
ON MERTENS’ THEOREM FOR BEURLING PRIMES

PAUL POLLACK

Abstract. Let 1 < p1  p2  p3  . . . be an infinite sequence P of real
numbers for which p

i

! 1, and associate to this sequence the Beurling zeta

function ⇣P(s) :=
Q1

i=1(1� p�s

i

)�1. Suppose that for some constant A > 0,
we have ⇣P(s) ⇠ A/(s � 1), as s # 1. We prove that P satisfies an analogue
of a classical theorem of Mertens:

Q
pix

(1� 1/p
i

)�1 ⇠ Ae� log x, as x ! 1.
Here e = 2.71828 . . . is the base of the natural logarithm and � = 0.57721 . . .
is the usual Euler–Mascheroni constant. This strengthens a recent theorem of
Olofsson.

1. Introduction

Let M be the free commutative monoid on the symbols p1, p2, p3, . . . , so that the
elements of M correspond precisely to the products

Q1
i=1 p

ei
i

, where each e
i

� 0
and all but finitely many of the e

i

vanish. By a Beurling system, we mean a map
| · | : M ! R

>0 with the following properties:

(i) |p
i

| > 1 for all i,
(ii) |ab| = |a||b| for all a, b 2 M ,
(iii) for all x, there are only finitely many m 2 M with |m|  x.

The elements of M are called Beurling integers and the p
i

are called Beurling

primes. Throughout this article, we use the letter B to denote a Beurling system
(i.e., a choice of norm | · |).

In the theory of Beurling primes, the key objects of study are the counting
functions

⇡B(x) :=
X

|p|x

1 and NB(x) :=
X

|n|x

1,

where p runs over all Beurling primes of norm  x in the former sum and n runs over
all Beurling integers of norm  x in the latter. One views ⇡B(x) as an analogue of
the classical prime counting function ⇡(x) and NB(x) as an analogue of the integer
counting function bxc. The fundamental goal in Beurling prime number theory is
to show that if one of ⇡B(x) or NB(x) behaves like its classical counterpart, then
so does the other.

Beurling’s initial theorem [1] was the following generalization of the classical
prime number theorem: Suppose that for some fixed A > 0, we have the estimate

(1.1) NB(x) = Ax+O(x/(log x)a)

with an exponent a > 3/2. Under these conditions, ⇡B(x) ⇠ x/ log x (as x ! 1).
In other words, the analogue of the prime number theorem holds for the Beurling
system. It is known [2] that Beurling’s result is sharp: The asymptotic relation may
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fail if we only assume (1.1) with a = 3/2. Moreover, for any a < 1, there are Beurl-
ing systems for which (1.1) holds and for which lim sup

x!1 ⇡B(x)/(x/ log x) = 1

and lim inf
x!1 ⇡B(x)/(x/ log x) = 0 (see [5], and cf. [3]). So the following theorem

of Olofsson [8, Theorem 1.1], which assumes comparatively little about NB(x), is
perhaps a bit surprising:

Theorem A. Assume that there is a constant A > 0 with NB(x) ⇠ Ax, as x ! 1.

Then one has an analogue of Mertens’ theorem: As x ! 1,

(1.2)
Y

|p|x

(1� 1/|p|)�1
⇠ Ae� log x.

In this note, we investigate weakening the hypothesis in Olofsson’s result. Define
the Beurling zeta-function by the Euler-product formula

⇣B(s) :=
Y

p

1

1� 1
|p|s

.

Since ⇣B(s) =
R1
1� t�s dNB(t), integration by parts shows that if NB(x) ⇠ Ax

(with A > 0), then

(1.3) ⇣B(s) ⇠
A

s� 1
, as s # 1.

Our first theorem shows that one can replace Olofsson’s hypothesis on NB(x) with
(1.3). In fact, (1.2) and (1.3) turn out to be equivalent.

Theorem 1.1. Let A > 0. If (1.3) holds for a Beurling system B, then so does

(1.2). Conversely, the Mertens-type formula (1.2) implies (1.3).

Remark 1.2. Theorem 1.1 could also have been formulated with the hypothesis
(1.3) on ⇣B(s) replaced by the assumption that

P
|n|x

1
|n| ⇠ A log x, as x ! 1.

Indeed, these two conditions on a Beurling system turn out to be equivalent. The
forward direction of this equivalence is proved below as Lemma 2.1; the other
direction follows by partial summation, using that ⇣B(s) =

P
n

1
|n|s .

If K is a number field, one can put the p
i

in one-to-one correspondence with
the prime ideals of the ring of integers of K, setting |p

i

| equal to the norm of the
corresponding prime ideal. Then there is a norm-preserving isomorphism between
the Beurling system B so obtained and the monoid of integral ideals of K. After
Dirichlet and Dedekind, one knows that NB(x) ⇠ Ax, where A depends on certain
arithmetic invariants of K. Thus, Olofsson’s Theorem A gives another proof of
Mertens’ theorem for number fields. (For a precise statement, see [12, Theorem 2].)
Unfortunately, Theorem A does not apply in the global function field case, since
the number of divisors of norm  x is not asymptotic to a constant multiple of x.
However, it is still true that the associated zeta function has a simple pole at s = 1
with an easily described residue, and so Theorem 1.1 permits one to to recover the
function field analogue of Mertens’ theorem [12, Theorem 3], although without an
explicit error term. Thus, we achieve a unified proof of Mertens’ theorem for global
fields. For further work on these generalizations, see [7].

Using the known results on the analytic behavior of Ruelle zeta functions, The-
orem 1.1 immediately yields Sharp’s analogue of Mertens’ theorem for hyperbolic
flows [13]; cf. [10]. (The needed properties of these zeta functions are established
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in Theorem 5.6 on p. 84 of [9], the example on pp. 85–86, and the calculation at
the top of p. 96. See also the survey in [11, §6].)

One may try weakening Olofsson’s hypotheses even further. As remarked above,
the hypothesis (1.3) is equivalent to the assumption that

P
|n|x

1
|n| ⇠ A log x.

In the next theorem, we consider the situation where one supposes only thatP
|n|x

1
|n| ⇣ log x.

Theorem 1.3. Suppose B is a Beurling system for which

(1.4)
X

|n|x

1

|n|
⇣ log x

for all x � 2. Then for x � 2,

(1.5)
Y

|p|x

(1� 1/|p|)�1
⇣ log x.

This conclusion is best possible, in the sense that (1.4) may hold without the quotient

of the left and right-hand sides of (1.5) tending to a limit (as x ! 1).

Remarks 1.4.

(i) Harold Diamond and Wen-Bin Zhang have also obtained proofs of Theo-
rem 1.1. Their arguments, somewhat di↵erent from those given here, will
appear in a forthcoming book on Beurling primes by these authors.

(ii) The present form of Theorem 1.3 is due to the referee. In an earlier version
of this paper, the estimate NB(x) ⇣ x was assumed in place of (1.4) in
order to deduce (1.5). The author thanks the referee for sketching a proof
of the strengthened result.

Notation. We continue to use B to denote a fixed Beurling system. In what
follows, the letters m,n, and d are reserved for Beurling integers, and the letter p
for Beurling primes. We always assume (relabeling the p

i

if necessary) that |p1| =

min
i�1 |pi|. We use Ei for the exponential integral, so that Ei(x) :=

R
x

�1
et

t

dt.
We remind the reader that “f = O(g)”, “f ⌧ g”, and “g � f” all mean that

for some positive constant C, we have |f |  Cg for all values of the variables under
consideration. The notation f ⇣ g means that f ⌧ g and g ⌧ f . All implied
constants may depend on B.

2. Proof of Theorem 1.1

We begin by quoting two Tauberian theorems from the literature (see [6, Theo-
rems 15.1 and 15.3, p. 30]).

Theorem B. Let s(v) vanish for v < 0, be nondecreasing, continuous from the

right, and suppose that for some fixed ↵ > 0 and some constant L > 0, we have

Z 1

0�
e�rv ds(v) ⇠ L/r↵, as r # 0.

Then as u ! 1, we have s(u) ⇠ L

�(↵+1)u
↵

.

Theorem C. Suppose a(v) is locally Riemann integrable and that the improper

integral F (r) :=
R1
0 a(v)e�rv dv exists for all r > 0. Suppose that F (r) ! L as

r # 0, and that for all su�ciently large values of v, one has

a(v) � �C/v



4 PAUL POLLACK

for some constant C > 0. Then (as an improper Riemann integral)

Z 1

0
a(v) dv = L.

We suppose for the remainder of this section that we have fixed a Beurling system
B satisfying (1.3). The next sequence of lemmas develops the basic analytic number
theory of the corresponding Beurling integers.

Lemma 2.1. As x ! 1, we have

P
|n|x

1
|n| ⇠ A log x.

Proof. We apply Theorem B with s(v) :=
P

|n|e

v |n|�1. Then
Z 1

0�
e�rv ds(v) =

X

n

|n|�1�r = ⇣B(1 + r) ⇠ A/r, as r # 0.

So by Theorem B (with L = A and ↵ = 1), we have s(u) ⇠ Au as u ! 1. Now
put u = log x to obtain the lemma. ⇤

For each Beurling integer n, set ⇤(n) = log |p| if n is a power of the Beurling
prime p, and put ⇤(n) = 0 otherwise.

Lemma 2.2. As x ! 1, we have

X

|d|x

⇤(d)

|d|

X

|m|x/|d|

1

|m|

⇠

A

2
(log x)2.

Proof. Since log |n| =
P

d|n ⇤(d), we have

X

|n|x

log |n|

|n|
=

X

|n|x

1

|n|

X

d|n

⇤(d) =
X

|d|x

⇤(d)
X

|n|x

d|n

1

|n|
=

X

|d|x

⇤(d)

|d|

X

|m|x/|d|

1

|m|

.

On the other hand,

X

|n|x

log |n|

|n|
=

Z
x

1�
log t d

0

@
X

|n|t

1

|n|

1

A
⇠

A

2
(log x)2

by Lemma 2.1 and an easy integration by parts. Comparing these two expressions
gives the lemma. ⇤
Lemma 2.3. As x ! 1, we have

✓
1

2
+ o(1)

◆
log x 

X

|d|x

⇤(d)

|d|
 (2 + o(1)) log x.

Proof. First, observe that from Lemma 2.2,
X

|d|x

⇤(d)

|d|

X

|m|x

1

|m|

� (1 + o(1))
A

2
(log x)2;

using that
P

|m|x

1
|m|  (1 + o(1))A log x, we obtain the lower estimate of the

lemma. Next, note that from Lemma 2.2,
X

|d|
p
x

⇤(d)

|d|

X

|m|
p
x

1

|m|



X

|d|x

⇤(d)

|d|

X

|m|x/|d|

1

|m|

 (1 + o(1))
A

2
(log x)2.
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Since
P

|m|
p
x

1
|m| � ( 12 + o(1))A log x, we find that

X

|d|
p
x

⇤(d)

|d|
 (1 + o(1)) log x.

Now replace x with x2 to obtain the upper estimate. ⇤

Lemma 2.4. As x ! 1,

(2.1)
X

|d|x

⇤(d)

|d|
log

x

|d|
⇠

1

2
(log x)2.

Proof. Write
P

|m|t

|m|

�1 = A log t+ E(t), so that E(t) = o(log t) as t ! 1. By
Lemma 2.2, it su�ces to show that as x ! 1,

X

|d|x

⇤(d)

|d|
E(x/|d|) = o((log x)2).

Fix ✏ > 0. Choose t0 so that |E(t)| < ✏ log t once t � t0. Then with B denoting an
upper bound on |E(t)| for t  t0, we find that

������

X

|d|x

⇤(d)

|d|
E(x/|d|)

������
 ✏

X

|d|x/t0

⇤(d)

|d|
log

x

|d|
+

X

x/t0<|d|x

⇤(d)

|d|
|E(x/|d|)|

 ✏ log x
X

|d|x

⇤(d)

|d|
+B

X

|d|x

⇤(d)

|d|
.

Using the upper bound of Lemma 2.3, we see that

lim sup
x!1

���
P

|d|x

⇤(d)
|d| E(x/|d|)

���
(log x)2

 2✏.

Since ✏ > 0 was arbitrary, the lemma follows. ⇤

We now improve Lemma 2.3 to an asymptotic result.

Lemma 2.5. As x ! 1, we have

X

|d|x

⇤(d)

|d|
⇠ log x.

Proof. Write G(x) for the sum appearing on the left-hand side of (2.1). For each
fixed ✏ > 0, we have

G(x1+✏)�G(x) �
X

|d|x

⇤(d)

|d|
log(x✏) = ✏ log x

X

|d|x

⇤(d)

|d|
.

On the other hand, using the asymptotic formula provided by Lemma 2.4,

G(x1+✏)�G(x) ⇠
1

2
((1 + ✏)2 � 1)(log x)2.

Comparing these two expressions, we find that

lim sup
x!1

P
|d|x

⇤(d)
|d|

log x


1

2

(1 + ✏)2 � 1

✏
.
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Letting ✏ # 0, we get the upper-bound estimate implicit in the statement of Lemma
2.5. The lower bound can be handled similarly, upon noting that

G(x)�G(x1�✏) =
X

|d|x

1�✏

⇤(d)

|d|
log(x✏) +

X

x

1�✏
<|d|x

⇤(d)

|d|
log

x

|d|



X

|d|x

⇤(d)

|d|
log(x✏) = ✏ log x

X

|d|x

⇤(d)

|d|
. ⇤

We next prove two crude bounds on NB(x) and ⇡B(x).

Lemma 2.6. For x � 3, we have NB(x) ⌧ x log x.

Proof. We have only to observe that

NB(x) =
X

|n|x

1  x
X

|n|x

1

|n|
⌧ x log x,

using Lemma 2.1 in the last step. ⇤

To establish the needed estimate on ⇡B(x), we first isolate a simple consequence
of Lemmas 2.5 and 2.6.

Lemma 2.7. As x ! 1, we have

X

|p|x

log |p|

|p|
⇠ log x.

Proof. After Lemma 2.5, it su�ces to observe that the contribution to
P

|d|x

⇤(d)
|d|

from those d which are not prime is



X

|p|x

log |p|

✓
1

|p|2
+

1

|p|3
+ . . .

◆
⌧

X

|p|x

log |p|

|p|2


Z 1

1

log t

t2
dNB(t) ⌧ 1,

using Lemma 2.6 to estimate the integral. ⇤

Lemma 2.8. ⇡B(x)/x ! 0 as x ! 1.

Proof. As x ! 1,

#{p : x/(log x)2 < |p|  x} ·
log x

x


X

x/(log x)2<|p|x

log |p|

|p|
= o(log x),

by Lemma 2.7. Hence, the number of primes p with x/(log x)2 < |p|  x is o(x). But
the number of p with |p|  x/(log x)2 is trivially at most NB(x/(log x)2) ⌧ x/ log x
(using Lemma 2.6), and so is also o(x). ⇤

We can now complete the proof of Theorem 1.1. We begin with the forward
direction.

Proof that (1.3) ) (1.2). The proof of (1.2) is completed in the same manner as
Olofsson’s Theorem A. To keep the paper self contained, we give the details, closely
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following [8]. For real s > 1,

(2.2) log ⇣B(s) = �

Z 1

|p1|�
log(1� t�s) d⇡B(t) = s

Z 1

|p1|

⇡B(t)

t(ts � 1)
dt

= s

Z 1

|p1|

✓
⇡B(t)�

t

log t

◆
t�(s+1) dt+ s

Z 1

|p1|

⇡B(t)

ts+1(ts � 1)
dt+ s

Z 1

|p1|

t�s

log t
dt.

Thus, as s # 1,

log ⇣B(s) = s

Z 1

|p1|

✓
⇡B(t)

t2
�

1

t log t

◆
t�(s�1) dt+

Z 1

|p1|

⇡B(t)

t2(t� 1)
dt

+ log
1

s� 1
� log log |p1|� � + o(1).

(The final integral appearing in (2.2) can be seen to equal �Ei((1 � s) log |p1|),
by a change of variables; the estimate given above then follows from the relation
Ei(t) = log(�t) + � + o(1), as t " 0. See, e.g., [4, p. 884].) Put

(2.3) I(s� 1) :=

Z 1

|p1|

✓
⇡B(t)

t2
�

1

t log t

◆
t�(s�1) dt.

From the above and our hypothesis (1.3) that (s � 1)⇣B(s) ! A, we have that as
s # 1,

s · I(s� 1) = log((s� 1)⇣B(s)) + log log |p1|+ � �

Z 1

|p1|

⇡B(t)

t2(t� 1)
dt+ o(1)

= L+ o(1), where L := log(Ae�) + log log |p1|�

Z 1

|p1|

⇡B(t)

t2(t� 1)
dt.(2.4)

If we make the change of variables t := ev, we find that

I(s� 1) =

Z 1

log |p1|

✓
⇡B(ev)

ev
�

1

v

◆
e�v(s�1) dv.

As s # 1, we have seen that I(s � 1) ! L; applying Theorem C with a(v) :=
⇡B(ev)e�v

� v�1 shows that

(2.5) I(0) = L.

Applying partial summation once again, we find that

log
Y

|p|x

(1� 1/|p|)�1 = �

X

|p|x

log(1� 1/|p|)

= �

Z
x

|p1|�
log(1� 1/t) d⇡B(t) =

Z
x

|p1|

⇡B(t)

t2 � t
dt+O(⇡B(x)/x).

The error term is o(1), by Lemma 2.8. Keeping (2.5) in mind, we see that as
x ! 1,

Z
x

|p1|

⇡B(t)

t2 � t
=

Z
x

|p1|

✓
⇡B(t)

t2
�

1

t log t

◆
dt+

Z
x

|p1|

dt

t log t
+

Z
x

|p1|

⇡B(t)

t2(t� 1)
dt

= I(0) + log log x� log log |p1|+

Z 1

|p1|

⇡B(t)

t2(t� 1)
dt+ o(1)

= log (Ae� log x) + o(1).
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Collecting our estimates and exponentiating, we arrive at the estimate
Y

|p|x

(1� 1/|p|)�1
⇠ Ae� log x,

which completes the proof. ⇤

The reverse direction is easier:

Proof that (1.2) ) (1.3). We have to show that if B is a Beurling system for which
the Mertens-type theorem (1.2) holds with the constant A > 0, then ⇣B(s) ⇠

A/(s� 1) as s # 1. We first show that the crude estimates of Lemmas 2.6 and 2.8
are valid under the hypothesis (1.2). First, observe that

NB(x)  x
X

|n|x

1

|n|
 x

Y

|p|x

(1� 1/|p|)�1
⌧ x log x.

Also, (1.2) gives that

log
Y

x/(log x)2<|p|x

(1� 1/|p|)�1
! 0, as x ! 1.

But

log
Y

x/(log x)2<|p|x

(1�1/|p|)�1
�

X

x/(log x)2<|p|x

1

|p|
�

1

x
#{p : x/(log x)2 < |p|  x}.

Hence, there are only o(x) primes p with x/(log x)2 < |p|  x, as x ! 1. As in
the proof of Lemma 2.8, there are ⌧ x/ log x primes p with |p|  x/(log x)2. So
the number of p with |p|  x is o(x).

With this preparation out of the way, we can reason as in the proof of the forward
direction to find that

log
Y

|p|x

(1� 1/|p|)�1 =

Z
x

|p1|

✓
⇡B(t)

t2
�

1

t log t

◆
dt+ log log x� log log |p1|+

Z 1

|p1|

⇡B(t)

t2(t� 1)
dt+ o(1).

We are assuming the Mertens-type formula (1.2) holds, so that

log
Y

|p|x

(1� 1/|p|)�1 = log(Ae�) + log log x+ o(1);

comparing with the previous expression, we deduce that if we define

L(x) :=

Z
x

|p1|

✓
⇡B(t)

t2
�

1

t log t

◆
dt,

then L(x) ! L as x ! 1, where L is as in (2.4). In other words, defining I(s� 1)
as in (2.3), we have I(0) = L.

Returning to ⇣B(s), we have (by the same arguments appearing in the forward
direction) that as s # 1,

log ⇣B(s) = sI(s� 1) +

Z 1

|p1|

⇡B(t)

t2(t� 1)
dt+ log

1

s� 1
� log log |p1|� � + o(1).
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If we show that I(s� 1) ! I(0) = L as s # 1, substituting the value (2.4) of L into
this expression will give that as s # 1,

log ⇣B(s) = log
A

s� 1
+ o(1),

and the desired result (1.3) will follow upon exponentiating. To see that I(s�1) !
L as s # 0, we note that for s > 1,

I(s� 1) =

Z 1

|p1|
t�(s�1) dL(t) = (s� 1)

Z 1

|p1|
L(t)t�s dt.

Since L(t) ! L as t ! 1, it is straightforward to show (by writing L(t) = L+E(t),
where E(t) = o(1) as t ! 1) that as s # 1,

I(s� 1) = (s� 1)

Z 1

|p1|
L · t�s dt+ o(1) = L+ o(1).

This completes the proof. ⇤

3. Proof of Theorem 1.3

We now suppose that B is a fixed Beurling system for which
P

|n|x

1
|n| ⇣ log x

for x � 2. In this situation, it is easy to establish the lower estimate implicit in
(1.5): We have

Y

|p|x

(1� 1/|p|)�1 =
X

n: p|n)|p|x

1

|n|
�

X

|n|x

1

|n|
� log x.

So we may focus our attention on the upper estimate. Now
X

|p|x

✓
log

1

1� 1/p
�

1

p

◆
=

X

|p|x

✓
1

2|p|2
+

1

3|p|3
+ . . .

◆

⌧

X

p

1

|p|2


X

n

1

|n|2
=

Z 1

1�

1

t
d

0

@
X

|n|t

1

|n|

1

A
⌧ 1.(3.1)

Thus, it is enough to show that for x � 3,

(3.2)
X

|p|x

1

|p|
 log log x+O(1).

To establish (3.2), we need the following crude upper bound for the sum consid-
ered in Lemmas 2.3 and 2.5:

(3.3)
X

|d|x

⇤(d)

|d|
⌧ log x.

This is simple to prove: On the one hand,
P

|n|x

log |n|
|n| =

R
x

1� log t d
⇣P

|n|t

1
|n|

⌘
⌧

(log x)2. On the other hand,
X

|n|x

log |n|

|n|
=

X

|n|x

1

|n|

X

d|n

⇤(d) =
X

|d|x

⇤(d)

|d|

X

|m|x/|d|

1

|m|

� log x
X

|d|
p
x

⇤(d)

|d|
.

Comparing these two estimates shows that
P

|d|
p
x

⇤(d)
|d| ⌧ log x. Replacing x by

x2 gives (3.3).



10 PAUL POLLACK

Next, observe that for s > 1, we have

log ⇣B(s) = log
Y

p

(1� |p|�s)�1
�

X

p

|p|�s.

Our hypothesis (1.4) on the partial sums of 1
|n| shows that

⇣B(s) =

Z 1

1�
t�(s�1) d

0

@
X

|n|t

1

|n|

1

A = (s� 1)

Z 1

1

0

@
X

|n|t

1

|n|

1

A t�s dt

⌧ 1 + (s� 1)

Z 1

1
(log t) · t�s dt = 1 + (s� 1) ·

1

(s� 1)2
=

s

s� 1
.

Thus, for 1 < s < 2 (say),
X

p

|p|�s

 log
1

s� 1
+O(1).

Taking s = 1 + 1
log x

shows that for x � 3,
X

|p|x

|p|�1�1/ log x



X

p

|p|�1�1/ log x

 log log x+O(1).

But
X

|p|x

|p|�1
�

X

|p|x

|p|�1�1/ log x =
X

|p|x

|p|1/ log x

� 1

|p|1+1/ log x

⌧

1

log x

X

|p|x

log |p|

|p|
⌧ 1,

by (3.3). This proves (3.2) and completes the proof of (1.5).
It remains to show that condition (1.4) does not imply that the ratio of the left

and right-hand sides of (1.5) tends to a limit. By (3.1), this is equivalent to showing
that there is a Beurling system satisfying (1.4) for which the di↵erences

(3.4)
X

|p|x

1

|p|
� log log x

do not tend to a limit as x ! 1. We will show more than this; we demonstrate
how to construct a Beurling system where (3.4) fails to tend to a limit, but which
has the property (stronger than (1.4)) that

NB(x) ⇣ x (for x � 1).

The existence of such a system will be deduced from the following theorem of
Zhang (see [14, Theorem 4.1]):

Theorem D. Let B be a Beurling system, and suppose that with

(3.5) ⇧B(x) := ⇡B(x) +
1

2
⇡B(x1/2) +

1

3
⇡B(x1/3) + . . . ,

we have both

⇧B(x) ⇣ x/ log x

for large x and, as s # 1,

(3.6)

Z 1

1
t�s d⇧B(t)� log

1

s� 1
⌧ 1.
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Then NB(x) ⇣ x.

Our strategy is to first choose the norms |p
i

| to guarantee that (3.4) is bounded
but not convergent and then to use Theorem D to show that the Beurling system
determined by our choice satisfies NB(x) ⇣ x.

We start by constructing a set R of natural numbers with counting function
R(x) ⇣ x/ log x and with the property that

X

r2R\[1,x]

1

r
� log log x

is bounded for x � 3 but does not converge as x ! 1. Using the letter q to denote
a generic rational prime, choose the natural number x1 minimally so that if R1

consists of all the numbers of the form q or q + 1 not exceeding x1, then

(3.7)
X

r2R1

1

r
�

X

qx1

1

q
> 1.

Next, choose x2 > x1 minimally so that if R2 consists of the primes ⌘ 1 (mod 4)
in (x1, x2], then

(3.8)
X

r2R1[R2

1

r
�

X

qx2

1

q
< �1.

Then choose x3 > x2 minimally so that if R3 consists of all the numbers of the
form q or q + 1 in (x2, x3], then

X

r2R1[R2[R3

1

r
�

X

qx3

1

q
> 1,

and continue defining R4, R5, . . . , alternating as above. Finally, set R := [

1
i=1Ri

.
Let us check that R has the desired properties. Clearly R(x)  2⇡(x) ⌧ x/ log x

(for large x), where ⇡(x) is the usual (rational) prime counting function. It is slightly
more involved to obtain the corresponding lower estimate R(x) � x/ log x. We first
show that for large i, we have R(x

i

) � ⇡(x
i

). For this, it is enough to show that
for every large j, a proportion � 1 of the rational primes belonging to (x

j

, x
j+1]

are included in R. If j is even, then R includes every rational prime from that
interval, so suppose that j is odd. In that case, subtracting the analogue of (3.8)
for x

j+1 from the analogue of (3.7) for x
j

, we find that
X

xj<qxj+1

q⌘3 (mod 4)

1

q
> 2,

which implies that x
j+1 > x2

j

(say) for large values of j. So by the prime number
theorem for progressions, the number of primes ⌘ 1 (mod 4) in (x

j

, x
j+1] is >

1
3⇡(xj+1). This completes the proof that R(x

i

) � ⇡(x
i

).
Now we prove that R(x) � x/ log x for large x. From our work in the last

paragraph, we can assume that x
i

< x < x
i+1 for some index i. We know that

R(x) � ⇡(x
i

) + #{r 2 R : x
i

< r  x}.

If i is even, then every prime from (x
i

, x] is counted in the second summand, and
so R(x) � ⇡(x) � x/ log x in this case. Suppose that i is odd. Then if x � 2x

i

(and large, as we are assuming), the number of primes included in R from (x
i

, x]
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is at least 1
3 of the total number of such primes, and again we may conclude that

R(x) � ⇡(x) � x/ log x. But if x  2x
i

, then

R(x) � ⇡(x
i

) � x
i

/ log x
i

� x/ log x,

and so the desired lower bound still holds. Finally, since
P

qx

1
q

� log log x tends

to a limit, it is clear from our construction that
P

r2R\[1,x]
1
r

� log log x is O(1) but
does not converge as x ! 1.

Now we define a Beurling system B by setting |p
i

| to be the ith smallest element
of R. As shown above, ⇡B(t) ⇣ t/ log t for large t. (In fact, 2 2 R, so that this
estimate holds for t � 2.) So with ⇧B(t) defined by (3.5), we have ⇧B(t) =
⇡B(t) +O(t1/2). Consequently, ⇧B(t) ⇣ t/ log t and to verify (3.6), it is enough to
verify the corresponding condition with ⇧B(t) replaced by ⇡B(t). But this variant
follows from the estimate

P
|p|x

1
|p|�log log x ⌧ 1: Indeed, for s > 1, that estimate

shows

Z 1

1
t�s d⇡B(t) =

Z 1

1
t�(s�1) d

0

@
X

|p|t

|p|
�1

1

A

= (s� 1)

Z 1

|p1|
t�s

0

@
X

|p|t

|p|�1

1

A dt = (s� 1)

Z 1

|p1|
t�s log log t dt+O(1),

while as s # 1,

(s� 1)

Z 1

|p1|
t�s log log t dt = log log |p1|+ o(1) +

Z 1

|p1|

t�s

log t
dt

= log
1

s� 1
� � + o(1).

(In the first of the two lines above, we have integrated by parts, and in the second
line we have again used the asymptotic expansion of the exponential integral.) By
Theorem D, our Beurling system has NB(x) ⇣ x, as desired.
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généralisés. I. Acta Math. 68(1937), 255–291.
[2] H. G. Diamond, A set of generalized numbers showing Beurling’s theorem to be sharp. Illinois

J. Math. 14(1970), 29–34.
[3] , Chebyshev estimates for Beurling generalized prime numbers. Proc. Amer. Math.

Soc. 39(1973), 503–508.
[4] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Seventh ed.

Elsevier/Academic Press, Amsterdam, 2007.



ON MERTENS’ THEOREM FOR BEURLING PRIMES 13

[5] R. S. Hall, Beurling generalized prime number systems in which the Chebyshev inequalities

fail. Proc. Amer. Math. Soc. 40(1973), 79–82.
[6] J. Korevaar, Tauberian theory: A century of developments. Grundlehren der Mathematischen

Wissenschaften, vol. 329, Springer-Verlag, Berlin, 2004.
[7] P. Lebacque, Generalised Mertens and Brauer-Siegel theorems. Acta Arith. 130(2007), no. 4,

333–350.
[8] R. Olofsson, Properties of the Beurling generalized primes. J. Number Theory 131(2011),

no. 1, 45–58.
[9] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic
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