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For notation, we use λ to mean Lebesgue measure on R.

Lemma 0.1. If A,B are sets of positive measure, then there exists q ∈ Q such that λ((A+ q) ∩B) > 0.

Proof. By the Lebesgue density thereom we get ∆ > 0, a ∈ A and b ∈ B such that λ(A∩ [a−δ, a+δ]), λ(B∩
[b − δ, b + δ]) ≥ 3δ/2 for all δ ≤ ∆. If we assume that λ((A + q) ∩ B) = 0 for all q ∈ Q then for any q ∈ Q
such that a+ q is close to b, we get

2∆ ≥ λ(((A+ q) ∩ [a+ q −∆, a+ q + ∆]) ∪ (B ∩ [a+ q −∆, a+ q + ∆]))

≥ λ(A ∩ [a−∆, a+ ∆]) + λ(B ∩ [b− (∆− |b− (a+ q)|), b+ (∆− |b− (a+ q)|)])
≥ (3/2)∆ + (3/2)∆− (3/2)|b− (a+ q)|

Since we can choose q to make the last term as small as we please, we get a contradiction. �

Lemma 0.2. If A is a set with λ(A) > 0 which has the property that A + q = A for every q ∈ Q then
λ(Ac) = 0.

Proof. Notice that for all q, (A+ q) ∩Ac = ∅. Hence, λ(Ac) > 0 would contradict the lemma above.
�

Theorem 0.3. If f : R→ R is additive and measurable then f is linear.

Proof. Let g(x) = f(x) − f(1)x and we are finished if we show that g is 0. Notice that g is linear and
measurable as well. We first show that g takes the value 0 on the rational numbers. Notice that g(1) = 0.
Now, take a rational number p

q and we get that:

0 = pg(1) = g(1) + · · ·+ g(1) = g(p) = g (p/q) + · · ·+ g (p/q) = qg (p/q)

Hence g(p/q) = 0. An important consequence of this is that g(x+ r) = g(x) whenever r ∈ Q.
Now we show that g is essentially bounded. Suppose this isn’t true. Then for every M , the set AM =

{x : |g(x)| ≥ M} has positive measure. Since, for any q ∈ Q, g(x + q) = g(x), then AM = AM + q. By the
lemma above, λ(Ac

M ) = 0. Notice that this holds for all M . However, since g : R → R is necessarily finite,
then R = ∪nAc

n. Hence 0 = limλ(Ac
n) = λ(R) =∞. This is clearly a contradiction.

Now, we know that g is integrable on compact sets and that it is periodic. Hence, for any y ∈ R we have∫ 1

0

g(x)dx =

∫ 1−y

0−y

g(x+ y)dx =

∫ 1

0

g(x+ y)dx =

∫ 1

0

g(x)dx+

∫ 1

0

g(y)dx = g(y) +

∫ 1

0

g(x)dx

This clearly implies g(y) = 0 for all y, finishing the proof.
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