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The Surface Temperature History
(1850-2016)
Many problems are associated with this record!




Surface Observations (HadCRUT4v6)

2015-2016 El Nino——”
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Recent changes in global temperatures
show the effect of the development and
subsequent decay of the 2015-2016 EIl Nino
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UAH Satellite-Based Temperatupé Two EIl Ninos
of the Global Lower Atmosphefe |

(Version 6.0)
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Sept. 2017:
running, +0.54 deg. C
centered
13-month

average

Satellite records show the effect of the two biggest El
Nino events — 1998-1999 and 2015-2016




Tropical Mid-Tropospheric Temperature Variations

Models vs. Observations Ly S
5-Year Averages, 1979-2016 Trend line crosses zero at 1979 for all time series | =~ S AageE -,
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Tropical Temperature Trends

s0 : 20°S-20°N, 1979-2016 MOdelS
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Comparison of climate model projections and observed
temperature trends in the vertical




Lower Stratospheric Temperature History
shows a “greenhouse” signal...and a “Hiatus”...

UAH Satellite Lower-Stratosphere Temperature Record
1.5 (1979-2016)
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This is why we are very much encouraged to find that the
salient features of climate change distribution projected by
the model [in 1989] are becoming evident in the
observations. In other words, the projections shown here were

made before the observations confirmed them as being correct
striking at the heart of the argument that modellers tune
their models to yield the correct climate change results.

Stouffer and Manabe, "Assessing Temperature Pattern
Projections Made in 19 Nature Climate Change, March 201




Voosen, Science, 2016

Storm clouds are 150 smalll for clamate models to
render direcly . and 50 mo defers must tune for themn
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1The unintended consequence of model tuning
has been to make the models wrong!
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Bulletin of the American Meteorological Society (March 2017)

THE ART AND SCIENCE OF
CLIMATE MODEL TUNING




Change in the Relatlve Hum|d|ty Threshold for Low Clouds
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What is the true climate sensitivity for a
doubling of carbon dioxide?

® Gregory 2002 - —— . .
Tumbling predictions Friedrich 2016 @

of global warming
at doubled CO,

® Knutti 2002

4 @ Olsen 2012

@ IPCC 2001

3 Andronova 2001

@ Forest 2002 @ Frame 2005

Chamey / IPCC 1.5-45 C
range of official estimates

Monckton oTE
Asten 2012@
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Bulletin of the American Meteorological Society (March 2017)

THE ART AND SCIENCE OF
CLIMATE MODEL TUNING

Either reducing the number of models or over-tuning, especially if
an explicit or implicit consensus emerges in the community on a

particular combination of metrics, would artificially reduce the
dispersion of climate simulations. It would not reduce the
uncertainty, but only hide it.

developed for numerical weather forecaslin (e.g.,
Phillips 1956). The coupling of global atmospheric

Model Intercomparison Project (CMIP) constitute a
large part of the material synthesized in the Intergov-

and oceanic models began with Manabe and Bryan
(1969) and came of age in the 1980s and 1990s. Global
climate models or Earth system models (ESMs) are
nowadays used extensively to study climate changes
caused by anthropogenic and natural perturbations
(Lynch 2008; Edwards 2010). The evaluation and

ernmental Panel on Climate Change (IPCC) Assess-
ment Reports. Beyond their use for prediction and
projection at meteorological to climatic time scales,
global models play a key role in climate science. They
are used to understand and assess the mechanisms

at work, while accounting for the complexity of the



The 2"d National Assessment completely misleads
on temperature and plant growth

akld and Soybean Temperature Response
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For each plant variety, there is an optimal temperature for vegetative growth, with growth
dropping off as temperatures increase or decrease. Similarly, there is a range of temperatures
at which a plant will produce seed. Outside of this range, the plant will not reproduce.
As the graphs show, corn will fail to reproduce at temperatures above 25°F and soybean
above 102°F.

Their chart implies the relationship between growth and air
temperature is independent of the CO, concentration



IOWA STATE UNIVERSITY AGRONOMY 541

DEPARTMENT OF AGRONOMY Applied Agricultural Meteorology

Growing Degree Days and Applications

Growing Degree Days

Growing Degree 3 : >
Days < — Just as soil temperature influences crop emergence, the soil and air temperature influence growth and

Rules development of the plant. Temperature is just one important factor. Moisture is important: light is important

temperature, with the ideal temgeratue for crop growth. if ething else is satisfctom such as nutrition
and water availability, being somewhere around 93 °F (34 °C) (Fig. 2.11). Common corn varieties will not grow
below 49 °F (9.5 °C), will grow fastest at 93 °F (34 °C), will not grow above 115 °F (46 °C), and die at 118 °F

(48 °C). The growth rate experienced responds to temperature in an "S-shaped” curve between 49 °F (9.5 °C)
- — - -
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Fig. 2.12 Relative growth rate of corn as affected
by air temperature.




The 2"d National Assessment completely misleads
on temperature and plant growth

Plants growing in COz2-enriched air prefer warmer temperatures

Upward shift
to a warmer
optimal temperature
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In reality, higher CO, dramatically
raises the optimum qgrowth temperature




Plant growth enhanced from elevated CO,
concentrations

Summary of 1087
experiments from
~350 refereed papers

:
:
:
:
a

600 200 1200 1500 1800 2100 2400
Atmospheric CO; Enrichment (ppm above ambient)

The net effect is that elevated CO, produces (1) more food and (2)
produces a greener planet.




Spatial Trends in Leaf Area Index
(1982-2009)
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Are Storms Getting Worse:
.
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The National Assessment (2014)
provides misleading information

North Atlantic Hurricane Intensity (PDI), 1920-2016
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Complete history of the Atlantic Hurricane Power Dissipation Index




Tropical Cyclone “Accumulated Cyclone Energy” (ACE)

24-month Running Averages
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Annual Number of Severe (F3-F5) Tornadoes in
the United States
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Annual United States Tornado Deaths

Deaths/Million
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Extreme 1-Day Precipitation Events for the United States

Percentage of the United States with a greater
than normal proportion of precipitation derived
from extreme 1-day precipitation events
(equivalent to the highest tenth percentile).

Expected
Value
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Data: 1910 to 2016




Extreme 1-Day Precipitation Events for the United States
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Data: 1910 to 2016




Extreme 1-Day Precipitation Events for the United States
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Data: 1910 to 1992




Extreme 1-Day Precipitation Events for the United States
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Data: 1995 to 2016




Extreme 1-Day Precipitation Events for the United States
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Data: 1910 to 1992; 1995 to 2016




Through 1992: Manual NWS 8” Raingage




Since 1995: The ASOS Raingages
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