This methodology takes into account PCS, USDA, FEMA NFIP and FEMA PDD loss data using a factor 
approach modified by state issued information.  State-specific disaster reports - such as Texas Rebounds regarding 
Hurricane Ike’s damage to Texas - are useful in providing guidance to adjust insured vs. uninsured properties 
damage from wind and water losses provided by PCS and NFIP data, respectively (Texas Governor’s Office 2008). 
Each disaster event type is adjusted differently based on approximate insurance participation and the loss data 
available.  
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In September 2008, Hurricane Ike caused widespread losses along the Texas coast and further inland from 
considerable storm surge and wind destruction.  Severe gasoline shortages occurred in the southeast states due to 
damaged oil platforms, storage tanks, pipelines and off-line refineries. The final PCS insurance payout estimate for 
Ike was about $12.5 billion, while the National Flood Insurance Program payout was about $2.5 billion (Table 4).  
To better estimate the insured versus uninsured damage for both wind and water loss, we examine the NFIP 
coverage percentage for cities and counties in the disaster zone. The Texas Rebounds report indicates that an average 
of 27% of wind damages and 61% of flooding damages were uninsured in the Texas declared disaster zone affected 
by Hurricane Ike. Dividing 100% by 73% and 39%, representing wind and flood insured participation rates, 
produces factors of 1.37 and 2.56, respectively. These factors provide some guidance on how to treat the PCS and 
NFIP insurance payouts for Texas. We calculate a total loss of $9.8 billion x (1.37) for the 73% PCS insured wind 
damage and a total loss of $2.1 billion x (2.56) for the 39% NFIP insured flood damage, resulting in a combined 
subtotal of $18.8 billion.  

Independent from FEMA flood insurance coverage for residential and commercial properties, we also examine 
FEMA disaster relief coverage for un(der)insured losses to residential, commercial, and public property losses, 
which by law cannot replicate any other source of insurance funding (FEMA 2010). We compare FEMA emergency 
assistance costs with PCS insured losses for each state impacted by a disaster event to better adjust for a total loss. 
For example, if the FEMA public assistance, housing assistance, individual assistance and business assistance 
collectively exceed the PCS factor adjustment for a particular disaster type, then the FEMA total is added to the PCS 
insured loss total with no additional PCS factor adjustment applied. If the FEMA total costs for a state do not exceed 
a state’s PCS insured losses, or if a state was not eligible for FEMA disaster assistance funds, then a PCS factor 
adjustment is applied to better account for uninsured and underinsured losses. After examining the reported damages 
from Hurricane Ike, Louisiana was the only state in which the FEMA emergency assistance costs exceeded the PCS 
insurance loss adjustment factor ($263 million vs. $135 million). We choose to only incorporate the higher factor of 
PCS vs. FEMA_PDD in addition to original values to avoid double-counting un(der)insured losses. We also 
incorporate agriculture, forestry and fishing losses provided by state agriculture centers ($875 million) and an 
estimated $2 billion in damage to offshore infrastructure. After examining all the input data sources and variables 
using our factor approach this yields a rough estimate of total damage of about $27.5 billion. The data uncertainty 
and bias associated with such losses estimates will be explored in section 4 of this paper.  
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Table 4  Damage / loss categories resulting from Hurricane Ike and calculations to produce a single total loss ($ 
Millions) 

 

 
 
 
 
 
 
 



12 

c. Estimating the loss from a crop freeze disaster 
  
Basis for Estimation 
 

A second disaster event example is a multi-day freeze that damaged or destroyed billions in crop production 
value across nearly 1,000 U.S. counties. This event occurred April 3-10, 2007 causing widespread sub-freezing 
temperatures over much of the central Plains, Midwest and South resulting in significant losses to fruit crops, field 
crops (particularly wheat), and the ornamental industry.  Temperatures in the teens and 20's (◦F) accompanied by 
rather high winds nullified most crop-protection systems. About $2.1 billion in losses was estimated. The most 
significant impact of this cold wave was related to the timing and duration of the event in parallel with ongoing crop 
development (NOAA 2008). Most affected were the blooming fruits across parts of the Midwest and South, winter 
wheat crop across the central Plains and Midwest and the emerging corn in the South.  
 
Data Sources and Method 
 

The agricultural impact data for the April 2007 freeze event is summarized from official USDA information, 
including the Crop Production report, Crop Progress summaries, and state-specific disaster reports. Since each crop 
type has varying levels of coverage availability (50%-85%) across specific USDA insurance programs (e.g., SURE, 
NAP, LIP) the USDA indemnity payments do not reflect the total crop value lost due to a disaster (USDA, 2012). 
Moreover, since not all crop types are insured and not all farmers seek coverage for their crops, the state agency 
reports on crop loss for the 2007 freeze are more useful as they detail the percentage of crop yield loss (by crop 
type) multiplied by respective market price that were not produced due to damage from the freeze event (Table 5a). 
After examining many states impacted by this event, we participated in producing a national report to more closely 
estimate the total loss to crop production as a result of the freeze. For each state affected by the April 2007 freeze, 
we employed the following calculation: 
 
For each crop type, the estimated crop loss  = 

(Expected crop yield / acre) x (market price / acre) x (% of total acres yield loss / by crop) 
Aggregating the crop losses for each affected crop type across all affected states results in a total loss of about $2.1 
billion (Table 5b). 
 

The total crop loss estimation is conservative, as it was based on information available to state agricultural 
centers / specialists at the time and is subject to update, which is the case for many large-scale, destructive disaster 
events we analyze. In some instances these estimates can deviate from USDA values due to altering assumptions in 
making the estimates. In general, only direct losses to the freeze were included, avoiding indirect losses such as lost 
jobs from the reduced demand for field workers to harvest crops.  Also, the rise in USDA crop insurance coverage 
and participation along with the rising crop production and market values skew the crop loss comparisons over time 
for different events.  The next section will include the exploration of this issue in more detail for the major U.S. 
crops (i.e., corn, soybeans, wheat), which collectively account for over half the U.S. annual crop production value. 
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Crop Acres Yield/Acre 
at Price 

Gross 
Return/Acre 

($ Thousands) 

Est. Crop 
Value           

($ Millions) 

Est. Crop Loss 
(%) 

Est. Loss from 
Freeze event   
($ Millions) 

 

Apple 1,000 400 bu/Acre * $20.50/bu 8.2 8.2 90 7.4 
Blackberries 110 4,000 qt * $2.00/qt 8.0 0.9 90 0.8 
Blueberries 120 6,800 pt * ($1.25)/pt 

1,700 pt * ($1.50)/pt 
11.1 1.3 90 1.2 

Grapes 400 6.2 Tons/Acre * $0.50/lb 6.2 2.5 60 1.5 
Peaches 500 280 bu/Acre * $20.00/bu 5.6 2.8 98 2.8 
Pears 30 400 bu/Acre * $20.00/bu 8.0 0.2 100 0.2 
Strawberries 210 8,000 lb * $1.75/lb 14.0 2.9 50 1.5 

 

Total 2,370   18.8  15.4 
 
Table 5a  Estimated loss crop valuation example from April 2007 freeze episode 
 
 
 

Commodities Acres Affected (Thousands) Losses ($ Millions)              State Losses ($ Millions) 

 

Barley 24.8 1.2  Alabama 13.4 

Corn 243.9 15.2  Arkansas 116.0 

Fruit & Vegetables 21.3 31.2  Georgia 400.0 

Hay 38.5 1.0  Illinois 152.4 

Irish Potatoes 10.0 1.6  Indiana 48.0 

Nursery 20.1 40.1  Iowa 4.0 

Oats 11.0 0.6  Kansas 66.5 

Pasture 71.4 0.3  Kentucky 133.5 

Rye 6.7 0.3  Mississippi 29.0 

Tobacco 0.2 0.6  Missouri 400.0 

Wheat 275.5 13.3  North Carolina 105.4 

  Ohio 155.0 

North Carolina Total 723.4 105.4  Oklahoma 350.0 

    South Carolina 39.3 

    Tennessee 50.0 

 

    Total 2,062.5 

 
Table 5b  Economic crop loss totals for North Carolina commodities and total commodity losses for all U.S. states 
resulting from the April 2007 freeze episode ($ Millions) 
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4. Effects of Uncertainties and Biases on Trend Analysis of Billion-Dollar Disasters                           

In this section, we consider the effects of potential uncertainties and biases identified in Sections 2 and 3 on the 
detection and attribution of trends in the annual frequency of (and annual aggregate loss from) billion-dollar 
disasters. As background, we first perform a trend analysis of the billion-dollar disaster dataset. 

a. Trend Analysis of Billion-Dollar Disasters 

The probability distribution of losses has a high degree of positive skewness (Jagger et al. 2011; Willoughby 
2012), with a few disasters dominating the aggregate loss (e.g., 20% of the hurricanes striking the US have caused 
nearly 90% of the total loss; Katz 2012). In part for this reason, it is difficult to distinguish between year-to-year 
variations and long-term changes, particularly when only considering billion-dollar disasters. If the inflation-
adjusted losses from all extreme weather and climate events are analyzed instead, then a marked increasing trend in 
recent decades in the annual aggregate loss is obvious (e.g., Gall et al. 2011). 

We let N(t) denote the number of billion-dollar events in year t, N(t) = 0, 1, … . Because the number of such 
events is relatively small, it is natural to assume that N(t) has a Poisson distribution (i.e., by the so-called Law of 
Small Numbers), with mean (or “expected value”) E[N(t)] = λ(t), λ(t) > 0 possibly depending on the year t. As a 
model for the trend in the number of events, a linear trend in the log-transformed mean is assumed; that is, 

ln λ(t) = λ0 + λ1 t , 

in part to constrain the rate λ(t) > 0. Here λ0 and λ1 denote unknown parameters to be estimated from the data. 
Figure 2 shows the results of fitting this trend model to the annual frequency of disasters using the statistical 
technique of Poisson regression (e.g., Katz 2002). The apparent increasing trend of about 4.8% per yr. [i.e., an 
estimate of exp(λ1)]  is overwhelmingly statistically significant with a P-value < 10−5, at least in part because of an 
unprecedented number of events in 2011 (Table 6). 

 
Loss Component 

 
Estimated trend 

 
P-value for trend test 

_______________ 
Frequency 
Individual loss 
Aggregate loss 

_____________ 
4.81% per yr 

-0.50% per yr 
0.200* 

__________________ 
                           < 10-5   

0.740 
0.119 

 
*Kendall’s tau.  

 
 

 
Table 6  Trend analysis of billion dollar loss data 
 

We let Ln( t) denote the loss from the nth billion-dollar disaster event in year t, n = 1, …, N(t), assuming N(t) > 0 
(i.e., at least one event occurred). To remove the high degree of skewness in the distribution of the loss from 
individual disasters, the loss data are first log-transformed (because Ln( t)  ≥ $1 billion, the transformation ln[Ln( t) – 
0.9] is actually used). That is, the losses from individual disasters are assumed to have a lognormal distribution 
(Katz, 2002; Nordhaus 2010; Willoughby 2012). As a trend model for the individual losses, a linear trend in the 
mean of the log-transformed loss is assumed; that is, 

E[ln Ln( t)] = β0 + β1 t . 

Here β0 and β1 denote unknown parameters to be estimated from the data. As suggested by Fig. 3, there is no 
apparent time trend in economic loss from individual disasters. In fact, a least squares trend analysis estimates a very 
slight decreasing trend of about 0.5% per yr. [i.e., an estimate of exp(β1)], with a P-value of about 0.74 (Table 6). 

 The aggregate loss in year t, say L(t), can be expressed as 

L(t) = L1( t) + ∙ ∙ ∙ + LN ( t ) ( t), for N(t) > 0. 
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In other words, it involves a sum whose number of terms is unknown a priori (termed a “random sum”; e.g., Jagger 
et al. 2011; Katz 2002). Variations in aggregate annual loss are attributable to two sources: (i) variations in loss from 
one event to another; and (ii) variations in the number of events from one year to another. From this representation 
of the aggregate annual loss as a random sum, the increasing trend in the frequency of disasters, along with the 
negligible trend in the loss from individual disasters, implies that the annual aggregate loss should exhibit a net 
increasing trend as well. For a random sum, a less obvious consequence of an increase in the frequency of events is 
an increase in the variance (or “volatility”) of the aggregate loss, even with no increase in the variance of the loss 
from individual disasters (Katz 2002). 

 Figure 4 does indeed suggest the presence of a gradually increasing trend in the annual aggregate loss, 
particularly in the two smoothed time series based on loess (a commonly used scatterplot smoother; Cleveland 1979) 
and on a more local 5-point binomial filter. The plot of the unsmoothed time series suggests, perhaps, an increase in 
volatility as well. Because the probability distribution of a random sum is complicated (in this case, involving a 
combination of the Poisson and lognormal distributions), Kendall’s tau, a nonparametric test for trend, is applied 
instead of a parametric trend model (Helsel and Hirsch 1993; Hollander and Wolfe 1973; Villarini et al. 2009). This 
test indicates only borderline statistical significance (P-value about 0.12), notwithstanding the unprecedented 
aggregate loss in 2005 (Table 6).  

 
Fig. 2  Time series of annual frequency of billion dollar disasters (vertical bars), along with trend (dashed line) fitted 
by Poisson regression 
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Fig. 3  Time series of log-transformed loss from individual disasters versus year, along with trend fitted by least 
squares (dashed line) 

 
Fig. 4  Time series of aggregate annual loss from billion dollar disasters (constant 2011 dollars, vertical bars), along 
with loess smoother (red line) and local smoother based on a 5-point binomial filter (blue line) 
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b. Uncertainties and Biases 
 

In this subsection, we focus on two concrete examples: (i) the nature of the bias from ignoring variations in the 
insurance participation rate in the case of PCS and NFIP losses for tropical cyclones and its effect on trend analysis; 
and (ii) the sources of increasing trends in USDA insured crop losses.  Although it might be anticipated that any 
systematic bias would be negligible, it turns out that non-negligible bias can be inadvertently introduced into the loss 
data. 
 
Effect of Variation in Insurance Participation Rate on Estimated Losses 
Uncertainty Analysis Technique.  As discussed in Section 3, economic loss from an individual weather or climate 
disasters are generally based on insured losses. To estimate the total direct economic loss from a disaster (i.e., both 
insured and uninsured losses), insured losses are inflated by a factor representing the reciprocal of the insurance 
market participation rate. That is, 
 

LTotal = LInsured / R, 
 
where LTotal denotes the total economic loss from a disaster, LInsured the insured loss, and R the participation rate, 0 < 
R < 1. Typically, the rate R is assumed constant over an entire region and the factor 1/R is usually rounded (e.g., to 
the nearest integer), as in the examples described in Section 3.   
 
 From statistical theory, we know that acting as if the participation rated R is fixed (when, in fact, it varies) will 
lead to an underestimation of loss on the average. Formally, because the reciprocal (i.e., 1/R) is a convex function of 
R, Jensen’s inequality (e.g., Berger 1985, Chapter 1) implies that 
 

1/E(R) < E(1/R). 
 
If we further assume that the participation rate R is probabilistically independent of the insured loss LInsured (a 
reasonably plausible assumption, at least to a first approximation), then it follows that this systematic 
underestimation holds for losses as well; that is, 
 

E(LInsured) [1/E(R)] < E(LTotal). 
 

The following examples serve to illustrate the magnitude of this underestimation and its effects on trend 
analysis. 
 
PCS losses from tropical cyclones.  In the case of PCS losses from individual cyclones, the factor of two (i.e., R ≈ 
0.5) is typically used (for simplicity and lacking more specific data) by the National Hurricane Center for 
approximating hurricane loss (see Section 3). This factor may well be consistent with the average rate of insurance 
participation along the portions of the U.S. Gulf and Atlantic coasts most vulnerable to tropical cyclones. 
Nevertheless, this rate varies considerably along the coast for a number of reasons (Major 1999; Vellinga and Mills 
2001). We consider the effect of this variation on the estimated total economic loss from tropical cyclones, including 
in terms of trend analysis. 

 
As a crude approximation to the observed variation in participation rate, we assume that R has a beta 

distribution on the interval (0.25, 0.75) with both shape parameters p = q = 2 (Chapter 24, Johnson and Kotz 1970). 
This distribution has a mean  E(R) = p / (p + q) = 0.5, and with roughly a 50% chance of R falling between 0.4 and 
0.6. Simulated total losses are created through dividing each of the 31 PCS observed insured losses by a pseudo 
random value of the participation rate generated from this beta distribution. 
  

Figure 5a shows the log-transformed observed PCS losses (inflated by a factor of two) from individual tropical 
cyclones, along with the corresponding synthetic losses from two simulations using the beta distribution to take into 
account uncertainty about the insurance participation rate. Figure 5b shows the corresponding untransformed losses. 
On the average, the underestimation of loss when the participation rate is taken to be constant at 0.5 is roughly about 
11% (estimated from 100,000 simulations from the beta distribution).  
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Table 7 shows the results of fitting a linear trend to the log-transformed observed losses, as well as to the two 
simulated data sets. The three fitted trend lines are included in Fig. 5 as well. The systematic underestimation of loss 
is too small relative to the variation in losses to be evident in the figures with only two simulated time series. 
Moreover, this bias seems to have hardly any effect on the estimated slope of the trend line or on its statistical 
significance. These results about underestimation bias and insensitivity of the trend analysis are not very sensitive to 
the particular choice of values of the parameters of the beta distribution. 

NFIP losses from tropical cyclones.  In contrast to PCS data, the participation rate for NFIP is more variable. As 
noted in Section 3, in practice the factor is varied depending on the region where the tropical cyclone strikes, but 
still rounded off with typical values being 1, 2, 3, 4, 5 or 6 (as inferred from the NFIP loss data for 19 US tropical 
cyclone events from 1989-2008). To approximate the mean factor of about 2.85 over these 19 events, we use a beta 
distribution with parameters (p = q = 1.25) on the interval (0.05, 0.95) to represent the distribution of the 
corresponding participation rate. We also used a beta distribution with p = q = 1on the interval (0.05, 0.95) to reflect 
the actual granularity of NFIP participation rate within the region (Michel-Kerjan et al. 2011). These values of the 
parameters of the beta distribution are necessarily smaller than those used for the PCS data (i.e., p = q = 2) because 
of the greater variation in participation rates. 

Based on 100,000 simulations from each of the two beta distributions, the results indicate a loss underestimation 
of about 5.2% from rounding participation rates. Further underestimation of about 9.7% results from ignoring 
variation in participation rates within regions.  Combining these two sources of bias yields a total loss 
underestimation of approximately 15.4%.  This underestimation bias can again be explained by repeated application 
of Jensen’s inequality. It appears to have only a small effect on trend estimation of NFIP losses (Fig. 6a, 6b and 
Table 8). Again these results are not sensitive to the exact form of beta distribution. 
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Fig. 5a  Observed and simulated PCS loss from individual tropical cyclones, along with fitted trend curves (based 
on linear trends for log-transformed loss), blue indicating observed values, red and pink the two simulations  

 

Fig. 5b  Log-transformed observed and simulated PCS loss from individual tropical cyclones, along with fitted 
linear trend lines, blue indicating observed values, red and pink the two simulations 
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Fig. 6a  Log-transformed observed and simulated NFIP loss from individual tropical cyclones, along with fitted 
linear trend lines, blue indicating observed values, red and pink the two simulations 

 

Fig. 6b  Observed and simulated NFIP loss from individual tropical cyclones, along with fitted trend curves (based 
on linear trends for log-transformed loss), blue indicating observed values, red and pink the two simulations 
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Loss 

 
Estimated trend 

 
P-value for trend test 

_______________ 
Observed 
First simulation 
Second simulation 

_____________ 
7.48% per yr 
7.71% per yr 
7.72% per yr 

__________________ 
0.013 
0.013 
0.008 

 
 

Table 7  Trend analysis of observed and simulated PCS log-transformed loss from individual tropical cyclones (31 
events) 
 
 

 
Loss 

 
Estimated trend 

 
P-value for trend test 

_______________ 
Observed 
First simulation 
Second simulation 

_____________ 
1.85% per yr 
3.17% per yr 
2.83% per yr 

__________________ 
0.782 
0.610 
0.623 

 
 
Table 8  Trend analysis of observed and simulated NFIP log-transformed loss from individual tropical cyclones (19 
events) 

 

Sources of Increasing Trends in Insured Crop Loss 

As described in Section 2, USDA crop insurance loss data has many complicating factors including increasing 
policy participation, insured acreage, value of crops, number of insurable crop types, changing policy structures, etc. 
(USDA 2011).  This complexity is inherent in the top three most valuable U.S. crops (i.e., corn, soybeans, wheat), 
which constitute over 50% of the annual U.S. crop value production. Rather than limiting our analysis to billion-
dollar disasters, we analyze all of the available crop loss data to better quantify trends. It is anticipated that similar 
trends would arise as well (but be more difficult to detect) if attention were restricted to only crop losses associated 
with billion-dollar disasters. 

Each of these crops shows an increasing trend in the total annual insured crop loss payments, especially rapid 
for corn and wheat (Fig. 7).  However, if crop losses are measured relative to crop insurance liability, the annual loss 
trend apparently goes away (Fig. 8). Liability reflects the total insured risk value underwritten by policy.  Dividing 
liability by the reported insured crop loss ($) per year is a commonly used measurement to analyze the temporal 
fluctuations of agriculture loss (Changnon and Hewings 2001). Using Kendall’s tau to test for trend in the relative 
crop loss time series (as applied in Table 6 to other loss data), the P-values are about 0.794, 1, and 0.294 for the 
relative loss of corn, soybeans, and wheat, respectively. So, at least for these three major crops, the trends in losses 
are comparable in magnitude to the trends in liability. 

The yield per acre production statistics for each of these crops also has a positive trend (by far the most rapid 
for corn) since the end of World War II, much of which is  attributable to technological innovation (e.g., Johnson 
2012).  Although it might be possible in principle to adjust crop losses for such trends (e.g., Lobell and Asner 2003), 
Mearns (1988) found difficulty in distinguishing between variations in wheat yields attributable to variations in 
weather and climate and those attributable to technology. Another complicating factor is the variation in crop pricing 
over time, affected by changes in demand (e.g., due to the recent increased use of corn to produce ethanol) as well as 
the influence of weather and climate variations on crop production in other regions of the world. The combined 
effect of the identified sources contributing to increasing insured crop losses make any attribution to weather or 
climate, especially for billion-dollar disasters, difficult. 
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Fig. 7  Time series of annual U.S. insured crop loss (constant 2011 dollars, vertical bars), for corn (top left), 
soybeans (top right) and wheat (bottom), along with loess smoother (red line) and local smoother based on a 5-point 
binomial filter (blue line)   
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Fig. 8  Time series of USDA insured crop losses relative to crop insurance liability 

 

5. Discussion and Conclusions 

This paper details the data sources and methods we currently use to develop a total direct loss estimate for 
several types of weather and climate events, focusing on billion-dollar disasters in the U.S. To our knowledge, this 
dataset is the most comprehensive government loss accounting effort for a variety of the most damaging U.S. 
weather and climate events from 1980 to present.  Being primarily based on insured losses, these loss data sources 
vary in quality for a variety of reasons such as increasing insurance participation, insurance liability, and policy 
structure changes.  We use a factor approach to convert insured losses into total direct losses. Potential sources of 
bias and uncertainty, including those associated with the factor approach, are identified. 
      

The net effect of all biases appears to be an underestimation of average loss.  As one example of the 
quantification of bias in loss estimation, we have shown that the historical precedent of doubling PCS losses for 
tropical cyclones is conservative, with an average underestimate of about 10% for total wind-driven losses 
attributable to ignoring the variation in insurance participation rates. The more complicated factor adjustment 
process for the NFIP loss data is similarly conservative, with an average loss underestimation of about 5% from 
rounding participation rates and an additional average underestimation of about 10% resulted from ignoring 
variation in participation rates within regions (for a total average loss underestimation of approximately 15%).  
Nevertheless, these systematic underestimations appear to have only a negligible effect on trend estimation. This 
underestimation of loss on average should hold, at least qualitatively, when the factor approach is applied to other 
loss data. Consequently, one recommendation concerning how the current methodology can be improved to increase 
the quality of the billion-dollar disaster dataset would be to refine the factor approach to more realistically take into 
account spatial and temporal variations in insurance participation rates. 
 

USDA crop indemnity payments are another principal data source.  However, this dataset has numerous 
complicating factors over time and space.  Given resource limitations, we currently either apply a factor approach to 
the USDA crop indemnity payments or use published state reports, which provide a more detailed analysis on the 



24 

lost value of commodities due to a natural disaster.  For the major crops of corn, soybeans, and wheat, increasing 
trends in insured losses (i.e., for all losses, not just those associated with billion-dollar disasters) are shown to be 
comparable in magnitude to those in liability. Given the increasing trends in yields attributable to technological 
innovation and given fluctuations in price, it is difficult to attribute any part of the trends in losses to climate 
variations or change, especially in the case of billion-dollar disasters. For the USDA crop insurance program, as well 
as for the FEMA NFIP, it would greatly improve the usefulness of the loss data if future insurance premiums were 
tied more closely to risk (Michel-Kerjan and Kunreuther 2011). 
   

We have shown that an increasing trend in annual aggregate losses is primarily attributable to a statistically 
significant increasing trend of about 5% per year in the frequency of billion-dollar disasters. But the billion-dollar 
dataset is only adjusted for the CPI over time, not currently incorporating any changes in exposure (e.g., as reflected 
by shifts in wealth or population).  Normalization techniques for exposure have been limited by the lack of data on a 
relevant spatial scale.  Yet a number of studies have concluded that population growth, increased value of property at 
risk and demographic shifts are major factors behind the increasing losses from specific types of natural hazards 
(Downton et al. 2005; Brooks and Doswell 2001). The magnitude of such increasing trends is greatly diminished 
when applied to data normalized for exposure (Pielke et al. 2008).  
 

Apparent increasing trends in normalized losses, aggregated across all types of weather and climate disasters, 
have not always been tested for statistical significance (Cummins et al. 2010; Gall et al. 2011).  Nevertheless, 
statistically significant trends are starting to emerge in some cases.  For instance, at least borderline statistically 
significant trends in the aggregate annual loss from tropical cyclones (Barthel and Neumayer 2012), as well as in the 
frequency of damaging events (Katz 2010) and in the loss from individual storms (Nordhaus 2010) have been 
obtained.  The development and implementation of normalization techniques for the billion-dollar dataset would be 
a challenging topic for future research. 
 
 
Acknowledgments 
 

The National Center for Atmospheric Research is sponsored by the National Science Foundation. We thank 
Gary Kerney of ISO/Property Claims Service and Lee Messmore of USDA/RMA for providing key data sources and 
perspective in better understanding data caveats and limitations.  We also thank a number of reviewers including 
Marjorie McGuirk, Neal Lott, Russell Vose, Tom Peterson, Tom Karl and Linwood Pendleton who have provided 
many useful comments to enhance this research article.  We acknowledge two anonymous reviewers for their 
constructive comments. 
      
 
References 
 
Barthel F, Neumayer E (2012) A trend analysis of normalized insured damage from natural disasters. Climatic 

Change, 113, 215-237 

Berger, JO (1985) Statistical Decision Theory and Bayesian Analysis, second edition, Springer-Verlag, New York, 
pp 617 

Brooks HE, Doswell CA (2001) Normalized damage from major tornadoes in the United States: 1890–1999. Wea. 
Forecasting, 16, 168–176 

Changnon SA, Hewings G (2001) Losses from weather extremes in the U.S. Natural Hazards Review, 
2, 113-123 

Cleveland WS (1979) Robust locally-weighted regression and smoothing scatterplots. Journal of the American 
Statistical Association, 74, 829–836 

Dixon L, Clancy N, Seabury SA, Overton A (2006) The National Flood Insurance Program’s market penetration 
rate: estimates and policy implications. Santa Monica, California, RAND Corporation, February 



25 

Downton M, Pielke RA Jr (2005) How accurate are disaster loss data? The case of U.S. flood damage. Nat. Hazards, 
35, 211–228 

FEMA (2011) Flood Insurance Manual. Revised October 2011, Available online: 
http://www.fema.gov/pdf/nfip/manual201110/index.pdf 

Gall M, Borden KA, Emrich CT, Cutter SL (2011) The unsustainable trend of natural hazard losses in the United 
States. Sustainability, 3, 2157-2181 

Helsel DR, Hirsch RM (1993) Statistical Methods in Water Resources, Elsevier, Amsterdam, pp 522 

Hollander M, Wolfe DA (1973) Nonparametric Statistical Methods, John Wiley & Sons, New York, pp 503 

ISO Property Claims Services (2011) Available online:               
http://www.iso.com/Products/Property-Claim-Services/Property-Claim-Services-PCS-info-on-losses-from-
catastrophes.html 

Jagger TH, Elsner JB, Burch RK (2011) Climate and solar signals in property damage losses from hurricanes 
affecting the United States. Natural Hazards, 58, 541-557 

Johnson DM (2012) Estimating US crop yields. Winrock International Bioenergy Workshop, Crystal City, VA. 
Available online: 
https://www.nass.usda.gov/Education_and_Outreach/Reports,_Presentations_and_Conferences/Presentations/
Johnson_Winrock_12.pdf 

Johnson NL, Kotz S (1970) Continuous Univariate Distributions – 2, Wiley 

Katz RW (2002) Stochastic modeling of hurricane damage. Journal of Applied Meteorology, 41, 754-762 

Katz RW (2010) Discussion on “Predicting losses of residential structures in the state of Florida by the public 
hurricane loss evaluation model” by S. Hamid et al. Statistical Methodology, 7, 592-595 

Katz RW (2012) Economic impact of extreme events: An approach based on extreme value theory. In Extreme 
Events: Observations, Modeling and Economics, M. Ghil, J. Urrutia-Fucugauchi, and M. Chavez (eds.), 
Geophysical Monograph Series, American Geophysical Union (accepted for publication) 

Kunreuther H, Michel-Kerjan E (2011) At War with the Weather. Paperback edition. Cambridge, MA: MIT Press 

Lobell DB, Asner GP (2003) Climate and Management Contributions to Recent Trends in U.S. Agricultural Yields. 
Science, 299, 1032 

Major JA (1999) Index hedge performance: Insurer market participation and basis risk. In The Financing of 
Catastrophe Risk, edited by K. A. Froot, Univ. of Chicago Press, pp 391-432 

Mearns LO (1988) Technological change, climatic variability, and winter wheat yields. Ph.D. thesis, University of 
California, Los Angeles (available as National Center for Atmospheric Research Technical Note, NCAR/CT-
111) 

Michel-Kerjan E, Lemoyne de Forges S, Kunreuther H (2011) Policy tenure under the U.S. National Flood 
Insurance Program (NFIP). Risk Analysis, doi:10.1111/j.1539-6924.2011.01671.x 

Munich Re (2012) Severe Weather in North America, Perils, Risks, Insurance. Munich Re Group, pp 274 

NCDC (2012) Billion-Dollar Weather/Climate Events. Available online: http://www.ncdc.noaa.gov/billions 

NOAA (2008) The Easter Freeze of April 2007. A NOAA/USDA Technical Report. 2008-01, pp 47  
http://www1.ncdc.noaa.gov/pub/data/techrpts/tr200801/tech-report-200801.pdf 

http://www.fema.gov/pdf/nfip/manual201110/index.pdf
http://www.iso.com/Products/Property-Claim-Services/Property-Claim-Services-PCS-info-on-losses-from-catastrophes.html
http://www.iso.com/Products/Property-Claim-Services/Property-Claim-Services-PCS-info-on-losses-from-catastrophes.html
http://www.ncdc.noaa.gov/billions
http://www1.ncdc.noaa.gov/pub/data/techrpts/tr200801/tech-report-200801.pdf


26 

Nordhaus WD (2010) The economics of hurricanes and implications of global warming. Climate Change 
Economics, 1, 1-20 

Pielke RA Jr, Gratz J, Landsea CW, Collins D, Saunders MA, Musulin R (2008) Normalized hurricane damage in 
the United States: 1900–2005. Nat. Hazards Rev., 9, 29–42 

PriceWaterhouseCoopers (1999) Study of the economic effects of charging actuarially base 
premium rates for pre-FIRM structures 

Texas Governor’s Office (2008) Texas Rebounds Helping Our Communities Recover from the 2008 Hurricane 
Season, November 2008, pp 41. Available online:                             
http://governor.state.tx.us/files/press-office/Texas-Rebounds-report.pdf 

USDA / RMA Summary of Business and NASS Principal Crop Acreage (2012) Available online: 
http://www.rma.usda.gov/data/sob.html 

Vellinga P, Mills E (2001) Insurance and other financial services. IPCC Third Assessment Report, Working Group 2, 
Cambridge University Press, pp 417-450 

Villarini G, Serinaldi F, Smith JA, Frajewski WF (2009) On the stationarity of annual flood peaks in the continental 
United States during the 20th century. Water Resources Research, 45, W08417, doi:10.1029/2008WR007645 

Willoughby HE (2012) Distributions and trends of death and destruction from hurricanes in the United States, 1900-
2008. Natural Hazards Review, 13, 57-64 

 

http://governor.state.tx.us/files/press-office/Texas-Rebounds-report.pdf
http://www.rma.usda.gov/data/sob.html

