A SHORT PROOF THAT ADDITIVE, MEASURABLE FUNCTIONS ARE LINEAR

CHRISTOPHER HENDERSON

For notation, we use λ to mean Lebesgue measure on \mathbb{R}.
Lemma 0.1. If A, B are sets of positive measure, then there exists $q \in \mathbb{Q}$ such that $\lambda((A+q) \cap B)>0$.
Proof. By the Lebesgue density thereom we get $\Delta>0, a \in A$ and $b \in B$ such that $\lambda(A \cap[a-\delta, a+\delta]), \lambda(B \cap$ $[b-\delta, b+\delta]) \geq 3 \delta / 2$ for all $\delta \leq \Delta$. If we assume that $\lambda((A+q) \cap B)=0$ for all $q \in \mathbb{Q}$ then for any $q \in \mathbb{Q}$ such that $a+q$ is close to b, we get

$$
\begin{aligned}
2 \Delta & \geq \lambda(((A+q) \cap[a+q-\Delta, a+q+\Delta]) \cup(B \cap[a+q-\Delta, a+q+\Delta])) \\
& \geq \lambda(A \cap[a-\Delta, a+\Delta])+\lambda(B \cap[b-(\Delta-|b-(a+q)|), b+(\Delta-|b-(a+q)|)]) \\
& \geq(3 / 2) \Delta+(3 / 2) \Delta-(3 / 2)|b-(a+q)|
\end{aligned}
$$

Since we can choose q to make the last term as small as we please, we get a contradiction.
Lemma 0.2. If A is a set with $\lambda(A)>0$ which has the property that $A+q=A$ for every $q \in Q$ then $\lambda\left(A^{c}\right)=0$.

Proof. Notice that for all $q,(A+q) \cap A^{c}=\emptyset$. Hence, $\lambda\left(A^{c}\right)>0$ would contradict the lemma above.

Theorem 0.3. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is additive and measurable then f is linear.
Proof. Let $g(x)=f(x)-f(1) x$ and we are finished if we show that g is 0 . Notice that g is linear and measurable as well. We first show that g takes the value 0 on the rational numbers. Notice that $g(1)=0$. Now, take a rational number $\frac{p}{q}$ and we get that:

$$
0=p g(1)=g(1)+\cdots+g(1)=g(p)=g(p / q)+\cdots+g(p / q)=q g(p / q)
$$

Hence $g(p / q)=0$. An important consequence of this is that $g(x+r)=g(x)$ whenever $r \in \mathbb{Q}$.
Now we show that g is essentially bounded. Suppose this isn't true. Then for every M, the set $A_{M}=$ $\{x:|g(x)| \geq M\}$ has positive measure. Since, for any $q \in \mathbb{Q}, g(x+q)=g(x)$, then $A_{M}=A_{M}+q$. By the lemma above, $\lambda\left(A_{M}^{c}\right)=0$. Notice that this holds for all M. However, since $g: \mathbb{R} \rightarrow \mathbb{R}$ is necessarily finite, then $\mathbb{R}=\cup_{n} A_{n}^{c}$. Hence $0=\lim \lambda\left(A_{n}^{c}\right)=\lambda(\mathbb{R})=\infty$. This is clearly a contradiction.

Now, we know that g is integrable on compact sets and that it is periodic. Hence, for any $y \in \mathbb{R}$ we have

$$
\int_{0}^{1} g(x) d x=\int_{0-y}^{1-y} g(x+y) d x=\int_{0}^{1} g(x+y) d x=\int_{0}^{1} g(x) d x+\int_{0}^{1} g(y) d x=g(y)+\int_{0}^{1} g(x) d x
$$

This clearly implies $g(y)=0$ for all y, finishing the proof.

