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1 Preface

The following are lecture notes for a graduate level class in decision under

uncertainty. After teaching such classes for many years, it became more diffi-

cult to squeeze all the material into class discussions, and I was not quite sure

about the appropriate order in which the issues should be presented. Trying

to put everything in writing, and thereby finding at least one permutation

of topics that makes sense, is supposed to help me forget less and confuse

the students less. As a by-product, the notes may be useful to students who

miss classes, or who wish to know what the course is about without having

to show up every week.

The graduate classes I normally teach are geared towards students who

want to do research in economics and in related fields. It is assumed that they

have taken a basic microeconomic sequence at the graduate level. In teaching

the class, I hope that I can convince some students that decision theory is

a beautiful topic and that this is what they want to do when they grow up.

But I’m fully aware of the fact that this is not going to be the majority of the

students. I therefore attempt to teach the course with a much more general

audience in mind, focusing on the way that decision theory may affect the

research done in economics at large, as well as in finance, political science,

and other fellow disciplines.

The present notes contain relatively few proofs. Interested students are

referred to books and papers that contain more details. The focus here

is on conceptual issues, where I find that each teacher has his or her own

interpretation and style. The mathematical results are a bit like musical

notes — they are written, saved, and can be consulted according to need. By

contrast, our presentation and interpretation of the results are akin to the

performance of a musical piece. My focus here is mostly on the interpretation

I like, on how I would like to perform the theory, as it were. I comment on

proofs mostly when I feel that some intuition may be gained from them, and

that it’s important to highlight it.
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These notes are not presented as original thoughts or a research paper.

Many of the ideas presented here appeared in print. Some are very old, some

are newer, and some appeared in works that I have co-authored. I try to

give credit where credit is due, but I must have missed many references that

I had and had not been aware of. There are also other thoughts that have

not appeared in print, and originated in discussions with various people, in

particular with David Schmeidler. When I recall precisely that a certain idea

was suggested to me by someone, I do mention it, but there are many ideas

for which I can recall no obvious source. This doesn’t mean that they are

original, and I apologize for any unintentional plagiarism. At the same time,

there are also many ideas here that I know to be peculiar to me (and some

— to David and to me). I try to warn the reader when I present something

that I know many colleagues would dismiss as complete nonsense, but, again,

there must be incidences in which I was not aware that such a warning was

due, and I apologize for such omissions as well.

I enjoyed and was enriched by comments and references provided by many

colleagues. Peter Wakker has been, as always, a fantastic source of knowledge

and critique. Nicolas Vieille also made extremely detailed and insightful com-

ments. I learnt a lot from comments by Daniel Algom, Massimo Marinacci,

and Teddy Seidenfeld on particular issues. The final version also benefited

greatly from detailed comments of Edi Karni, George Mailath, Marion Oury,

and two anonymous reviewers. Doron Ravid and Arik Roginsky were of

great help in the final stages of the preparation of the manuscript. I am very

grateful to all these colleagues for their input.
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PART I — Intuitive Definitions

Scope of this book This book is about decision theory under uncertainty,

namely asking how do people, and how should people, make decisions in sit-

uations of uncertainty. You probably already know the standard answer in

economics, namely, that people do, and should maximize expected utility. I

don’t think that this is a bad answer, if we know what “utility” and “prob-

ability” mean.

The difficulty is that we often don’t. Both concepts are problematic. We

will discuss the notion of utility at various points, but these notes basically

revolve around the meaning of probability. We ask, what is meant by saying

“the probability of event A is p”? There are obviously many other ways to

organize the material presented here, and, in particular, one can start with

the meaning of utility. The present organization is but one way to relate the

various topics to each other.

Naturally, the main question around which this book is organized has im-

plications regarding its scope and content. There are important and interest-

ing recent developments in decision under uncertainty that are not discussed

here. In particular, there is relatively little discussion of non-expected-utility

theory under risk, namely with given probabilities, and almost no reference to

models of choices frommenus, and to various models of behavioral economics.

On the first topic (and, in particular, on Cumulative Prospect Theory), the

reader is referred to Wakker (2008), which also covers much of the classical

theories covered here.

The first chapters are devoted to intuitive definitions of probabilities. We

start with a few motivating examples, and see how three intuitive definitions

cope with these examples.
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2 Motivating Examples

Let us start with a concrete question such as: what is the probability of

another war in the Middle East erupting before December 31 of the current

year? Of course, the focus should not be on this particular problem, but on

the way we address it, and, in fact, on its meaning. Similarly, I could ask

you what is the probability of a stock market crash in the NY stock exchange

during the next month. In both examples we have to define precisely what

is meant by “war”, or “stock market crash”, so as to make the question

well-defined. Assume that we’ve done that. How would you approach the

problems?

I believe that these are very complicated questions, not only because

they have to do with complex processes, each involving many factors, but

mostly because they are conceptually hard to deal with. To appreciate the

difficulties, it may be useful to contrast this class of questions with three

others. For concreteness, consider the following four questions, which I will

later argue are in increasing order of conceptual difficulty.

1. I’m about to toss a coin. What is the probability of it coming up

Head?

2. I consider parking my car on the street tonight. What is the probability

that it will be stolen overnight?

3. I am about to undergo a medical operation. What is the probability

that I will survive it?

4. What is the probability of war in the Middle East this year?

It will prove useful to analyze these questions in light of the type of

answers we can give them. From the very early days of probability theory

(mid-seventeenth century), three ways of assigning probabilities to events

can be documented. The first, sometimes called the “classical” approach,

suggests that equal probabilities be assigned to all outcomes. The second,

the “frequentist” approach, holds that the probability of an event should be

9



the relative frequency with which it has been observed in the past. Finally,

the “subjective” approach offers the mathematical machinery of probability

theory as a way to model our vague beliefs and intuitions.

We will discuss these three methods in more detail. (In fact, the discussion

of the subjective method will cover the entire classical theory of subjective

expected utility maximization.) But before we do that, a word on free will

may be in place.
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3 Free Will and Determinism

3.1 Can free choice be predicted?

In considering the four questions above, it is sometimes suggested that the

fourth is conceptually more difficult than the others because it involves de-

cisions of human beings, who have goals and desires, beliefs and ideas, and

perhaps also free will. Can we hope to predict the behavior that results

from all these? Will such prediction not be in conflict with the notion that

individuals have free will?

These questions should bother anyone interested in the social sciences.

If humans have free will, and if this means that their behavior cannot be

predicted with any accuracy, we would have to declare social science an

impossibility. The fact that we study economics probably indicates that we

believe that some prediction is possible.1 Indeed, the question of free will

is usually not brought up in the context of the second question, namely,

whether my car will be stolen. But cars are stolen by humans, and therefore

any prediction regarding the car theft should also cope with the question of

free will.

The fact is that there are many generalizations that are true of human

beings, and many predictions that can be made about them with high degree

of certainty. Whether individuals have free will or not, it is safe to predict

that a $100 bill will not be lying on the sidewalk for five days in a row without

being picked by someone. Moreover, the individual who chooses to pick the

bill may well feel that she has free will in general, and even that she exercises

it in this very act. This subjective experience of free will does not contradict

our prediction.

By contrast, it may be very difficult to predict certain natural phenomena

even if they do not involve the decision of any cognate entity to which free will

1This type of inference, from observed choices back to the beliefs that led to them, is
what Part II of the course is about.
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can be ascribed. Combining the two, it appears that whether the behavior

of a certain system can or cannot be predicted with confidence has little to

do with the question of free will.

3.2 Is the world deterministic?

A question that arises in the context of free will, but also in other contexts

relating to probability and randomness, is whether the world we live in is

deterministic, namely one in which past events fully determine future ones.

In the context of probability, the most popular version of determinism is

causal, or material determinism, which holds that knowledge of the laws

of physics, coupled with exact knowledge of location and velocity of each

particle, would suffice to fully determine the future. According to this view

nothing is truly random, and probability can only be used when we do not

have enough information or sufficient calculation capabilities.

This view is quite compelling in many situations. When I toss a coin,

we all believe that an exact measurement of the angle at which my finger

hits the coin, of the power exerted, and so forth could suffice for a precise

calculation of the outcome of the toss. Indeed, if I let the coin simply slide

from my finger down to the table, no one would accept the toss as “random”,

because it will be very easy to compute its outcome. Slightly more vigorous

tosses, the claim goes, will only differ from the languid slide in degree, but

not in kind.

However, it is clear that we can measure initial conditions only up to

certain accuracy. Even if we can exactly compute the outcome of a toss of a

coin, it would be impossible to collect all the information needed to predict

more complicated phenomena such as the exact impact of an earthquake

or the result of a vote in Congress. This impossibility is not only a mat-

ter of practicality. Heisenberg’s Principle of Uncertainty states that there

are limits to the degree of accuracy with which mass and momentum can

be simultaneously measured. Even within the scope of Newtonian physics,
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Chaos theory shows that deterministic systems can be sufficiently complex

so that all the information that can be gathered in reality will not suffice for

complete prediction.2

One may model the world as deterministic, by introducing sufficiently

many hidden variables (such as the world’s future). But this model will

be observationally equivalent to another model in which the world is non-

deterministic. It follows that, as far as we will ever be able to know, the

world is not deterministic.

3.3 Is free will observable?

Free will is a private phenomenon. I, for one, believe that I have free will,

and I experience the exercise of free will whenever I make conscious decisions.

I trust that all my readers also feel that they have free will. I can ask you

to take a few minutes, think whether you feel like turning the light on (or

off), and then make a decision about it. You’d probably report a sensation

of exercising free will, and a feeling that you could have chosen differently.

However, I do not have direct access to your sense of free will. I will not be

able to distinguish between two individuals, one who feels that she has free

will, and another who only claims that he has, but who actually behaves in

an automatic way without considering alternative courses of action. To put

it bluntly, I know that I have free will, but whether anyone else has free will

is a meaningless question.

This well-known observation is partly the reason that economists do not

think that they should be interested in the phenomenon of free will. If it

2To be more concrete, even if we devoted all our resources to the production of mea-
surement devices, the information gathered will be insufficient for perfect prediction. To
complicate matters further, the measurement devices would be part of the system and
would require to be measured themselves. (This brings to mind some of the discussions of
Maxwell’s Demon who can presumably decrease entropy of a system that does not contain
itself.)
That is, the impossibility of prediction that one can derive from Chaos theory goes a

step beyond the common-sensical notion of "practicality".
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is unobservable, why should we care about it? If people make the same

buying and selling decisions whether they do or do not have free will, who

cares about the latter? Furthermore, one can argue that no scientific field

should concern itself with the question of free will: observational equivalence

implies that no amount of data, regarding economic behavior or otherwise,

will ever suffice to determine whether an individual has free will. Free will is

a metaphysical concept.

However, the sensation of free will, the subjective experience that one can

choose among different options, or could have chosen otherwise, is observ-

able. Admittedly, only my own sensation of free will is directly observable

to me, and that of others — only by their report. But this is the case with

many psychological phenomena. Let us therefore refine our discussion: when

we mention “free will” here, we refer to psychological free will, namely, the

sensation of choice among several possible alternatives. This phenomenon

has to do with our definition of the decision matrix, and is therefore relevant

to our analysis of our own decisions.

3.4 The problem of free will

We have hopefully agreed by now that (i) free will does not preclude predic-

tion; and that (ii) the world is not deterministic. It would appear that free

will should not bother us: whether people experience this sensation or not,

there are no deterministic theories that it may conflict with. And the meta-

physical notion of “real” free will certainly cannot conflict with observations.

We can therefore go about our business, providing predictions of people’s

choices, without taking a position on the freedom of their will, whether this

freedom is metaphysical or psychological. I claim, however, that a problem

persists.

Much of the philosophical discussions of free will through the ages focus

on its conflict with determinism — causal determinism, as discussed above,

or other notions, such as theological determinism, namely, the claim that
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the Almighty has already determined the future, or at least that some en-

tity (such as Fate) knows the future. Some recent contributions, relying on

modern science, accept the view that determinism is the main challenge for

the existence of free will. Penrose (1997) argues that the uncertainty at the

level of elementary particles (Heisenberg’s principle) may suffice to evolve

into uncertainty about people’s decisions, thus salvaging the notion of free

will. Searle (2004) claims that our understanding of neurobiology at present

does not yet prove that the brain is deterministic, and that, consequently,

free will is an illusion, though he speculates that neurobiological research will

get to this point.3

But to show the difficulty with free will one need not assume that all

decisions are pre-determined. It suffices that one decision be known. The

logic is similar to suggesting a counter-example to a conjecture. The existence

of one counter-example suffices. Similarly, if we can find one instance in which

we have an undeniable sensation of free will on the one hand, and practically

certain knowledge of our choice on the other, we will have to admit that the

sense of free will is illusory, at least in this example. In principle, one such

example would suffice to put the notion of free will in doubt. In practice, I

maintain that such examples abound.

Consider the following example. Sir Isaac Newton stands by a large win-

dow on the fourth floor. He contemplates the possibility of jumping out of

the window. Should he jump, he considers two possibilities: he may hover

in the air, enjoying the view, or crash to the ground. Being a rational deci-

sion maker, Newton contemplates the possibility of jumping and, given his

knowledge of physics, concludes that crashing to the ground is a practical

certainty. He now considers his own decision, and decides not to jump. In

so doing, he feels that he has made a decision, and that he has exercised his

free will. He could imagine choosing differently, and decided not to.

Suppose that we are sitting with Sir Newton in his office throughout this

3For a survey, covering many other recent contributions, see Kane (2005).
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process. Our limited knowledge of physics suffices for us to conclude, as does

Newton, that a jump will result in a crash. With a lesser degree of certainty,

but still quite confidently, we are willing to predict that Newton will not

jump. We have seen many people next to many windows, and, for the most

part, they prefer to stay in their rooms. In short, we know Newton’s choice

with a high degree of certainty.4

But what about Sir Isaac Newton himself? Surely he knows himself at

least as well as we know him. If we could conclude, based on our knowledge

of human nature in general, that Newton will not jump, so can he. In fact,

he is even in a privileged position to make predictions about himself.5 Let us

examine his reasoning process. A reasoned decision is supposed to take into

account rules and regularities that are known to be quite accurate, to help

us think about the consequences of our choices. We could imagine Newton

drawing a decision tree, and using all his knowledge to assign probabilities

to the various branches in the tree, and, in particular, to cross out branches

that he knows are practically impossible. This is how Newton concluded that,

due to the gravitational force, he will not hover in the air should he jump.

But, by the same logic, Newton can now cross out the branch “I jump” just

as he previously crossed out the branch “I hover in the air” (conditional on

jumping). By the time he finished the analysis there is no longer any decision

to be made. Newton knows what his decision will be in the same sense that
4You may prefer to use the term “belief” in this context. The point is that this is a

high degree of belief, which is probably as high as we can hope for in the social sciences,
and higher than our belief in, say, the weather forecast for the day after tomorrow. I do
not think that the notion of free will can hinge on events that are possible but improbable,
such as zero probability events. One argument against a zero-probability event is aesthetic.
It seems cheap. The other is more pragmatic: a zero probability event will not be worth
contemplating for even a negligible amount of time. The rational arguments below can be
re-stated when “knowledge” is replaced by “belief with very high probability”.

5Some people have suicidal tendencies, but the majority do not. Our knowledge about
Newton, based on statistics on a larger population, is less accurate than his own. Thus,
for the majority of individuals it is true that they know that they are not suicidal with a
higher degree of certainty than an outside observer would. Since we seek an example, we
are justified in assuming that Newton is in this majority.
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he knows what the outcomes of different decisions would be. When was a

decision taken in this process? And how can Newton report an experience of

free will if he cannot imagine a logically consistent world in which he chooses

differently? How can we make sense of his claim “but I could have jumped”?

The paradoxical nature of free will stems from the co-occurrence of (i) the

ability to imagine possible worlds that differ in terms of our choices, and (ii)

the fact that often our choices are practically known to us before we make

it. Let me elaborate on these.

(i) Whatever free will is, it is tightly related to the ability to conceive of

different possible worlds, differing only in one’s choice and its consequences.

The ability to think of such different worlds, if not simultaneously then at

least in the process of making a single decision, is essential to rational choice.

And this ability is essential to, and maybe even a definition of, the sensation

of free will. I feel that I exercise free will when I raise my arm, but not

when my heart beats. The reason is that, when consciously deciding to raise

my arm I can simultaneously imagine two worlds, one in which the arm is

raised and the other in which it isn’t. By contrast, I have never felt my

heart stopping to beat, let alone decided to do so, and I cannot imagine a

choice that would lead to this state of affairs. I therefore cannot argue that

I exercised free will in letting my heart beat.

To see this point more clearly, suppose that you program a robot that

will automatically make all the choices I make. Next you allow the robot

to speak, and you want it to utter the statement “I hereby exercise free

will” at the right moments, say, when I make such statements. Let us be

slightly more demanding and require that the robot print out reasonable

justifications for its choices. To this end, you will have to endow the robot

with some reasoning ability, and with the ability to distinguish between its

own acts and the environment it lives in. When facing an act, the robot will

have to play around with some propositions of the form “If I do a, then the

outcome will be x”, and “conclude” that it prefers act a to b. The robot will
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have to print several different such conditional statements for us to agree

that it has exercised free will.

(ii) We typically know many things about ourselves. We know decisions

that we have made, and we can often have pretty good guesses about certain

decisions that we are going to make. I know that I’m going to prefer coffee

to tea. I know that I prefer not jumping out of the window to jumping. As

a rational decision maker, I gather data and make inferences. I cannot help

observe regularities around me, and my own decisions in the past are included

in the environment I study. Moreover, it is essential for rational choice that

I learn things about myself. I need to know my “technical” capabilities, such

as how fast I can run and how good my eyesight is. It will also be useful to

know something about my mental capacities, such as how good my memory

is and to what extent I follow my new year’s resolutions. For this latter

purpose, I need to know my own choices in circumstances in which I felt that

I was exercising free will. Finally, learning regularities about myself can be

useful in predicting other people’s behavior.

Let us consider the robot again. Will it know its own choices? Since you

are programming it, you may try to avoid such knowledge. It is possible

to restrict the inferences made by the robot to external events, and to abort

any calculation that refers to the robot’s own choices. This will be somewhat

artificial. Moreover, it will be inefficient, because the robot will not be able

to use its own past decisions as guidance. Every time it will be offered coffee

or tea it will have to make a calculation afresh. But the main difficulty with

such a robot will be that it will not be as rational as I am. There will be

some obvious inferences that it will fail to draw. Our own reasoning engines

do not stop when it comes to our own choices in the past. We do learn

about ourselves, and someone who fails to see obvious regularities in her own

behavior is typically viewed as irrational.

We conclude that rationality makes two fundamental demands. First, we

have to consider possible worlds that differ in terms of our choices. Second,
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we have to observe obvious regularities about ourselves, just like about any

other relevant phenomenon. Taken together, we obtain the contradiction: we

often need to consider as possible worlds that we know are impossible. Thus,

the sensation of free will depends on our ability to suspend knowledge that

we have about ourselves. Importantly, both the consideration of multiple

possible worlds and the knowledge that some of them are impossible are

dictated by rationality.

3.5 A rational illusion

At the risk of belaboring obvious points, let me emphasize the following.

Not every decision will be known to the decision maker or to an outside

observer before it has been taken. As long as the decision maker does not

know what her choice is going to be, her sense of free will does not require

that she suspend any knowledge she might have. In such a case the problem

mentioned above does not exist.

For example, assume that I have to choose between two quantities of a

desirable good. We may think of tens of thousands of dollars, or of years

left to live — the point is that I truly prefer more to less. Consider now the

following three choices:

(i)
√
17 or (27/13)2

(ii) 23 or 32

(iii) 0 or 1.

In case (i) there is no difficulty. Reading the problem, it is not obvious

to me which of the two numbers is larger. I therefore have to compute the

outcome of both of my choices, and then find out which one I prefer. An

outside observer may have completed the calculation earlier, and may already

know what my choice will be. But I do not, and therefore my sense of free

will does not contradict any knowledge I have at the time of starting my

deliberation.

By contrast, case (iii) is one in which I know, more or less as soon as I read
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the problem, what my choice will be. I don’t need a lengthy computation

to figure out the meaning of 0 and of 1. This is akin to Newton’s problem,

who stands by the window and has to decide whether to jump out or not.

(The analogy is stronger if the numbers designate years one has to live, and 0

describes immediate death.) In both cases one needs to understand the two

options and what they entail, but this understanding is quite trivial. The

calculation that 1 > 0 is about as immediate as the realization that jumping

out of the window would result in death.

Case (ii) is brought as an intermediate case, suggesting that we cannot

think of cases (i) and (iii) as qualitatively different. There is a range of

difficulty levels, and a reasonable account of rational choice should describe

a process that applies in all three cases. Thus, in all three cases we would

like to assume that the decision maker makes a tentative assumption that

she takes one option, and thinks about the outcome. Then she does the same

for the other option(s), and then she can make a reasoned decision. Whereas

in case (i) there is no conflict with knowledge of her own choices, in case (iii)

there is. In cases such as (i) the decision maker may believe that she has free

will, but in cases such as (iii) she has to admit that this was an illusion.

Efficiency of decision making might suggest that we need not compute

our optimal choice every time anew. We may develop habits and rules that

simplify our lives. It would therefore be tempting to categorize all decisions

into two classes — the habitual decisions, such as in case (iii), in which there

is no freedom of choice, but also no subjective sensation of free will, and the

reasoned decisions, such as case (i), in which there is freedom of choice, but

no a priori knowledge of what this choice is about to be. If such a dichotomy

were possible, free will would not be such a pervasive problem: it would never

clash with knowledge of one’s own choice.

This, however, is not the case. Moreover, this could not be the case for

rational individuals. First, however habitual a choice is, a rational individual

should be able to ask herself whether she indeed wishes to stick to her habit.
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As soon as the question is posed, the individual will have to admit that she

does know her choice, yet that she has a sensation of free will. Second, there

will invariably be intermediate cases, that are not regular enough to require

no thought, yet sufficiently regular for the individual to know her own choice.

Rationality requires that we gather information and learn about the en-

vironment, our selves and future selves included. Thus, we cannot escape

knowledge of certain choices of ours. But rationality also requires that we be

able to question these choices from time to time, and this means suspending

our knowledge of our own choices. To conclude, free will is an illusion that

is inherent to rationality.

3.6 Free will and the decision matrix

The basic formal model of decision under uncertainty is the decision matrix

— a matrix in which rows designate acts, columns — states of the world, and

entries — outcomes. The matrix is interpreted as listing all possible acts

(or plans, strategies, courses of action) that the decision maker can choose

among, all possible states of the world, namely circumstances that are not

up to the decision maker to choose, and the outcomes that would result from

every possible pair of act and state.

The distinction between the acts, over which the decision maker has con-

trol, and states, over which she hasn’t, is one of the pillars of rational choice.

Many mistakes in everyday life have to do with an inappropriate distinction

between acts and states. For instance, if the decision maker believes that she

can affect that which she cannot, we would say that she engages in wishful

thinking. If a state of affairs can indeed be affected by the decision maker,

it is not a “state of the world” in the sense of decision theory. Rather, it is

a result of the decision maker’s act and the “pure” state of the world.

On the other hand, it will be equally irrational for a decision maker to

assume that she cannot choose certain acts that are, in fact, available to

her, as would be the case if she knows her decision before thinking about it.
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Thus, the decision matrix should have acts over which the decision maker

has control, but not beliefs, and states over which she has beliefs but not

control.

It is relatively simple to write down the states of the world in such a

way that one has no control over them: one starts out with the acts one

can choose from, and then writes down the states of the world as Nature’s

strategy in a game. Such a strategy specifies Nature’s reaction to the decision

maker choices, and it can be thought of as a function whose argument is the

choice. As such, the decision maker chooses the act, which is the argument

of the function, but cannot affect the choice of the function itself, namely,

the state of the world. (See the discussion in sub-section 12.1 below.)

Guaranteeing that the decision maker has no knowledge (or belief) over

the acts is more complicated and cannot be obtained simply by an appropri-

ate definition of acts or states. Here what is required is the mental ability

to suspend one’s knowledge about one’s own decision, that is, the ability to

believe in the illusion of free will. Failing to do so will result in one’s inability

to reconsider one’s choices.

The classical notion of a decision matrix relies on the distinction between

acts and states. This distinction may bring to mind the “Serenity Prayer” of

the American pastor Reinhold Niebuhr, which reads, “God, give us grace to

accept with serenity the things that cannot be changed, courage to change

the things that should be changed, and the wisdom to distinguish the one

from the other.” (See Niebuhr, 1976. According to his widow, the prayer was

written in 1943). The things we cannot change are the states of the world.

We should accept them, namely cope with the fact that they are possible and

estimate their likelihood irrespective of how desirable they are. The things

we can change are our acts. We should have the courage to change our

choices, which requires not to take as given knowledge that we have about

ourselves from the past. And having the wisdom to distinguish between acts

and states is one of the main challenges in approaching any decision problem.
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4 The Principle of Indifference

The principle of indifference, also known as the principle of insufficient reason,

is attributed to Jacob Bernoulli, and sometimes to Laplace. Simply stated, it

suggests that if there are n possible outcomes, and there is no reason to view

one as more likely than another, then each should be assigned a probability of

1/n. Quite appropriate for games of chance, in which dice are rolled or cards

shuffled, the principle has also been referred to as the “classical” approach

to probability assignments.6

However, this principle has to be used with great care. Early examples

include the event, “two consecutive tosses of a coin will come up Head”. If

we know nothing about the coin, one may try to apply the principle and

conclude that this event has probability 50%, but then the same argument

would apply to any two outcomes of the two tosses. However, this type of

counterexample can be ruled out by referring to the structure of the problem,

and arguing that there is sufficient reason to find three outcomes more likely

than one.7

More serious problems arise when we apply the principle to everyday prob-

lems, which are often not endowed with sufficient symmetries. For instance,

assume that I ask you what is the probability that it will rain tomorrow.

If you think of the two outcomes, “rain”, “no rain”, you come up with the

probability of 1/2. But if the possibilities are “rain”, “snow”, and “no pre-

cipitation”, the probability drops to 1/3. Typically, one can partition the

state space in a multitude of ways, resulting in the principle of indifference

assigning practically any desired probability to the event in question.

6Where “classical” probably means “as in the early letters of Pascal and Fermat”.
7See Arrow (1951), who quotes Keynes, attempting to deal with difficulties raised by

von Kries as early as 1886.
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4.1 Will a canonical space help?

4.1.1 The canonical state space

A possible attempt to avoid the arbitrariness in the choice of the events

involves a list of “all” possible states of the world. This is not a completely

foolish idea. One can imagine all the finite sentences in English that make

sense as propositions about the world. A state of the world may be defined

as a truth function, namely a consistent assignment of the values 0 (false)

and 1 (true) to these propositions. The logically consistent assignments are

some subset of {0, 1}N, and thus one gets no more than (the cardinality of)
a continuum of states of the world. The resulting state space can be viewed

as “canonical”. One can make the plausible assumptions that we only care

about states we can comprehend, and that our comprehension is limited to

what can be described by sentences in English. Under these assumptions, the

state space generated by providing truth values to all meaningful propositions

can describe all that matters to us. By the very definition of these states

we have not ruled out any possibilities (apart from those we anyway cannot

comprehend).

The canonical state space, comprising of sequences of the binary digits

0 and 1, can almost be identified with the points in [0, 1], whose binary

expansions are also sequences of 0’s and 1’s. This embedding is not one-to-

one because the binary rational numbers have more than one representation.

For instance, 0.01111... = 0.1000... = 1/2. To clean up the analogy, one may

enrich [0, 1] by distinguishing between pairs of representations of the binary

rationals, map states into the Cantor set (replacing 1’s by 2’s and viewing

the result as a ternary expansion of a number in [0, 1]), or just shrug one’s

shoulders in the face of countably many glitches.

In any event, the formal resemblance of the canonical state space to the

interval [0, 1] invites a continuous version of the Principle of Indifference,

which would assign a uniform prior to the interval [0, 1]. But this assumption

will not be innocuous (as is, allegedly, the definition of the state space itself).
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It will not be justified either. At least two technical points are well-known

in this context.

4.1.2 Difficulties with a uniform prior on [0, 1]

First, if we have a random variable X on [0, 1], and we know nothing about

it, we cannot assume that it has a uniform distribution on [0, 1] and pretend

that we made a natural choice. Indeed, ifX takes values in [0, 1], so does Y =

X2.8 Clearly, X and Y are in a one-to-one relationship. If we know nothing

about X, we know nothing about Y as well. But then, if we are justified

in assuming X ∼ U(0, 1), we are equally justified in assuming Y ∼ U(0, 1),

which is incompatible with X ∼ U(0, 1). In fact, for each α > 0 one may

consider Zα = Xα, and, again, any two variables Zα, Zβ are in a one-to-one

relationship. Hence, we know nothing about each of them. But at most one

of them can have a uniform distribution. Selecting such a distribution for

one such variable appears ad-hoc, a far cry from a reasoned way of assigning

probabilities to events.

Second, the richness of the canonical state space {0, 1}N is not exhausted
by different densities on [0, 1]. Consider a sequence of i.i.d (independently and

identically distributed) tosses of a coin with parameter p. That is, a sequence

of i.i.d. random variables Xi, each assuming the value 1 with probability p,

and the value 0 — with probability (1− p). Under this assumption, for every

p ∈ (0, 1), the probability of each particular state (sequence of tosses) is
0. Hence the countably many binary rationals can be ignored, and we can

identify the canonical space with [0, 1]. The process defined by the sequence

of tosses induces a measure on (the Borel σ-algebra on) [0, 1]. If p = .5, the

resulting measure is Lebesgue’s measure λ: the interval [0, 0.5) corresponds

8I remember encountering this example in DeGroot (1975), which is a textbook. I’m
unaware of the historical origins of this particular example. The first example of this nature
is probably Bertrand’s paradox, dating back to 1888. It involves the selection of a chord
in a circle, which can be done in three different ways, all appearing to be straightforward
applications of the uniform distribution, but all leading to different answers.
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to the event X1 = 0, and it has a probability of 0.5 = λ ([0, 0.5)). The

interval [0.25, 0.5) corresponds to (X1 = 0, X2 = 1), and it has probability

of 0.25 = λ ([0.25, 0.5)), and so forth.

Consider now the same process, only this time with p = .3. Now we will

have another probability λ.3, which satisfies λ.3 ([0, 0.5)) = 0.7, λ.3 ([0.25, 0.5)) =

.21, and so forth. The measure λ.3 evidently differs from λ. But more than

that can be said: due to the law of large numbers, we know that λ.3 is con-

centrated on sequences that have a limit frequency of 0.3. That is, if we

define

Ap =

(X
i

xi
2i
|xi ∈ {0, 1},

1

n

nX
i

xi →
n→∞

p

)
we obtain, for every p, λp(Ap) = 1, because, in the process governed by

p, there is probability 1 that there will be a limit frequency of 1’s in the

sequence, and that this limit frequency will be p. At the same time, we have

Ap ∩Aq = ∅ for p 6= q. Hence we obtained a continuum of pairwise disjoint

sets, {Ap}p, and a continuum of corresponding measures, {λp}p, and it is not
obvious which one of them has a claim to the title “the natural probability

on [0, 1]”. What complicates our life further is the recognition that the choice

among the measures {λp}p is irreversible: once we chose one of them, say,
λp, to be our prior probability, no amount of evidence will ever hint that we

might have made the wrong choice, and that some q would have been more

appropriate than p. Since, for p 6= q, λp(Aq) = 0, any Bayesian update of λp
will leave us with a zero posterior probability for the event Aq, which should

have been the certain event were q the appropriate value of the parameter.

4.1.3 Conclusion

It appears that the Principle of Indifference allows for a large degree of arbi-

trariness, and probability assignments based on it will be fundamentally ad

hoc. Whereas the arbitrariness is evident with a finite state space, it is some-

times believed that a continuous model, either because it reflects a canonical
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state space, or simply due to the richness of the real line, may minimize this

arbitrariness, and suggest a uniform distribution as a natural candidate for

beliefs. This, however, is not the case. The real line conceals in its depths

continua of pairwise incompatible conjectures, each of which may present

itself as a natural choice and challenge the uniform distribution’s claim to

primacy.

4.2 What’s special about the coin?

The Principle of Indifference cannot be applied in general. It appears very

problematic as soon as we go beyond the first motivating question (tossing

a coin) to the others (insurance, medical operation, war). Thus, even if we

could justify it in the case of the coin toss, it will not be terribly relevant to

most economic problems. And in problems such as the tossing of a coin, the

Principle can be replaced by empirical frequencies. It is therefore tempting

to declare that it makes no sense, and leave it at that.

And yet, many of us would feel that in the case of the coin, even if the

Principle of Indifference is not completely compelling, it is not as nonsensical

as in the case of the war. Someone who assigns a probability of 50% to

war erupting simply because there are two possibilities, “war” and “no war”,

will be the butt of many jokes. Someone who assigns probability 50% to an

unknown coin coming up Head will appear reasonable. Why?

I have no satisfactory answers to this question. Here are two attempts.

4.2.1 Symmetry

The coin presents us with a symmetric problem. Head and Tail appear to

be symmetric. Given this symmetry, it seems natural to assign probabilities

that are also symmetric, namely, equal.

But what is “symmetry”? If we take a broad definition, namely that

things look very similar after the application of some transformation, we

may be too permissive. Consider the war example again. Admittedly, for
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most of us “war” and “no war” are not symmetric, because there are many

things we know about each such outcome that have no counterpart with the

other. But let us assume that a Martian comes down to Earth and is asked

about the probability of war. The Martian knows nothing about what war

entails, what it takes to wage a war etc. Rather, for the Martian “war” is

some proposition p, while “no war” — its negation ¬p. In a logical universe
consisting only of {p,¬p}, the two propositions are symmetric. The operator
of negation maps p to ¬p and vice versa. If this is all the Martian has to rely
on, will he be justified in assigning p the probability 50%?

Some may argue that this is indeed a reasonable assignment of probabili-

ties, at least as long as no additional information is provided. This approach

would also suggest that, if we don’t know what “cloint” and “biseb” mean,

we should believe that a randomly selected cloint is a biseb with probability

50%, due to the symmetry between bisebs and non-bisebs. Another approach

would be to deny the validity of this assignment of probabilities, arguing that

there is not enough symmetry in the war or in the biseb examples to warrant

the application of the Principle of Indifference.

Is there more symmetry in the coin example than in the war example?

Perhaps. A coin tossed in the air undergoes a rotation which is an element in

a group of functions, of which the rotation by 1800 has a unique role, being its

own inverse (but not the identity). It is possible that the additional structure

in the coin example may help explain why it is intuitively considered to be

sufficiently symmetric for the Principle of Indifference to apply.

4.2.2 Smooth beliefs

Another explanation goes back to Poincare (see a discussion and additional

citations in Machina, 2004). Consider a roulette wheel. The wheel is spun,

the ball bounces about, and lands on a particular number. What is the

probability that the number be odd?

Assume that the roulette wheel is fair, and that it contains only the
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numbers 1-36. In this case, the probability of an odd number should be 50%

by definition. Next, suppose that the wheel isn’t necessarily fair. Perhaps

the set of numbers 11-20 has a much higher probability than either the set

1-10 or the set 21-30. Still, the splitting of the range to consecutive red-black

numbers implies that each color gets a fair share of each region of the roulette.

More formally, if you believe that the process is governed by a density with a

bounded derivative, and you keep splitting the wheel into smaller and smaller

holes, the probability of the odd numbered holes will converge to 50%. This

can also guarantee bets that have almost objective probabilities. Two agents

might have very different subjective probabilities, but they may still agree

that, with a fine enough partition, the probability of “red” is indeed 50%.

For the two agents to agree on this fact, their beliefs should be smooth with

respect to the same underlying measure — which is much less demanding than

to assume that they would have the same beliefs.

The coin is similar to the roulette wheel in that in both cases it is too

complicated to calculate the result of the experiment (the toss or the spin).

Indeed, if I take a coin out of my pocket, bet against you that if lands Head

up, and then simply put it down on the table, Head up, you’d argue that

I was cheating. If I flip it carefully exactly once, I’d still be cheating. The

toss is considered fair only if the coin appears to be making sufficiently many

rotations in the air. You will win the bet if the final number of rotations is

odd (even), and I — if it is even (odd). With a “smooth enough” distribution

function over the number of rotations, and if the mass of the function is on

large numbers of rotations, we can assume that the overall probability of

Head, as well as of Tail, is 50%.

Similar arguments seem to apply to shuffling a deck of cards, to sampling

the time from one’s computer, and so on. In all of these examples, the

randomizing device is supposed to be sufficiently complex, so that it cannot

be predicted with great accuracy, and the outcome space can be viewed as

sub-divided into small segments, which are lumped together to obtain the
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events whose probabilities are claimed to be equal. Indeed, in all of these

examples the randomization device would not appear fair if the division is

not fine enough, as in the case of betting on a deck of cards that is barely

shuffled, or on the first digit of the hour. It is not entirely obvious that there

are convincing examples of the Principle of Indifference that are not of this

class.
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5 Relative Frequencies

5.1 The law of large numbers

The Principle of Indifference can, at best, help us in assigning probabilities

only in our first example. We agree that it is not going to be very reasonable

to say, in example (2), that the probability of the car being stolen is 50%,

because either it is or it isn’t stolen. Rather, one would like to resort to

experience and say that the fact that most cars that are parked on the street

overnight are not stolen implies that we have to assign a probability lower

than 50% to theft. Moreover, the percentage of experiments in which a

car was indeed stolen (where an “experiment” is defined by a car-date pair)

should be the definition of the probability of theft.

This definition is related to the Law of Large Numbers, dating back to

Jacob Bernoulli (1713), and stating that, when we observe i.i.d random vari-

ables, Xi, their average, X̄ = 1
n

P
iXi, converges to their expectation.9 In

order to use the law for the estimation of probabilities, one considers a se-

quence of “experiments”, or observations, say, cars that may or may not be

stolen. For each such experiment we may define an indicator (Bernoulli)

random variable Xi, which assumes the value 1 if the event has occurred,

and the value 0 if it hasn’t. Assuming that the random variables are i.i.d.

implies that we think of the experiments as repeated “under the same condi-

tions”: for each of them there is the same probability of success, regardless

of the outcome of past experiments.10 Applying the law(s) of large numbers

to such a sequence of i.i.d. indicator variables, one finds that the relative

frequency of occurrence of the event in question (which equals the average

of the variables) converges to the probability of the event (which equals the

9I assume that readers have seen precise formulations of some laws of large numbers.
See, for instance, Feller (1968) and Halmos (1950).
10If by “the same conditions” we also mean the same initial conditions, independence

of the events follows. If, to the contrary, past realizations were to affect conditional
probabilities of future ones, one may argue that the experiments were not done under the
same conditions.
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expectation).

The laws of large numbers can therefore be used to estimate probabilities:

if an experiment is repeated under the same conditions, and we observe that,

for a large n, the relative frequency X̄ equals p̂ ∈ [0, 1], this number p̂ may
be a good estimate of the probability p of the events in question (assumed

to be identical across experiments). Moreover, statistics offers us ways to

quantify the proximity between the observed empirical frequency p̂ and the

true, unknown expectation. Relying on the Central Limit Theorem, which

allows us to approximate the distribution of X̄, the statistical machinery

can tell us how close we are to the true probability for various degrees of

confidence.

Observe, however, that this procedure of estimating probabilities cannot

serve as a definition of the concept of probability to begin with. The Law

of Large Numbers relies on the notion of probability in several ways. First,

it assumes that every Xi has a certain probability p of assuming the value

1. Second, the law assumes that the variables are independent, a term that

is defined in a probabilistic set-up. Third, the law is stated in terms of

probabilities (guarantees a high probability of being close to the expectation,

or converging to it with probability 1). If we are not sure what is meant by

“the probability of an event”, none of these claims has a clear meaning.

But the Law of Large Numbers can be turned on its head and be used to

inspire a definition of probability. This is, in fact, the most intuitive definition

of probability. If you say that the probability that your car is stolen is 1%,

and you’re asked to explain the meaning of this statement to a child, you’d

probably say, “out of 100 identical cars, one will be stolen”, or, if you’re more

careful, “if I had 10,000 such cars, I’d expect that about 100 of them will be

stolen”.

This is often referred to as the “frequentist” approach to defining prob-

abilities: when we say that an event A has probability p, what we mean to

say is that, if you were to consider a repeated experiment in which A may or
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may not occur, the relative frequency of occurrence would be approaching p

as the number of repetition tends to infinity.

5.2 The problem of induction

5.2.1 Hume’s critique

The notion that empirical frequencies in the past will tell us what probabili-

ties for future events are might strike one as odd. How do we know that the

same “probabilities” that can represent the past also apply to future events?

Suppose, for example, that a coin is tossed infinitely many times, and that

during the first 1, 000, 000 tosses it appears to behave completely randomly,

but thereafter it comes up Head in each and every toss. Any statistical

procedure that we may use over the first million observations will not warn

us that the coin changes its behavior later on. Can we trust past relative

frequencies, then?

The bad news is that we cannot. The good news is that this is an old

problem, common not only to all sciences, but to everyday human reasoning.

David Hume famously argued that induction has no logical basis. In Hume

(1748, Section IV) he writes,

“... The contrary of every matter of fact is still possible; because

it can never imply a contradiction, and is conceived by the mind

with the same facility and distinctness, as if ever so conformable

to reality. That the sun will not rise to-morrow is no less in-

telligible a proposition, and implies no more contradiction than

the affirmation, that it will rise. We should in vain, therefore,

attempt to demonstrate its falsehood.”

Every scientific field attempts to make generalizations, and to predict the
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future based on the past. As such, it is engaging in inductive reasoning.1112

Similarly, when I sit down on a chair, trusting that it will not break under the

weight of my body, I use inductive reasoning, even if I tested the chair just a

minute before sitting down. There is therefore some consolation in the fact

that, in performing inductive reasoning despite its apparent arbitrariness, we

are not alone. And, more importantly, it is hard to imagine any scientific

work, or even everyday existence, without some form of induction.13

5.2.2 Goodman’s grue-bleen paradox

One could hope that, in the two and a half centuries since Hume, some

progress would be made, and that the problem of induction would be better

understood. This did not happen. Quine (1969a) writes,

“... I do not see that we are further along today than where Hume

left us. The Humean predicament is the human predicament”.

Worse still, the heightened sensitivity to language typical of twentieth

century analytical philosophy produced Goodman’s “grue-bleen” paradox

(Goodman, 1954), which showed that the legitimacy of inductive reasoning

is even shakier than we used to think. The paradox goes as follows.

Assume that a scientist wishes to test the theory that emeralds are green,

contrasted with the theory that they are blue. Testing one emerald after the

other, she concludes that emeralds are indeed green.
11The notion of prediction of the future can also construed subjectively, relative to one’s

state of knowledge. With this interpretation, even historians may engage in prediction.
Assume, for example, that new letters of Napoleon are found, and historians are asked to
speculate about their content. Should they agree to do so, they would be using inductive
reasoning again.
12While mathematics is purely deductive, the work of the mathematician involves in-

ductive reasoning as well. As long as a mathematical problem is not solved, and it is a
source of subjective uncerainty to mathematicians, they are likely to search for conjectures
and attempt proof techniques based, to some degree, on their past experience.
13David Schmeidler often quotes Kenneth Arrow, who said once in a seminar something

along the lines of, “Now here we have a serious problem that we have to face. Let’s face
it. And now let’s move on.” In essence, that’s all we can say in face of Hume’s critique.
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Next assume that another scientist comes along, and wants to test whether

emeralds are grue as opposed to bleen. “Grue” emeralds are emeralds that

appear to our eyes green if tested until time T , but appear blue if they are

tested after time T . “Bleen” emeralds are defined symmetrically. Choose a

time T in the future, and observe that the scientist will find all emeralds to

be grue. She will therefore conclude that after time T , all new emeralds to

be tested, which will most likely be grue as those tested up to T , will appear

blue to our eyes.

Testing the hypotheses that emeralds are green versus blue seems per-

fectly reasonable. Testing for grueness versus bleenness appears weird at

best. Yet, how can we explain our different reactions? The two procedures

seem to be following the same logical structure. They both appear to be

what the scientific method suggests. Why do we accept one and reject the

other?

A common reaction is to say that, if emeralds are tested and found green,

there is no reason to suppose that, all of the sudden, new emeralds will start

appearing blue. But one may claim, by the same token, that there is no

reason for new emeralds to switch, at time T , and become bleen. Our com-

mon sense suggests that “green” and “blue” are simple predicates, whereas

“grue” and “bleen” are complex predicates. But this is true only if one as-

sumes “green” and “blue” as primitives of the language, and defines “grue”

and “bleen” in terms of “green” and “blue”. If one were to start out with

“grue” and “bleen” as the primitive terms, “green” and “blue” would appear

to be the complex terms.

Thus, Goodman’s paradox has shown that, not only does inductive rea-

soning lack logical foundations, it is not even clear what is meant by this

process. Even if we are willing to accept the claim that “The thing that hath

been, it is that which shall be”, it is not clear what future corresponds to a

given past as its “natural” continuation.
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Goodman’s green-blue paradox is taken by many to be a philosophical

puzzle that has little implications for working scientists. Indeed, if we were

only interested in coins tossed and dice rolled, we could probably assume it

away. However, when we come to questions such as the probability of war, it

is not quite obvious how we should generalize past experiences. Since events

such as wars never repeat themselves in exactly the same way, there will

often be more than one natural way to encode past events.

Having said that, I have recently come to the conclusion that Goodman’s

paradox is an artifact of a very particular choice of language. It will be

simpler to explain this, however, after we discuss complexity a bit more

formally.

5.2.3 Kolmogorov complexity and its dependence of language

A possible justification of the process of induction is the preference for sim-

plicity. When several theories are just as accurate at explaining past observa-

tions, and just as general in terms of the scope of predictions they can gener-

ate, preference for the simplest theory has been promoted both normatively

and descriptively. As a normative argument, namely, that we should prefer

simpler theories to more complex ones, the claim is attributed to William of

Occam (see Russell, 1946). As a descriptive argument, that is, claiming that

this is how people tend to select theories, it dates back to Wittgenstein’s

tractatus at the latest. He writes, “The procedure of induction consists in

accepting as true the simplest law that can be reconciled with our experi-

ences.” (Wittgenstein, 1922, 6.363). The basic argument would be that it

is simpler to assume that the world will continue to behave as it has in the

past, and thus we are justified in believing, for example, that the sun will

rise tomorrow. While we do not know that the sun will rise, we can at least

explain why, of all the theories that conform to past observations, we chose

one that predicts that the sun will rise tomorrow as well.

One important lesson of Goodman’s grue-bleen paradox is that our no-
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tion of simplicity depends on our language. This lesson has also emerged

in a different literature, discussing Kolmogorov’s complexity. Kolmogorov

was trying to define “randomness”. Assume that you observe a finite se-

quence of binary digits, 0 and 1. When will you say that the sequence is

random? Surely, if you see 0000...., you will assume that you observe a

constant phenomenon, roughly the opposite of randomness. If you were to

observe 010101..., you would admit that you are not observing the realiza-

tion of a constant process, but you will not think of it as random. In fact,

such a process has a simple pattern, and it may be described by a finite

automaton.14 Even when you consider sequences that cannot be generated

by a finite automaton, you may feel that they are not random, as in the case

of 01001100011100001111... . What would be a general definition of “not

random” or of “exhibiting a pattern”?

The measure known as Kolmogorov’s Complexity (see Kolmogorov, 1963,

1965, Chaitin, 1966) is the following: given the finite sequence, consider all

Turing machines that can generate it.15 There will always be such machines,

and, at worst, one can think of the rather silly machine that goes from one

state to the next, where each state writes down the appropriate digit, and

moves on to the next state. Now select one of the “smallest” machines that

can generate the sequence: a machine with a minimal number of states,

or a machine whose description (also as a sequence of binary digits) is the

shortest. If the smallest machine is rather small, relative to the original

sequence, we can say that we found a simple pattern in the sequence, and

that it is therefore not random. If, by contrast, the smallest machine is long

— say, almost as long as the sequence itself — we will have to admit that no

14A finite automaton has finitely many states, a transition function between them, which
determines the next state given an input character, and a behavior function, as, in our case,
the decision to write 0 or 1. For formal definitions of finite automata, Turing machines,
and other computational models, see, for instance, Aho, Hopcroft, and Ullman (1974).
15A formal definition of a Turing machine is too cumbersome to be included here. It

can be thought of as an automaton with finitely many states that is also equipped with
an infinite tape on which it can write and from which it can read.
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pattern was found, and this could serve as a definition of randomness.

The reason that Kolmogorov’s definition uses the concept of a Turing ma-

chine is that this is considered to be the formal definition of an “algorithm”,

that is, a well-defined sequence of instructions.16 Turing machines are known

to be equivalent, in terms of the algorithms they can describe, to several

other computational models, including modern computer languages (pro-

vided that the computer can store unbounded numbers). For the purposes of

the present discussion, one may replace the notion of a Turing machine by,

say, the computer language PASCAL. It is easy to imagine short PASCAL

programs that can describe (that is, produce) the sequences 0000..., 010101...,

010011000111..., even if we were to continue these sequences for quite a while

and make them very long. The fact that the PASCAL program remains short

relative to the sequence it generates captures the non-randomness in the se-

quence. Importantly, by using PASCAL programs (or Turing machines), we

are not restricting our attention to a particular type of patterns — say, cycli-

cal ones. Any pattern that can be described algorithmically is captured by

the notion of a program. The pattern 0110101000101000101000..., having 1

in entry i if and only if i is a prime number, will also be described by a short

program no matter how far we extend the sequence.

Kolmogorov’s complexity can be applied to the philosophy of science,

as suggested by Solomonoff (1964). Coupling the notion that people prefer

simple theories with Kolmogorov’s measure, one obtains a model of theory-

selection, predicting which theory people will prefer given a certain body of

evidence. It can also be used to understand everyday phrases such as “under-

standing a poem”: understanding a work of art, similarly to understanding

data, implies being able to generate most of it (or at least its important

aspects) by a concise algorithm.

16This definition is known as Church’s Thesis. It is not a formal mathematical conjec-
ture, because an “algorithm” is not a formal entity. In fact, in accordance with Church’s
Thesis, an algorithm is defined as a Turing machine, or as an equivalent computational
model.
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The notion of Kolmogorov’s complexity highlights the role of language

in measuring complexity. This is one advantage of formal modeling — it

imposes a certain discipline that brings to light potentially subtle points. A

formal model that describes how complexity is measured forces one to realize

that the computer language one uses will factor into the definition. The

simplest theory, when described as a Turing machine (with states, a transition

function, and so on) need not be the simplest theory when described as a

PASCAL program. When trying to fit numerical data, the simplest theory

stated in the language of polynomials may not be the simplest when stated

in the language of trigonometric functions. Moreover, the computer model

also explains the role of definitions. When a certain concept is used often, it

is efficient to define it using a new word, just as a programmer may decide

to define a sequence of instructions as a procedure in the program.

At the same time, Kolmogorov’s complexity may not always be an intu-

itive measure of complexity. A purist definition of the complexity of a theory

would count each and every bit needed to describe it, so that all constants

used in the theory will be spelled out in binary expansions, and the digits

used to describe them will be counted as part of the theory’s complexity.

One may find that theory A, that

y = 1.3096203x

is as complex as theory B, stating “if the integer value of x is prime, then

y = 2x, otherwise, if the integer value of x is divisible by 7, then y = x, and

otherwise — y = −x." It may be counter-intuitive that bits that are used to
describe the constant 1.3096203 in theory A have the same complexity cost

as the bits describing the arcane logic of theory B. A tempting alternative

is to count only the bits that describe a program’s “logic”, and allow any

arithmetic operations on registers that contain numbers, regardless of the

size of the numbers. But this leaves open the possibility that large numbers

will be used to encode instructions of the program, thus “concealing” some

of its complexity.
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Let us conclude with a hopeful comment. The general claim that sim-

plicity judgments depend on language is qualified by the observation that

languages with the same expressive power have compilers translating from

one to the other. Specifically, for two languages l and l0, let Cl,l0 be a pro-

gram, written in l0, that accepts as input a program written in l and generates

as output an equivalent program written in l0. Let cl,l0 be the length of the

minimal description of such a compiler Cl,l0. It follows that, if the minimal

length of a program (representing a theory) A in l is m, the minimal repre-

sentation of A in l0 cannot exceed m+ cl,l0. Hence, for very two languages l

and l0, there exists a constant c = max(cl,l0 , cl0,l) such that, for every theory

A, the complexity of A as measured relative to l and the complexity of A as

measured relative to l0 cannot differ by more than c.

The order of quantifiers is of importance here: given two theories A and

B, one can always come up with a language l, in which one theory is simpler

than the other. On the other hand, given any two languages l and l0, one

finds that, if theory A is sufficiently simpler than theory B in one language,

A has to be simpler than B also in the other language.

5.2.4 Grue-bleen again

A formal analysis of Goodman’s paradox may show that there is something

artificial in Goodman’s argument. Basically, in order to make Goodman’s

claim, one needs to use a language that does not allow direct reference to

specific values, but only to functions. Here is one possible account.

Denote time periods by N = {1, 2, 3, ...}. At each time i there is a value
xi ∈ {0, 1}, which has been observed for i ≤ T , and is to be predicted for

i > T . The value xi should be thought of as the color of the emerald tested

at period i. For example, xi = 0 may denote the observation of an emerald

that appeared blue (i.e., in the blue wavelength), and xi = 1 — that appeared

green. The model can be extended to an arbitrary set of observations at no

additional cost. As usual, finite sets can be encoded as sequences of binary
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digits, so that the present formulation does not involve any significant loss

of generality. It is important, however, that the present analysis does not

necessitate additional observations or embedding the problem in a larger

context.17

Let F = {0, 1}N, the set of functions from time periods to observations,

denote all possible theories. We focus here on generalizations from the past

to the future, but the same apparatus can be used to analyze any projection

problem, that is, any generalization from a set of observations to a superset

thereof.18

It will be useful to re-state the problems of induction explicitly within

the formal model.

(i) How can we justify generalization: Suppose that a function f ∈ F

matches all past data, that is, f(i) = xi for all i ≤ T . How do we know that

f will continue to match the data for i > T?

(ii) How do/should we perform generalizations: Suppose that

f, g ∈ F are such that f(i) = g(i) = xi for all i ≤ T , but f(i) 6= g(i) for

some i > T . How do we know whether f or g should be used for prediction?

(iii) What is a natural generalization: In the set-up above, which of
the two theories may qualify as a “simpler” theory or otherwise a “natural”

choice?

Hume (1748) posed the first problem and argued that no logical justifica-

tion of generalization is possible. This has been recognized as a problem we

have to live with. But once we agree that there is no logical necessity that a

17Some resolutions of Goodman’s paradox do rely on a wider context, such as Goodman’s
own theory of entrenchment.
18Goodman was, of course, correct to point out that a prediction problem can be viewed

as special case of a projection problem. At the same time, the opposite embedding can
also be done: if we enumerate observations by the time at which they were revealed
to us, a projection problem can be thought of as the problem of predicting what our
next observation will be, even if we believe that the content of the observation has been
determined in the past. As mentioned above, in this sense historians can also engage in
prediction even if they only discuss the past.

41



function f will continue to match the data in the future, we are faced with

the second problem, namely, that there are many possible ways to project

past observations into the future. Which one should we choose?

We argued that one may resort to simplicity as a justification for inductive

reasoning. Simplicity provides a criterion for selection of a theory f among

all those that fit past observations. Indeed, everyday reasoning and common

scientific practice implicitly deal with problems such as (ii), and statistical

inference does so explicitly. It appears that simplicity, again, is the key to

induction, as suggested by Wittgenstein. It is an insightful description of our

natural tendency to choose theories in everyday and in scientific reasoning,

and it is a prominent principle for model selection in statistics.

Simplicity does not always offer an unique theory that is clearly the ob-

vious candidate to generalize the observations. For instance, given the ob-

servations 01, one may be unable to make a reasoned choice between the

competing generalizations 011111... and 010101... . Yet, each of these latter

sequences offers a natural continuation (as is evident from the informal way

in which we described them in the previous sentence). On the other hand, a

sequence such as 011010 allows, again, for a variety of generalizations.

It follows that, if we accept the preference for simplicity, Problem (ii) can

be easily solved as long as, among all theories that conform to observations,

there is one that is much simpler than all the others. But Problem (ii) will

remain a serious problem if the data do not allow such a theory to emerge.

Indeed, when the data appear “random”, the simplest theories that conform

to the data are going to be many equally complex theories. Generally speak-

ing, our confidence in a generalization will be a matter of degree, depending

on quantifiable magnitudes such as the randomness in the data, the theory’s

simplicity, the simplicity of competing theories, and so forth.

Given this background, we can finally consider Goodman’s paradox. Good-

man posed problem (iii), suggesting that it is not always obvious what is the

most natural generalization, or which is the simplest theory that fits the
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data. This problem is not always a “paradox”. It is often a very real prob-

lem, and serious experts may indeed debate how should past observations

be generalized. However, in Goodman’s emeralds example problem (iii) ap-

pears paradoxical: we all feel that “green” is a natural generalization whereas

“grue” is a ridiculous one, but we are hard-pressed to explain why. In the rest

of this section I wish to explain why problem (iii) is not a serious problem in

the case of the emeralds, but I do not wish to dismiss it altogether. To re-

iterate, I find that this problem is a very important one in general, and there

is nothing paradoxical or perplexing about its very existence. At the same

time, we need to explain why it seems silly when emeralds are concerned.

Goodman considers emeralds that have so far been observed to be green.

That is, he considers a long sequence 111... . According to the discussion

above, as well as to our intuition, there is but one reasonable way to extend

this sequence, namely, to consider the function fgreen : N→{0, 1} that is the
constant 1, namely,

fgreen(i) = 1 ∀i ∈ N. (1)

Goodman contrasts this function with another function fgrue : N→{0, 1}
defined by

fgrue(i) =

½
1 i ≤ T
0 i > T

. (2)

The standard argument is that we should prefer fgreen over fgrue on the

basis of simplicity. If we were, say, to describe fgreen and fgrue by PASCAL

programs, fgreen will have a shorter description than will fgrue.19 But here

Goodman asks that we realize that one need not assume “green” and “blue”

as primitives of the language. If, instead, we use “grue” and “bleen” as

primitives, we find that fgrue is “grue whenever tested”, whereas fgreen is

19You might wonder why we should select PASCAL as our language. The discussion of
Kolmogorov’s complexity implies that the choice of the language is immaterial here: for
every language that is equivalent to PASCAL, there is a T0 such that for T ≥ T0, fgrue is
more complex than fgreen.
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given by “grue if tested at time i ≤ T and bleen otherwise”, in which case

“green” and “blue” are the complicated functions.

Stating Goodman’s argument formally would highlight the problem. De-

fine also the functions fblue, and fbleen in the symmetric way, namely,

fblue(i) = 0 ∀i ∈ N (3)

and

fbleen(i) =

½
0 i ≤ T
1 i > T

. (4)

Goodman suggests that we consider the definitions of fgrue and fbleen in

the language of fgreen and fblue, i.e.

fgrue(i) =

½
fgreen(i) i ≤ T
fblue(i) i > T

fbleen(i) =

½
fblue(i) i ≤ T
fgreen(i) i > T

(5)

and contrast them with the definitions of fgreen and fblue in the language of

fgrue and fbleen, namely

fgreen(i) =

½
fgrue(i) i ≤ T
fbleen(i) i > T

fblue(i) =

½
fbleen(i) i ≤ T
fgrue(i) i > T

(6)

Goodman is absolutely right to argue that (5) is just as complex as (6).

But his formulation does not allow us to compare the complexity of (2) and

(4) with that of (1) and (3).

In other words, Goodman refers to the pairs of predicates “green whenever

tested” and “blue whenever tested”, vs. “grue whenever tested” and “bleen

whenever tested”, and argues that the choice among them is arbitrary. That

is, he refers to functions in F . But he does not refer to the values that these

functions assume, 0 and 1. When he refers to an observation of an emerald

as green, he does not treat it as observing the value 1, but as observing that

at time i the data were consistent with a certain theory f . That is, he claims

that we observed f(i) (for some f). He does not allow us to say that we

observed 1.
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Of course, whenever f(i) = 1 for some function (predicate) f , one may

replace 1 by f(i) and obtain a valid description of the observations. But one

should not be surprised if complexity considerations do change as a result

of this substitution. Indeed, one lesson we learnt from Goodman’s paradox

is that the measurement of complexity depends on language. In a natural

language, where the values 0 and 1 have explicit references, or proper names,

the function fgreen above is simpler than fgrue. But if we are not allowed to

use names for the specific values, and we can only refer to them indirectly

as the values assumed by generalized functions, then indeed fgreen and fgrue

may appear equally simple. In other words, Goodman’s paradox relies on a

very peculiar language, in which there are names for functions but not for

the specific values they assume.

Should values have names? There are several reasons for which one

may require that our language have names for specific values, namely, for

observations. The first and perhaps most compelling is, why not? A true

and fundamental problem cannot be alleviated by the introduction of terms

whose observational content can be defined by already-existing ones.

To see this point more clearly, observe that one may define values by

using variables. For instance, given that the function fgrue (or fgreen) is in

the language, one would like to be able to set

x = fgrue(1); y = 1− fgrue(1)

and thereafter use also the variables x and y in the description of theories.

This would be a rather awkward substitute to using the values 0 and 1, but

even this would not allow us to state the paradox. The paradox relies on

a ban on references to observations either as specific values or as variables

assuming such values.

A second reason to include names for values is that they would enable

the modeling of inductive reasoning, namely the process by which particular
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sense data are generalized to predicates such as “green whenever tested” and

“blue whenever tested”.

This point may be worth elaboration. Goodman’s formulation actually

does not allow us to say “the emerald tested at time t was green”. We

can only say, “the emerald tested at time t was of the type green-whenever-

tested”. The fact that this is not obvious is precisely because we don’t expect

to see grue emeralds. Since all emeralds so far tested were found to be green,

we perform the inductive step and thus tend to confuse “green” with “of the

type green-whenever-tested”, that is, the specific value and its generalization.

Suppose, by contrast, that we try to forecast the weather. Every day we

may observe rain or no rain. If it rained on day t, we may say that xt = 1,

or even that day t was “rainy”. But we do not say “day t was of the type

rainy-at-each-i”. Because rain is not as regular a phenomenon as the color

of emeralds, it would be unlikely to confuse “my hair is getting wet” with

“this is an instance of the theory that my hair always gets wet”.

Observe that having names for values does not presuppose that our per-

ception or memory are infallible. In referring to the value 1, there is no claim

that this value, observed yesterday, is in some deep sense the same as the

same value observed today. These two values need not be instantiations of

the same atemporal entity, “the 1”. And there is also no need to assume that

we correctly recall previous observations. All that is needed for the naming

of constants is that, at a given time t, we be able to look back at our recol-

lections of past observations and categorize them as “same” or “different”.

In fact, we may assume without loss of generality that the first observation

was 1, and then understand the value 1 as “the same as the first observation,

to the best of my recollection and judgment” whereas 0 would be “differ-

ent from the first observation [...]”. It is hard to imagine a formulation of

the problem of induction that denies the reasoner this basic ability. Even if

we accept the claim that observations are theory-laden (Hanson, 1958), the

inability to compare observations renders induction vacuously impossible.

46



Whether one finds it natural to employ a model in which values have

names or not depends on one’s academic upbringing. If your first encounter

with a formal model of a problem of induction was in a statistics course, you

would probably view the values of the observations as the natural primitives

of the model, and the theories, or statistical models, as more involved or

derived concepts. Similarly, if you started out with formal languages and

computational models, such as Turing machines, you would naturally think of

0’s and 1’s written on a tape as your starting point. By contrast, if your first

formal course was in mathematical logic, you may think in terms of general

concepts, or functions, from which specific observations would have to be

derived. In this language, “Socrates is a man” is a more natural proposition

than “Socrates is a man at time t”. And when specific observations are

captured by such propositions, you may also ask yourself how you would

know that “man”, as used in this proposition, looks the same when you

consider different t’s.

To state this a bit more bluntly, if you use the language of logic, you may

find it simpler to have functions as primitives and values as derived concepts.

Conversely, if you use the language of Turing machines, values would appear

simple and functions — complex. Goodman’s basic point is confirmed again:

the choice of the language determines your notion of simplicity. This can

also be interpreted as suggesting an advantage of Turing machines over logic

as the fundamental model of induction: Goodman’s paradox appears to be

a problem for the latter but not for the former.

5.2.5 Evolutionary explanations

To conclude this discussion let us take the viewpoint of evolutionary psychol-

ogy. Thinking about how the human mind has evolved serves descriptive and

normative purposes alike. From a descriptive viewpoint, such explanations

can help us understand why we tend to make certain inferences, why we tend

to select certain languages, and so forth. From a normative point of view,
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we can make the arguable assumption that the human mind is a more or less

optimal tool for its purposes. Under this assumption, it is worthwhile to ask

why we evolved to think the way we did, and what are the benefits of such

modes of thinking. We should not assume that the human mind is always an

optimal tool for its purpose. But explaining why it works as it does is worth

a try. It will never be too late to conclude that we’re simply stupid after all.

Green vs. Grue One might try to imagine a process by which a very

“low” form of life starts evolving into a smart human. Suppose that the

animal in question has eyes, and its eyes reflect the image they see in some

neurons. The animal may have a certain neuronal firing configuration when

it sees the color green (i.e., receives wave lengths that correspond to what

we call green in everyday life) and others — for blue. These neuronal con-

figurations will probably be rather stable, so that a particular configuration

would be correlated with particular wave lengths whenever we (as outside

observers) perform the experiment. Importantly, such a stable correlation

can be established way before the animal has any conception of time, past

and future, or any ability to generalize. That is, we know that “for every

time t, configuration c is associated with wavelength w”, but this knowledge

cannot be attributed to the animal. The animal cannot reason about t.

We can go further and endow the animal with the ability to speak and to

name the colors, still without allowing it to think about time. That is, our

creature observes a wavelength w, has a neuronal reaction c, and may learn

to make an utterance u, naming the color as “green” or “blue”. Assuming

that naming colors is useful (say, for communication and coordination with

others), the creature can say the correct color word whenever presented with

the color. We can go as far as to say that the creature knows what color is

presented to it. Thus, at every time t the creature knows what is the color

presented at t. Still, no quantifier over t can be ascribed to our creature,

which is still ignorant of time and incapable of generalizations.
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At the risk of repeating the obvious, let me stress that the “green” or

“blue” uttered by our animal are not the same “green” or “blue” to which

Goodman refers. Goodman thinks of “green” as a property that involved

generalization and induction. That is, for him “green” means “whenever

tested, emanates waves in the green range”. Not so for our creature. The

latter cannot think in terms of “whenever”, not even in terms of “now”. We,

the outside observers, know that the creature responds, at time t, to the

input presented at time t. But there is no clock inside the creature’s mind,

and there is no consciousness of time.

Assume now that another layer of intelligence is added to our creature,

and the notion that it is going to live in the future as well finally dawns on

it. Starting to think about time, it may ask itself what is the nature of emer-

alds. Now the nature of emeralds is indeed a function from time into the two

timeless colors, i.e., neuronal configurations “green” or “blue”. Again, these

are not the predicates “whenever tested, appears green” or “whenever tested,

appears blue”, these are simply the names that the creature learnt to asso-

ciate with certain neuronal configurations. But if such names already existed

in its language, the functions “whenever tested, appears green” or “whenever

tested, appears blue” now seem simpler than the functions describing “grue”

and “bleen”.

Preference for simplicity Why do we prefer simpler theories to more

complex ones? One obvious explanation would be along the lines of bounded

rationality — due to limitations of the human mind, simpler theories are

easier to conceive of, recall, communicate, and test. While this explanation

is certainly valid, it is worth our while to ask, whether there might be an

innate advantage in preferring simpler theories. That is, assume that you are

programming an organism, endowed with unlimited computational power.

When the organism compares different theories, would you like to instruct the

organism to prefer simpler ones (keeping accuracy and generality constant)?
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One may attempt an affirmative answer along the following lines.

Our organism is likely to face many phenomena. Some, such as the be-

havior of simple organisms around it, are simple due to cognitive limitations

of these organisms. For concreteness, assume that our organism attempts

to hunt animals that can choose route 0 or 1 every day. Because these are

simple animals, they would tend to choose simple patterns such as “always

0” or “always 1”. Faced with a sequence such as 000, our organism should

choose between the predictions 0 and 1. Having no preference for simplicity,

the two would look equally plausible. By contrast, preference for simplicity

would prefer 0 over 1. Given the simplicity of the prey, this would be a cor-

rect prediction, since a simple animal is more likely to generate the sequence

0000 than 0001.

Next consider a phenomenon that may be highly complex, such as the

weather. Suppose that Nature selects a sequence of realizations 0 and 1, say,

denoting no-rain and rain, respectively. Assume that Nature’s choice is com-

pletely random. Should Nature choose, by some coincidence, the sequence

000, it is just as likely to be followed by 0 as by 1. In this case, the preference

for simplicity does not result in better predictions, but not in worse ones ei-

ther. Thus, preference for simplicity is beneficial when faced with a simple

phenomenon, but not harmful when faced with a complex one. Overall, a

preference for simplicity weakly dominates preference for complexity.20

This argument supposes that Nature does not attempt to choose complex

patterns on purpose.21 It will have to be qualified if the environment includes

other, competing organisms, who may try to act strategically, not to be

predictable, but perhaps also to coordinate.

Another way to state this argument is that the preference for simplicity is

20Gilboa and Samuelson (2008) make this argument more formally, and find that the
preference for simplicity should be augmented also by preference for stability, namely, for
preferring theories that have perfomed well (in terms of fitting the data) for a long time.
21There are more complex patterns than simple ones. Hence, a random selection of a

pattern is likely, a-priori, to result in a complex pattern. However, given a certain history,
a random choice will not exhibit a conditional bias for the more complex pattern.
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a guarantee against over-fitting.22 Assume, to the contrary, that our organ-

ism does not have any preference for simplicity. Faced with n data points,

it has no reason to choose theories with fewer than n parameters. In fact,

attempting to explain the data well, and suffering from no shortage of com-

putational power, the organism will come up with a theory that fits all past

observations with perfect accuracy. When it comes to prediction, however,

our organism will likely do poorly, due to overfitting.

When statisticians prefer theories with fewer variables, fewer parameters,

or, in general, lower complexity, they do not do so because of laziness or

computational limitations. By analogy, our organism should develop a taste

for simplicity in order to better predict the future, even if no cognitive limi-

tations rule out complex theories.

The argument against over-fitting relies on the assumption that at least

some phenomena around us are simple, that is, simple enough to allow for

prediction. As above, if all that we wish to predict is completely random,

the theory we choose makes no difference, and over-fitting involves no loss

of predictive power. But it suffices that apart from the random phenomena

there be some that are simple, such as the changing of the seasons, or the

behavior of other species, to make the preference for simplicity adaptive.

5.3 Problems with the frequentist approach

The lengthy discussion above may convince us that defining probabilities by

empirical frequencies shares the fundamental problems of inductive inference

that are common to all scientific and everyday reasoning. As such, we can

just shrug these problems off, and accept (with serenity) the fact that our

22Over-fitting is a statistical term, referring to explanation of data by a theory that is
potentially very complex, but that explains past observations very well. A well known
phenomenon is that such a theory can perform very well in explaining (fitting) past data,
but very poorly in predictions. A classical example is explaining n observations with (n−1)
variables in linear regression. If the variables are randomly chosen, they will provide a
perfect fit to the data with probability 1, even if they have no relation to the variable
explained and therefore no predictive power.
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probabilistic assessments will not enjoy a higher degree of confidence than do

scientific conclusions in general. This approach is valid for many problems,

as in our examples (1) and (2). When tossing a coin under similar conditions,

one is justified in taking empirical frequencies as a definition of probability.

Likewise, when considering the probability that a car will be stolen, taking

the average theft rate to be the probability of theft is a reasonable approach.

However, I claim that the same cannot be said of examples (3) and (4).

In example (3), I ask my physician what is the probability of my survival

in an imminent medical procedure. My physician presumably has access to

many studies published in the professional press, as well as experience of her

own and of other doctors in her clinic. Thus, she knows what is the average

survival rate for this procedure. But this average rate contains cases that are

not entirely relevant. For instance, very old or frail patients may not have

survived the procedure, but their history should not bother me too much

if I happen to be generally healthy. On the other hand it is possible that

women have a higher survival rate than do men, and in this case I would

like to know what is the percentage of survival only among men. There are

other variables which are of interest, such as blood pressure, the presence of

diabetes, and so forth. To complicate things further, the survival probability

is likely to vary with the hospital in which the procedure is performed and

with the surgeon performing it. In short, there are many observable variables

that might distinguish my case from others. If I wish to take them all into

account, my physician might well tell me, “I only know general statistics. I

don’t know what is the probability that you will survive. Once I operate on

you, I’ll be able to tell you if you survived or not.”

A similar problem will be encountered in example (4), namely, assessing

the probability of war in the Middle East this year. The frequentist approach

to this problem would suggest that we go back in time, check for every year

whether a war has or has not occurred in that year, and define the probability
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of war in the Middle East as the relative frequency of war in the past.23 No

two patients were identical in example (3), and no two years are identical in

example (4). There are years in the database in which the Cold War was

on, and years in which it wasn’t; years of economic booms and of recessions,

recent years and less recent ones, and so forth.

The above suggests that both in example (3) and (4) we do not have

an experiment that was conducted “under the same conditions”. Reality is

too complex for us to assume that two patients are identical, or that two

years are. In a sense, the same could be said of any two experiments, even

in the simple example of tossing a coin. Indeed, no two moments in history

are precisely identical. Different tosses of the same coin might have been

conducted under slightly different circumstances: constellations of stars that

affect the gravitational field, the force exerted on the coin by the person who

tosses it, and so forth. Hence, the assumption that there are experiments

conducted “under the same conditions” is, generally speaking, a simplifica-

tion. Conditions that appear to us sufficiently similar are lumped together

as “identical”. This simplifying assumption seems reasonable in examples

(1) and (2). One may decide to neglect the differences between different

tosses, and even between different cars.24 However, one would be mistaken

to neglect the differences between different patients or different years.

When using empirical frequencies to assess probabilities in examples such

as (3) and (4), we find that there is a great deal of subjective judgment

in defining the relevant database. In example (3), the physician can look

at the entire database, focus only on patients of the same gender and age,

consider only patients who were operated on in the same hospital, and so on.

Insisting that all patients in the sample be identical to me would most likely

23To simplify matters, assume that we ignore the occurrence of several wars in the same
year, or the possibility of a war extending over several years.
24Observe that in assessing probabilities of theft or other claims, insurance companies

do take into account certain variables, such as the type of the car and the zip code, in an
attempt to make the experiments discussed as similar to each other as possible.
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result in an empty database. Thus, some variables should be taken into

account, while others are ignored. The physician’s choice of the variables

to focus on may greatly affect the probability she ends up with. Similarly,

in example (4) one may consider wars between two particular countries, or

between classes of countries (say, “a western power” versus “a local state”),

one may consider or ignore concurrent events elsewhere in the world, and so

forth. In both examples we find that the frequentist approach, which had a

claim to generate objective probabilities, turns out to be rather subjective,

due to the choice of the relevant database.

Despite these similarities, there is one important way in which example

(4) is more complicated than example (3). In the latter, the experiments

may be considered causally independent. That is, one can assume that, for

the most part, the outcome of one patient’s operation does not affect the

other’s.25 This is not the case in example (4). Consecutive wars in the

Middle East are anything but causally independent. A particular war might

cause parties to be belligerent and seek retribution, or deter parties from

further wars and destruction. The causal relationship between consecutive

(potential) wars might be quite intricate indeed. The only obvious thing is

that causal independence is not a tenable assumption.

The law of large numbers, using the language of probability, requires ran-

dom variables to be identically and independently distributed. Seeking a

definition of the term “probability” we resort to intuitive, non-probabilistic

versions of these conditions. Thus, we apply the frequentist approach when

an experiment is repeated “under the same conditions”. Informally, we ex-

pect two properties to hold, which roughly correspond to “identical and in-

dependent distributions”: (i) that the experiments be the same, and (ii) that

they be causally independent. I will later argue that, when (i) fails but (ii)

25This assumption may not be literally true. If my physician hears that another patient
just died on the operating table, she might be more careful, or more tense, and the outcome
of my operation might be affected by her attitude. However, such causal relationships may
often be neglected.
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still holds (as in example (3)), we may still define probabilities based on (a

version of) the frequentist approach. I will also attempt to argue that, when

both assumptions (i) and (ii) are violated (as in example (4)), it is not at all

clear that one can assign probabilities in any rational way.
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6 Subjective Probabilities

A major part of this course will be devoted to understanding subjective

probabilities and to their derivation from axioms on behavior. This chapter

deals with the concept in a more direct way. I start with two examples, and

then discuss the notion of Bayesian statistics, namely statistical inference

relying on subjective probabilities.

6.1 Linda the bank teller

The third approach to probability assignments is to treat probabilities as

purely subjective. According to this approach, saying that the probability of

event A is p does not describe a property of the event. Rather, it reflects one

person’s beliefs about it. The basic idea is to use the machinery of probability

theory as a tool to model beliefs, and perhaps to clarify and sharpen them

in the process.

To understand how the probability model can help us sharpen our intu-

itions, let us consider a famous example of an experiment by Kahneman and

Tversky (1974). Participants were asked to fill a questionnaire, in which one

of the questions read as follows.

Linda is 31 years old, single, outspoken, and very bright. She ma-

jored in philosophy. As a student, she was deeply concerned with

issues of discrimination and social justice, and she participated

in antinuclear demonstrations.

Rank order the following eight descriptions in terms of the prob-

ability (likelihood) that they describe Linda:

a. Linda is a teacher in an elementary school.

b. Linda works in a bookstore and takes yoga classes.

c. Linda is active in a feminist movement.

d. Linda is a psychiatric social worker.
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e. Linda is a member of the League of Women Voters.

f. Linda is a bank teller.

g. Linda is an insurance salesperson.

h. Linda is a bank teller who is active in a feminist movement.

Many participants rank (h) as more likely than (f), even though (h) is

the conjunction of (f) and (c). Almost no one ranks (h) as more likely than

(c). Kahneman and Tversky explained this phenomenon as follows. Clearly,

the majority of the pairs to be compared in this exercise are descriptions

that cannot be ranked by any logical or mathematical criterion. Moreover,

they refer to a variety of events about which the participants only have very

partial information. In the absence of sufficient information for a reasoned

answer, participants attempt to use whatever they can. In particular, they

employ a “representativeness heuristic”: they ask themselves to what extent

each description is representative of Linda. Viewed thus, being a bank teller

is not very representative, given Linda’s description, but being active in a

feminist movement is. Hence, the description that has at least one feature

which is representative of Linda ends up being ranked higher.26

I have used this example is many classes, and the responses tend to be

similar. Some 40-50% of the students rank (h) as more likely than (f). When

the point is explained, no one insists on their original choice. (This is precisely

my preferred test for rationality. Ranking (f) below (h) is irrational because,

having chosen this ranking, people change their minds based solely on an

exposure to the analysis of their choice. See the discussion in 14.2 below.)

26Ranking statements by their likelihood is not a very common task that people normally
perform. By contrast, judging whether others are telling us the truth is a much more
common task we face in everyday life. When we perform the latter task, the more details
there are, as long as there are no obvious contradictions among them, the more reliable
does the speaker seem to us. This is true even though the probability of the statement
they make can only go down the more conjunctions are involved. It is possible that part
of what drives the ranking of (h) above (f) is the tendency to put more faith in a speaker
who provides more details.
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Some students are a bit angry and they claim that by (f) they understood

“a bank teller who is not active in a feminist movement”. Others admit that

they were wrong.

The point of this example is that the beliefs that the students are asked

to express are subjective. There is no objective way to rank the statements

based on the data provided. And yet, if one were to use subjective probabil-

ities as a model for one’s beliefs, one would avoid the mistake of ranking (h)

above (f). Subjective probabilities can be viewed as a way to use the mathe-

matical apparatus of probability theory to avoid judgments or decisions that

we would consider to be mistaken.

6.2 Pascal’s wager

Subjective probability dates back to the very early days of probability theory.

Pascal, who is credited as one of the forefathers of the field, was also the first

to use the concept of subjective probability in his famous “wager”. He also

suggested several important ideas in decision theory in his argument. It is

therefore worth going over.

The basic idea of Pascal’s wager can be described as follows: consider two

states of the world, one in which God exists and one in which he doesn’t.

Next consider two possible strategies — to believe or not. In filling up the

payoff matrix, allow the payoffs in case God exists to be infinite, but keep

them finite if God doesn’t exist. Say,27

God exists God doesn’t exist
Believe ∞ −c

Not believe −∞ 0

Then, if you admit that the probability that God exists is some ε > 0,

no matter how small, you find that “Believe” is preferred to “Not believe”.

27Pascal seem to have meant mostly a positive infinite payoff if God exists. Assigning
−∞ to “not believe” in case God exists is not an obvious implication of Pascal’s text.
Clearly, it is not necessary for the argument either.
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This is one version of the popular account of the wager. However, reading the

account provided by Hacking (1975, pp. 63-67), one finds several subtleties.28

First, Pascal was aware of the conceptual difficulty in choosing one’s

beliefs. But he argued that one can become a believer. That is, one need not

choose what to believe at present — one may choose a life style that would,

most probably, lead one to be a believer on one’s death bed (or at least early

enough to gain the infinite payoff of the afterlife). Pascal implicitly thought

in terms of a multi-self model. Importantly, he did not sin in confusing acts

with states.

Second, Pascal started out with the argument that one has nothing to

lose by believing, even if God does not exist (c = 0).29 Only as a second line

of defense he admits that there might be a cost to believing (namely, giving

up on some pleasurable sins), and resorts to the argument that the infinite

payoff, even when multiplied by a small probability, outweighs the finite cost.

Moreover, Pascal goes on to say that, should one argue that the probability

that God does not exist is not known, it suffices that one accepts that this

probability is in some interval (0, ε̄), and then one can repeat the argument

for every ε ∈ (0, ε̄), and establish the result that believing is preferred to not
believing.

It is quite astonishing that in his informal discussion, Pascal introduced

several key ideas in decision theory:

1. The notion of a decision matrix. The matrix is not described as a

mathematical object, but what such a description should be is quite clear

from the verbal description. Moreover, Pascal was sensitive to the rational

demand that one not choose one’s beliefs.

2. The notion of a weakly dominant strategy.

3. The idea of expected utility maximization. Again, expectation is

not formally stated, but the argument obviously refers to this mathematical

28See also Connor (2006) for historical and religious background.
29In fact, being a believer himself, he describes righteous life as very satisfying in its

own right.
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concept. Moreover, expected utility is used in a rather sophisticated way,

employing subjective probabilities and involving non-monetary payoffs.

4. The notion of multiple priors — admitting that a single probability

may be hard to pin down, but using an argument that holds for all possible

probabilities (a la Bewley, 2002, see section 18.6).

Pascal’s argument has been attacked on many grounds. The most con-

vincing ones are that one may not know whether God really wants us to

believe (for all we know, God may exist but reward the non-believers for

their independent spirit), or that God may exist but turn out to be Muslim,

while the Christian and the Muslim Gods want us to have contradictory be-

liefs. Yet, Pascal’s argument is quite sound, especially given the genre. Some

of the greatest minds in history performed embarrassing mental acrobatics

when it came to justifying faith. By contrast, Pascal’s argument makes sense,

and retains a high degree of clarity of thought despite the delicate topic.30

6.3 Classical vs. Bayesian statistics

6.3.1 Basic definitions

“Classical statistics” refers to the statistical inference tools such as confidence

intervals and hypotheses tests, developed by R. A. Fisher, Neyman and Pear-

son, and others. It is the statistics that you studied in undergraduate and

graduate courses, and it is the bread and butter of all scientific research,

including empirical and experimental work in economics. “Bayesian statis-

tics” refers to another approach to the same inference problems, according

to which one has subjective probabilities regarding the unknown parameters

of the distributions in question.

The Bayesian way of inference is credited to Bayes (1763). The term

“Bayesian” is used differently in different disciplines. In statistics and in

computer science, for instance, anything that updates a prior to a posterior

30Part of the reason might be that Pascal did not try to prove that God existed, only
that it was worthwhile to believe in him.
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based on evidence is referred to as “Bayesian”. In economic theory, by con-

trast, the term “Bayesian” refers to a more demanding ideological position,

according to which anything and everything that is not known should be

modeled explicitly in a state-space model, and be subject to a prior proba-

bility. This extreme position is sometimes referred to as “Bayesianism”. It

has its roots somewhere in the beginning of the 20th century, and Bruno de

Finetti is probably the person most responsible for the development of this

viewpoint.

To consider a simple example from everyday statistical inference, assume

that we observe a sequence of i.i.d. Bernoulli random variables Xi with an

unknown parameter p. We are attempting to estimate p. In a classical set-

up, for every p there is a separate probability model, with states defined by

the values of (Xi)i≥1, and a probability measure ν defined on this state space,

according to which the variables (Xi)i≥1 are i.i.d. with ν(Xi = 1) = p for

every i. In each such probability model (characterized by a certain p), we

know that the law of large numbers holds, and that, apart from an event

with ν probability of zero, the average of the Xi’s will converge to p.

By contrast, a Bayesian statistics approach to the same problem would

hold that, if the parameter p is not known, we should have subjective beliefs

about it, and treat it as a random variable. Thus, the Bayesian approach

would consider a single probability model, whose state space is the product

of the values of the unknown parameter and the variables we sample. In

other words, rather than a separate probability measure on the values of

(Xi)i≥1, the Bayesian formulation would have a single probability measure λ,

stating the joint distribution of p (viewed as a random variable) and (Xi)i≥1.

It is easily seen that, should one specify a certain prior distribution f on

p ∈ [0, 1], there is a unique measure λ such that (i) conditional on p, the

variables (Xi)i≥1 are i.i.d. with ν(Xi = 1) = p for every i; and (ii) the

marginal distribution of p is f .

Once the Bayesian model is set, learning from observations becomes a
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simple task: it reduces to Bayesian updating. Given observations X1, ...,Xn,

one can compute the posterior probability λ|X1,...,Xn and from its marginal

compute the posterior belief about p.31 And if God were to reveal to us

the true value of p, we would similarly update λ and find the conditional

distribution of X1, ...,Xn given p. In this approach no distinction is made

between the observable variables, which may be “truly” random (whatever

that may mean) and the unknown parameter, which is assumed to be fixed.

Anything we do not know becomes a random variable, and we have a joint

distribution for all of these variables, reflecting our subjective beliefs. All

uncertainty is treated in the same way, and all information is used in the

same way.

6.3.2 The gambler fallacy

Observe, however, that in such a Bayesian set-up the law of large numbers

does not apply. The reason is that the law of large numbers assumes indepen-

dence of the random variables, and this independence holds only conditional

on p.

This is related to Kahneman and Tversky’s “gambler fallacy”: you sit in

a casino and observe the roulette game. Over the past ten round, the wheel

came up on red. You now decide to bet — should you bet on red or on black?

Many people think that they should bet on black, because there were ten

red outcomes in a row, and the law of large numbers suggests that in the

long run there should be as many “blacks” as “reds”. Hence, the intuitive

reasoning goes, “black has to catch up” for the law to hold, and therefore we

are more likely to observe black than red in the next trial.

Clearly, this reasoning is flawed. As Kahneman and Tversky put it, when

31In this context, there is a special interest in families of distributions on [0, 1] that
would be “closed” under Bayesian updating, that is, that have the property that, should
the prior f belong to the family, so will the posterior. Such a family is called a conjugate
family of distributions. For example, for the problem discussed here, the beta family (see
DeGroot, 1975, pp. 294-6) is such a conjugate family.
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it comes to Nature obeying the law of large numbers, “mistakes are not

corrected; they are diluted”. More precisely, there are two possibilities, de-

pending on your trust in the fairness of the wheel. If you are confident that

the roulette wheel is fair, you have to believe that the probabilities of red

and of black are equal, and that the trials are i.i.d. Under the assumption

of independence, there is absolutely nothing to learn from past observations

about future ones. Luckily for you, you also know all there is to know about

the probability of the different outcomes in the next trial. If, however, you

are not quite sure that the wheel is fair, you should engage in some statistical

learning. And in this case, having observed ten times “red”, you may start

wondering whether the wheel may not be biased. But in this case it would

be biased toward red, not black.32

The important lesson from this example is that, when we do not know the

parameters of the distribution, our sample does not consist of i.i.d. random

variables. Independence holds given the unknown parameters, that is, we

only have conditional independence. Observe that, if independence were to

hold, there would be no point in taking a sample in the first place, since there

would be nothing to learn from some variables about the others.

Classical statistics refers to i.i.d. random variable in this conditional

sense. It does not always emphasize that the variables are i.i.d. given the

parameter, say p, because it anyway has no probabilistic way to quantify

over different p values. Bayesian statistics, by contrast, does have a joint

distribution over p and the variables Xi, and even if the variables are i.i.d.

given p, they are not i.i.d. when p is not known.

6.3.3 Exchangeability

The above suggests that a Bayesian cannot apply the law of large numbers

for estimation of unknown parameters. That is, if a Bayesian is to take her

32The gambler’s fallacy is an interesting example, because it originates in a misun-
derstanding of a mathematical result. People who have never heard of the law of large
numbers are unlikely to err in this way.
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beliefs seriously, she should admit that the random variables she samples,

as far as her subjective beliefs suggest, are not independent. Again, there

would be little point in taking the sample if they were independent. What is

therefore the meaning of taking samples and computing their averages?

Luckily for the Bayesian approach, de Finetti (1930) solved this problem

by extending the law of large numbers from i.i.d. random variables to what

he called exchangeable random variables. A sequence of random variables

X1, ..., Xn, ... is exchangeable if the following is true: for every n ≥ 1, the
joint distribution of X1, ...,Xn is symmetric. This, in particular, implies that

the marginal of X1 equals that of Xn, and hence the variables are identically

distributed. Moreover, if the variables are independent and identically dis-

tributed, they are clearly exchangeable. But the converse is false: exchange-

ability generalizes the notion of identical and independent distribution in a

non-trivial way.

The simplest way to see an example of random variables that are ex-

changeable but not i.i.d. is to “mix” two distinct i.i.d distributions. For

example, assume that Xi ∼ B(p) as above, and that conditional on p, they

are independent. Assume now that p takes the values 1/3 and 2/3 with

equal probability. It is easy to see that, for every n, the joint distribution of

X1, ..., Xn is symmetric. For example, consider n = 2. The joint distribution

of X1 and X2 is given by one of the following matrices, each with probability

50%:

X2 = 0 X2 = 1 X2 = 0 X2 = 1
X1 = 0 4/9 2/9 2/3 X1 = 0 1/9 2/9 1/3
X1 = 1 2/9 1/9 1/3 X1 = 1 2/9 4/9 2/3

2/3 1/3 1 1/3 2/3 1

p = 1/3 p = 2/3

and overall we obtain the following distribution of X1 and X2:
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X2 = 0 X2 = 1
X1 = 0 5/18 2/9 1/2
X1 = 1 2/9 5/18 1/2

1/2 1/2 1

.

Clearly, X1 and X2 are identically but not independently distributed. To

see that this is an example of exchangeability, one has to complete the defin-

ition of the joint distribution of X1, ...,Xn for all n, which is straightforward.

To consider a more extreme example, assume that p = 0 with probability

.5 and p = 1 with probability .5. Then the joint distribution of X1 and X2 is

X2 = 0 X2 = 1
X1 = 0 1/2 0 1/2
X1 = 1 0 1/2 1/2

1/2 1/2 1

.

This is a very extreme case in which X1 and X2 are as dependent as they

can be: knowing one of them completely determines the other. Yet, they are

exchangeable.

In both examples we generated exchangeable random variables by “mix-

ing” i.i.d random variables: we considered a family of sequences of joint

distributions that are i.i.d and depend on a parameter p; we assumed that

p is randomly selected according to some distribution µ, and that, given the

selection of p, the random variables are i.i.d. We could also think of p as an

unknown “objective” probability that governs the process we observe, and

of µ — as our subjective belief about this unknown probability. de Finetti

has shown that this is the only way to generate exchangeable distributions.

That is, if you start with an exchangeable sequence, X1, ...,Xn, ..., you can

always think of it as a sequence of random variables that are i.i.d given some

“parameter” p, over which you have subjective beliefs µ.33 According to this

representation of exchangeable variables, all correlations between variables

in the sequence are due to the fact that this parameter is not known a priori.

33The “parameter” need not be a single, real-valued parameter. In general, it is only an
abstract index that denotes i.i.d distributions.

65



de Finetti also showed that, in this case, if we take X̄n to be the average

of the first n random variables from the exchangeable sequence X1, ...,Xn, ...,

X̄n will converge, with probability 1, to the conditional expectation of Xi,

that is, to the expectation of Xi given the parameter p (note that it is in-

dependent of i). This theorem provided the theoretical basis for Bayesian

estimation: one need not assume independence in order to obtain the de-

sired result, namely, that the sample average will converge to the “true”

expectation.34

6.3.4 Confidence is not probability

To see more clearly the difference between classical and Bayesian statistics,

it is useful to remind ourselves of some basic definitions of classical statistics.

Consider a textbook problem. Suppose that we consider a random vari-

able X ∼ N(µ, 1). For simplicity we assume a known standard deviation,

σ = 1, and a single observation, n = 1. We know that we can construct a

confidence interval for µ, for instance of length 2 and confidence level 68%:

P (µ ∈ [X − 1,X + 1]) = 68%. (7)

Suppose that we take the sample and observe X = 3. The interval is

therefore [2, 4]. What is the probability that µ is in this interval? That is,

P (µ ∈ [2, 4]) =? (8)

It is very tempting to reply that the probability is 68%, which is what

we get by substituting X = 3 into (7). But this is wrong. The statement (7)

is a probability statement about the random variable [X − 1, X + 1], or, if

you wish, the random variable X, but not about µ. In the classical statistics

setup, µ is not a random variable, and we don’t have probabilistic beliefs

about it. This is true before as well as after we observe X.
34If this line is taken seriously, we need to say something about the distribution of the

sample average, X̄n, as well. A central limit theorem for exchangeable sequences of random
variables was proved by Chernoff and Teicher (1958).
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As this point is important, it is worth repeating it with another example:

assume that Y is the outcome of a roll of a fair die. A priori, before rolling

the die, we state that

P (Y = 3) = 1/6, (9)

which is a probability statement about the random variable Y . Once we

observe Y , we can’t plug it into (9). Whether we observed Y = 3 or, say,

Y = 2, it will be nonsensical to substitute the value for Y and say P (3 =

3) = 1/6 or P (2 = 3) = 1/6. The probability statement (9) is a statement

about the random variable Y when it was still random, as it were. To be

precise, Y = 3 is a name of an event, containing some states and not others.

P (Y = 3) is the probability of this event. Before Y is observed, we use the

letter Y to designate a function defined on the state space, and thereby to

define the event by the condition Y = 3. But after Y was observed, we have a

realization Y = y, but the specific value y cannot substitute for the function

Y . Precisely the same logic applies to the previous example, namely to the

substitution of X = 3 into (7).

What does the 68% probability in (7) mean? It means that we are using

a certain procedure that generates intervals, and we are guaranteed that, no

matter what µ really is, this procedure has an a priori probability of 68% to

cover µ. Part of the trick (and the beauty) in classical statistics is that we can

make this statement uniformly, for every µ. In the problem we started out

with, this is simple, because (X − µ) ∼ N(0, 1). But when σ is not known,

it’s not so obvious that we will indeed be able to say anything about any

interesting random variable. Luckily, it turns out that some things can be

said — t and F distributions pop up for various expressions, independently of

the unknown parameters. This is indeed a miracle, without which we would

not have been able to perform classical statistical inference.

In any event, it is important to recall that confidence levels, as well as

significance levels for hypotheses tests, are not probabilities in the Bayesian

sense. They are probabilities only a priori, before the sample was taken, and
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they can be uniformly computed, or bounded, regardless of the unknown

parameters. But once the sample has been taken, we are left with confidence

or significance levels that only reflect the a priori probabilities, and may not

incorporate all relevant information. The following example illustrates.

6.3.5 Classical statistics can be ridiculous

Consider a random variable with a uniform distribution over an interval of

length 1.35 We do not know where the interval is located. Let θ ∈ R denote
its midpoint, so that

X ∼ U(θ − 0.5, θ + 0.5).

Assume that we take n = 2 i.i.d. random variables from this distribution,

X1, X2, and construct an interval between them, [min(X1,X2),max(X1,X2)].

What is its confidence level?

Observe that in order for the interval [min(X1, X2),max(X1, X2)] to “miss”

θ you need both X1,X2 to be in [θ − 0.5, θ), or both to be in (θ, , θ + 0.5]
— where each of these events has probability .25. Hence we obtained a 50%

confidence interval: whatever is θ,

P (θ ∈ [min(X1,X2),max(X1,X2)]) = 0.5

Next assume that X1 = 0 and X2 = 0.6. What is the probability that

θ ∈ [0, 0.6]? Indeed, we just agreed that this is a meaningless question. And
yet, in this case we know the answer: the probability is 1. This is so because

the two cases in which [min(X1, X2),max(X1,X2)] misses θ are such that

|X1 − X2| < 0.5. If we observe |X1 − X2| > 0.5, we know that this is one

of those cases in which the sample hit θ. But this knowledge is not reflected

in the confidence level, which remains the same 50% it used to be before the

sample was taken.

By a similar token, if we observe X1 = 0 and X2 = 0.001, we probably

don’t really think that we hit θ this time. Conditional on |X1−X2| ≤ 0.001,
35This example is taken from DeGroot (1975).
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we would have to be very lucky to have included θ in our interval. But the

language of classical statistics does not allow us to express all these feelings,

intuitions, or even knowledge (in the case |X1−X2| > 0.5). We are confined
to discuss what the probability of the interval including the parameter used

to be, being unable to update this probability in light of the evidence in our

sample.

6.3.6 Different methods for different goals

So why do we use classical statistics? How can we trust such a flawed set of

procedures to conduct our everyday as well as scientific statistical inference?

Indeed, there used to be days in which classical and Bayesian statisti-

cians were engaged in fierce intellectual battles.36 I maintain, however, that

classical and Bayesian statistics are not competing at all, because they have

different goals. In bold strokes, classical statistics is a collection of tools for

a society to agree on what can be stated as officially established, with the

understanding that this society includes different people with different beliefs

and different goals. Bayesian statistics is the tool for individual reasoners or

decision makers, who attempt to sort out their knowledge, belief, evidence,

and intuition. As such, classical statistics aspires to be objective. Bayesian

statistics, by contrast, hopes to capture all beliefs and intuition, whether

objective or subjective.

Two examples might be useful. Let us start with an analogy used by basic

textbooks to explain hypothesis testing, a prominent workhorse of classical

statistics. Consider a murder case brought before the court. The default

assumption — H0 — is the hypothesis that the defendant is innocent. The

alternative — H1 — is that he is guilty. Before collecting the evidence, we

define a test — a function from the potential observations to {accept, reject},
where “rejecting H0” is considered to be a “proof” that it is wrong, namely,

36Apparently, over the years each side has been willing to make certain concessions and
admit that the other method has some merits.
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that the defendant is guilty, while “accepting H0” is viewed as not saying

much. In particular, the defendant enjoys the benefit of the doubt, and

inconclusive evidence would likely result in not rejecting, or in “accepting”

H0. Importantly, if we were to switch roles between H0 and H1, making guilt

the default assumption, it may well be the case that neither H0 nor H1 can

be rejected, namely, that neither H1 nor H0 can be “proved”. In selecting

the test, we consider the bounds on the probabilities of type I and type II

errors, asking ourselves what is the maximal a priori probability we allow for

a guilty defendant to be declared innocent and vice versa.

This set-up is cumbersome. One has to define tests based on a significance

level, which only refer to the a priori probability; one has to treat H0 and

H1 asymmetrically etc. In order to understand why we hold on to this

mess, consider the Bayesian alternative. In this alternative, the judge or the

jury (depending on the legal system) would have to form a prior probability

about the defendant’s guilt, update it given evidence, and find a posterior

probability of guilt. But where will the judge take the prior from? What

happens if the judge assigns prior probability of 100% that the defendant is

guilty? No amount of evidence would convince him of the contrary innocence.

Alternatively, the judge might happen to be the defendant’s mother, who

assigns, honestly or strategically, a prior probability of 0 to the defendant’s

guilt.

Clearly we prefer to live in a society in which the court system aspires

to be objective. We know that there might be cases in which the system,

committed to certain rules, will not allow us to prove something we tend to

believe in. In this case there might be a gap between our subjective beliefs

and the official declarations made by the court system.

To continue with our example, assume that the defendant is accused of

having raped and murdered a woman on their first date. Assume further that

the police searches the defendant’s house and finds incriminating evidence,

including a gun, blood-stained clothes, etc. In the course of the trial, however,

70



the defense manages to suggest alternative theories explaining this evidence,

and guilt cannot be established beyond reasonable doubt.

Ask yourself now two separate questions: (i) do you want to send the

defendant to jail? and (ii) would you like your sister to date him? It is quite

possible that your answer will be “Well, I think that it’s important we stick to

our laws. Guilt was not established unequivocally, and the defendant should

enjoy the benefit of the doubt. At the same time, I will certainly not want

to see my sister dating such a character — I’m pretty sure that this guy is a

murderer!” The gap between what you think society should officially declare

and what you would like to do in your own decision problem is analogous to

the difference between classical statistics inference and Bayesian updating.

To consider another example, suppose that a renowned pharmaceutical

firm developed a new drug that may slow down a certain type of cancer. I

suffer from this disease. The new drug might help me, but it has not yet been

approved by the FDA. Considering my personal decision problem, I want to

use all my information in Bayesian reasoning, and I may conclude that I

should try the drug if I can. In particular, I know the firm’s reputation,

I know that it had never introduced a drug that hasn’t eventually been

approved by the FDA, I realize that the firm has too much to lose from its

product being turned down, and I put a very high posterior probability on

the drug being effective (given that it has been submitted by this firm). At

the same time, I will probably not want the FDA to automatically approve

drugs by this firm, just because it has a good reputation. Again, we have

to distinguish between two questions: (i) do I want the FDA to approve the

drug without testing it? and (ii) do I want to use the drug before FDA

approval? It is perfectly consistent to answer (i) in the negative and (ii) in

the affirmative. Declaration by official bodies should be held to a standard

of objectivity. Decisions of individuals should allow subjective input as well.

Observe that scientific research is another field in which individual intu-

ition and societal declarations often diverge. Scientists might have various
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hunches and intuitions. But we can’t allow them to say, “Based on my prior

belief that A is true, I took a sample, updated the prior, and found that it

is indeed true with very high probability”. We realize that scientists have

very different intuitions. Moreover, they have many incentives to publish

various results. We therefore hold scientific research to high standards of

objectivity. In particular, all branches of science use classical statistics and

test hypotheses. Prior beliefs can guide individual scientists in developing

research conjectures, but they cannot enter the protocol of scientific proofs.

It should be emphasized that the discussion above deals with what clas-

sical and Bayesian statistics attempt to do, not their degrees of success in

achieving their goals. Classical statistics aspires to objectivity, but it faces

many difficulties and pitfalls in attaining this goal. By contrast, Bayesian

statistics should incorporate all our intuition, but one may find that it is too

demanding, in that it requires prior beliefs about many issues on which one

has no well-defined beliefs. The main point, however, is that each of these

methods has a completely different goal.
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PART II — Behavioral Definitions
Let us take stock. We considered four probability assignment problems

and three definitions of probability. The first, the Principle of Indifference,

was so flawed that we struggled to find justifications for it even in the few

examples in which it seems to make sense to a certain degree. The second,

the frequentist approach, seemed fine for certain problems, but unable to

cope with questions such as the occurrence of war or a stock market crash,

or even the success of medical procedures. Unfortunately, some of the more

important problems in our personal and professional lives are of the tricky

types — those that cannot be assumed to be repeated in the same way, and

maybe even not in a causally independent fashion. Lastly, we considered the

subjective approach, which appears to be a powerful conceptual tool, dealing

in the same way with coins as with wars.

But what exactly is this subjective probability? How do we determine

it? Are there more or less rational ways to assign such probabilities? And

are we sure that the probability apparatus is the right one to capture our

intuition?

All of these questions call for an axiomatic approach. Such an approach

can simultaneously explain to us what subjective probabilities mean exactly,

how we can calibrate and measure them, why (and when) we should use

them, and so forth. To understand better the approach, let us analyze more

carefully the case study of maximization of utility.37

37This “case study” actually deals with the meaning of the utility function. As this issue
is also quite fundamental to decision theory under uncertainty, I allow myself to discuss it
at length.
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7 A Case Study

7.1 A characterization theorem for maximization of
utility

The theorem I present here dates back to Cantor (1915), and it is given

in Kreps (1988, pp. 25-26). Cantor had no interest (as far as I know) in

economics or in decision theory. He was fascinated, however, by the real

numbers, and attempted to understand them from various points of view. In

particular, he was interested in understanding the order (“greater than”) on

the real numbers. What does it take to think of elements of a set with a binary

relation on it as the real line and the relation ≥? In answering this question,
Cantor provided a theorem, which can be interpreted as a characterization

of a preference relation that can be thought of as maximizing utility.

For our purposes, we will consider a set of alternatives X, and a binary

relation on it, %⊂ X ×X, interpreted as “preferred at least as”. Our main

interest is in the question, when can we represent % by maximization of a

function u : X → R, namely, when does there exist a real-valued function u

that satisfies

x % y iff u(x) ≥ u(y) ∀ x, y ∈ X (10)

in which case we will say that u represents % ?

Define the asymmetric (Â) and symmetric (∼) parts of % as usual, and
consider the following three axioms:

C1. Completeness: For every x, y ∈ X, x % y or y % x;

C2. Transitivity: For every x, y, z ∈ X, x % y and y % z imply x % z;

C3. Separability: There exists a countable set Z ⊂ X such that, for

every x, y ∈ X\Z, if x Â y, then there exists z ∈ Z such that x % z % y.

Axiom C1 and C2 are quite familiar from consumer theory. Yet, for the

sake of comparison with the same axioms in other context, it is worthwhile
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to remind ourselves how they are typically justified. If we take a descriptive

interpretation, completeness is almost a matter of definition: the choice that

we observe is defined to be the preferred one. Since a decision maker faced

with the choice set {x, y} will have to make some choice, we will be able to
say that x was chosen in the presence of y (x % y), or vice versa.

This account is a little misleading, because completeness is taken to mean

some regularity as well. More precisely, given the same choice set {x, y}, we
expect the decision maker always to choose from the same non-empty subset

C({x, y}) ⊂ {x, y}. Thus completeness rules out random choices.38

Transitivity has an obvious descriptive interpretation. In the following

sub-sections we will discuss two families of situations in which it is often

violated. For the time being, we can satisfy ourselves with following its basic

logic.

Taking a normative interpretation, the completeness axiom is quite com-

pelling. It suggests that a certain choice has to be made.39 The axiom

implicitly calls upon us to make this choice explicit. One may argue that one

does not have well-defined preferences. The decision theorist would respond,

“do you then prefer to sweep your choice under the rug, simply decide not

to look at it?” The completeness axiom is therefore viewed as a call to face

reality and explicitly model choices.

The transitivity axiom is probably easier to defend. The intuition behind

it is clear and, indeed, quite compelling.

Let us now briefly understand the mathematical content of C3. Separa-

bility says, roughly speaking, that countably many elements (those of Z) tell

the entire story. If I want to know how an alternative x ranks, it suffices

that I know how it ranks relative to all elements of Z. Observe that, if X is

38Both Kreps (1988) and Mas-Colell, Whinston, and Green (1995) start the theory
with choice functions, and present theorems that guarantee that a choice function be
summarized by a binary relation.
39Of course, a satisfactory model would have “doing nothing” specified as one of the

alternatives.
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countable, C3 vacuously holds, since one may choose Z = X.

Separability is obviously a condition that is needed for the mathematics

to work. It is not terribly compelling from a descriptive or from a normative

point of view. At the same time, it is not particularly bothersome. In fact,

it has no obvious observational meaning. Since our observations are always

finite, we cannot imagine an experiment that would refute C3. This suggests

that the axiom has no empirical content, and therefore does not restrict

our theory, whether interpreted descriptively or normatively. Rather, the

axiom is a price we have to pay if we want to use a certain mathematical

model. We will get used to the existence of such axioms in practically all the

axiomatizations we will see in this course. Such axioms will often be referred

to as “technical”, and, while I do not like this disparaging term, I may use it

as well for lack of a better one. However we refer to them, axioms that are

devoid of a scientific content are differently treated than others. We will not

bother to justify them, nor will we find them very objectionable — they will

be justified by mathematical necessity.

To see that the separability axiom has some mathematical power, and

that it may give us hope for utility representation, let us see why it rules out

Debreu’s famous example (Debreu, 1959. See also Mas-Colell, Whinston,

and Green, 1995). In this example, X = [0, 1]2 and (x1, x2) % (y1, y2) if and
only if x1 > y1 or (x1 = y1 and x2 ≥ y2). As you may recall from your

first microeconomics class, this example does not satisfy continuity: the sets

defined by strict preference are not open in the standard topology on R2. But
we need not resort to a topology to show that this relation does not have a

numerical representation, as separability does the job as well: assume that

Z ⊂ X is a countable set. Consider its projection on the first coordinate,

that is,

Z1 = {x1 ∈ [0, 1] |∃x2 ∈ [0, 1] s.t.(x1, x2) ∈ Z} .

Clearly, Z1 is also countable. Consider x1 ∈ [0, 1]\Z1 and note that (x1, 1) Â
(x1, 0). However, no element of Z can be between these two in terms of
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preference, since it cannot have x1 as its first coordinate.

The theorem, as you must have guessed, is:

Theorem 1 (Cantor) A binary relation% can be represented by a real-valued
function u if and only if it satisfies C1-C3.

Under these conditions, the function u is unique up to increasing trans-

formations.

As opposed to the more familiar theorem of Debreu (1959), the present

one does not assume a topology onX. Hence, it is meaningless to ask whether

the utility obtained is continuous. However, ifX happens to be endowed with

a topology, Cantor’s theorem still does not guarantee continuity. This can be

a limitation, for instance if you are interested in continuity and you wonder

what does it take, in terms of observed preferences, to assume continuity.

This can also be an advantage, if you may be interested in utility functions

that are not everywhere continuous.40

7.2 Proof

The discussion is simplified if we assume, without loss of generality, that

there are no equivalences. Formally speaking, we consider ∼-equivalence
classes, i.e., X/ ∼. It is easy to verify that a numerical representation of %
between representatives of the equivalence classes is necessary and sufficient

for a numerical representation of % on all of X.
To understand the proof of Theorem 1, it might be useful to first assume

that X is finite. In this case completeness and transitivity suffice for repre-

sentation by a utility function u. There are several ways to prove that. For

instance, you may take one element x1 and assign it an arbitrary number

u(x1). Then you take another element x2 and assign it a value higher/lower

than u(x1) depending on whether x2 is preferred to/less preferred than x1.

40The discussion of the various interpretations of the theorem, however, can be done in
the context of Debreu’s theorem as well.
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And you continue this way. One may prove by induction, that if u is defined

on {x1, ..., xk} and it represents % on this set, then it can be extended to

a function u defined on {x1, ..., xk+1} and it represents % on this larger set.
The point in the extension is that one need not change values of u assigned

to points in {x1, ..., xk}. There is enough space on the line to place the utility
of any new point.

Another way to prove the theorem for a finite X is to first order the

elements so that xi ≺ xi+1 for all i, and then set u(xi) = i. This definition is

equivalent to setting

u(x) = # {y ∈ X|x % y} (11a)

that is, every x is assigned a number, which is the number of elements it is

at least as good as. This might remind you of a chess tournament or a soccer

league, in which any two contestants compete, and each collects a certain

number of points for every victory.

This latter idea does not work when the set is infinite — one may find

that there are infinitely many elements y such that x % y, and then u(x) will

not be a real number. Moreover, adding infinity to the range of u will not

be sufficient, since many elements that are not equivalent will be mapped to

the same value, ∞. It so happens, however, that for countable sets X the

first proof still works. Since any element of a countable set can be reached

by induction, at any stage (k) we can add an element (xk+1) while the set

of predecessors contains only finitely many elements ({x1, ..., xk}) to which
u-values were assigned.

But what should we do if X is uncountable? We can go over it by trans-

finite induction, but in this case it will no longer be the case that for every

x, as we look back at the values already assigned, we have a finite set of pre-

decessors. And if the set of predecessors is infinite, we might be in trouble —

we may find, for instance, that x Â y and xn Â x for every n ≥ 1, while we
already assigned u(y) = 0 and u(xn) =

1
n
.

Surprisingly, the second proof technique, given by (11a), can be used in
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this case, provided that we make two modifications. Our problem with (11a),

even in the countable case, was that the set discussed may be infinite. But

this difficulty can be solved if allow the elements to have weights that generate

a convergent series. But convergent series are defined for countably many

elements, you say. Indeed, we knew that separability will have to be used at

some point. And this is the time to put it all together: let Z = {z1, z2, ...}
and define

u(x) =
X

{zi∈Z|x%zi}

1

2i
−

X
{zi∈Z|zi%x}

1

2i
. (12)

The main point is that u(x) ∈ R for all x. It is easy to see that x % y

implies u(x) ≥ u(y). To see the converse, assume that x Â y. If one of {x, y}
is in Z, u(x) > u(y) follows from the definition (12). Otherwise, invoke

separability to find z ∈ Z such that x % z % y and then use (12).

Another little surprise in this theorem, somewhat less pleasant, is how

messy is the proof of the converse direction. Normally we expect axiomatiza-

tions to have sufficiency, which is a challenge to prove, and necessity which is

simple. If it is obvious that the axioms are necessary, they are probably quite

transparent and compelling. (If, by contrast, sufficiency is hard to prove, the

theorem is surprising in a good sense: the axioms take us a long way.) Yet,

we should be ready to sometimes work harder to prove the necessity of condi-

tions such as continuity, separability, and others that bridge the gap between

the finite and the infinite.

In our case, if we have a representation by a function u, and if the range

of u were the entire line R, we would know what to do: in order to select a
set Z that satisfies C3, take the rational numbers Q = {q1, q2, ...}, for each
such number qi select zi such that u(zi) = qi, and then show that Z separates

X. The problem is that we may not find such a zi for each qi. In fact, it is

even possible that range(u) ∩Q = ∅.
We need not worry too much if a certain qi is not in the range of u. In

fact, life is a little easier: if no element will have this value, we will not

be asked to separate between x and y whose utility is this value. However,
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what happens if we have values of u very close to qi on both sides, but qi
is missing? In this case, if we fail to choose elements with u-values close to

qi, we may later be confronted with x Â y such that u(x) ∈ (qi, qi + ε) and

u(y) ∈ (qi − ε, qi) and we will not have an element of z with x % z % y.

Now that we see what the problem is, we can also find a solution: for

each qi, find a countable non-increasing sequence {zki }k such that

{u(zki )}k & inf{u(x)|u(x) > qi}

and a countable non-decreasing sequence {wk
i }k such that

{u(wk
i )}k % sup{u(x)|u(x) < qi}

assuming that the sets on the right hand sides are non empty. The (count-

able) union of these countable sets will do the job.

7.3 Interpretations

There are several different interpretations of the above theorem, as there will

be of practically all the other axiomatizations discussed here. It is worth

going over them in this case study in detail. Two interpretations relate to

standard roles of theories, namely, normative and descriptive. The other one

is meta-theoretic, as it relates to theoretical questions regarding what theo-

ries are, or what theories should be. Observe that there are normative and

descriptive questions here, but these are normative and descriptive questions

of philosophy of science, rather than of economics. A few digressions are in

order here.

7.3.1 A few definitions

What is meant by “normative”? In economics we usually distinguish

between descriptive and normative theories. Descriptive theories deal with

the “is”, while normative — with the “ought”. The former attempt to provide

an accurate description of reality, while the latter — to tell us what reality
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should be like.41 It is important to recall that the distinction between norma-

tive and descriptive theories is very often in the interpretation, rather than

in the mathematical model. When you consider the theorem above, it is not

clear whether, say, transitivity is suggested as a claim about how real people

actually make decisions, or as a recommendation to decision makers. Loosely

speaking, whether a paper suggests a normative or a descriptive theory will

be judged by its introduction, not by its formal model.

We have a rather clear understanding what does it mean for a theory

to be accurate. We can contrast a theory’s predictions with observed data,

compute various measures of goodness of fit, and so on. Accuracy is not

the only criterion for judging theories, and we are interested in generality

and in simplicity as well.42 Overall, there can be quite a bit of disagreement

over the appropriate measure of simplicity, generality, and accuracy, and

certainly over the appropriate way to trade them off. And yet, we more or

less understand what we are after, and hope to recognize it when we see it.

By contrast, what is meant by “normative”? Is any recommendation a

normative theory? And how do we judge normative theories? If I were to

walk around with a sign “Repent!”, will I be engaging in normative science?

Will I be a good normative scientist? And will your answer change if my

sign read, “Repent, Doomsday is Near!” — ?

I think that “Repent!” hardly qualifies as a normative theory of the type

that we want to see academics do in universities, especially if they spend

41A word of warning: fellow social scientists tend to think that “normative” is a poor
choice of a term. In psychology and related fields, the term means “complies with existing
norms”. As such, it can be a recommendation for individual behavior, but it is obviously
quite different from the common usage in economics. The term “prescriptive” is sometimes
used for a theory that provides recommendations, but it seems less popular these days.
42We often judge theories also on a scale of “intuitiveness”. One can make the claim

that this criterion is reducible to simplicity: intuitive theories are those that are part of
a simple explanation of a wider array of phenomena, including everyday experiences. In
fact, generality may also be reduced to simplicity: a theory that is less general would have
to be complemented by another theory for the cases it does not apply to, resulting in a
union of theories that is typically more complex.
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taxpayers’ money on these academic activities. Most of us do not think

that religious preachers should be in universities, allegedly doing “normative

science”.

On the other hand, someone who comes with a reasoned argument such

as “Observe, my friends: I have found out that doomsday is approaching.

Given that, those of you who do not want to burn in hell may want to consider

repentance” — which is a more polite way to say, “Repent, Doomsday is Near!”

— is hardly engaging in normative claims at all. She will only be making

statements about reality: an unconditional statement about the timing of

doomsday, and a conditional one about the relationship between repentance

and burning in hell. Both statements can be considered purely descriptive,

and they become recommendations for courses of action only if we couple

them with our goals (presumably, to avoid burning in hell if possible).

The way I will use “normative” here43 is a little different. A normative

theory will be a descriptive theory, but not about observed reality, rather

about the reality that people would like to observe. Thus, if we think of

transitivity as a normative axiom, we will not just tell people that they should

be transitive because we told them so. We will suggest transitivity as a mode

of behavior that people would like to see themselves following. Similarly,

an axiom such as anonymity in social choice theory can be interpreted as

“wouldn’t you like to live in a society where people’s names do not affect the

outcome of social interaction, namely, where the axiom of anonymity holds?”

It follows that the success of a normative theory, paralleling that of a

descriptive theory, is in fitting observations. But the observations are not of

people’s behavior, rather — of their expressed wishes. A normative scientist

can therefore be thought of as trying to market her theories to her audience.

Should most of her listeners like the theory and decide to follow it (whether as

individuals or as a group), we will crown the theory a success. If her listeners

object, or just yawn and shrug their shoulders, we will have to admit that

43This definition also appears in Gilboa and Schmeidler (2001).
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theory failed as a normative one.44

What is meant by “what is meant”? A side comment may be due here:

when we ask above, “what is meant by...” we try to find definitions that are,

more or less, in accordance with common usage. In this sense, finding the

definition for a term — such as “normative”, “rational”, and so on — is a bit

like fitting a function to data. The data are positive and negative examples

— phenomena that we agree do and do not fit the term — and the function is

an attempt to find a simple characterization of the cases in which the term

is considered appropriate. So described, defining terms is a task of a purely

descriptive nature. In fact, it is completely equivalent to the task known as

“classification problem” in computer science/machine learning: faced with

positive and negative examples, one looks for a general rule, or at least an

algorithm, that may be of help in classifying future instances.

However, sometimes the act of definition may take a more normative

flavor: observing the usage of a certain term, one might conclude that some

of it is confusing, and that simple definitions would be more accurate if we

decide to use the term a little differently. This is what happens when someone

suggests that we stop referring to tomatoes as “vegetables”. This will also

happen in this course when I will ask you to use the word “rational” a little

differently than some of my colleagues do.

It is important to recall that definitions are up to us to choose. We are

free to define terms any way we wish. We should be clear on the definitions

to avoid unnecessary confusion. And we can ask ourselves which definitions

are the most useful for our discussion, but definitions do not designate any

innate properties that entities might or might not have. For instance, there

is no need to argue whether economics (or decision theory, or sociology) is a

science. We may define “science” in a way that includes economics or in a

44In fact, a theory in the social sciences has two souls: it can start as a descriptive theory
of behavior, and if it fails, we can also try to re-package it and market it as a normative
theory.
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way that doesn’t, depending on which generalizations will be easier to state

using the definition.45

Another comment that may be useful to bear in mind is that the classi-

fication of entities to those that satisfy a definition and those that don’t is

often blurred. For almost any dichotomous definition in real life one may find

examples that are a little unclear. This does not mean that the distinction

suggested by the definition is useless. It is sometimes hard to tell good from

evil, and yet this is not a useless definition. Even the distinction between

black and white has its grey areas.

Philosophy as a social science I’ll make one more personal comment and

then we’ll get back to business. I use the terms “descriptive” and “norma-

tive” theories in the context of the philosophy of science, namely, discussing

what scientific theories are and what they should be like. This may raise

the question, is philosophy of science similar to a social science, having a

descriptive and a normative interpretation?

My view is that much of philosophy is indeed a social science. This is

not only a minority view — most people I have mentioned this to think that

I’m completely out of my mind, and have no idea what philosophy is about.

Needless to say, it is also considered a major offence by philosophers. I will

nevertheless try to defend this definition.

First, I only refer to those parts of philosophy than I can understand.

Apparently, these are quite limited. If you excuse the personal confession,

I’ll admit that I suffer from a certain learning disability that makes me com-

pletely incapable of understanding metaphysics. As in the discussion of the

grue-bleen paradox above, I need to make things very concrete, preferably

modeled by sequences of 0’s and 1’s, to feel that I understood them. For

45This example is chosen to highlight the implicit assumption that the discussion is
conducted in good faith. If we are vying for resources of the National Science Foundation,
for instance, calling a field a “science” might have important political implications. We
assume here that we are among friends and can ignore such considerations.
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this reason, philosophers I talk to tell me that I systematically confound on-

tology with epistemology — when they are trying to discuss what exists, I

re-formulate the discussion in terms of what I can know, or grasp.46

But when I restrict attention to those philosophical discussions I can

understand, I find that they deal with phenomena related to the human mind

— how we think and how we should be thinking. This applies to philosophy

of mind and of language, to aesthetics and to ethics, to philosophy of science

and religion, and so on. Viewed as a collection of models of the way we think,

reason, believe, and so forth, philosophy gets, perhaps expectedly, very close

to psychology, which is typically viewed as a social science. Admittedly,

psychology is much more descriptive than is philosophy. The latter deals

much more with normative questions such as what should we believe, how

should we reason, how should we use language, do science, etc. But these

normative discussions may well be part of social science. More importantly,

these discussions are not divorced from descriptive ones. For instance, when

dealing with questions such as the problem of induction or free will, our use

of language or our moral judgment, our intuition provides the data for the

discussion. Free will would not be a problem if we didn’t have a sensation

of free will. Goodman’s paradox would not be puzzling if we didn’t have

a sense of what is a reasonable way to perform induction. Moral questions

would have no bite if we didn’t have a sense of right and wrong in at least

some situations of choice. In short — philosophy often resorts to data, namely

to our intuition and to common practice in our way of reasoning, forming

beliefs, talking, and so forth.

Even if you find my views quite outrageous, I would suggest that you

consider the distinction between descriptive and normative philosophy, a dis-

tinction which I find useful for organizing our discussion.

46I think that my fascination with axiomatizations goes back to the same problem:
translating potentially vague concepts such as “probability” and “utility” to observations
makes me feel that I understand these concepts better. Others feel that I miss something
deeper in this translation.
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7.3.2 A meta-scientific interpretation

At the end of the 19th century and the beginning of the 20th century there

were several philosophers of science — most of them physicists — who de-

voted a lot of thinking to what science should look like. Physics was making

tremendous progress at the time, but it had a long history that did not all

seem very fruitful from a scientific point of view. In parallel, there were other

fields that were making claims to the status of a science, but that seemed

quite different from physics. Most notably, Freud appeared on the stage, rev-

olutionizing psychology, but, at the same time, making claims that seemed

very hard to judge on a scientific basis. The question then arose, how should

science be conducted? What tells apart science from non-science?

The body of thought that I refer to is known as logical positivism. It

started in writings of thinkers such as Mach, Duhem, Bohr, Einstein, and

others, and culminated in what has become to be called the Received View,

and formulated by Carnap (1923). The principle of the Received View that

affected economics mostly was the notion that any theoretical concept that is

used in a theory should be related to observables. In the context of physics,

this meant that even something as intuitive as mass should be related to the

way in which it is measured. One can describe the procedure by which mass

is measured, say, weighing objects on a scale, and then, when the concept

is used in physical laws, one knows how the laws translate to observations.

Taking this view very seriously, some writers wondered whether one can

theorize about the mass of the sun, since the sun cannot be put on a scale to

be weighed. While this concern may seem a bit extreme, it gives us a sense

of how seriously these physicists were taking their notion of observability.47

47Quantum mechanics is considered to be the only field of science that was developed in
light of the Received View. Indeed, it puts a great emphasis on what can be measured. In
particular, Heisenberg’s Principle of Uncertainty discusses the fact that the world is not
deterministic insomuch as we can measure it. At the same time, modern development in
physics are often criticized for being observable only in theory, while in practice one can
never get the energy levels required to test them.
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Popper (1934) took the logical positivist approach a step further, and

insisted that theories should be falsifiable. As is well known, Popper ar-

gued that theories can never be proved, and that they can only be refuted,

of falsified. Emphasizing falsifiability, Popper argued that theories should

state what cannot happen. Ideally, he argued, theories should have only

universal quantifiers, for which it is easy to imagine a falsifying observation,

and not involve existential quantifiers, which cannot be falsified by a single

observation.

The notion of revealed preference in economics of the 20th century is ev-

idently an intellectual descendant of logical positivism. Whereas economists

in the 18th and 19th centuries felt at ease theorizing about such concepts as

utility, probability, or well-being, the discipline brought about by the logi-

cal positivist approach demanded that such concepts be defined in terms of

observables.48

Theorem 1 can be defined as a definition of “utility” along the lines sug-

gested by logical positivism: we consider binary choices as direct observa-

tions. Observing the decision maker choosing x where y was also available,

we claim that we observed x % y. The axioms of completeness and transitiv-

ity have direct observable meaning. Completeness implies that some choice

will be made, and, in fact, also that the same choice will be made in repeated

experiments. Transitivity also has a clear observational meaning. Separabil-

ity, by contrast, is not as obvious. We should be a bit suspicious as soon as

we notice that it involves an existential quantifier, and we know that Popper

didn’t like these. How would we know if the axiom is violated, namely if

there does not exist a countable set Z such that so and so happens? More-

over, since all the data we can hope ever to observe are finite, what is the

meaning of separability then?

48A similar development occurred in psychology. The rise of “behaviorist” psychology
in the mid-20th century in the US was an attempt to base psychology on observable
phenomena, veering away from psychoanalysis, which was one of Popper’s famous examples
of a non-scientific enterprise.
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Asmentioned above, here and in other axiomatizations later on, we should

expect to have some axioms that are needed for the mathematics to work,

but do not have a clear observable meaning. Axioms such as separability,

continuity, archimedeanity and so forth will be there because we need them.

They are stated in the language of the observable phenomena, but we do not

seriously think that they can be directly tested in experiments.49

Having made this concession, we go back to the interpretation of the

theorem as a definition of utility: the theorem suggests that the observable

meaning of utility maximization is completeness and transitivity. Moreover,

it tells us something not only about the existence of the function u but also

about its uniqueness. Here it turns out to be the case that the function is

far from being unique. Any monotone transformation thereof would do as a

utility function representing preferences.

This is a very important lesson that we learn from playing the logical

positivist game. Without the axioms, one may ask, for instance, whether

the utility function from money, u : R→ R, is concave or convex. One may
have some intuition for concavity based on the notion of decreasing marginal

utility. But one can also challenge this notion and argue that u is convex.

Which is a more plausible claim? The exercise of axiomatization tells us that

this is a meaningless debate. One function umay be concave, and a monotone

transformation thereof may be convex. In this case, the argument goes, the

concavity/convexity debate is devoid of empirical content. The two theories

are observationally equivalent. We should better save our time and efforts

and concentrate on other questions, which do have some empirical meaning,

and which can possibly be determined by observations. The exercise of an

axiomatization, asking what is the empirical import of a theoretical question,

can thus save us a lot of time. It tells us what are scientific questions that

49Sometimes we can test the implications of these axioms in conjunction with other
axioms. But this amounts to a test of a theory, rather than of each of its axioms. Axioms
can also be tested for plausibility by “thought experiments”, but these are not actual
observations and may, among other difficulties, be subject to various framing effects.
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are worth asking and what are metaphysical questions that will never be

determined by evidence.

I often wish I could leave this lesson at that. The fact that the utility

function is only ordinal (rather than cardinal) is perhaps the most obvious

contribution of the axiomatic approach when interpreted meta-scientifically.

Unfortunately, I do not believe in this claim. In the sub-section 7.4 I will

try to convince you that the utility function is, in reality, much more unique

than the theorem would have us believe.

The meta-scientific interpretation, being so closely related to measure-

ment, can also be used to elicit the utility function. This application is not

very obvious in this example, partly because the axioms are very simple, and

partly because they result in a class of functions that leaves a large degree

of freedom. However, in other axiomatizations in this course we will see that

the axioms can often suggest ways to measure, or calibrate theoretical con-

cepts. These measurement procedures may be useful for an experimentalist

who wishes to find a person’s utility function, or for the person herself, if she

wishes to ask herself simple preference questions, pinpoint her utility func-

tion, and then use it in more complicated problems. We will comment on

this type of application in many of the following axiomatizations.

7.3.3 A normative interpretation

The normative interpretation of Theorem 1 is perhaps the most straightfor-

ward. Consider an imaginary exchange with a decision maker (DM), who

needs to make a choice. Assume that this is a choice about where to live, or

whom to marry. The analyst (A), who wants to engage in normative science,

attempts to tell the decision maker how she should make decisions:

A: I suggest that you attach a utility index to each alternative, and choose

the alternative with the highest utility.

DM: Obviously you studied math.

A: A bit, so what?
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DM: You’ve been brainwashed. You think only in terms of functions. But

this is an important decision, there are people involved, emotions, these are

not functions! You obviously understand nothing about the human soul!

A: Let’s do it slowly. You will make a decision in the end, won’t you?

DM: And suppose I don’t — ?

A: Well, we can call that a decision, too. If this is included, you will make

a decision?

DM: OK, suppose I will.

A: Would you feel comfortable with cycling among three possible options?

DM: What do you mean?

A: Preferring x to y, and then y to z, but then again z to x.

DM: No, this is very silly and counterproductive. I told you that there

are people involved, and I don’t want to play with their feelings.

A: Good. So now let me tell you a secret: if you follow these two condi-

tions — making decisions, and avoid cycling, then you can be described as if

you are maximizing a utility function. Wouldn’t you like to bring it forth and

see explicitly what function you will end up maximizing? Is it more rational

to ignore it? Moreover, choosing a function and maximizing it may be the

only known algorithm to avoid indecision or incoherent decisions — isn’t this

another reason to specify your function?

This is supposed to be the way that the axioms are used normatively

— they are used as rhetorical devices, as a way to convince the decision

maker that the theoretical procedure of utility maximization, which may

otherwise appear arbitrary and perhaps inappropriate, actually makes sense.

Observe that the way the analyst used the axioms above is consistent with

our notion of a normative theory — the decision maker is the ultimate judge.

If she rejects the axioms, the analysts will have to go back to the drawing

board. Suggesting the axioms as normative criteria is an attempt to model

the decision maker preferences — not over the actual choice but over the type

of procedure she would like to follow, or the type of decision maker she would
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like to be.50

7.3.4 A descriptive interpretation

Suppose that we are interested in descriptive theories only. What purpose

do the axioms serve? If the axiomatization, as Theorem 1, is a characteri-

zation theorem, it provides two equivalent descriptions of the same theory.

The theory does not become more or less accurate as a result of having an

equivalent description thereof.

Yet, axiomatizations are useful for descriptive purposes as well. First,

the axioms define the exact scope of phenomena that are consistent with

the theory. In particular, they clarify when (if at all) the theory may be

refuted. Second, the axioms can help us test different ingredients of the

theory separately. Especially if the theory does not perform very well and we

wish to amend it, it may be useful to test each axiom separately and see which

one should be modified to obtain better predictions. Third, and perhaps

most importantly, the axioms are needed when theories are not expected to

be accurate descriptions of reality. This point calls for elaboration.

If an economic theory is tested directly in terms of the accuracy of its

predictions, it should not matter which description, out of several equivalent

ones, is used for the test. But we often view economic theories only as

metaphors, illustrations, or some other notion of the kind. That is, the

theories are tools that help us think about problems, but they need not be

taken literally. As such, theories are used as rhetorical devices also when

50Gilboa, Maccheroni, Marinacci, and Schmeidler (2008) focus on another normative
interpretation of axioms, which is their application in concrete cases. According to this
interpretation, the decision maker need not be aware of universal statements (such as
the axioms) or of theorems (such as the representation theorem discussed), but only of
instances of the axioms. Thus, the decision maker may agree that, since she preferred a to
b and b to c, she should better prefer a to c, and she may even agree with this statement for
any specific a, b, c that are brought before her. But she need not be aware, let alone agree
with the statement “For every x, y, z, if..., then...”. In this interpretation, this general
statement, as well as the theorem using it, are part of the knowledge of the analyst, but
not necessarily of the decision maker.
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interpreted descriptively.

Consider an example. Suppose that A and B engage in a heated debate

about the merits and woes of globalization. A brings the first welfare theorem

as a reason to allow free trade and support globalization. B counters that

the theorem discusses Pareto optimality, which is defined in terms of max-

imization of utility functions, and therefore has limited applicability. “No

one walks around maximizing utility functions. Only sick minds can view

human beings this way. The welfare theorems refer to non-existent entities

that should better never come into existence.”

In response, A can patiently go through a dialog (similar to that above),

getting B to admit that most human beings, no matter how free their souls

are and how unique they are in human history, can be thought of as making

decisions, and making them in a transitive way. Then A can say “Ah-ha! If

you admit that this is how people behave, for the most part, you have just

admitted that people maximize a utility function, for the most part.”

Precisely because economic theories are not accurate, and are not ex-

pected to be accurate, their representation matters. A theory can appear

more or less plausible given a different mathematical formulation. If accuracy

is directly tested, different representations would lead to the same results.

But when accuracy is only roughly and informally assessed, representation

can make a difference.

In this context, mathematical results, and, in particular, characterization

theorems can be viewed as “framing effects” (Tversky and Kahneman, 1981):

equivalent representations should be just as compelling. And yet, they are

not. In our example, the same theory is much more compelling when framed

in the language of completeness and transitivity than in the language of

utility maximization.

Mathematical economics is often associated with a modernist view of the

profession, believing in a clear and testable objective reality which, presum-

ably, mathematical machinery may help us decipher. By contrast, post-
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modern theories suggest that objective reality does not exist, and that the

scientific arena is a battlefield in which different groups in society compete

for power by constructing “reality” and “evidence”, which are but rhetori-

cal devices. This view is typically not associated with formal mathematical

analysis. We find, however, that mathematics may be useful in a postmodern

view of the profession even more than in a modern one. Precisely because

theories are rhetorical devices, their representation matters. Indeed, if it’s

all about rhetoric, what better rhetorical device can one suggest than a sur-

prising mathematical proof?

7.4 Limitations

As mentioned above, the meta-scientific interpretation of the result was sup-

posed to tell us to what extent the utility function u is observable. Specifi-

cally, we are told that since the only observable data are binary choices, the

function is only ordinal, given up to an arbitrary monotone transformation.

This is one of the most basic, as well as most prominent examples in which

the axiomatic approach teaches us something new and even counter-intuitive.

As a person who makes a living out of axiomatizations, it is therefore painful

to admit that this lesson is misleading. The fact is that in real preferences

there is much more information than in binary relations. So much more in-

formation, that the utility function, to the extent that we can observe it, is

probably cardinal after all.

7.4.1 Semi-orders

Psychophysics It might have happened to you that you were carrying

a pile of papers, or clothes, and didn’t notice that you dropped a few. The

decrease in the total weight you were carrying was probably not large enough

for you to notice. Two objects may be too close in terms of weight for us to

notice the difference between them.

This problem is common to perception in all our senses. If I ask you
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whether two rods are of the same length or not, there are differences that

will be too small for you to notice. The same would apply to your perception

of sound (volume, pitch), light, temperature, and so forth. The fact that our

perceptive capabilities are limited has long been recognized. It has also been

observed that our perception obeys certain laws.

Weber (1834) noticed the following regularity: consider a certain mea-

surable stimulus S (to a given person under given conditions). Consider the

minimal increase in S that is needed for the person to notice the difference,

namely, the just noticeable difference (jnd), ∆S. Next consider varying the

initial stimulus S. For every initial level S we may find a different jnd,

∆S = ∆S(S). Weber’s Law51 states that the two are proportional. That is,

there exists a constant k > 0 such that
∆S

S
= k.

For example, suppose that I show you two rods, one of length of one foot,

and the other — 1.1 feet. Suppose you can tell that the latter is longer than

the former, but that this is the minimal length for which you can discern the

difference. Next assume that I show you a rod of two feet, and compare it

to an even longer rod. The law states that the minimal length at which you

would notice the difference is 2.2 feet.

The constant k may naturally depend on the person and the experimental

conditions, such as the amount of light in the room, the distance from the

rods, etc. But if we hold all these fixed, the law says that k does not change

with S. As any law in the social (or even medical) sciences, the accuracy

of Weber’s law should not be expected to be perfect. But it is apparently a

rather good approximation.52

51The literature often refers to the “Weber-Fechner Law”. Daniel Algom has pointed out
to me that Fechner’s (1860) contribution is quite different from Weber’s (1834). Weber
dealt only with just-noticeable differences on the stimulus scale, whereas Fechner was
interested also in a quantitative theory of subjective sensation. (See Marks and Algom,
1998.) Since our focus here is only on the ability to discern differences, rather than on
modeling subjective sensation, Weber’s law is the appropriate reference.
52Fechner’s law, stating that subjective sensation is a logarithmic function of physical
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It is important to emphasize that the definition of “discerning the dif-

ference” is probabilistic. If we ask a participant in an experiment to tell us

which of two rods is longer, we do not expect the success rate (in identifying

the longer rod) to switch from 50% (chance level) to 100% as ∆S crosses

the threshold kS. The transition in the probability of detection is bound to

be continuous, and the operational definition of “discern the difference” is

“identifies the larger stimulus with probability at least p”, where p = 75% is

a popular value in experiments.

Intransitive indifference Motivated by Weber’s law, Luce (1956) sug-

gested to apply the same logic to the measurement of utility. His starting

point was that, due to our imperfect perception ability, our preferences can-

not possibly be transitive. Luce provided the following example. Suppose

that I offer you two cups of coffee, one without any sugar, and another in

which I put one grain of sugar. Do you think you will be able to tell the

difference? If your answer is positive, cut the grain in half. At some point

you will have to concede that your palate will not be so refined as to tell

one cup from the other. In this case, you will also have to admit that you

are indifferent between them. Indeed, how can you strictly prefer one to the

other if you won’t even be able to tell which is which?

To state the obvious, one may be indifferent between two alternatives

that are very different from each other. You can find a price of, say, a

vacation package that would make me precisely indifferent between taking

the vacation or foregoing it and keeping my money. Thus the inability to

perceive differences is sufficient, but not necessary for indifference.

Let us now consider two cups of coffee, one with a single grain of sugar,

and one with two. If we denote by ci a cup with i grains of sugar, it seems

likely that we will observe ci ∼ ci+1 for every i ≥ 0, simply because a single

stimulus, has often been challenged. (See Stevens, 1957, Marks and Algom, 1998.) Weber’s
law, restricted to the notion of discernability, is still considered a robust finding. (My
source here is, again, Daniel Algom.)
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grain is never observable. However, if % were transitive (as Theorem 1 as-

sumes), ∼ would also be transitive, and one would find that ci ∼ cj for every

i, j ≥ 0, that is, that two cups of coffee with any amounts of sugar in them
are equivalent in the eyes of the decision maker. This is clearly unrealistic.

It seems natural to relax the assumption that the indifference relation is

transitive. Proximity is typically not a transitive relation. “Sitting next to”,

“bordering on”, “being in an ε neighborhood of” are all intransitive binary

relations. “Being closer than the just noticeable difference” belongs with

these relations.

Refining preference theory Luce (1956) went on to redefine observable

preference. He considered a binary relation P on a set of alternatives X.

The relation P is interpreted as strict preference, where I = (P ∪P−1)c — as
absence of preference in either direction, or “indifference”.53 Suppose that,

in the spirit of Weber’s law, we are interested in a utility representation of

the following type: we say that u : X → R L-represents P if, for all x, y ∈ X,

xPy iff u(x)− u(y) > 1. (13)

Luce formulated three axioms, which are readily seen to be necessary for

an L-representation. He defined a relation P to be a semi-order if it satisfied

these three axioms, and analyzed its properties.

To state the axioms, it will be useful to have a notion of concatenation

of relations. Given two binary relations, B1,B2 ⊂ X×X, let B1B2 ⊂ X×X

be defined as follows: for all x, y ∈ X,

xB1B2y iff ∃z ∈ X, xB1z, zB1y.

We say that P (or (P, I)) is a semi-order if:

L1. P is irreflexive (that is, xPx for no x ∈ X);

53For a relation P ⊂ X×X, define P−1 to be the inverse, i.e., P−1 = {(x, y)|(y, x) ∈ P}.
Thus, I = (P ∪ P−1)c is equivalent to say that xIy if and only if neither xPy nor yPx.
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L2. PIP ⊂ P

L3. PPI ⊂ P .

The meaning of L2 is, therefore: assume that x, z, w, y ∈ X are such that

xPzIwPy. Then it has to be the case that xPy. Similarly, L3 requires that

xPy will hold whenever there are z, w ∈ X such that xPzPwIy.

Since I is reflexive, each of L2, L3 implies transitivity of P (but not of

I!). But L2 and L3 require something beyond transitivity of P . For example,

if X = R2 and P is defined by Pareto domination, P is transitive but you

can verify that it satisfies neither L2 nor L3.

Conditions L2 and L3 restrict the indifference relation I. For the Pareto

relation P , the absence of preference, I, means intrinsic incomparability.

Hence we can have, say, xPzPwIy without being able to say much on the

comparison between x and y. It is possible that y is incomparable to any

of x, z, w because one of y’s coordinates is higher than the corresponding

coordinate for all of x, z, w. This is not the case if I only reflects the inability

to discern small differences. Thus, L2 and L3 can be viewed as saying that

the incomparability of alternatives, reflected in I, can only be attributed to

issues os discernability, and not to fundamental problems as in the case of

Pareto dominance.

It is an easy exercise to show that L2 and L3 are necessary conditions for

an L-representation to exist. It takes more work to prove the following.54

Theorem 2 (Luce) Let X be finite. P ⊂ X ×X is a semi-order if and only

if there exists u : X → R that L-represents it.

We will not prove this theorem here,55 but we will make several comments

about it.

1. You might wonder what happened to a third natural condition, namely:

L4. IPP ⊂ P .
54The existence result is not explicit in Luce (1956).
55The proof can be found in Beja and Gilboa (1992).
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It turns out that it is implied by L2 and L3, as is L3 by L2 and L4.

2. If you drop L3 (but do not add L4), you get a family of relations

that Fishburn (1970b, 1985) defined as interval relations. Fishburn proved

that, if X is finite, a relation is an interval relation if and only if it can be

represented as follows: for every x ∈ X we have an interval, [b(x), e(x)], with

b(x) ≤ e(x), such that

xPy iff b(x) > e(y)

that is, xPy iff the entire range of values associated with x, [b(x), e(x)], is

higher than the range of values associated with y, [b(y), e(y)].

Given such a representation, you can define u(x) = b(x) and δ(x) =

e(x)− b(x) to get an equivalent representation

xPy iff u(x)− u(y) > δ(y) (14)

Comparing (14) to (13), you can think of (14) as a representation with a

variable just noticeable difference, whereas (13) has a constant jnd, which is

normalized to 1.

3. If P is a semi-order, one can define from it a relation Q = PI ∪ IP .

That is, xQy if there exists a z such that (xPz and zIy) or (xIz and zPy).

This is an indirectly revealed preference: suppose that xIy but xPz and zIy.

This means that a direct comparison of x and y does not reveal a noticeable

difference, and therefore no preference either. But, when comparing x and y

to another alternative z, it turns out that x is different enough from z to be

preferred to it, while y isn’t. Indirectly, we find evidence that x is actually

better than y for our decision maker, even though the decision maker herself

cannot discern the difference when the two are presented to her. (Similar

logic applies if xIPy.)

If P is a semi-order, Q turns out to be the strict part of a weak or-

der. Moreover, one can get an L-representation of P by a function u that
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simultaneously also satisfies

xQy iff u(x)− u(y) > 0.

4. When X is infinite, there are two types of difficulties. The first has to

do with numerical representations in general, as in the case of Theorem 1,

and calls for appropriate separability conditions. The second has to do with

the fact that we want a fixed just noticeable difference, which we normalized

to 1. Suppose, for instance, that we have an infinite but bounded sequence

of strict preferences, say, x1Px2P...Px∗. If the sequence is infinite, we will

not be able to find a real number that is low enough to be the u-value of x∗.

Necessary and sufficient conditions on P that would allow an L-representation

in general are provided in Beja and Gilboa (1992).

Uniqueness of the utility function We finally get back to the question

of uniqueness. How unique is a utility function that L-represents a semi-order

P? In general the answer may be very messy. Let us therefore suppose that

we are dealing with a large X and that there are two functions u, v : X → R
such that, for all x, y ∈ X,

xPy ⇔ u(x)− u(y) > 1 ⇔ v(x)− v(y) > 1

xQy ⇔ u(x)− u(y) > 0 ⇔ v(x)− v(y) > 0

and that range(u) = range(v) = R. Assume without loss of generality that
u(0) = v(0) = 0. The functions u and v can be quite different on [0, 1]. But

if x is such that u(x) = 1, we will also have to have v(x) = 1. To see this,

imagine that v(x) > 1. Then there are alternatives y with v(y) ∈ (1, v(x)).
This would mean that, according to v, yP0, while according to u, yI0, a

contradiction.

The same logic applies to any point we start out with. That is, for every

x, y,

u(x)− u(y) = 1 ⇔ v(x)− v(y) = 1
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and this obviously generalizes to (u(x) − u(y) = k ⇔ v(x) − v(y) = k) for

every k ∈ Z. Moreover, we obtain

|u(x)− v(x)| < 1 ∀x.

In other words, the just noticeable difference, which we here normalized

to 1, has an observable meaning. Every function that L-represents P has to

have the same jnd. Similarly, if we consider any two alternatives x and y and

find that

3 < u(x)− u(y) < 4

we know that these inequalities will also hold for any other utility function

v. And the reason is, again, that utility differences became observable to

a certain degree: we have an observable distinction between “greater than

the jnd” and “smaller than (or equal to) the jnd”. This distinction, however

coarse, gives us some observable anchor by which we can measure distances

along the utility scale: we can count howmany integer jnd steps exist between

alternatives.

One can make a stronger claim if one recalls that the semi-orders were

defined for a given probability threshold, say, p = 75%. If one varies the

probability, one can obtain a different semi-order. Thus we have a family

of semi-orders {Pp}p>.5. Under certain assumptions, all these semi-orders
can be represented simultaneously by the same utility function u, and a

corresponding family of jnd’s, {δp}p>.5 such that

xPpy ⇔ u(x)− u(y) > δp

xQy ⇔ u(x)− u(y) > 0.

In this case, it is easy to see that the utility u will be unique to a larger

degree than before. We may even find that, as p → .5, δp → 0, that is,

that if we are willing to make do with very low probabilities of detection, we

will get very low jnd’s, and correspondingly, any two functions u and v that

L-represent the semi-orders {Pp}p>.5 will be identical.
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Observe that the uniqueness result depends discontinuously on the jnd δ:

the smaller is δ, the less freedom we have in choosing the function u, since

sup |u(x) − v(x)| ≤ δ. But when we consider the case δ = 0, we are back

with a weak order, for which u is only ordinal.

One can argue that the jnd steps on the utility scale are psychologically

meaningful. I may ask you if you prefer to be able to consume a worth of $100

to $0 a day, and whether you prefer to consume a worth of $200 to $100 a day.

I trust that in both cases the answer will be in the affirmative. Perhaps I can

also ask you what would make a bigger difference in your utility level — the

increase from $0 to $100 or from the latter to $200. You may or may not be

willing to respond to such questions.56 Even if you are, your microeconomics

teacher may come to haunt you at night, asking in a menacing tone, “but

what does it mean?”. Indeed, in the absence of additional structure (such

as lotteries, states of the world, or additional goods that can be traded off

with money) you will be hard-pressed to give a decision situation in which

these comparisons correspond to different choices. But you will be able to

say, “Let’s count how many jnd’s are there between $0 and $100, and then

do the same for $100 and $200.” When you start with $0 you are probably

hungry and homeless. The first $5 a day buy you a meal, which is a huge

difference in your well-being. In fact, a fraction of a meal is very noticeable

if you are starving. But the next $5 are less meaningful, and the difference

between $100 and $105 a day may not be noticeable. Thus, in the range

$100-$200 there will be fewer just noticeable differences than in the range

$0-$100.

The intuition of this example is precisely the ancient intuition for which

economists used to believe that the utility function exhibits decreasing mar-

ginal utility. When Daniel Bernoulli (1738) suggested the expected utility

resolution to his St. Petersburg’s paradox, he argued that the marginal util-

ity of money is inversely proportional to the amount of money one already

56Alt (1936) derived a cardinal utility based on comparisons of this nature.
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has.57 We therefore find that the intuitive discussions of the behavior of the

marginal utility in the 18th and 19th centuries were not as meaningless as

modern economics would have us believe.58

7.4.2 Other ways to measure utility

The previous discussion suggests that real preferences have much more infor-

mation in them than a simple weak order %. When we observe the choices
of real people, we find that choices have a random component to them. In-

deed, discrete choice theory, which is widely used in marketing, attempts to

explain consumer behavior by assuming that choice is probabilistic, and by

asking what factors affect the distribution of choice. Using probabilities of

choice as additional data, we have argued that these additional data suffice

to pin down a utility function with much less degrees of freedom than do

deterministic choice models.

The probability of choice is not the only additional source of information

we may have on consumer preferences. We may measure response times,

speculating that larger differences in utility might be reflected in shorter re-

sponse times. And we may also use neurological studies, using brain activity

to identify strength of preferences.

It turns out that the notion of an ordinal utility function, and the belief

that it is meaningless to discuss utility differences are artifacts of a mathe-

matical model. Deciding to model preferences by a weak order is a modeling

choice. It greatly simplifies our lives as we do not need to deal with messy

objects such as probabilities of choice. Economic theory opted for a model

that ignores some of the data in favor of analytical ease. This is a perfectly

57Obviously, from u0(x) ∝ 1
x we obtain the logarithmic function that solved Bernoulli’s

problem.
58One may try to push this line of thought a little further, and ask whether just notice-

able differences may help us solve problems of interpersonal comparisons of utility. Gilboa
and Lapson (1995) contains results that can be interpreted as derivation of utilitarianism
based on this idea. (This interpretation does not appear in the paper because, to be
honest, the editor was unconvinced that it adds much to the paper.)
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legitimate choice to make. But it is not perfectly legitimate to decide to

ignore some observable data, and then declare as meaningless questions that

could be answered using the data we chose to ignore.
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8 The Role of Theories

8.1 Theories are always wrong

In the heat of the debate regarding the uniqueness of the utility function we

may have failed to highlight some observations regarding the way we think

about theories. We have to discuss it at some point, and this seems as good

as any.

Transitivity of preferences implies transitivity of indifference, and we con-

vinced ourselves that this is a highly idealized assumption. We even con-

cluded that transitivity is the main culprit in obtaining the wrong conclu-

sion that the utility function is only ordinal. At the same time, we argued

that it might be a “legitimate” assumption. How can an assumption that is

violated by all people almost all the time be legitimate? What is meant by

a “legitimate” or “reasonable” assumption?

Let us consider an example. Suppose that A and B debate the issue of

globalization, as in (7.3.4). A mentions the welfare theorems, and B counters

that it relies on the assumption of transitive indifference, which is totally and

absolutely false. What would you say?

You may wonder whether competitive equilibria exist, and whether they

are optimal when weak orders are replaced by semi-orders.59 But you may

also feel that the argument is besides the point. We are mature enough

to understand that our theories are not perfect descriptions of reality, that

they are simplifications, abstractions, illustrations, caricatures60, metaphors,

or any other term that you may use to downplay the theorist’s aspirations.

Theories are never correct, and in the case of the social sciences they tend

to be almost always wrong. The question, therefore, is not whether they are

right or wrong, but whether they are wrong in a way that invalidates the

conclusions drawn from them. In other ways, theories are tools for reasoning

59For an existence result, see Jamison and Lau (1977).
60A term used by Gibbard and Varian (1978).
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and rhetorical devices.61 In the context of the debate above, there appears

to be no reason to question the intuition behind the welfare theorems due to

the issue of just noticeable differences.

Contrast imperfect perception with another problem. Suppose that tran-

sitivity is violated because of the existence of cycles of strict preferences. For

example, consider a bowl of peanuts, where you strictly prefer to consume

(i+1) peanuts to i for every i ≥ 0, but you also strictly prefer to consume 0
peanuts to 100. This is typical of self-discipline problems: there is a tempta-

tion to obtain a short-run payoff, and it competes with a long-run goal. The

long run goal is, overall, much more important than the short-run payoff.

But in a sequence of pairwise comparisons, the short-run payoff is clear and

palpable, while the long-run goal is not affected in a significant way. More-

over, there is a temporal dimension that allows this sequence of comparisons

to lead to a sequence of often-irreversible decisions. The decision maker ends

up with an alternative that she judges to be much worse than the one she has

started out with. Thus, people find themselves smoking and drinking more

than they would have liked to, staying in bed in the morning longer than

they can afford to, and incurring debt more than they think they should.

Faced with such violations of transitivity, in particular in a classical eco-

nomic context such as debt, one may ask whether the conclusions of the wel-

fare theorems are indeed valid. For example, suppose that B were suggesting

to limit people’s ability to use credit cards. A insists that consumers are

sovereign decision makers, and if they decide to incur debt, so they should.

Any intervention in the credit market, says A, will result in a Pareto domi-

nated outcome. But then B counters that decision makers who have cyclical

preferences often regret their past choices, something that does not happen

to the agents in the competitive equilibrium model of Arrow and Debreu.

You may or may not agree with B’s claim, but I think that it seems much

61The term “Rhetorical device” need not be understood as a negative term, suggesting
manipulability and dishonesty. It may well refer to a sound argument that convinces us
of a certain conclusion.
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more relevant than the just noticeable difference claim. Both claims are based

on violations of the same axiom, namely, transitivity. The jnd violation of

transitivity is rather universal and ubiquitous — all people, practically in all

problems, are prone to exhibit imperfect perception abilities. Yet, we feel

that just noticeable differences are irrelevant to our views on competitive

equilibria. Violations of transitivity due to lack of self-control, by contrast,

are relevant only to some people in some decision problems. Many people do

not have self-control problems, and there are many economic decisions that

do not pose temptations and do not require self-control in the first place.

And yet, despite the more limited scope of violations of transitivity in the

second example, we may find that these violations undermine certain results

of transitivity more than do the violations in the first example.

It follows that the degree to which we are willing to accept an assumption

does not need to be a monotone function of its degree of accuracy. The

assumption is not tested only based on its direct implications, but also based

on its indirect implications, which may involve non-trivial theorems. That

is, we wish to test the validity of an assumption in the context of a theory,

based on the accuracy of all the conclusions drawn from the theory, and not

just by those drawn from the assumption in isolation.

The above brings to mind Friedman’s celebrated argument that theories

should not be judged based on the validity of their assumptions, but on that

of their conclusions. This argument is a bit extreme, and I would be careful

to accept it. First, if a “theory” may also be an assumption, such as transi-

tivity, the assumption is also a conclusion of the theory (in a trivial sense). It

is generally hard to draw a sharp distinction between assumptions and con-

clusions, completely ignoring the veracity of the former and testing only the

latter. Second, Friedman’s argument has been used for many years by econo-

mists to fend off various attacks, especially from psychologists. Justifiably

or not, it has become a bit of an excuse not to question the theory.

However, if we refine the argument a bit, it may make more sense. Con-
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sider a given theory, and imagine a “grade sheet” for it, in which there are

many instances where its predictions are tested and compared to data. Some

of these predictions are very concrete, such as “If A chose x over y and y

over z, A will choose x over z”, and some predictions are more involved, such

as “Equilibria will be Pareto optimal”. Different scientists may put differ-

ent weights on these predictions. Marketing researchers may focus on the

prediction of choices made by individual consumers, whereas economic theo-

rists will find that the welfare theorems are the most important conclusions.

Depending on the goal for which a theory is developed, it may be viewed

as more or less accurate. And it is possible that certain assumptions jointly

lead to conclusions that are more accurate than any of the assumptions when

tested in isolation.

8.2 Theories and conceptual frameworks

The logical positivist heritage (coupled with Popper’s contribution) suggests

that our theories should be falsifiable. The axiomatization we saw above is

formulated in terms of conditions that can be violated. However, a theory

such as utility maximization is not always easy to falsify. Any empirical phe-

nomenon we observe can be explained in many ways, and often can also be

made to conform to the theory, where the latter is appropriately interpreted,

re-cast, and re-formulated. Only in carefully designed controlled experiments

can one hope to unambiguously refute a theory, but then one faces questions

of external validity: the fact that a theory fails in artificial experimental

environment may not be an indication that it will also fail in natural envi-

ronments, to which it was presumably intended in the first place.

Not all theories in economics or in social science in general seem to have

such flexibility. There are theories whose predictions are very concrete, such

as, say, the relation between money supply and inflation. However, this

does not seem to be the case with utility maximization, expected utility

maximization, Nash equilibrium, and so forth.
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In Gilboa and Schmeidler (2001) we referred to such structures as “con-

ceptual frameworks”. A conceptual framework has a language to describe

phenomena, and a subset of predictions (or recommendations, if we adopt

a normative interpretation). But it does not specify a mapping from the

theoretical concepts to real-life ones. For example, the framework of utility

maximization deals with alternatives and choices, and it makes some predic-

tions about the latter. But it does not commit to a particular set of alter-

natives. These may be consumption bundles, Arrow securities, consumption

plans, and so forth. Moreover, an apparent violation of the predictions in

one mapping may be explained away under another mapping, embedding the

observations in a richer context.

Similarly, expected utility theory has both a language and a set of predic-

tions, but it can be applied to a variety of states of the world and outcomes.

Game theory, coupled with the prediction of (say) Nash equilibrium (Nash,

1951) provides precise predictions if we know who the players are, what are

their strategies, and so forth. But a given observation that may be at odds

with the prediction can be explained away by embedding the game in a

larger context, involving more players, more time periods, additional sources

of uncertainty, and so forth.

This description may suggest that conceptual frameworks are an evasive

tool designed by theorists to avoid refutations. Moreover, it appears that

theories in economics are not very clear about their status: they pretend to

have observable meaning and to be falsifiable, but then, when falsification

is a real danger, they are not committed to any prediction. Can we take

economic theories seriously?

The argument is that we can, and, in fact, that the dual status of eco-

nomic “theories” — as conceptual frameworks and as specific theories — can

actually be beneficial. Recall that we are not hoping to obtain theories that

are very accurate. We use the theories more often as reasoning aids. As such,

it is important to know that the theories have some empirical content, and
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that, given a particular mapping from theoretical objects to actual ones, a

theory is not vacuous. At the same time, we would needlessly limit ourselves

if we commit to a particular mapping and do not allow ourselves, for example,

to apply lessons from consumer theory to decision under uncertainty, from

one-shot to repeated games, and so forth. Precisely because we take a hum-

ble point of view, according to which theories are never correct, we can be

justified in re-interpreting the theoretical terms, hoping to gain insight where

precise prediction may be beyond our aspirations. At the same time, we do

and should use the guidelines of logical positivism. This is not because we

pretend to construct theories that are as valid as theories in physics. Rather,

it is because some of the lessons regarding how physics should not be done

apply to our field as well.

Having said that, it is always a good idea to keep in mind that one has

a choice among conceptual frameworks, and that their scope of applicability

is not universal. A conceptual framework will seldom be refuted by empiri-

cal evidence. However, its language may appear less appropriate to describe

certain phenomena, and its predictions may seem to require too much adap-

tation in order to be valid. We should not wait for a conceptual framework

to be refuted in order to replace it. It suffices that the framework be incon-

venient for us to look for alternatives.

8.3 Logical positivism as a metaphor

The Received View was considered to be the dominant view of the way sci-

ence should be conducted for about three decades. In the 1950’s there were

two directions of attacks on the Received View (and on logical positivism).

One direction was, as it were, internal, and challenged the theory on its own

grounds. Quine (1953) called into question the distinction between analytic

and synthetic propositions, namely, propositions whose truthfulness follows

from definitions versus propositions with an external empirical content. Han-

son (1958) went further to challenge the distinction between theories and
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observations, arguing that the latter were always theory-laden.

The other direction was quite different from the Received View itself, and

it is often described as a switch from the philosophy of science to the sociology

of science. It started with Kuhn (1951), who asked questions about scientific

paradigms and the way they changed. Kuhn described scientific evolution as

a social phenomenon that need not converge to any objective truth. Rather,

it was a process involving many factors, including accumulating evidence

on the one hand, but also personal interests and tastes on the other. This

post-modern line of thought has been brought to extremities by Foucault,

Latour, and other writers who deny the existence of any objective truth, and

conceptualize all scientific activity as a struggle for power, influence, and

other resources.

Between the two lines of attacks, logical positivism lost much of its luster.

It is to a large extent discredited. As an outside observer who is certainly

not a professional philosopher, I may not be qualified to comment on this

state of affairs. But you realize that I’m going to anyway. So the truth is

that I can’t help feeling that some lessons from the social sciences might be

useful for philosophy (which, you may recall, I view as a social science).

Let us start with the analytic critique of logical positivism. The fact that

one may not be able always to draw the line between analytic and synthetic

propositions, or between theory and evidence, does not make these distinc-

tions useless. In economic theory we are accustomed to discuss imprecise

theories, or rather, too precise theories that are at odds with a messy reality.

If we take the view that philosophy of science is a social science, and if we

consider logical positivism as a model of how science should be done, it is

not such a bad model. It can serve as a rather good approximation and as a

guideline, not to mention as a mental toolbox to carry with us when we face

specific problems.

The post-modern critique sometimes appears to confound descriptive and

normative claims. It may well be true that science will never be able to be
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completely objective. But this does not mean that it shouldn’t try. It is

probably right that every scientist will forever be influenced by the social

milieu in which he was brought up, his financial incentives, and his never-

ending conflict with his father. But this is a far cry from accepting these

forces and legitimizing them. There are instances of postmodern critique that

sound to me similar to the argument, “We know that wars are inevitable.

Hence, let’s start shooting people.”

To conclude, I find that, at least for the purposes of economic theory,

logical positivism is alive and well. We have to understand it as a normative

theory of the philosophy of science, as it was originally intended to be. The

sociology of science, much more descriptive by nature, might indicate what

is the scope of expectations we can reasonably entertain about the theories

we can develop. As is usually the case, descriptive theories inform us about

the practicality of normative ones. But we should not confuse the descriptive

with the normative. We should bear in mind that logical positivism itself, as

a theory, is but an illustration, or a metaphor, but we should not dismiss it

as wrong.
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9 von Neumann and Morgenstern’s Theorem

9.1 Background

The idea of maximization of expected utility first appeared explicitly in

Daniel Bernoulli’s St. Petersburg paradox, (Bernoulli, 1738), which goes

as follows.62 You are faced with a sequence of tosses of a fair coin. Every

toss has a probability of 50% to come up on Head and on Tail, and the game

will end the first time the coin comes up Head. If this happens on the n-th

trial, you get 2n dollars. The “paradox” is that most people are only willing

to pay a finite (and rather small) amount of money to play this game, de-

spite the fact that the expected value is infinite. As a resolution, Bernoulli

suggested that people maximize the expectation of a utility function, rather

than of monetary value. If the function is logarithmic, the expected utility

is finite and the paradox is resolved.63

As an aside, it may be worthwhile to wonder what is meant by a “para-

dox”. For many people, there is nothing paradoxical about the fact that

people do not necessarily maximize expected value. It is possible that an

example showing this was deemed “paradoxical” to Bernoulli’s audience in

1738 but not to graduate students in economics in the 21st century. Indeed,

the notion of a “paradox” is a subjective and quantitative matter. A con-

tradiction between assumptions (implicit or explicit) is paradoxical to the

extent that it makes you feel uncomfortable, and it depends on how strongly

you are attached to the assumptions. A paradox that leaves one sleepless

may be shrugged off by another. Similarly, a “resolution” to a paradox is

any attempt to avoid the contradiction, and it may be convincing to some

while not to others.

Whether we think of Bernoulli’s example as a “paradox” or not, it mo-

62As discussed above, expected utility was used implicitly already by Pascal.
63Clearly, one can generate similar paradoxes for any utility function that is unbounded.

However, unbounded sums of money anyway do not exist, so that it’s doubtful that it is
worth the trouble fine-tuning the utility function to avoid any such possible “paradoxes”.
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tivated expected utility theory, as a descriptive theory of choice under risk.

Following its introduction by Bernoulli, expected utility theory was rather

dormant for about 200 years. In 1928 von Neumann proved the maxmin the-

orem, stating that for finite two-person zero-sum games the maxmin equals

the minmax in mixed strategies. This common value is called the “value” of

the game.

It is hard to exaggerate the importance of this theorem to game theory

(and to mathematics). Maxmin strategies constitute a Nash equilibrium

in two-person zero-sum games. In fact, the two concepts coincide for such

games, and the general definition of a Nash equilibrium was considered by

some a natural extension of the maxmin. There is even a claim that von

Neumann viewed Nash’s contribution as a minor generalization of the value

(regarding both the concept and its proof of existence). It is a more or

less established historical fact (that is, pure gossip) that von Neumann and

Morgenstern were left cold by Nash’s definition of equilibrium (and proof of

existence), since they believed that the key to understanding non-zero-sum

games was cooperative, rather than non-cooperative game theory.

Gossip aside, there is no denying that von Neumann and Morgenstern

and many game theorists after them believed that two-person zero-sum were

solved by the notion of maxmin strategies and the value. The power of the

maxmin solution resides in the equality between the security levels that the

two players can guarantee themselves. If player I can choose a strategy that

guarantees her a payoff of v or more, while player II can guarantee that

he won’t pay player I more than v, the argument goes, why would they

choose any other strategies? Playing something else would be betting on

your opponent being less smart than you are, or betting on him betting on

you being less smart than he is, or... Well, I suppose that nowadays the

maxmin solution appears much less compelling that it did at the time, but

this is a separate issue. The main point is that this beautiful theorem only

works if we use mixed strategies. And it relies on the assumption that, when
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players choose among mixed strategies, they select a strategy that has the

highest expected payoff.

But why would players choose mixed strategies that maximize expected

payoff, as opposed to, say, evaluate strategies by some combination of expec-

tation and variance, or of higher moments, or by the median payoff? This is

where the von-Neumann-Morgenstern theorem comes into play.

Observe that the theorem is about decisions under “risk”, that is, in

circumstances with known probabilities, as opposed to situations of “uncer-

tainty”, where probabilities are not known.64 As such, the von-Neumann-

Morgenstern (vNM) theorem does not help us understand the concept of

probability, though it may shed light on the meaning of utility.

9.2 The theorem

vNM’s original formulation involved decision trees in which compound lot-

teries were explicitly modeled. We use here the more compact formulation

of Jensen (1967) and Fishburn (1970a), which implicitly assumes that com-

pound lotteries are simplified according to Bayes’s formula. Thus, lotteries

are defined by their distributions, and the notion of “mixture” implicitly sup-

poses that the decision maker exhibits sophistication in terms of her proba-

bility calculations.

Let X be a set of alternatives. There is no additional structure imposed

on it. As in Theorem 1, X can be a familiar topological and linear space,

but it can also be anything you wish. In particular, X need not be restricted

to a space of product-bundles such as Rl
+ and it may include outcomes such

as, God forbid, death.

The objects of choice are lotteries with finite support. Formally, define

L =

½
P : X → [0, 1]

¯̄̄̄
#{x|P (x) > 0} <∞,P

x∈X P (x) = 1

¾
.

64This distinction goes back to Knight (1921). See also Keynes (1921).
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Observe that the expression
P

x∈X P (x) = 1 is well-defined thanks to the

finite support condition that precedes it.

A mixing operation is performed on L, defined for every P,Q ∈ L and

every α ∈ [0, 1] as follows: αP + (1− α)Q ∈ L is given by

(αP + (1− α)Q) (x) = αP (x) + (1− α)Q(x)

for every x ∈ X. The intuition behind this operation is of conditional prob-

abilities: assume that I offer you a compound lottery that will give you the

lottery P with probability α, and the lottery Q with probability (1− α). If

you know probability theory, you can ask yourself what is the probability

to obtain a given outcome x, and observe that it is, indeed, α times the

conditional probability of x if you get P plus (1 − α) times the conditional

probability of x is you get Q.

Since the objects of choice are lotteries, the observable choices are mod-

eled by a binary relation on L, %⊂ L× L. The vNM axioms are:

V1. Weak order: % is complete and transitive.
V2. Continuity: For every P,Q,R ∈ L, if P Â Q Â R, there exist

α, β ∈ (0, 1) such that

αP + (1− α)R Â Q Â βP + (1− β)R.

V3. Independence: For every P,Q,R ∈ L, and every α ∈ (0, 1),65

P % Q iff αP + (1− α)R % αQ+ (1− α)R.

The weak order axiom is not very different from the same assumption

in consumer theory or in choice under certainty, as in Theorem 1 above. It

65It is sufficient, in fact, to require one direction of the following equivalence. But it
seems to me that it is hard to be convinced of one direction without being convinced of
the other.
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has the same strengths and weaknesses as in the context of choice under

certainty, and will not be dwelt on here.

Continuity may be viewed as a “technical” condition needed for the math-

ematical representation and for the proof to work. Indeed, one cannot design

a real-life experiment in which it could be directly violated, since its violation

would require infinitely many observations.6667 But continuity can be hypo-

thetically “tested” by some thought experiments (Gedankenexperiments).

For instance, you can imagine very small, but positive probabilities, and try

to speculate what your preferences would be between lotteries involving such

probabilities.

If you’re willing to engage in such an exercise, consider the following

example, supposedly challenging continuity: assume that P guarantees $1,

Q — $0, and R — death. You are likely to prefer $1 to nothing, and both — to

death, that is, to exhibit preferences P Â Q Â R. The axiom then demands

that, for a high enough α < 1, you will also exhibit the preference

αP + (1− α)R Â Q,

namely, that you will be willing to risk you life with probability (1 − α) in

order to gain $1. The point of the example is that you’re supposed to say

that no matter how small is the probability of death (1 − α), you will not

risk your life for a dollar.

A counter-argument to this example (suggested by Raiffa) was that we

often do indeed take such risks. For instance, suppose that you are about to

buy a newspaper, which costs $1. But you notice that it is distributed at no

cost on the other side of the street. Would you cross the street to get it for
66Observe that our emphasis here is on direct observable tests of each axiom, as opposed

to tests of an axiom in the context of others, namely tests of sets of axioms or of a theory.
This is in line with the basic idea that the axioms should tell us what the precise observable
implications of the theory are.
67As you may recall, Popper didn’t like axioms that involve existential quantifiers. He

would have said here, “I told you you should avoid these. Now how will you be able to
refute continuity? What observations will prove that there are no α, β ∈ (0, 1) such that
so-and-so?!”
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free? If you answer yes, you are willing to accept a certain risk, albeit very

small, of losing your life in order to save one dollar.

This counter-argument can be challenged in several ways. For instance,

you may argue that even if you don’t cross the street your life is not guar-

anteed with probability 1. Indeed, a truck driver who falls asleep may hit

you anyway. In this case, we are not comparing death with probability 0 to

death with probability (1−α). And, the argument goes, it is possible that if

you had true certainty on your side of the street, you would have not crossed

the street, thereby violating the axiom.

It appears that framing also matters in this example: I may be about to

cross the street in order to get the free copy of the paper, but if you stop

me and say, “What are you doing? Are you nuts, to risk your life this way?

Think of what could happen! Think of your family!” — I will cave in and

give up the free paper. It is not obvious which behavior is more relevant,

namely, the decision making without the guilt-inducing speech or with it.

Presumably, this may depend on the application.

In any event, we understand the continuity axiom, and I also think that

we are willing to accept it as a reasonable assumption for most applications.

The independence axiom is related to dynamic consistency. However, it

involves several steps, each of which could be and indeed has been challenged

in the literature. (See Karni and Schmeidler, 1991a.) Consider the following

four choice situations:

1. You are asked to make a choice between P and Q.

2. Nature will first decide whether, with probability (1 − α), you get

R, and then you have no choice to make. Alternatively, with probability α,

Nature will let you choose between P and Q.

3. The choices are as in (2), but you have to commit to making your

choice before you observe Nature’s move.

4. You have to choose between two branches. In one, Nature will first

decide whether, with probability (1− α), you get R, or, with probability α,
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you get P . The second branch is identical, with Q replacing P .

Clearly, (4) is the choice between αP + (1−α)R and αQ+ (1−α)R. To

relate the choice in (1) to that in (4), we can use (2) and (3) as intermediary

steps, as follows. Compare (1) and (2). In (2), if you are called upon to act,

you are choosing between P and Q. At that point R will be a counterfactual

world. Why would it be relevant? Hence, it is argued, you can ignore the

possibility that did not happen, R, in your choice, and make your decision

in (2) identical to that in (1).

The distinction between (2) and (3) has to do only with the timing of

your decision. Should you make different choices in these scenarios, you

would not be dynamically consistent: it is as if you plan (in (3)) to make

a given choice, but then, when you get the chance to make it, you do (or

would like to do) something else (in (2)). Observe that when you make a

choice in problem (3) you know that this choice is conditional on getting to

the decision node. Hence, the additional information you have should not

change this conditional choice.

Finally, the alleged equivalence between (3) and (4) relies on changing the

order of your move (to which you already committed) and Nature’s move. As

such, this is an axiom of reduction of compound lotteries, assuming that the

order of the draws does not matter, as long as the distributions on outcomes,

induced by your choices, are the same.

Whether you find the independence axiom compelling or not, I suppose

that its meaning if clear. We can finally state the theorem:

Theorem 3 (vNM) %⊂ L × L satisfies V1-V3 if and only if there exists

u : X → R such that, for every P,Q ∈ L

P % Q iff
X
x∈X

P (x)u(x) ≥
X
x∈X

Q(x)u(x).

Moreover, in this case u is unique up to a positive linear transformation (plt)
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9.3 Proofs

Necessity of the axioms and the uniqueness of u in case the representation

holds are rather straightforward. The main part is the proof that the axioms

are sufficient for the representation. There are several ways to prove it.

Naturally, there is quite a bit of overlap between different proofs, and if

you go through each of them carefully you’ll find many familiar lemmas. In

particular, it is useful to prove preferences along “segments” between two

lotteries are monotonic: for every P,Q,

(i) if P Â Q, then for every α, β ∈ [0, 1],68

αP + (1− α)Q % βP + (1− β)Q ⇔ α ≥ β. (15)

(ii) if P ∼ Q, then for every α ∈ [0, 1],

αP + (1− α)Q ∼ P . (16)

Equipped with these, we may proceed.

9.3.1 The algebraic approach

This approach to the proof is used in Kreps (1988, pp. 49-57) and in Mas-

Colell, Whinston, and Green (1995, pp. 176-178). One of its merits is that it

suggests a way of elicitation of the decision maker’s utility function. It goes

roughly as follows. First assume that there are a best and a worst outcomes,

x∗ and x∗, respectively. Without loss of generality, assume that x∗ Â x∗

(otherwise you can show that ∼= L× L, and a constant u does the job).

We first wish to show that for every x there exists a unique αx ∈ [0, 1]
such that

x ∼ αxx
∗ + (1− αx)x∗

where x∗ and x∗ denote the lotteries that guarantee the outcomes x∗ and x∗

with probability 1. (Here and in the sequel we abuse notation shamelessly.)

68This requires two consecutive applications of the Independence axiom. See Lemma
5.6 in Kreps (1988), pp. 46-48.
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To see this, consider the sets

{α ∈ [0, 1] |αx∗ + (1− α)x∗ Â x}

and

{α ∈ [0, 1] |x Â αx∗ + (1− α)x∗} .

You observe that they are non-empty, open (due to the continuity axiom),

and disjoint. Hence, they cannot cover [0, 1]. This implies that there exists

αx ∈ [0, 1] for which equivalence x ∼ αxx
∗ + (1 − αx)x∗ holds. Fact (15)

implies that αx is unique.

Now we consider a lottery P , say (p1, x1; p2, x2; ...; pn, xn) (that is, P (xi) =

pi > 0), and you find a sequence of lotteries Pi such that (i) P0 = P ; (ii)

Pi ∼ Pi−1; and (iii) the support of Pi is contained in {x∗, x∗, xi+1, ..., xn}.
That is, at each stage we are going to eliminate one xi from the support of

P , replacing it by a combination of x∗ and x∗. To see that this can be done,

observe that

P = p1x1 + (1− p1)

µ
p2

1− p1
, x2; ...;

pn
1− p1

, xn

¶
.

Thus, P can be thought of as a mixture of x1 and a lottery P1 =³
p2
1−p1 , x2; ...;

pn
1−p1 , xn

´
involving only x2, ..., xn. When you do this induc-

tively, you find that

P ∼ Pn =

ÃX
i

piαxi

!
x∗ +

Ã
1−

X
i

piαxi

!
x∗

and all that is left, in view of (15), is to define u(x) = αx.

If there are no best or worst outcomes, we can take an arbitrary pair

x∗ Â x∗, and follow the reasoning above to obtain an expected utility rep-

resentation for all lotteries whose support is between x∗ and x∗ (preference-

wise). We then consider an x that is outside of this range, say x Â x∗, and

repeat the construction for the pair x Â x∗. Because the preference “inter-

val” [x∗, x] contains [x∗, x∗], the utility function we get for the former has to
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agree (up to a plt) with the one we first constructed for the latter. Repeat-

ing this exercise for every x defines u over all of X, so that expected utility

maximization represents %.

9.3.2 A geometric approach

To understand the geometry of the independence axiom, it is useful to con-

sider the case in which X contains only three pairwise-non-equivalent out-

comes. Say, X = {x1, x2, x3} where x1 Â x2 Â x3. Every lottery in L is a

vector (p1, p2, p3) such that pi ≥ 0 and p1 + p2 + p3 = 1. For visualization,

let us focus on the probabilities of the best and worst outcomes. Formally,

consider the p1p3 plane: draw a graph in which the x axis corresponds to p1
and the y axis — to p3. The Marschak-Machina Triangle is

∆ = {(p1, p3) | p1, p3 ≥ 0, p1 + p3 ≤ 1} .

Thus, the point (1, 0) corresponds to the best lottery x1 (with probability 1),

(0, 0) — to x2, and (0, 1) — to the worst lottery x3. Every lottery P corresponds

to a unique point (p1, p3) in the triangle, and vice versa. We will refer to the

point (p1, p3) by P as well.

Consider the point (0, 0). By reasoning as in the previous proof, we

conclude that, along the segment connecting (1, 0) with (0, 1) there exists a

unique point which is equivalent to (0, 0). Such a unique point will exist along

the segment connecting (1, 0) with (0, c) for every c ∈ [0, 1]. The continuity
axiom implies (in the presence of the independence axiom) that these points

generate a continuous curve, which is the indifference curve of x2.

Fact (16) means that the indifference curves are linear. (Otherwise, they

will have to be “thick”, and for some c we will obtain intervals of indifference

on the segment connecting (1, 0) with (0, c).) We want to show that they are

also parallel.69

69You may suggest that linear indifference curves that are not parallel would intersect,
contradicting transitivity. But if the intersection is outside the triangle, such preferences
may well be transitive. See Chew (1983) and Dekel (1986).

121



Consider two lotteries P ∼ Q. Consider another lottery R such that

S = R + (Q − P ) is also in the triangle. (In this equation, the points are

considered as vectors in ∆.) We claim that R ∼ S. Indeed, if, say R Â S the

independence axiom would have implied 1
2
R+ 1

2
Q Â 1

2
S+ 1

2
Q, and, by P ∼ Q,

also 1
2
S+ 1

2
Q ∼ 1

2
S+ 1

2
P . We would have obtained 1

2
R+ 1

2
Q Â 1

2
S+ 1

2
P while

we know that these two lotteries are identical. (Not only equivalent, simply

equal, because S + P = R+Q.) Similarly S Â R is impossible. That is, the

line segment connecting R and S is also an indifference curve. However, by

P −Q = R − S we realize that the indifference curve going through R,S is

parallel to the one going through P,Q. This argument can be repeated for

practically every R if Q is sufficiently close to P . (Some care is needed near

the boundaries.) Thus all indifference curves are linear and parallel.

But this is what we need: linear and parallel lines can be described by a

single linear function. That is, you can choose two numbers a1 and a3 such

that all the indifference curves are of the form a1p1 + a3p3 = c (varying the

constant c from one curve to the other). Setting u(x1) = a1, u(x2) = 0, and

u(x3) = a3, this is an expected utility representation.

This argument can be repeated for any finite set of outcomes X. “Patch-

ing” together the representations for all the finite subsets is done in the same

way as in the algebraic approach.

9.3.3 A separation argument

Finally, it is worth noticing that the vNM theorem is basically a separating

hyperplane theorem. To see the gist of the argument, assume thatX is finite,

though the same idea applies more generally. Embed L in RX , so that we

have a linear space, and we can discuss, for P,Q ∈ L ⊂ RX also the difference

P −Q ∈ RX .

Consider the sets

A =
©
P −Q ∈ RX |P % Q

ª
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and

B =
©
P −Q ∈ RX |Q Â P

ª
.

We first show that R % S if and only if (R−S) ∈ A. This is true because,

if R − S = P − Q, we find, by reasoning similar to that used above, that

P % Q iff R % S. Similarly, S Â R if and only if (R− S) ∈ B.

Next we show that both A and B are convex. This is again an implication

of the independence axiom: suppose, say, (P −Q), (R−S) ∈ A and consider

α(P −Q) + (1− α)(R− S) = (αP + (1− α)R)− (αQ+ (1− α)S) .

P % Q and R % S imply (by two applications of the independence axiom)

αP + (1− α)R % αQ+ (1− α)R % αQ+ (1− α)S

which means that (αP + (1− α)R)− (αQ+ (1− α)S) ∈ A. The same rea-

soning applies to B.

Finally, we need to show that A is closed and that B is open. The

topology in which such claims would be true is precisely the topology in

which the continuity axiom guarantees continuity of preferences: an open

neighborhood of a point P is defined by

∪R∈L {αP + (1− α)R |α ∈ [0, εR)}

where, for every R ∈ L, εR > 0. You may verify that this topology renders

vector operations continuous. (Observe that this is not the standard topology

on RX , even if X is finite, because εR need not be bounded away from 0.

That is, as we change the “target” R, the length of the interval coming out

of P in the direction of R, still inside the neighborhood, changes and may

converge to zero. Still, in each given directionR−P there is an open segment,
leading from P towards R, which is in the neighborhood.)

When you separate A from B by a linear functional, we can refer to the

functional as the utility function u. Linearity of the utility with respect to

the probability values guarantees affinity, i.e., that

u(αP + (1− α)R) = αu(P ) + (1− α)u(R).
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Since every P has a finite support, using this property inductively results in

the expected utility formula.70

9.4 The three interpretations

The various interpretations of the vNM theorem mirror those of Cantor’s

theorem. From a meta-scientific viewpoint, the theorem provides a definition

of a utility function, which is unique up to positive linear transformations,

that is, “cardinal”. Since this is the degree to which the measurement of

temperature is unique, we feel that this is a rather concrete measure. The

uniqueness of the utility on the set X was obtained at the cost of more

observations — we assume that preferences are observable not only over X,

but also over lotteries over X, namely L.

From a normative viewpoint, one may read the axioms and become con-

vinced that expected utility is the right way to make decisions. For the

appropriate choice of the utility function u, there is no need to take higher

order moments. There is also a good reason to prefer the expectation of the

utility to, say, its median as the index to be maximized.

Finally, adopting a descriptive viewpoint, the axiomatization may greatly

enhance one’s confidence in models that assume that all traders in the stock

market are expected utility maximizers, or that so are economic agents who

consider insuring their property.

It is worthwhile to emphasize the possibility of elicitation of utility.71 The

analysis above, and, in particular, the first proof of the theorem, suggests

simple questions that can identify the utility function of a given decision

maker. For instance, we may ask the decision maker, for which probability p

will a bet (p, $1000; (1−p), $0) be equivalent to $500 with certainty. Suppose
70Herstein and Milnor (1953) generalized the vNM theorem to general mixture spaces,

in which a mixture operation is defined abstractly. Their result guarantees represenation
by an affine utility as above.
71This point was not very obvious in Cantor’s theorem because the utility there is only

ordinal.

124



that the answer is p = .6. We can then choose a normalization of the utility

function, say, u($0) = 0 and u($1000) = 1 and find that we have to have

u($500) = .6. Continuing in this way, we can map the entire utility function

by using only lotteries involving at most two outcomes each (in fact, two

outcomes on the one hand versus a single, certain outcome on the other).

Such an elicitation of the utility function may be useful for descriptive

and normative purposes alike. Starting with a descriptive example, suppose

that we wish to predict an individual’s behavior in a complex environment

such as trading in the stock market. Measuring one’s utility in such an envi-

ronment may be a difficult task, and it may also involve significant errors of

measurement. It might make sense to measure the utility in simple labora-

tory experiments, and then use it for predictions in more complicated ones

as well. This program may fail if the experiment has no external validity,

say, if it is very artificial. Yet, it holds some promise, based on simplification

of the problem.

Considering a normative interpretation, assume that the decision maker

is faced with a choice between two complicated lotteries. She is a bit at a

loss, looking at all the numbers involved. She may try to find some anchor,

perhaps a dominance argument, perhaps some form of cancellation of iden-

tical elements, but the problem remains stubbornly complex. If we were to

ask the decision maker which lottery she prefers, she may well say that she

doesn’t yet know.

But if the decision maker likes the vNM axioms and would like to see

herself satisfying them, we can suggest to her to calibrate her utility as above,

considering only very simple problems, for which she probably has a better

intuition, namely, better defined preferences. From these choices we can map

the utility function and use it for complicated decisions. We can go back to

the decision maker and explain to her that the choice we computed in the

complicated case is the only one that is consistent with the axioms and with

her choices in the simple situations.
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The procedure for elicitation of the utility function does not logically

necessitate the axioms. One may come up with simple preference prob-

lems that would uniquely identify the utility function based on the mathe-

matical formula alone. Yet, the language of the axioms, which is concrete

and observable, and the quest for simple axioms, often facilitate the elicita-

tion/calibration problem significantly.
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10 de Finetti’s Theorem

10.1 Motivation

We are finally back to discussing probabilities. To remind you where we left

off, we had three definitions of probabilities. One, based on the principle

of indifference, didn’t bring us very far. The second, based on frequentism,

was also limited. Subjective probabilities, by contrast, seemed very general

and very flexible. But they are so general and so flexible, that one might

wonder if they can’t perhaps explain everything, accommodate everything,

and eventually become useless.

In order for the concept to be useful, subjective probabilities need a bit

more discipline. Some rules that would tell us when our subjective proba-

bilities are given by a probability measure p and when — by q. What is the

difference, indeed, between such subjective probabilities? Is it possible that

the difference between two such measures is not observable? And is it the

case that everything can be explained by subjective probabilities? If so, what

will the logical positivists say?

Driven by such concerns, Ramsey (1931) suggested that subjective prob-

abilities be derived from observable choice behavior. If subjective probabili-

ties are computed from one’s willingness to bet, they will have an observable

meaning. Hopefully, we will be able to prove that two different probability

measures are reflected in different modes of behavior, and can be thus told

apart based on observations. Similarly, one should hope that certain modes

of behavior will not be consistent with subjective probabilities, rendering the

concept meaningful.

In order to relate subjective probabilities to observable data that go be-

yond mere declaration of such probabilities, one needs to think how are sub-

jective probabilities used. This is a basic lesson that we have learned from

logical positivism (and from Wittgenstein): concepts acquire meaning from

the way we use them. If we know the answer to How (we use a concept), we
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know the answer to What (it is), and probably this is the only meaningful

answer we can hope for in terms of essence.

How should subjective probabilities be used, then? One possible way is

via maximization of expected payoff. It is not a very satisfactory approach

from an economic point of view, because we already decided that maximiza-

tion of expected utility is a much more reasonable objective function than is

the maximization of expected monetary payoff. Yet, one has to start some-

where. The contributions of de Finetti date back to the 1930’s, that is, they

predated von-Neumann and Morgenstern. He was not primarily an econo-

mist and he satisfied himself with maximization of expected value (rather

than expected utility) with a subjective prior. This next step, of subjective

expected utility maximization, had to await Savage.

For the time being, let us accept the idea that we are going to maximize

expected payoff with respect to this yet-undefined subjective probability.

With this type of usage in mind, what is probability?

10.2 The theorem

de Finetti considered monetary bets on states of nature. Assume that we

are about to watch a horse race, and there are n states, 1, ..., n, each corre-

sponding to a particular horse winning the race. (We are going to state and

prove the theorem for finitely many states, though the extension to infinite

spaces is straightforward.)

A bet is a function from states to monetary outcomes, that is x ∈ X = Rn,

with xi denoting the gain in case horse i wins. A negative value xi indicates

that we need to make a net payment if i wins. Thus, the bet (1,−1, 0, 0, ...0)
indicates a bet, at even odds, on the fact that horse 1 will win rather than

horse 2, where the bet is off if neither horse wins.

de Finetti divided bets to acceptable versus unacceptable, and required

that these sets be convex. (See de Finetti, 1937, and the translation in

Kyburg and Smokler, 1964.) I present here a slightly different formulation,
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in line with the binary preferences approach taken in the other chapters.

Assume that the decision maker has a preference order over bets, %⊂
X ×X. Consider the following axioms:

D1. Weak order: % is complete and transitive.
D2. Continuity: For every x ∈ X, the sets {y|x Â y}, {y|y Â x} are

open72.

D3. Additivity: For every x, y, z ∈ X, x % y iff x+ z % y + z.

D4. Monotonicity: For every x, y ∈ X, xi ≥ yi for all i ≤ n implies

x % y.

D5. Non-triviality: There exist x, y ∈ X such that x Â y.

Axioms D1 and D2 are familiar from consumer theory. Additivity, D3,

is evidently a key axiom here, and it is, unfortunately, not very compelling.

Knowing the end of the story, that is, the theorem that’s coming up, we

can’t expect it to be any more compelling, in any concrete example, than is

expected value maximization, because the latter will be shown equivalent to

axioms D1-D5. Axiom D3 would make sense if we assumed neutrality to risk.

For example, assume that n = 2 and that (1,−1) ∼ (−1, 1). (Intuitively,
you find the two horses just as likely to win.) Then, by setting x = z =

(1,−1) and y = (−1, 1), we obtain that D3 implies (2,−2) ∼ (0, 0). Observe
that the equivalence (1,−1) ∼ (−1, 1) is compatible with various attitudes
toward risk. This equivalence would hold for any expected utility maximizer

who considers the two states equally likely. Yet, in the presence of D3, the

indifference to permutation of the states also implies that the random variable

is equivalent to its expectation.

The monotonicity axiom, D4, is more palatable, and, in fact, hardly ob-

jectionable. Since the outcomes are all monetary payoffs, D4 only requires

that the decision maker prefer (weakly) more to less, no matter at which

states the higher payoffs are offered.

72Here we refer to the standard topology on Rn. The condition is therefore identical to
the continuity of consumer preferences in Debreu (1959).
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Finally, the non-triviality axiom is needed for the sole purpose of finding

a (subjective) probability measure. Without it the representation would still

hold, but the vector p would be the zero vector, and we won’t be able to

interpret it as a probability.

The theorem states

Theorem 4 (de Finetti) %⊂ X × X satisfies D1-D5 if and only if there

exists a probability vector p ∈ ∆n−1 such that, for every x, y ∈ X,

x % y iff px ≥ py.

Moreover, in this case p is unique.

As a reminder, ∆n−1 is the set of probability vectors on {1, ..., n}. The
notation px refers to the inner product, that is,

P
i pixi, which is the expected

payoff of x relative to the probability p.

10.3 A proof

Let us first show that D1-D3 are equivalent to the existence of p ∈ Rn such

that

x % y iff px ≥ py

for every x, y ∈ X. The proof is very similar to the last proof of the vNM

theorem.

Necessity of the axioms is immediate. To prove sufficiency, observe first

that, for every x, y ∈ X,

x % y iff x− y % 0.

Define

A = {x ∈ X |x % 0}

and

B = {x ∈ X |0 Â x} .
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Clearly, A ∩ B = ∅ and A ∪ B = X. Also, A is closed and B is open. If

B = ∅, p = 0 is the vector we need. Otherwise, both A andB are non-empty.

We wish to show that they are convex. To this end, we start by observing

that, if x % y, then x % z % y where z = x+y
2
. This is true because,

defining d = y−x
2
, we have x + d = z and z + d = y. D3 implies that

x % z ⇔ x+ d % z + d, i.e. x % z ⇔ z % y. Hence z Â x would imply y Â z

and y Â x, a contradiction. Hence x % z, and z % y follows from x % z.

Next we wish to show that if x % y, then x % z % y for any z =

λx+ (1− λ)y with λ ∈ [0, 1]. If λ is a binary rational (i.e., of the form k/2i

for some k, i ≥ 1), the conclusion follows from an inductive application of

the previous claim (for λ = 1/2). As for other values of λ, z Â x (y Â z)

would imply, by continuity, the same preference in an open neighborhood of

z, including binary rationals.

It follows that one can separate A from B by a linear function. That is,

there exists a linear f : X → R and a number c ∈ R such that

x ∈ A iff f(x) ≥ c

(and x ∈ B iff f(x) < c). Since 0 ∈ A, c ≤ 0. If c < 0, consider x with

f(x) = 3c
4
. Then x ∈ A but 2x ∈ B. That is, x % 0 but 0 Â 2x, in

contradiction to D3 (coupled with transitivity). This implies that c = 0.

Denoting pi = f(ei) (where ei is the i-th unit vector), we obtain

x % y

iff x− y % 0

iff x− y ∈ A

iff f(x− y) ≥ 0

iff px ≥ py.
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It is easily verifiable that, given the above, D4 is equivalent to pi ≥ 0,
and D5 — to the claim that p 6= 0, or

P
i pi > 0. Under this conditions, p

can be normalized to be a probability vector, and it is the unique probability

vector representing preference as above.

10.4 The three interpretations

As in the previous two axiomatizations, three types of interpretations are

possible. At the meta-scientific level, we now have a definition of subjective

probabilities. These are the probabilities such that, when used for maximiza-

tion of expected value, predict betting behavior. We know precisely under

what conditions people cannot be assumed to have subjective probabilities of

this nature, namely, when they violate the axioms. Thus, there is no danger

that expected value maximization will be a vacuous theory. It is surely a

refutable one. Alas, it may be too easily refuted, and we will need to seek a

more general definition of subjective probabilities.

Normatively, if the axioms are compelling, they convince us that expected

value maximization, relative to our own subjective probability, is how we wish

to make decisions. Descriptively, they may convince us that such a model

captures more than one would have believed based on the mathematical

formulation alone.

The axioms can also inspire elicitation procedures in order to measure

subjective probability.73 In particular, monotonicity and continuity (coupled

with the weak order assumption) suggest that preferences between simple

bets may suffice to identify specific parameters. We may, for instance, ask

the decision maker at what odds she is willing to bet between horses 1 and

2. If we find that she expresses indifference between (α,−1, 0, ..., 0) and
(0, 0, 0, ..., 0), we should conclude that p2 = αp1. Alternatively, we can ask

her what amount of money β is the certainty equivalent of a gain of $1 in

73Admittedly, as in the case of vNM’s theorem, one could come up with the elicitation
procedure independently of the axioms.
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case horse 1 wins, that is, what β solves (1, 0, 0, ..., 0) and (β, β, β, ..., β) —

and conclude that p1 = β.

Again, the idea behind such elicitation would be that the decision maker

may be able to provide answers that she is comfortable with, and that involve

little noise, for simple preference questions, and then the theory can help us

(or the decision maker herself) infer from the answers to the simple questions

what should be the answers to complicated questions, if the theory is to be

followed.

Finally, let us mention possible defenses of the additivity axioms D3.

All are rather lame, but they make points that may be important in other

contexts. First, one may restrict attention to small amounts of money, for

which risk neutrality may not be a bad approximation. (Admittedly, one may

then obtain responses that are very noisy.) Second, one may assume that the

utility function was somehow independently measured, and that the payoffs

are given in terms of its unit, in “utils”, as it were. (This interpretation would

require that the additivity axiom be construed as adding utils.) Third, one

may imagine that the payoffs are given in terms of objective probabilities.

This requires that such objective probabilities be given and agreed upon, as

in the case of a fair roulette wheel. If such a wheel exists, you can interpret a

vector x as specifying the number of slots on the roulette wheel in which you

win. In other words, the vector x guarantees you a fixed payoff, say $100,

with probability xi/37 if horse i wins the race. In this case, even if you think

in terms of expected utility (rather than expected value), you should find the

additivity axiom acceptable.74

74This is basically the idea of Anscombe-Aumann’s model. See below.
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11 Savage’s Theorem

11.1 Background

de Finetti’s theorem provides a definition of subjective probability, but it

assumes additivity. This axiom is defensible if someone is risk neutral, ex-

pected utility maximizer whose payoff is measured in probabilities, or if,

more generally, we know the utility function of the decision maker. In other

words, if we have a utility function as a measurement tool, we can use it to

measure subjective probabilities, as in the elicitation procedures described

above. Mathematically, de Finetti’s theorem was no more than a separat-

ing hyperplane argument — if we have a linear structure of payoffs, we use a

duality theorem to obtain a measure on states.

vNM’s theorem is almost completely symmetric. vNM assumed that

probabilities are well-defined, and measured utility in terms of probability.

Again, this is evident both in the elicitation procedures sketched above, and

in the mathematical proof. The last proof of the theorem described above

was intended to highlight the fact that vNM’s theorem is again a separating

hyperplane argument. This time, a linear structure is given on the prob-

ability measures, and the duality theorem helps us obtain numbers on the

outcomes.

The two theorems are very elegant and powerful, but, taken together,

they do not tell a complete story. von Neumann and Morgenstern tell us

how to obtain utilities given probabilities, and de Finetti does the opposite

— shows how to obtain probabilities given utilities. But where do we start?

One may try certain hybrid approaches. For instance, assume that we do

understand what probabilities mean when we discuss games of chance, such

as roulette wheel, dice, and coins. We can use these as an input to a vNM

model, and measure the decision maker’s utility function. We can then use

that utility to measure the subjective probabilities of other events a la de

Finetti.
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Such a procedure will suffer, however, from the difficulty that it presumes

that the same utility function applies in both set-ups, that is, that the utility

function measured in the context of games of chance will be the one used

when other events are involved. This is not a trivial assumption due to

possible interactions of an “outcome” and the circumstances in which it was

obtained. For instance, when playing the roulette wheel I may have a utility

that is defined solely on money, whereas in a real-life situation my utility

would depend on other factors, such as fairness, equality, and so forth. Even

if we restrict attention to monetary payoffs, it is possible that the very set-up

of the chance game makes me much more risk-loving than I am in real life.

That is, various problems that fall under the category of external validity

may make the utility function measured in chance games different from the

one appropriate to analyze other situations.

Another approach to measure subjective probabilities based on objective

ones is more direct. Rather than measuring the utility function, we can

devise experiments in which it is “cancelled out”. For instance, I can ask

you whether you prefer to get $100 in case of a stock market crash or in case

the roulette wheel, once vigorously spun, will stop on an even number. By

changing the number of outcomes on the wheel, I will be able to calibrate your

subjective probability irrespective of your utility function. To be precise, I

do need to know that you prefer $100 to $0, so as not to obtain responses of

complete indifference. But I need not worry about ratios of utility differences

such as [u($100)− u($0)]/[u($50)− u($0)].

This idea seems sound. Indeed, it was the motivation of Anscombe and

Aumann (1963), who believed that people understand subjective probabil-

ities by first understanding objective ones. According to their view, it is

actually an advantage of a theory to have the two types of probabilities —

objective ones, as in games of chance, and subjective ones — and explicitly

show how these can be compared by the decision maker.

However, it would seem conceptually more elegant to be able to derive
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probability and utility in tandem, without assuming any of these concepts

as a primitive of the model. This is what Savage (1954) did. He started

with a model that assumed only abstract states of the world and outcomes.

No numbers are to be seen in the model’s primitives, neither as measures of

plausibility of events nor as measures of desirability of outcomes. Savage’s

axioms are stated in this very primitive language, involving no numbers, mul-

tiplications, additions or similar mathematical machinery. And the theorem

shows that the axioms are equivalent to the existence of both a utility func-

tion and a probability measure, such that decisions are being made as if to

maximize the expectation of the utility relative to the probability measure.

Conceptually, Savage’s theorem is therefore much more satisfactory than

those of de Finetti or vNM. Moreover, Savage’s conceptual austerity is also

reflected in mathematical frugality: since Savage does not assume numbers

as part of the input, nor any linear operations, he has much less mathe-

matical apparatus to rely on. He cannot involve separating hyperplane the-

orems. Instead, he is constructing the numbers with his bare hands. As

a result, Savage’s theorem is also an impressive mathematical achievement.

The combination of a profound mathematical result with a towering concep-

tual achievement is awe-inducing. As Kreps (1988) puts it, Savage’s theorem

is the “crowning glory” of decision theory.

I start by describing the axioms and explaining the basic logic behind

each. I then describe the theorem and say a few words on the proof. The

following section deals with the definition of states of the world in Savage’s

model. It attempts to define the informal user manual for Savage’s model,

showing how the model does great, conceptually speaking, when properly

applied. Yet, some word of criticism will be unavoidable at that point. The

main critiques of the model will be described later on in a separate chapter.
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11.2 States, outcomes, and acts

Savage’s model includes two primitive concepts: states and outcomes. The

set of states, S, should be thought of as an exhaustive list of all scenarios that

might unfold. A state, in Savage’s words, “resolves all uncertainty”: it should

specify the answer to any question you might be interested in. The answer

should be deterministic. If, for instance, in a given state an act leads to a

toss of a coin, you should further split the state to two possible states, each

consistent with the original one, but also resolving the additional uncertainty

about the toss of the coin. The following chapter elaborates on this notion.

Observe that Savage considers a one-shot decision problem. If the real

problem extends over many periods, the decision problem considered should

be thought of as a choice of a strategy in a game. The game can be long

or even infinite. You think of yourself as choosing a strategy a priori, and

assuming that you will stick to it with no difficulties of dynamic consistency,

unforeseen contingencies, and so forth. This is symmetric to the conception

of a state as Nature’s strategy in this game. It specifies all the choices that

Nature might have to make as the game unfolds.

An event is any subset A ⊂ S. There are no measurability constraints,

and S is not endowed with an algebra of measurable events. If you wish to

be more formal about it, you can define the set of events to be the maximal

σ-algebra, Σ = 2S, with respect to which all subsets are measurable.

The set of outcomes will be denoted by X. An outcome x is assumed

to specify all that is relevant to your well-being, insomuch as it may be

relevant to your decision. In this sense, Savage’s model does not differ from

utility maximization under certainty (as in consumer theory) or from vNM’s

model. In all of these we may obtain rather counter-intuitive results if certain

determinants of utility are left outside of the description of the outcomes.

The objects of choice are acts, which are defined as functions from states
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to outcomes, and denoted by F . That is,

F = XS = {f | f : S → X} .

Choosing an act f , you typically do not know the outcome you will experi-

ence. But if you do know both your choice f and the state s, you know that

the outcome will be x = f(s). The reason is that a state s should resolve

all uncertainty, including what is the outcome of the act f . In particular, a

state s should tell you whether the statement “act f results in outcome x”

is true or false.

Acts whose payoffs do not depend on the state of the world s are constant

functions in F . We will abuse notation and denote them by the outcome they

result in. Thus, x ∈ X is also understood as x ∈ F with x(s) = x. There are

many confusing things in the world, but this is not one of them.

Since the objects of choice are acts, Savage assumes a binary relation

%⊂ F × F . The relation will have its symmetric and asymmetric parts, ∼
and Â, defined as usual. It will also be extended to X with the natural

convention. Specifically, for two outcomes x, y ∈ X, we say that x % y if

and only if the constant function that yields always x is related by % to the
constant function that yields always y.

Before we go on, it is worthwhile to note what does not appear in the

model. If you’re taking notes, and you know that you’re going to see a theo-

rem resulting in integrals of real-valued functions with respective to probabil-

ity measures, you might be prepared to leave some space for the mathematical

apparatus. You may be ready now for a page of some measure theory, de-

scribing the σ-algebra of events. You can leave half a page blank for the

details of the linear structure on X, and maybe a few lines for the topology

on X. Or maybe a page or so to discuss the topology on F . But none of

it is needed. Savage does not assume any such linear, measure-theoretic, or

topological structures. If you go back to the beginning of this sub-section,

you will find that it says only,
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There are two sets, S and X, and a relation % on XS.

11.3 Axioms

The axioms are given here in their original names, P1-P7. They do have

nicknames, but these are sometimes subject to debate and open to differ-

ent interpretations, and they therefore appear in the discussion but not in

the titles. The axioms are stated again in a more succinct form before the

statement of Savage’s theorems.

11.3.1 P1

P1 states that % is a weak order. The basic idea is very familiar, as are the
descriptive and normative justifications. At the same time, completeness is

a demanding axiom. We will discuss it at length later on (see 13.3). For the

time being, observe that all functions in F are assumed to be comparable.

Implicitly, this suggests that choices between every pair of such functions

can indeed be observed, or at least meaningfully imagined. We return to this

point in 12.1.

11.3.2 P2

Axiom P2 says that the preference between two acts, f and g, should only

depend on the values of f and g when they differ. Assume that f and g differ

only on an event A (or even a subset thereof). That is, if A does not occur,

f and g result in the same outcomes exactly. Then, when comparing them,

we can focus on this event, A, and ignore Ac. Observe that we do not need

to know that f and g are constants outside of A. It suffices that they are

equal to each other, i.e., that f(s) = g(s) when s /∈ A.

For example, assume that you may be going out with some friends to

a concert. One of your friends is trying to get tickets to the concert, and

tickets may or may not be available, in which case everyone stays home.

While waiting to hear whether your friend got tickets, you wonder whether
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you should take a raincoat with you, in case you do go out. Obviously, a

coat may be very useful if it rains, but it will be a pain to carry it around if

it doesn’t.

A priori you have to choose between f , “taking the coat if I go out,

leaving the coat in the closet if I stay home” and g, “not taking the coat if

I go out, leaving the coat in the closet if I stay home”. P2 says that, when

comparing f and g, you can ignore the outcomes they yield if there are no

tickets, because in this case they yield identical outcomes.

Thus, P2 is akin to requiring that you have conditional preferences,

namely preferences between f and g conditional on A occurring, and that

these conditional preferences determine your choice between f and g if they

are equal in case A does not occur. Some models assume such conditional

preferences as primitive. (See Luce and Krantz, 1971, Ghirardato, 2002.)

Savage chose a different way to model conditional preferences: to express

the idea that the values of f and g do not matter where they are equal, he

demanded that it not matter what they are equal to. That is, assume that

you alter f and g only on Ac, to get f 0 and g0, respectively, such that

f(s) = f 0(s) and g(s) = g0(s) s ∈ A.

Assume that you make sure that these altered acts, f 0 and g0, are still equal

off A (though not necessarily equal to f and to g). That is,

f(s) = g(s) and f 0(s) = g0(s) s /∈ A

— then you want it to be the case that f % g iff f 0 % g0. In this case, Savage

defined f to be at least as preferred as g given A, denoted f %A g.

Axiom P2 is often referred to as the “Sure-Thing Principle (STP)”. To

see why, let us complicate the story a bit. Suppose that if there are no tickets

to the concert, you and your friends will be going for a walk. You may, again,

take a coat or not. Suppose that you decide that you’re better off with a coat

if you end up going to the concert, i.e., f %A g. You also decide that you
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should take the coat if you know that you’re going for a walk, i.e., f %Ac g.

Unfortunately, before leaving home you still do not know whether tickets

were available or not. That is, you have to decide whether to take the coat

not knowing whether A or Ac occurs. However, it is not hard to see that, if

you satisfy P2 (and P1), you can say, “I prefer f to g in case A occurs, as

well as in case A doesn’t occur, and therefore I should prefer f to g.”75

Some writers use the name “Sure-Thing-Principle” to denote other ax-

ioms. Peter Wakker pointed out that in Savage’s original usage the term

referred to P2 in conjunction with P3 and P7. (Indeed, Kreps (1988) uses

the term to denote P7.) But the most common usage identifies the term with

P2.

11.3.3 Notation

Before we continue, it will be useful to have a bit more notation. As men-

tioned above, the objects of choice are simply functions from S to X. What

operations can we perform on F = XS if we have no additional structure on

X?

The operation we used in the statement of P2 involves “splicing” func-

tions, that is, taking two functions and generating a third one from them,

by using one function on a certain sub-domain, and the other on the com-

plement. Formally, for two acts f, g ∈ F and an event A ⊂ S, define an act

fgA by

fgA(s) =

½
g(s) s ∈ A
f(s) s ∈ Ac .

Think of f gA as “f , where on A we replaced it by g”.

Observe that, with this notation, P2 states that, for every f, g, h, h0 ∈ F ,

and every A ⊂ S,

fhAc % ghAc iff fh
0

Ac % gh
0

Ac .

75To see this, apply P2 twice, comparing f to the act h that is equal to g on A and to
f on Ac, and then comparing h to g.
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A common notation for such a function is also (g,A; f,Ac). It has the ad-

vantage that it is symmetric, namely, that it is more obvious that (g,A; f,Ac) =

(f,Ac; g, A) than that f gA = gfAc. Also, the notation (g, A; f,Ac) can be easily

extended to partitions of S into more than two events. However, some of the

axioms are easier to read with the current notation.

11.3.4 Null events

It is also useful to have a definition that captures the intuitive notion that

an event is considered a practical impossibility, roughly, what we mean by a

zero-probability event when a probability is given. How can we define such

an event? That is, what would be the behavioral manifestation of the fact

that you believe an event A cannot occur?

One natural definition is to say that an event A is null if, for every

f, g ∈ F , f ∼A g. That is, if you know that f and g yield the same outcomes

if A does not occur, you consider them equivalent.

For example, assume that I want to know if you truly believe that little

green people from outer space may be on their way here. Define the event

A to be “Little green people from outer space are about to enter the room

within the next five minutes.” Assume that f denotes your life as you know

it, and g — the same as f , but you also get a $100 if A occurs. These two acts

are identical off A. If you nevertheless strictly prefer g to f , I would have

to assume that you think that there is some chance that green people will

indeed open the door. Conversely, if I observe that f ∼A g, I can conclude

that, even though A is not a logical impossibility, you don’t assign any weight

to it in your decisions. I will say that A is null for you.

Some people object to the idea that such events might exist. The point

is that, however unlikely the invasion by little green people is, why would

you turn down the $100 conditional on their arrival? There are several re-

sponses to this claim. First, one may extend the model to deal with lexi-
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cographic probabilities, or probabilities that employ non-standard numbers.

Blume, Brandenburger, and Dekel (1991) provide an axiomatic derivation of

a Savage-like model that allows such probabilities. In this model, an event A

may be sufficiently unlikely so that you will reject any bet on it with finite

odds, but you will still not be indifferent to the payoffs on A. Second, the in-

terpretation of “zero probability events” in probability, or, correspondingly,

of null events here, is troublesome because we use models with infinitely

many states. Using such models is often very convenient. For example, they

allow us to use continuous distributions in probability and in statistics. But

these models also incur some cost, and, in particular, they do not allow us

to equate “zero probability” with “logical impossibility”. Recalling that the

world is finite, and that infinite models are supposed to be only a mathemat-

ical convenience, one may decide to learn to live with such interpretational

problems, as long as the infinite model in question makes our lives easier in

other ways.

11.3.5 P3

Axiom P3 states, roughly, the following. If you take an act, which guarantees

an outcome x on an event A, and you change it, on A, from x to another

outcome y, the preference between the two acts should follow the preference

between the two outcomes x and y (when understood as constant acts).

More formally, consider an act f ∈ F , an event A and two outcomes

x, y ∈ X. Compare fxA to f
y
A, namely two acts that are identical off A, one

yielding x on A, and the other — y. If x % y, it is natural to require that

fxA % fyA, that is, weakly improving the outcome you get if A occurs should

also weakly improve the act. We want this to be a two-way implication,

that is, that x Â y will also imply fxA Â fyA. But this last implication is not

necessarily convincing if A is null. For example, increasing my payoff in case

a coin tossed falls and stands on its side may not strictly improve the act in

my eyes. Thus the formulation of P3 is:
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For every f ∈ F , non-null event A ⊂ S and x, y ∈ X,

x % y iff fxA % fyA.

There are two main interpretations of P3. One, which appears less de-

manding, holds that P3 is simply an axiom of monotonicity. Indeed, suppose

that you are trying to argue that preferences should be monotonic. In de

Finetti’s model, we could increase the monetary payoff in a given state and

require that the resulting vector be at least as highly evaluated as the orig-

inal one. What would be the equivalent condition here? We can’t increase

a monetary payoff, because all that we have are abstract outcomes such as

x, y ∈ X. But if the decision maker prefers getting x for sure to getting y

for sure, it seems that x is “better” than y, and changing y to x over some

event should result in improvement for monotone preferences.

The interpretation of P3 as monotonicity is quite convincing when the

outcomes are monetary payoffs. However, when other outcomes are con-

cerned, we may find that the desirability of the outcome depends on the

state at which it is experienced. To quote a classical example, assume that I

do not know whether the weather is going to be rainy or sunny. You ask me

to choose between an umbrella, x, (at every state s) and a swimsuit, y (also

at every state s). Considering the possible outcomes, and being the nerdy

risk averse individual that I am, I prefer the umbrella, x Â y. But if you

consider the act f = y, and the event A in which the weather is sunny, you

will not be surprised to find that I prefer to keep y, rather than substitute

it for x, over A, i.e., y = yyA Â yxA, in violation of P3. We discuss this type

of violations of P3 (and P4) in 13.2 below. At this point we wish to observe

that P3 requires a bit more than simple monotonicity.76

76Still, I would stress that if one were trying to assume monotonicity and nothing more,
P3 has no obvious simple alternative.
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The other interpretation of P3, which highlights this issue is the following.

The game we play is to try to derive utility and probability from observed

behavior. That is, we can think of utility and probability as intentional77

concepts related to desires and wants on the one hand, and to knowledge

and belief on the other. These concepts are measured by observed choices.

In particular, if I wish to find out whether the decision maker prefers x to y,

I can ask her whether she prefers to get x or y when an event A occurs, i.e.,

to compare fxA to f
y
A. If she says that she prefers f

x
A, I’ll conclude that she

values x more than y.

But what would happen if you come to the same decision maker, offer

her the choice between fxB and f
y
B for another event B, and find out that she

actually prefers the latter? By the same method of measurement, you’ll find

that y is preferred to x. In this case, there will be no clear preference over

the outcomes — preferences will depend on the associated event.

If I view this exercise as an attempt to measure the decision maker’s rank-

ing (let alone her cardinal utility function), I will prefer that the observations

not depend on the measurement device. Here the function f and the events

A,B are but measurement tools. We would therefore like it to be the case

that, for every f and every non-null A,B,

fxA % fyA iff fxB % f yB.

Clearly, it suffices to fix one non-null event, B, and to require that the

ranking for B be the same as the ranking for every A. If you set B = S, you

get P3. According to this interpretation, P3 requires that the ordinal ranking

of outcomes be independent of the events with which they are associated.

11.3.6 P4

P4 is the counterpart of P3 under the second interpretation. Let us continue

with the same line of reasoning. We wish to measure not only the ranking
77“Intentional” is a term used to refer to mental phenomena that humans have, such as

desires, beliefs, etc.
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of outcomes, but also of events. Specifically, suppose that I wish to find out

whether you think that event A is more likely than event B. Let me take

two outcomes x, y such that x Â y. For example, x will denote $100 and y

— $0. I now intend to ask you whether you prefer to get the better outcome

x if A occurs (and otherwise — y), or to get the better outcome if B occurs

(again, with y being the alternative).

Suppose that you prefer the first, namely,

yxA Â yxB.

It seems reasonable to conclude that A is more likely in your eyes than is

B. But imagine now that another decision theorist approaches you, and

conducts the same experiment, with one minor change: the other decision

theorist promises you $400 (z) as the better outcome, and $200 (w) as the

worst. Suppose that you say that in this case you prefer to bet on B, that

is,

wz
B Â wz

A.

What are we to make of it? Using the measurement tool (x, y) we find

that you think that A is more likely than B. Given the measurement tool

(z, w) we find the converse conclusion. Thus, the alleged measurement tools

change the outcome of the experiment. In fact, we can’t say which of the

two events, A and B, is more likely in your eyes.

P4 demands that this not be the case. Formally, for every A,B ⊂ S and

every x, y, z, w ∈ X with x Â y and z Â w,

yxA % yxB iff wz
A % wz

B.

11.3.7 P5

P5 states that there are f, g ∈ F such that f Â g.

If it does not hold, we get f ∼ g for every f, g ∈ F , i.e., %= F ×F . This

relation is representable by expected utility maximization: you can choose
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any probability measure and any constant utility function. Moreover, the

utility function will be unique up to a positive linear transformation, which

boils down to an additive shift by a constant. But the probability measure

will be very far from unique.

In other words, Savage could have used six instead of seven axioms to

state that there exist a utility function and a probability measure such that

% is represented by expected utility maximization. He could have added that,
apart from the trivial case %= F ×F , the measure is also unique. But since

a major goal of the axiomatization is to define subjective probability, and we

want to pinpoint a unique probability measure, which will be “the subjective

probability of the decision maker”, P5 appears as an explicit axiom.

Once we understand what P5 rules out, we realize that it is a necessary

axiom. Not only in the mathematical sense, namely that P5 follows from

the representation (as long as u is not constant), but in the sense that P5 is

necessary for the elicitation program to succeed. As mentioned above, the

idea is to observe choices and, using “reverse engineering”, to ask what pref-

erences over outcomes and what beliefs over events could give rise to such

choices. It is absolutely necessary that the decision maker make choices, or

express some preferences. Someone who is incapable of expressing prefer-

ences cannot be ascribed subjective probabilities by the reverse engineering

program of Ramsey-de Finetti-Savage.

11.3.8 P6

We are left with two “technical” axioms, namely, assumptions that are needed

for the mathematical proof to work, but are not necessarily justified on con-

ceptual grounds. The first one, P6, has a flavor of continuity, but it also has

an Archimedean twist.78

78Archimedes stated the axiom, that for every positive integers n and m there exist
another, k, such that kn > m. That is, if your step size n is positive, you will be able
to get as far as you wish if only you repeat it sufficiently many times. There are many
axioms of this nature in decision theory, and they are called “Archimedean”.
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Let us assume that we start with strict preferences between two acts,

f Â g, and we wish to state some notion of continuity. We cannot require

that, say, f 0 Â g whenever |f(s) − f 0(s)| < ε, because we have no metric

over X. We also can’t say that f 0 Â g whenever P ({s | f(s) 6= f 0(s)}) < ε,

because we have no measure P on S. How can we say that f 0 is “close” to

f?

One attempt to state closeness in the absence of a measure P is the

following. Assume that we had such a measure P and that we could split

the state space into events A1, ..., An such that P (Ai) < ε for every i ≤ n.

Not every measure P allows such a partition, but let’s assume we found one.

Then we can say that, if f 0 and f differ only on one of the events A1, ..., An,

then f 0 is close enough to f and therefore f 0 Â g. This last condition can

be stated without reference to the measure P . And this is roughly what P6

requires. More precisely, P6 requires this both for f Â g (implying f 0 Â g)

and for g Â f (implying g Â f 0). On the other hand, P6 will make a weaker

requirement, allowing the partition to depend on the values of f 0.

Formally, P6 requires that for every f, g, h ∈ F with f Â g there exists a

partition of S, {A1, ..., An}79 such that, for every i ≤ n,

fhAi
Â g and f Â ghAi

.

Observe that, when you are choosing the partition {A1, ..., An}, you may
condition it on f, g, h. That is, you know which f and g are involved, as well

as how wild h could be.

Still, P6 is a restrictive axiom. In particular, it rules out the possibility

of a finite state space S. In fact, P6 implies that every state s ∈ S is null.

To see this, observe that if s were not null, there would be x, y ∈ X and

f ∈ F such that fx{s} Â f y{s}. Choosing f = fx{s}, g = h = f y{s}, P6 would

be violated, because any partition would have one i such that s ∈ Ai, and
79A partition of S is a collection of pairwise disjoint events whose union is S.
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changing f to h on this Ai would result in g. Next, observe that P2 implies

that the union of null events is a null event, which means that, if S were

finite, S itself would be null, in violation of P5.

The precise implications of P6 will become clearer later. For the time

being, observe that it combines two types of constraints: first, it has a flavor

of continuity: changing f (or g) on a “small enough” event does not change

strict preferences. Second, it has an Archimedean ingredient, because the

way to formalize the notion of a “small enough” event is captured by saying

“any of finitely many events in a partition”. P6 thus requires that the entire

state space not be too large; we have to be able to partition it into finitely

many events, each of which is not too significant.

The fact that we need infinitely many states, and that, moreover, the

probability measure Savage derives has no atoms80 is certainly a constraint.

The standard way to defend this requirement is to say that, given any state

space S, we can always add to it another source of uncertainty, say, infinitely

many tosses of a coin. Let S1 be an auxiliary state space, describing the

infinite tosses of the coin. We can now expand the state space to be the

product S0 = S × S1, describing both the original source of uncertainty and

the coin tosses. Even if S had atoms, the product space need not have atoms:

every atom of S is now an event that can be further split according to the

auxiliary space.

Importantly, observe that we do not need to assume that the coin is a

fair one, nor even that the tosses are independent. Indeed, if we made any

of these assumptions we would be assuming that there are some events for

which we have objective probabilities, or at least conditional probabilities.81

80See below for precise definitions.
81If you know that the coin is fair, you know that P (Head) = 0.5. If you do not know

the distribution of the coin, but you know that consecutive tosses are i.i.d., you could
divide tosses to consecutive pairs, and ask what will be observed first — the sequence
(Head, Tail) or a sequence (Tail,Head). These two sequences have unknown, but equal
probabilities. Hence you can generate a conditional probability that is known to be 50%,
and it is conditioned on an event that will occur with probability 1.
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We only need to assume that subjective beliefs, as reflected in preferences

over acts in XS0, are non-atomic. Having said that, let us admit that the

very fact that preferences that are defined only on XS can be extended to

preferences over all of XS0 in such a way that all the other axioms still hold

is a non-trivial requirement.

11.3.9 P7

If there is a “technical” axiom, this is it. Formally, it is easy to state what

it says. But it is hard to explain what it does, or what it rules out. It is, in

fact, very surprising that Savage needs it, especially if you were already told

that he doesn’t need it for the case of a finite X. But Savage does prove that

the axiom is necessary. That is, he provides an example, in which axioms

P1-P6 hold, X is infinite, but there is no representation of % by an expected
utility formula.82

P7 states the following. Consider acts f, g ∈ F and an event A ⊂ S. If

it is the case that, for every s ∈ A, f %A g(s), then f %A g, and if, for every

s ∈ A, g(s) %A f , then g %A f .

Let us first assume that we only discuss A = S. P7 requires that if f is

weakly preferred to any particular outcome that g may obtain, than f should

be weakly preferred to g itself. This is puzzling. If we didn’t have the axioms

P1-P6, one can generate weird preferences that do not satisfy this condition.

But we have P1-P6. Moreover, restricting attention to finitely many out-

comes, we already hinted that there is a representation of preferences by an

expected utility formula. How wild can preferences be, so as to violate P7

nevertheless?

The answer has to do with finitely additive measures, which we discuss

shortly. You wish to ignore technicalities and skip to section 11.4.3. In

any event, P7 as another type of continuity condition, one imposed on the

outcome space.
82See p. 78 of the 1972 edition.
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11.4 The result for a finite outcome set

Before stating Savage’s theorem(s), a few definitions may be useful.

11.4.1 Finitely additive measures

Normally, when you study probability, you define a measure µ to be a prob-

ability on a measurable space (Ω,Σ) if it is a function µ : Σ → R+ such
that

µ (∪∞i Ai) =
∞X
i

µ (Ai) (17)

whenever i 6= j ⇒ Ai ∩Aj = ∅

and µ(Ω) = 1. Condition (17) is referred to as σ-additivity.

Finite additivity is the condition known as µ (A ∪B) = µ (A) + µ (B)

whenever A∩B = ∅, which is clearly equivalent to (17) if you replace∞ by

any finite n:

µ (∪ni Ai) =
nX
i

µ (Ai) (18)

whenever i 6= j ⇒ Ai ∩Aj = ∅

If you already have a finitely additive measure, σ-additivity is an addi-

tional constraint of continuity: define Bn = ∪ni Ai and B = ∪∞i Ai. Then

Bn % B and (17) means

µ
³
lim
n→∞

Bn

´
= µ (∪∞i Ai) =

∞X
i

µ (Ai) = lim
n→∞

µ (Bn)

that is, σ-additivity of µ is equivalent to saying that the measure of the

limit is the limit of the measure, when increasing sequences of events are

concerned.

As such, σ-additivity is a desirable constraint. At the same time, it

can sometimes be too demanding. Lebesgue, who pioneered measure theory,
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observed that there is no σ-additive measure that is defined for all the subsets

of the real line (or of [0, 1]), equals the length when applied to intervals, and

is invariant to shifts.83 His solution was to distinguish between sets that

are “measurable” and sets that aren’t. That is, he defined measurable sets,

proved that they generate a σ-algebra, and restricted attention to sets in this

σ-algebra. Importantly, he showed that one can extend the notion of length

to a σ-additive measure on this σ-algebra, i.e., one need not forego the notion

of continuity of the measure with respect to increasing sequences of events.

One may argue, however, that the definition of a σ-algebra of events, of

which one may speak, and the exclusion of other events from the discussion

is a little artificial. Allowing us to consider only measurable events, the

argument goes, is tantamount to sweeping the continuity problem under the

rug.

An alternative approach is to relax the continuity assumption, and allow

measures to be only finitely additive. If we do that, we can bring back to light

more subsets. In fact, one can define finitely additive measures on all subsets

of, say, [0, 1] that would still coincide with Lebesgue measure on (Lebesgue-)

measurable subsets.

The definition of an integral with respect to a finitely additive measure

is similar to the usual one, and many nice properties of integration are re-

tained in the finitely additive case. However, some nice theorems do not hold

for finitely additive measures, such as Fubini’s theorem, which allows us to

change the order of integration when multiple integrals are involved.

de Finetti, Savage, and other probabilists in the 20th century (such as

Lester Dubins) had a penchant, or perhaps an ideological bias for finitely

additive probability measures.84 If probability is to capture our subjective

83That is, if we wish it to be the case that µ([a, b]) = b − a for every b ≥ a, and
µ(A+ x) = µ(A) for every set A ⊂ R and x ∈ R, we can’t demand that µ be σ-additive.
84de Finetti was probably the first probabilist to promote this idea, and he did so with

religious zeal. The literature includes nice stories on the arguments de Finetti had with
probabilists such as Cantelli and Frechet over this issue.
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intuition, it does indeed seem much more natural to require finite additivity,

namely that µ (A ∪B) = µ (A) + µ (B) for disjoint A and B, rather than a

sophisticated mathematical condition such as (17). Given this background,

it should come as no surprise to us that Savage’s theorem yields a measure

that is (only) finitely additive. As we have seen, foregoing continuity allows

us to consider all the subsets of the state space as events, and we do not need

to use algebras to restrict the language used to describe events and acts.

Having said that, two comments are in order. First, if one is willing to

restrict attention to measurable sets, Savage’s theorem can be proved for

measurable acts. (See Wakker, 1993b) Further, one may add conditions that

imply σ-additivity of the measure obtained (Villegas, 1964).

Second, restricting certain subsets of S from being “events” may appear

very artificial if you start with the state space S. But if you go back to ask

where the state space originated from, you may find that not all subsets of S

are equally natural. Specifically, assume that we start with a syntactic model,

listing countably many propositions, and define a state of the world as a

consistent truth assignment to these propositions. Every atomic proposition

is mapped to an event, namely, all the states that assign a truth value of 1

to this proposition. We can now consider the σ-algebra generated by these

events, and observe that events in this σ-algebra correspond to (countable)

conjunctions, disjunctions, and negations of the original propositions. Yet,

not all subsets of the state space correspond to such compound propositions,

and therefore not all such subsets can be at all referred to. In fact, one may

well argue that we can only refer to finite conjunctions, disjunctions, and

negations, namely only to the algebra generated by the original propositions.

Taking this point of view, restricting attention to measurable events in the

state space need not be as arbitrary as it might seem if the state space is the

primitive of the model.
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11.4.2 Non-atomic measures

The discussion of P6 above made references to “atoms” of measures, but we

have not defined the term precisely.

You may have seen a definition in the standard case of a σ-additive mea-

sure: an event A is an atom of µ if

(i) µ(A) > 0

(ii) For every event B ⊂ A, µ(B) = 0 or µ(B) = µ(A).

That is, an atom cannot split, in terms of its probability. When you try

to split it to B and A\B, you find either that all the probability is on B or

that all of it is on A\B. A measure that has no atoms is called non-atomic.
There are two other possible definitions of non-atomicity, trying to cap-

ture the same intuition: you may require, for every event A with µ(A) > 0,

that there be an event B ⊂ A such that µ(B) is not too close to 0 or to µ(A).

For instance, you may require that

1

3
µ(A) ≤ µ(B) ≤ 2

3
µ(A).

Finally, you may consider an even more demanding requirement: that

for every event A with µ(A) > 0, and for every r ∈ [0, 1] there be an event
B ⊂ A such that µ(B) = rµ(A).

In the case of a σ-additive µ, all three definitions coincide. But this is

not true for finite additivity. Moreover, the condition that Savage needs, and

the condition that turns out to follow from P6, is the strongest.

Hence, we will define a finitely additive measure µ to be non-atomic if

for every event A with µ(A) > 0, and for every r ∈ [0, 1], there is an event
B ⊂ A such that µ(B) = rµ(A).

11.4.3 The Theorem

It may be worthwhile to re-state the axioms:

P1 % is a weak order.
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P2 For every f, g, h, h0 ∈ F , and every A ⊂ S,

fhAc % ghAc iff fh
0

Ac % gh
0

Ac .

P3 For every f ∈ F , non-null event A ⊂ S and x, y ∈ X,

x % y iff fxA % fyA.

P4 For every A,B ⊂ S and every x, y, z, w ∈ X with x Â y and z Â w,

yxA % yxB iff wz
A % wz

B.

P5 There are f, g ∈ F such that f Â g.

P6 For every f, g, h ∈ F with f Â g there exists a partition of S,

{A1, ..., An} such that, for every i ≤ n,

fhAi
Â g and f Â ghAi

.

P7 For every f, g ∈ F and event A ⊂ S, if, for every s ∈ A, f %A g(s),

then f %A g, and if, for every s ∈ A, g(s) %A f , then g %A f .

Theorem 5 (Savage) Assume that X is finite. Then % satisfies P1-P6 if

and only if there exist a non-atomic finitely additive probability measure µ

on S (=(S, 2S)) and a non-constant function u : X → R such that, for every
f, g ∈ F

f % g iff
Z
S

u(f(s))dµ(s) ≥
Z
S

u(g(s))dµ(s)

Furthermore, in this case µ is unique, and u is unique up to positive linear

transformations.
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11.5 The case of a general outcome set

Theorem 6 (Savage) % satisfies P1-P7 if and only if there exist a non-

atomic finitely additive probability measure µ on S (=(S, 2S)) and a non-

constant bounded function u : X → R such that, for every f, g ∈ F

f % g iff
Z
S

u(f(s))dµ(s) ≥
Z
S

u(g(s))dµ(s) (19)

Furthermore, in this case µ is unique, and u is unique up to positive linear

transformations.

Observe that this theorem restricts u to be bounded. (Of course, this

was not stated in Theorem 5 because when X is finite, u is bounded.) The

boundedness of u follows from P3. Indeed, if u is not bounded one can

generate acts whose expected utility is infinite (following the logic of the

St. Petersburg Paradox). This, in and of itself, is not an insurmountable

difficulty, but P3 will not hold for such acts: you may strictly improve f

from, say, x to y on a non-null event A, and yet the resulting act will be

equivalent to the first one, both having infinite expected utility. Hence, as

stated, P3 implies that u is bounded. An extension of Savage’s theorem to

unbounded utilities is provided in Wakker (1993a).85

A corollary of the theorem is that an eventA is null if and only if µ(A) = 0.

In Savage’s formulation, this fact is stated on par with the integral represen-

tation (19).

11.6 Interpretations

This is the fifth characterization theorem we see in this course. The three

interpretations should now be very routine. You should feel like filling a

form. Yet, it is important to me to highlight that all three interpretations

are valid.
85In 1954 Savage was apparently unaware that the boundedness of u follows from P3.

Fishburn reports that this became obvious during a discussion they had later on.
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In fact, because Savage’s theorem is conceptually much more satisfactory

than the previous ones, the normative and descriptive interpretations are

more compelling than before. For example, suppose that you’re trying to

convince me that decision makers maximize expected utility. Based on vNM

theorem, you’ll be restricted to situations in which probabilities are given.

But you’ll also be restricted to decision makers who can understand numbers,

compound lotteries, and Bayes’s rule. Using Savage’s theorem, you can tell

a story about decision makers who have much less structured information,

and who need not reason in terms of probabilities.

It is important to recall that the utility and probability obtained in Sav-

age’s model get their meaning from the way we use them. That is, when we

consider maximization of expected utility using both the probability and the

utility provided by the theorem. A decision maker who does not satisfy the

axioms may still have a different notion of utility or of probability. Machina

and Schmeidler (1992) defined a decision maker to be “probabilistically so-

phisticated” if there exists a probability measure, µ, such that the decision

maker’s choice between any pair of acts depends solely on the distributions

over the outcomes induced by these acts and the measure µ. Machina and

Schmeidler also provided an axiomatic derivation of probabilistic sophistica-

tion. That is, they characterized the decision makers to whom a subjective

probability can be ascribed, without restricting the decision rule that is used

in conjunction with this probability.

Rostek (2006) provided a Savage-style derivation of maximization of a

certain quantile of the utility, say, the median. The quantile is defined rela-

tive to a subjective probability measure, and she obtains this measure from

the axiomatization in a way that parallels Savage’s. Her decision makers

are probabilistically sophisticated (in the sense of Machina and Schmeidler),

and they use their subjective probability for quantile (rather than expected)

utility maximization. Thus, a decision maker may not be an expected utility

maximizer, and still have a well-defined subjective probability.

157



11.7 The proof and qualitative probabilities

Savage’s proof is too long and involved to be covered here. Savage (1954) de-

velops the proof step by step, alongside conceptual discussions of the axioms.

Fishburn (1970) provides a more concise proof, which may be a bit laconic,

and Kreps (1988, pp. 115-136) provides more details. Here I will only say a

few words about the strategy of the proof, and introduce another concept in

this context.

Savage first deals with the case |X| = 2. That is, there are two outcomes,
say, 1 and 0, with 1 Â 0. Thus every f ∈ F is characterized by an event A,

that is, f = 1A. Correspondingly, %⊂ F ×F can be thought of as a relation

%⊂ Σ×Σ with Σ = 2S.

In this set-up P4 has no bite. Let us translate P1-P3 and P5 to the

language of events. P1 would mean, again, that % (understood as a relation
on events) is a weak order. P2 is equivalent to the condition:

Cancellation: For every A,B,C ∈ Σ, if (A ∪B) ∩ C = ∅, then

A % B iff A ∪ C % B ∪ C

Taken together, P1-P5 are equivalent to:

(i) % is a weak order;
(ii) % satisfies cancellation;
(iii) For every A, A % ∅;
(iv) S Â ∅.

A binary relation on an algebra of events that satisfies these conditions

was defined by de Finetti to be a qualitative probability. The idea was that

subjective judgments of “at least as likely as” on events that satisfied certain

regularities might be representable by a probability measure, that is, that a

probability measure µ would satisfy

A % B iff µ(A) ≥ µ(B). (20)
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If such a measure existed, and if it were unique, one could use the like-

lihood comparisons % as a basis for the definition of subjective probability.
Observe that such a definition would qualify as a definition by observable

data if you are willing to accept judgments such as “I find A at least as likely

as B” as valid data.86

de Finetti conjectured that every qualitative probability has a (quanti-

tative) probability measure that represents it. It turns out that this is true

if |S| ≤ 4, but a counterexample can be constructed for n = 5. Such a

counterexample was found by Kraft, Pratt, and Seidenberg (1959), who also

provided a necessary and sufficient condition for the existence of a represent-

ing measure.

You can easily convince yourself that even if such a measure exists, it

will typically not be unique. The set of measures that represent a given

qualitative probability is defined by finitely many inequalities. Generically,

one can expect that the set will not be a singleton.

However, Savage found that for |X| = 2 his relation was a qualitative

probability defined on an infinite space, which also satisfied P6. This turned

out to be a powerful tool. With P6 one can show that every event A can

be split into two, B ⊂ A and A\B, such that B ∼ A\B.87 Equipped with
such a lemma, one can go on to find, for every n ≥ 1, a partition S into 2n

equivalent events, Πn = {An
1 , ..., A

n
2n}. Moreover, using P2 we can show that

the union of every k events from Πn is equivalent to the union of any other

k events from the same partition. Should there be a probability measure µ

that represents %, it has to satisfy µ(An
i ) =

1
2n
and µ(∪ki=1An

i ) =
k
2n
.

Given an event B such that S Â B, one may ask, for every n, what is the

number k such that

∪k+1i=1A
n
i Â B % ∪ki=1An

i .

86We will discuss such cognitive data in Part IV.
87Kopylov (2007) provides a different proof, which also generalizes Savage’s theorem.
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Any candidate for a probability µ will have to satisfy

k + 1

2n
> µ(B) ≥ k

2n
.

With a little bit of work one can convince oneself that there is a unique

µ(B) that satisfies the above for all n. Moreover, it is easy to see that

B % C implies µ(B) ≥ µ(C). (21)

The problem then is that the converse is not trivial. In fact, Savage provides

beautiful examples of qualitative probability relations, for which there exists

a unique µ satisfying (21) but not the converse direction.

Here P6 is used again. Savage shows that P6 implies that % (applied to
events) satisfies two additional conditions, which he calls fineness and tight-

ness. (Fineness has an Archimedean flavor, while tightness can be viewed as

a continuity of sorts.) With these conditions, it can be shown that the only

µ satisfying (21) satisfies also

B Â C implies µ(B) > µ(B).

and thus represents % as in (20).88

Having established a representation of % by a measure, Savage’s proof

loses some of its dramatic effect. First, we, the audience, know that he’s going

to make it. In fact, he already has: restricting attention to two outcomes,

and yet defining a subjective probability measure in a unique and observable

way is quite a feat. Second, the rest of the proof is less exciting, though by no

means trivial. Savage chose to use vNM’s theorem, though this is not the only

way to proceed. He first shows that if two acts have the same distribution

(with finite support), according to µ, they are equivalent. This means that,

88The examples provided by Savage also show that fineness and tightness are indepen-
dent conditions. He shows a qualitative probability relation that has a unique µ satisfying
(21), which is fine but not tight, and one which is tight but not fine, and neither of these
has a probability that represents it as in (20).
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for a finite X, one can deal with equivalence classes defined by distributions

over outcomes. Then Savage proves that the preference relation over these

classes satisfies the vNM axioms, and finally he extends the representation

to an infinite X.
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12 The Definition of States

At several points we have touched upon the definition of states, and you

probably have a rather good idea of what I have to say about it now. Still,

this is an important issue and it is worth being stated clearly. Besides, we’ll

get to see (and resolve) a few more “paradoxes”, which should be fun.

12.1 Causality

12.1.1 Newcomb’s Paradox

Consider the following “paradox”, attributed to Newcomb and related by

Nozick (1969). You are presented with two boxes. One is opaque, and may

or may not contain $1M. The other is transparent, and it contains $1,000.

You are asked to choose between taking the content of the opaque or of both.

Yes, both, there is no typo here. Indeed, it sounds like a dominant choice

to take both. However, there is a twist. In the original version, the person

who presents you with the boxes is an omniscient predictor, who can predict

your choice with perfect accuracy. Further, she remunerates modesty and

penalizes greediness. If she predicted that you’d choose both, she put no

money in the opaque box, and vice versa. What is your choice?

Since I find it hard to comprehend what is an omniscient predictor, and

how I can know that such a predictor exists while still have a notion of

free will, let’s change the story a bit. This time no omniscience is involved,

but you are told of past observations. It turns out that about 1,000 people

made the same choice before you. Roughly 500 chose both boxes and walked

away with $1,000. The rest chose only the opaque box and they are now

millionaires. What would you do?

The paradox hinges on a conflict between two ways of reasoning. On the

one hand, we still have the dominance argument:
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$1M $0
Greedy $1,001,000 $1,000
Modest $1,000,000 $0

Rows correspond to your strategy, columns — to the state of the opaque

box, and the entries denote your monetary payoff. Clearly, the first row

dominates the second.

On the other hand, you observe a regularity that the Greedy strategy

leads to a payoff of $1,000, whereas Modest — to $1M. It as if your choice

changes the probabilities of the states of the world. How can that happen?

12.1.2 States as functions from acts to outcomes

The answer is that this can happen if you mis-specified the state space. The

states in the table presuppose that you have no control over the content

of the opaque box. But there is plenty of evidence that you actually do.

That is, even though we started by telling the story as if the content of

the box is independent of your choice, you never know. Maybe the guy

who handles the box is a crook, or a magician. Or maybe there are some

amazing regularities that science has not yet deciphered. Whatever your

favorite explanation is, you have to remain open to the possibility that there

are some causal relationship that you have not yet fathomed. If you don’t

allow some states of the world to describe such relationships, how will you

be able to recognize them once they are proven by scientific studies? Recall

that if you are Bayesian, you can never add states to the model, nor update

a zero probability to a positive one. Anything that might ever be a proven

fact has to be a possibility, namely, has to have some states of the world

consistent with it.

There is a simple and algorithmic way to avoid the pitfalls of prejudice

and to allow for all possible causal relationships that might affect your life:

to define states as functions from acts to outcomes.89 That is, states should

89The exact origin of this idea is unclear. Savage’s theory was attacked by Jeffrey (1965)

163



not be presumed given in the problem. Modeling a certain description of

the world as a “state” is tantamount to assuming that your choice does not

affect the probability of this state, and this can be a mistake. Rather, given

the set of actions that are available to you, A, and the set of outcomes you

can imagine (or describe in English), X, you should define

S = XA

that is, a state specifies what would be the outcome of each action. Since

states are now functions of acts, they can be assumed independent of the

acts: the dependence of the outcome on the act is reflected in the argument

of the function, not in the function itself.

In Newcomb’s example, there are four outcomes and two acts, hence we

should have 42 states. We can make a simplifying assumption, according

to which each act can only result in two possible outcomes, and reduce the

number of states to four: specifying whether $1M exist in the opaque box if

(i) you decide to be Greedy, and if (ii) you decide to be Modest.

The states would therefore be

(1, 1) — the money is there anyway;

(1, 0) — $1M are found only by the greedy;

(0, 1) — $1M are given to the modest alone;

(0, 0) — the opaque box is empty.

Observe that only the states (1, 1) and (0, 0) were included in the previous

analysis. Now we will have the matrix

(1, 1) (1, 0) (0, 1) (0, 0)
Greedy $1,001,000 $1,001,000 $1,000 $1,000
Modest $1,000,000 $0 $1,000,000 $0

for failing to take into account causal relationships. This definition of states was a reply
that Savage gave. At the same time, as I emphasize below, this definition is a natural
extension of the notion of a state as a truth function for propositions, which is an old idea.
In the context of Newcomb’s paradox, this resolution probably first appeared in Gibbard
and Harper (1978).
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Clearly, there is no dominance in this matrix. There exists a state, (0, 1),

in which modesty pays off. After seeing about 1000 observations that fit the

state (0, 1) so perfectly, you would be wise to assign it a high probability. If

you think that the state is selected once and for all, (0, 1) will be the only

state consistent with observations. If you think that the state is drawn afresh

for each player, but from a given distribution in an i.i.d. manner, you will

find (0, 1) very likely due to its high likelihood value.

The main message is quite simple: defining states as functions from acts

to outcomes allows all possible causal relationships to be reflected in the

analysis. It is also consistent with the “canonical state space” approach:

defining states as truth functions whose domain is the set of propositions of

interest. Since the propositions “If I am greedy, I will find $1M in the opaque

box” and “If I am modest, I will find $1M in the opaque box” are among

the propositions we should consider, a state should at least specify the truth

values of these two.

12.1.3 A problem

The resolution above is very compelling. However, you may feel uncomfort-

able with the number of states it generates. In our example, after making

a simplifying assumption, we ended up with 4 states where we had only 2

acts. This doesn’t seem to be enough to find a unique probability measure.

Indeed, the preference between the two acts will give us one inequality that

the probabilities have to satisfy. Since the dimensionality of the simplex of

probabilities is 3, one inequality will not suffice.

Indeed, Savage’s model requires that we have a complete preference on

F . All the functions from states to outcomes should be considered, at least

as “conceivable acts” if not actual ones. If we start with a set of actually

available acts A, and construct S = XA, we now have to proceed to define

F = XS = X(XA)

and assume that % is a complete order on F . In our example, with |A| = 2
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and |X| = 2, we obtained |S| = 4 and will have |F | = 16. The relation %
requires the comparison of

¡
16
2

¢
= 120 pairs of alternatives, out of which only

one comparison is actually observable.

You might be tempted to expand the set of acts that the decision maker

can choose from to include all of F . But this will result in a new state

space, XF and a new set of conceivable acts, and so forth. This explosion in

the cardinality of the set of acts will be even more dramatic when the sets

involved are infinite.

When we have a given state space, it is natural to require that the model

include all conceivable acts. But the problem we encounter here is that the

choices between elements of F cannot be observable in principle. That is,

if we wish to formulate Savage’s model in such a way that it accommodates

all possible causal relationships, we obtain a model that is inherently not

related to observations. As a result, we will not be able to derive subjective

probability from observed behavior.

12.2 Hempel’s paradox of confirmation

12.2.1 Are all ravens black?

Hempel (1945, 1966) presented the following “paradox of confirmation”. Sup-

pose we wish to test the rule or hypothesis that all ravens are black. An

acceptable procedure is to randomly select ravens, and test each of them for

blackness. One counter-example would suffice to refute the rule, though the

rule will never be proven by examples. However, the more ravens we test,

the stronger is our belief in the truthfulness of the general rule, should they

all turn out to be black.

Notice that “all ravens are black” is logically equivalent to “all that is

not black is not a raven”. We may therefore test the second formulation of

the rule rather than the original one. Applying the same scientific method,

one may randomly select non-black objects, test them for “ravenhood”, and

then either refute the rule or increase its plausibility.
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From here to embarrassment the way is short. Pick a non-black item in

the classroom, or consider a red herring. As a non-black object, it qualifies

for the sample; as a non-raven, it should lend support to the rule tested. Yet

it seems patently absurd to use such evidence to confirm the blackness of

ravens.

It is often argued that the problem with testing non-black objects is that

there are so many of them. But if you get into such considerations, you have

to take the cost of testing into account as well. After all, it is easier to find

non-black objects than it is to find ravens. Moreover, most of our statistical

tests depend on the size of the sample but not on the size of the population

from which it is drawn — this is typically assumed infinite. In any event,

it seems that something else is at work here. Testing a red herring to find

whether all ravens are black is not simply an inefficient sampling strategy. It

is ridiculous. But why?

12.2.2 A state space formulation

To see the problem, it is useful to resort to the state space within which the

problem is couched. Using the state space approach, as we will see, imposes

certain restrictions on the type of resolutions we can consider. Yet, it will

help us see where the problem is.

Let there be a set of objects, A, each of which can be a raven or not,

black or not. For simplicity, assume that A is finite. The status of object

i ∈ A is an element of {0, 1}2, where (0, 0) is an object that is neither a raven
nor black, (1, 0) designates a raven that is not black, and so forth. The state

space is given by

S = {s : A→ {0, 1}2}.

The event “object i confirms the rule”, equated with “object i is not a

counterexample to the rule” is

Ci = {s ∈ S | s(i) 6= (1, 0)}
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and the event “all ravens are black” is

C = ∩i∈ACi.

Observe that in this formulation the rule “all ravens are black” is com-

pletely equivalent to “all non-black objects are non-ravens”. That is, the

state space formulation does not allow us to distinguish between the two

rules.90

12.2.3 What is a confirmation?

It is not obvious what we mean when we argue that an observation confirms a

rule. In fact, Hempel was attempting an axiomatic approach to this relation

between observations and theories. Let us take a Bayesian point of view. For

a Bayesian with subjective beliefs, confirmation would naturally be defined

as an increase in the probability. That is, if the posterior probability of a

theory, given the observation, is higher than the prior probability of that

theory, we could argue that the observation confirmed the theory.

Is it the case that observations that are consistent with the theory always

confirm it? Well, almost. Assume that we observe object i and find that it

does not contradict the theory, i.e., that Ci is the case. Then

P (C|Ci) =
P (C)

P (Ci)
≥ P (C).

That is, a weak inequality always holds. However, a strict one would hold

only if P (Ci) < 1, that is, if there used to be an a priori positive probability

that observation i would indeed refute the theory.

12.2.4 A resolution

It is now obvious what the problem is with the red herring as a confirmation

of the theory that all ravens are black: the red herring had been known

90Such distinctions have been suggested in the literature as a possible resolution of the
paradox.
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not to be a raven, even before tested. If we know that i is not a raven,

s(i) /∈ {(1, 1), (1, 0)} and, in particular, we know Ci. Since P (Ci) = 1, the

inequality above holds as an equality. Observing that the herring is not a

non-black raven does not change our belief in the theory, because we already

knew that it wouldn’t be a refutation.

Testing a herring, which is known not to be a raven, and therefore also

known not to be a counterexample, is similar to testing the same raven again

and again. After the first observation, once it has been established that the

particular raven is black, our probability already reflects this observation,

namely, P (Ci) = 1. Observing Ci again will not change our beliefs.

By contrast, it is worth emphasizing that the problem does not lie in

the contrapositive. It is indeed true that “all ravens are black” is logically

equivalent to “all that is not black is not a raven”. Further, we can imagine

scenarios in which testing non-black objects for ravenhood is the right way

to go. Suppose that you send me on this sampling mission. The sad truth is

that I can’t tell ravens from non-ravens. I can, however, tell black birds from

other birds. I might sample many non-black birds, and bring them to an

ornithologist. Suppose I ask her to have a look at my sample, and she tells

me that none of them is a raven. I will be justified in increasing my belief

that all ravens are black. The point is that, when sampling a non-black bird,

I have to have some positive probability that it might be a counterexample

(that is, a raven) to learn something from it. If I already know it’s not a

counterexample, testing it becomes silly.

12.2.5 Good’s variation

Good (1967; 1968; 1986) has suggested a variation of Hempel’s paradox. The

following is a simplified version of Good’s paradox that highlights the issues

discussed above.

Consider a population containing two objects. It is known that one of

the two holds: either both objects are red herrings, or both are ravens, in
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which case one is black and one is red. Let us suppose, for simplicity, that

both possibilities are equally likely. Hence the prior probability of the rule

“all ravens are black” is 50%, since it holds true in the herring population

but does not hold in the raven population.91

We are now told that object 1 is a black raven. It follows that the pop-

ulation consists of ravens, in which case the posterior probability that “all

ravens are black” has decreased to 0. How can this be reconciled with the

calculation above?

It may be helpful to spell out the states of the world in this example.

Having two objects, we have 16 states of the world, each of which specifies,

for each of the two objects, one of the four possibilities: the object is a black

herring (BH), black raven (BR), red herring (RH), or red raven (RR). The

prior probability we stipulated can be represented by the following table, in

which rows designate the status of object 1, and columns — of object 2:

BH BR RH RR
BH
BR 0.25
RH 0.50
RR 0.25

(Blank entries denote zero probability.) For the raven population, it is as-

sumed here that objects 1 and 2 are equally likely to be the red (hence also

the black) raven.

The event “all ravens are black” (denoted by C above) consists of the

3 × 3 northwest matrix. Its prior probability is 50%. The event “object 1
does not contradict the rule” is represented by the top three rows. Indeed,

given this event alone, the posterior probability of C is 2
3
, i.e., larger than

the prior. However, given that object 1 is also a raven, it becomes zero. In

fact, this latter piece of information would have sufficed: the event “object

91This example does not rely on the fact that the theory is vacuously true. In fact,
Good’s original example did not involve empty sets.
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1 is a raven”, which is represented by rows 2 and 4, leaves zero probability

on the event C.

To conclude, what decreases the probability of the rule “all ravens are

black” is not the positive example per se; it is additional information, which

does not follow from the fact that the item sampled does not contradict the

rule.

12.2.6 What do we learn from this?

Hempel’s paradox is supposed to convince us that the state space is a powerful

analytical tool. If you couple it with Bayesian reasoning, you are very well

equipped to deal with puzzles and paradoxes. The Bayesian approach is a

very effective tool to sort out our intuition. We will later criticize it and argue

that, in many situations, one cannot specify the prior probabilities needed

to use the Bayesian machinery. But in order to follow qualitative reasoning,

this is a remarkably coherent set-up.

It is also worth recalling that modeling uncertainty by a state space for-

mulation does not necessitate a Bayesian approach. That is, one can use a

state-space model but not specify a prior over it, or only partially specify it.

Two comments are in order regarding Hempel’s paradox of confirmation.

First, whereas the Bayesian approach helps us, in the analysis above, to

resolve the paradox, it is not essential for the resolution. The crux of the

matter is that, when I sample a red herring, knowing it is not a raven, I

learn nothing. This argument can be made independently of the state space

model. The point of the example is that the state space model forces us to

think about some issues that can otherwise be lost.

Second, as briefly mentioned above, Hempel’s interest was in formulating

general rules of confirmation. For instance, he suggested the rule, or axiom,

that, if evidence e confirms hypothesis h, and h implies h0, then e should

also confirm h0. When I first read Hempel, it was after I had already been

brought up as a Bayesian. Reading this axiom, I tested how intuitive it is by
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checking whether Bayesian update satisfies it. It is easy to see that it doesn’t.

That is, you may have events A,B,C such that A ⊂ B, P (A|C) > P (A) but

P (B|C) < P (B). When you go through the analysis, you see the reason: C

may make A more likely, but it may make B\A less likely, and overall there
is no reason that it would make B more likely.

Of course, one may start with Hempel’s conditions and dismiss the Bayesian

approach because it fails to satisfy these conditions. However, Hempel’s con-

ditions where shown to lead to unreasonable conditions (see Goodman, 1954).

I believe that there is a rather wide consensus today that there is little hope

to obtain valid axioms of the type that Hempel sought.

12.3 Monty Hall three-door game

In the famous TV game, “Let’s make a deal”, a contestant has to choose

one of three doors, behind one of which a prize was hidden. Before opening

any door, the moderator, Monty Hall (MH), opens a door and gives the

contestant the chance to switch. For simplicity, let us assume that MH has

to open a door, and that he has to open one which is neither the one hiding

the prize, nor the one named by the contestant.92 Should the contestant

switch after such a door was opened?

It is easy to see that the answer is in the affirmative, and that switching

obtains the prize with probability of 2
3
, as opposed to 1

3
probability of getting

the prize if one’s strategy is not to switch. One can also find various intuitive

explanations for the advantage of switching. For example, it is worth pointing

out that the strategy “switch” does not always mean the same door. It uses

92In reality, Monty Hall had more choices. He could decide not to open any door,
offer financial incentives for switching, and so forth. It is an amusing exercise to analyze
the situation as a two-person zero-sum game, where the only choice Monty Hall has is
whether to open a door, possibly conditioning it on whether the contestant’s intial guess
was correct. While the game is a bit complicated, it’s not hard to see that its value is
1/3 (for the contestant). Clearly, Monty Hall’s objective function was not to keep the car
with the highest probability, but to have a show with high ratings. In any event, for our
purposes it is simpler to assume that he had to open a door.
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the information provided by MH, who helps the contestant by ruling out

some of the bad choices that the latter could have made.

Another explanation that sometimes helps seeing the point involves more

doors. Suppose, for example, that there are 100 doors, of which MH has

to open 98, where he still cannot open the door that the contestant named

or the one hiding the prize. Assume that you are the contestant and that

you chose door 17. MH walks around, flinging open 98 doors, leaving shut

only numbers 17 and 82. Now you ask yourself, which door is more likely to

hide the prize — 17 or 82? We knew that door 17 would be left shut, if only

because you named it. No additional assumptions are needed to explain why

it is now shut. By contrast, it seems that door 82 has survived a tougher

test in order to be among the last two doors left shut. More formally, you

can apply a likelihood reasoning: the theory “the prize is behind door 82”

has a likelihood value of 1 — under this theory, we’d expect to see precisely

doors 17, 82 shut. The theory “the prize is behind door 17” has a lower

likelihood value: under this theory, one needs to explain why door 82 was

the one selected to be left shut. Assuming that MH makes a random choice

when he indeed has a choice, the probability of this particular door to be

left shut was only 1/99. Hence, the likelihood value of the former theory is

99 higher than that of the latter. With only three doors the explanation is

similar, though less dramatic.

But the question we need to resolve is, what’s wrong with the intuitive

argument that switching doesn’t improve our probabilities? Assume that

I named door A, and MH opens door B. If a priori I had the probabili-

ties P (A) = P (B) = P (C) = 1
3
, and state B was crossed out, don’t I get

P (A|{A,C}) = P (C|{A,C}) = 1
2
?

The answer is that this is a perfectly correct calculation, applied to the

wrong model. A model with three states, A,B,C, tells us where the prize

is, but it is not rich enough to describe MH’s strategy, namely which door

he would open given where the prize really is. Rather than a model with 3
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states, we need a model with (at least) 9 states. Suppose that I named door

A. Consider the 9 states defined by combinations of (i) where the prize is

(A,B,C); and (ii) which door MH opens (OA,OB,OC):

OA OB OC
A 0 1

6
1
6

1
3

B 0 0 1
3

1
3

C 0 1
3

0 1
3

0 1
2

1
2

1

where the rows denote where the prize really is, the columns — which door MH

opens, and the last row and last column are the marginal probabilities. The

diagonal consists of 0’s because MH is not allowed to reveal the prize. The

first column consists of 0’s because he is not allowed to open the door that I

named (assumed to be A). Since each row adds up to 1
3
, the only freedom in

filling up the numbers is in the case that the prize is indeed behind A, and

MH can open door B or C (where I chose to assume a random choice on his

part).

Given this matrix, conditioning on “the prize is not behind B”, namely,

crossing out the middle row, we obtain P (A|{A,C}) = P (C|{A,C}) = 1
2
as

above. However, conditioning on “MH opened door B”, namely, focussing

on the middle column, the conditional probabilities are

P (A|OB) = 1/6

1/2
=
1

3

and

P (C|OB) = 1/3

1/2
=
2

3
.

This analysis would change if the probabilities of A ∩ OB and A ∩ OC

were not symmetric, but the conclusion that one has a higher probability of

winning by switching than by not switching will be valid. To see this more

clearly, assume that, in case the prize is actually behind door A, MH opens

door B with probability α ∈ [0, 1/3]. We then have the matrix
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OA OB OC
A 0 α 1

3
− α 1

3

B 0 0 1
3

1
3

C 0 1
3

0 1
3

0 1
3
+ α 2

3
− α 1

In this case, if, once a door was opened, you ask yourself what is the con-

ditional probability that switching will win the prize, it is not necessarily

2/3, and it will generally depend on which door was opened. If, for instance,

α = 1/3, there is no reason to switch in case MH opens door B, but in case

he opens C the contestant can switch, knowing that he is going to get the

prize with conditional probability of 1. Clearly, it is still true that the a priori

probability of winning the prize by the switching strategy is 2/3, and this a

priori probability will equal the expected conditional probability (given OB

and given OC):

2

3
=

µ
1

3
+ α

¶
1/3

1/3 + α
+

µ
2

3
− α

¶
1/3

2/3− α
.

The point of this example is, again, that the states of the world should

be informative enough. Whereas Newcomb’s example reminded us that the

states should describe potential causal relationships, MH’s example shows

that the way in which we obtain information may be informative in and of

itself.93 Hence the state should describe not only the information, but also

the protocol by which it was revealed to us.

93This general message of the Monty Hall game was pointed out to me by Roger Myerson.
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13 A Critique of Savage

Savage’s “technical” axioms, P6 and P7 have been discussed above. They are

not presented as canons of rationality, rather — as mathematical conditions

needed for the proof. We therefore do not discuss them any further.

There is also little to add regarding axiom P5. It is worth emphasizing

its role in the program of behavioral derivations of subjective probabilities,

but it is hardly objectionable.

By contrast, P1-P4 have been, and still are a subject of heated debates,

based on their reasonability from a conceptual viewpoint. We start the dis-

cussion with P3 and P4. We will attempt to delineate their scope of applica-

bility as clearly as we can, briefly discuss alternatives, and move on. Only

then will we get to P1 and P2. The problems with these axioms will motivate

the discussions that follow.

13.1 Criticizing critiques

It may be useful to agree what constitutes a violation of an axiom, and when

we would like to retain an axiom despite what appears to be a violation

thereof. This will also serve as an example of an application of the discussion

in 8.2 above.

13.1.1 An example

Consider the IIA (independence of irrelevant alternatives) axiom in consumer

theory. You probably know it from Mas-Colell, Whinston, and Green (1995)

or from Kreps (1988). It is stated in the context of a choice function, map-

ping non-empty sets of alternatives, A, to non-empty subsets of themselves,

C(A) ⊂ A. The axiom says that if x, y ∈ A ∩ B, y ∈ C(A), and x ∈ C(B),

then also y ∈ C(B).

Next consider the following example. Assume that the alternatives are

clearly ranked by a linear order Â, reflecting, for instance, which amount of
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money is larger, which seat is more comfortable, etc. You would like to get

an alternative that is as high as possible in this order, but you do not want to

take the best one for various reasons. Say, you don’t want to appear greedy

to your friends, or you want to leave the best one for your child to pick, and

so forth. Then, if a Â b Â c, you will choose b out of {a, b, c} but (only) c
out of {b, c}, thus violating the IIA.
What do we make of it? Should we discard the IIA axiom, or at least

restrict its applicability to situations in which no social or emotional payoffs

are relevant? For some applications, we may have to do that. In particular, if

we attempt to seriously predict choices, either by estimating utility functions

or by other means, we will have no choice but to admit that, as far as we can

observe, the IIA is violated. Indeed, empirical economic research is generally

very careful in asking what unobservable factors might be interfering with

the observable choice data.

But suppose that we focus on theoretical applications, which tend to be

more rhetorical in nature. To go back to our example, choice theory will be

applied, at the end of a long road, to questions such as the welfare theorems,

the organization of markets, and so on. Do we wish to dismiss the IIA, and

the notion of utility maximization due to the example above?

I think not. It appears that the IIA is basically a very reasonable axiom,

and that the application of the IIA above does not give the theory a fair

chance, so to speak. In these examples there are two dimensions to the

choice problem: what you get to consume, and another dimension, such as

what your friends think of you, or what your child gets to consume. It is quite

rational to take such considerations into account. Your social standing affects

your well-being directly. It also gets to be reflected in material outcomes, say,

whether you will be invited to parties. Similarly, caring about our children

is, at least in the eyes of some, the epitome of rationality. If these choices

are rational, they can probably be described by constrained optimization.

Indeed, this can and has been done. Many authors in “behavioral economics”
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retained the rational choice paradigm but added more factors as determinants

of utility. Using the basic paradigm of utility maximization, this approach

surely retains the IIA as well. Only it applies the IIA to a richer set of

alternatives.

13.1.2 The general lesson

Amos Tversky used to say, “Give me an axiom and I will design an experi-

ment that refutes it.” He was not just bragging — the remarkable record of

experiments that he and Daniel Kahneman developed more or less proves the

point. In a sense, Tversky’s challenge was in line with Popper’s view that

theories are always false.

One should not be overly depressed by this fact. Many of the experi-

ments of Kahneman and Tversky came themselves under attack for being

cast in artificial environments. (See Gigerenzer and Hoffrage, 1995.) Also,

one should worry about the prevalence of deviations from a certain theory.

The fact that for every theory there exists an experiment that violates it,

chosen after the theory was stated, need not imply that the theory will be

refuted in most or even in many of the possible applications we have in mind

for it.

But despite these defenses, there is no denial that we do observe a large

body of evidence that indicates failures of many of our theories and of spe-

cific assumptions. When confronted with such failures, it will be useful to

develop the habit of stopping to ask whether the theory or assumption was

meant to be used in the strict sense or as a conceptual framework. These

interpretations are so different that they warrant two separate paragraphs.

Viewed as a specific theory, we are wedded to particular types of datasets

that may be observed. We may, for instance, observe saving behavior, but

not the way that children’s utility enters that of their parents. If we believe,

for instance, that bequest motives affect saving behavior, we will have to

think how we account for the unobservable data in the analysis. We can use
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structural models, or use proxy variables, or otherwise try to measure the

unobservable data.

Viewed as a conceptual framework, we have already discussed (in 8.1) the

role of theories as metaphors. When theories are used mostly as frameworks

within which our intuition can be sharpened, or as rhetorical devices, we can

and should let our imagination soar and consider factors that are measurable

in principle even if not in practice.

When judging an axiom for the sake of theoretical or rhetorical applica-

tions, we should not be quick to dismiss it because of an observed violation.

If one can plausibly re-define the mapping from theoretical concepts to real-

life entities in such a way that the axiom regains its plausibility, it may still

be a powerful tool for reasoning. We should worry more about the cases in

which a certain axiom fundamentally misses the point, in a way that cannot

be salvaged by an intuitive (even if not easily measurable) re-definition of

terms.

13.2 Critique of P3 and P4

13.2.1 Example

The main difficulty with both P3 and P4 is that they assume a separation of

tastes from beliefs. That is, they both rely on an implicit assumption that an

outcome x is just as desirable, no matter at which state s it is experienced.

The best way to see this is, perhaps, by a counterexample. The classical

one, mentioned above, is considering a swimsuit, x, versus an umbrella, y.

You will probably prefer y to x in the event A, in which it rains, but x to y

in the event B, in which it doesn’t rain.94

This is a violation of P3. As explained above, P3 can be viewed as follows.

94For the sake of the argument, let us suppose that if it doesn’t rain it is also warm
enough to go to the beach. Of course, the same analysis holds also if A and B are not
complements.
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For every non-null event A, define %A⊂ X ×X by

x %A y iff fxA % fyA

for some f ∈ F . P2 guarantees that the choice of f does not matter. This

implies that %A is transitive, and, in fact, that x ÂA y iff there exists f ∈ F

with fxA Â f yA. That is, the event A suggests a possible way to measure the

relative desirability of the outcomes: it defines an order on X. P3 requires

that this order be independent of the event A. The swimsuit example shows

that it may not.

Similarly, the same example can be used to construct a violation of P4.

Suppose that I am trying to find out which is more likely in your eyes, event

A (that it rains) or event B (that it doesn’t rain). For any pair of outcomes

z, w such that z Â w, define the relation %z,w⊂ 2S × 2S by

A %z,w B iff wz
A % wz

B

P4 requires that %z,w be independent of the choice of z Â w. To see

why it is violated in this example, consider, first, a neutral pair of outcomes,

say, $100, denoted by z, and $0, denoted by w. You probably prefer z (for

sure) to w (for sure). Suppose that you also exhibit the preference wz
B Â wz

A,

suggesting that you find rain less likely than no rain. Next compare x (for

sure) to y (for sure). Irrespective of your beliefs about the rain, I would be

willing to bet that you would exhibit the preference xyA Â xyB. Indeed, x
y
A is

just what you want: to have a swimsuit if it doesn’t rain, and an umbrella if

it does, whereas xyB is the disastrous mismatch in which you get the umbrella

on the beach and the swimsuit to run in the rain. That is, the preference

xyA Â xyB follows from the matching between the outcomes and the states,

and it reveals nothing about beliefs. It is therefore not surprising that we

may get the contradiction A Âx,y B and B Âz,w A.
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13.2.2 Defense

Examples such as above have been discussed for a long time. In particular,

they appeared in an exchange of letters between Aumann and Savage in

1970-1.95 The standard response, given by Savage, is that the definition of

an “outcome” should be precise and elaborate enough so as to fully specify

the decision maker’s well-being. Thus, concrete goods such as a swimsuit

and an umbrella may not qualify as outcomes, because the utility we derive

from them is uncertain. An outcome could be, for instance, “lying on the

beach in the sun”, “walking in the rain dressed in a swimsuit”, and the like.

With this understanding of outcomes, the assumption that all functions

in F = XS are available to choose from involves hypothetical choices. For

example, since we haven’t changed the definition of the states, there is still

an event A where it rains. One possible act f may attach to the event A the

outcome “lying on the beach in the sun”. How can we envisage a situation

in which this outcome is experienced when it does, in fact, rain? This is as if

someone promised you that, should it rain where you are, you’d immediately

be transported to a calm tropical beach. Indeed, this is a hypothetical choice,

but it can be imagined with some effort. And if you do imagine it, you can

try to elicit your subjective probability for the event of rain irrespective of

how much you like rain and the outcomes associated with it.

Savage was well aware that the hypothetical choices involved may be a

bit of a stretch. In what has become a very famous quote, Savage wrote to

Aumann, “I don’t mind being hanged as long as my reputation and good

health are unharmed.” Caricaturizing his own argument, Savage suggested

that we imagine state-outcome combinations that may be hypothetical.

The image of Savage hanged and enjoying good health may never leave

your mind. It is a good warning. Yet, let us also consider an example in which

Savage’s defense of P3-4 is compelling. Imagine that you are getting stock

95These letters were published in Dreze (1987, Appendix 2A).
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options. The value of the options depends on the state of the world. One

could argue that Savage’s model is inappropriate to analyze options because

P3 and P4 are violated when the value of the outcome changes with the state.

Alternatively, one may say that the outcome is measured in money, and that

the option, despite being a concrete financial asset, is still an uncertain act.

In this case the uncertainty will be described as usual in Savage’s model,

namely by representing an option as a function from states to outcomes.

I believe that the option example does not make you question P3 or P4.

It seems perfectly reasonable to define outcomes as monetary payoffs. Some

degree of hypothetical reasoning may still be involved. For instance, I can

ask you to imagine that your portfolio is very valuable in a state in which

the market crashes and trade is suspended. But this degree of hypothetical

reasoning may be a small price to pay for the simplicity of the model in which

we can assume that tastes and beliefs are separable.

13.2.3 State dependent utility

Still, the image of Savage at the gallows comes back to haunt us. There are

situations in which the hypothetical reasoning we are required to engage in

goes beyond the limits of good taste. What shall we do then?

Dreze (1961) was probably the first to suggest the model of expected

utility maximization with a state-dependent utility. In such a model, the

utility function is defined as u : X×S → R and the decision maker maximizes

U(f) =

Z
S

u (f(s), s) dµ(s) (22)

where µ, as in Savage’s model, is the subjective probability over the state

space S.

There is an obvious theoretical drawback to such a state-dependent model:

the pair (u, µ) in (22) is not unique. To see this more clearly, assume that

we have finitely many states, S = {1, ..., n} and

U(f) =
X
i

u (f(i), i)µ(i).
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For every set of coefficients λi > 0, we can define

u0 (f(i), i) = u (f(i), i) /λi

µ0(i) =
λiµ(i)P
j λjµ(j)

and find that (u, µ) and (u0, µ0) represent the same preferences. This implies

that µ is very far from being unique. In fact, the only agreement that is

guaranteed to hold between µ and µ0 will consist in the set of zero probability

events. We can still do economic theory with such models, but we do not

have a definition of subjective probabilities based on observed choices.

Karni, Schmeidler, and Vind (1983) and Karni (1985) axiomatize models

of state-dependent utilities. In Karni and Schmeidler (1981) and Karni (1985,

Ch. 1), uniqueness of the probability measure can be re-instated if one

allows more data to be considered observable. Typically, these involve some

hypothetical choices.

13.2.4 The definition of subjective probability

There is another example of state dependent preferences which I find partic-

ularly illuminating. It is based on an example of Aumann, and it is discussed

in Karni (1996) and Karni and Mongin (2000). In this example a decision

maker satisfies all of Savage’s axioms, and yet state-independence appears

inappropriate. It goes as follows.

Mr. and Mrs. Jones have been happily married for many years. Un-

fortunately, Mrs. Jones is seriously ill and she has to undergo a dangerous

operation. The doctors tell Mr. Jones that, based on reliable data, his wife

will survive the operation with probability .5. Mr. Jones has no reason to

doubt this assessment.

Now you are trying to find out Mr. Jones’s subjective probability re-

garding the outcome of the operation. You may ask him a de Finetti-Savage
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question such as to rank the following two acts

f =

½
$0 wife survives
$3000 wife dies

g = $1000.

Let us put aside the emotional stress that Mr. Jones in under, as well the

ethical problems involved. Mr. Jones may find that he is indifferent between

f and g. The reason is that, should his wife die, he is likely to be depressed.

Nothing that he enjoys now will be as enjoyable in this case. He won’t feel

like going on trips on his own, he won’t enjoy concerts, and so forth.

Suppose that Mr. Jones’s utility, as long as his wife is alive, is the identity

function, but should his wife die, the utility he will derive from any outcome

x will be reduced by 1/2. It is easy to see that, if Mr. Jones computes his

state-dependent expected utility relative to the prior 50%-50%, he will report

indifference between f and g. An outside observer may conclude that he has

a linear utility function, but that he’s more optimistic than are the doctors,

and attaches a subjective probability of only 1/3 to his wife dying.

Thus, even if a decision maker satisfies all of Savage’s axioms, and we elicit

a unique probability measure that describes the decision maker preferences

through the simple formula of expected utility maximization with a state-

independent utility function, we can still not be sure that what we measured

is the decision maker’s subjective probabilities. In the example above, when

you ask Mr. Jones what are the chances that his wife would die, he will

give the same answer as his doctors, 50%. If he has to provide advice to

a third party, who is not directly affected by the outcome of the operation,

he will base his answer on the 50% probability. For example, imagine that

his wife Bridge partner are delicately trying to find out when Mrs. Jones

will be playing again. Mr. Jones can sadly tell them that there is a 50%

probability that she won’t be coming back at all. That is, to find out what

is Mr. Jones subjective probability we should simply ask him. A direct

question will lead to a more accurate answer than the behavioral definition,

relying on “willingness to bet”.
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It is important to recall that the uniqueness of the utility and probability

in Savage’s representation are relative to that representation. If you allow

yourself a more general framework, such as (22), uniqueness is lost even if

preferences do satisfy Savage’s axioms.96 Having said that, we should also

note that the example above does not appear very robust. In particular,

it relies on a limited set of outcomes. To see this, assume that we extend

the set of outcomes to include pairs of outcomes that differ only in ways

that do not affect Mr. Jones directly. For example, outcomes might specify

(i) all that is relevant to Mr. Jones personal well-being, as well as (ii) the

number of casualties in an earthquake on the other side of the globe. We

might assume (and hope) that for any fixed level of personal well-being, Mr.

Jones would prefer there to be fewer casualties in the earthquake. This would

mean that his preferences will not satisfy Savage’s axioms after all, because

for some pairs of outcomes the utility differences will be state-independent,

while for others they will be state-dependent. In other words, when utility is

indeed state-dependence, we should expect to observe violations of P3 and

P4 in a reasonably rich model. Taking the contrapositive of this claim, we

can argue that, in a reasonably rich model, should a decision maker satisfy

all of Savage’s axioms, interpreting the resulting measure as her subjective

probability does not seem unwarranted.

13.2.5 When is state dependence necessary?

Given the considerable cost of giving up the uniqueness of the probability

measure, one may wonder how far can Savage’s defense go, and when do we

truly have to reject state dependence (and with it, P3 and P4)?

Savage’s caricature implicitly admits that, when an event such as death

is concerned, state-dependent utility might be a necessity. The same would

apply to other catastrophic events, in which the decision maker may become

96Edi Karni argues that, due to this reason, the choice of the subjective probability that
corresponds to the state-independent utility is only a matter of convention.
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paraplegic, insane, etc. The example of Mr. Jones shows that uncertainty

need not apply to one’s person in order to change utility in a way that state-

independent utility would be misleading or simply false. What distinguishes

these examples, in which state-dependent utility is crucial, from simple mis-

applications of the model as in the options example?

A natural guideline emerges if we remind ourselves the nature of the

exercise we perform. Again: the name of the game, following the Ramsey-de

Finetti-Savage line, is to elicit beliefs from preferences. That is, we observe

the results of a decision process, and try to reason back and ask what beliefs

might have driven the choices we observed.

People make choices based on their beliefs, but also based on what they

like and dislike. In other words, the decision maker’s “hedonic engine”, her

ability to enjoy or suffer from experiences, is part of the measurement tool

that Ramsey, de Finetti, and Savage designed to measure beliefs by. If the

measurement tool is itself subject to uncertainty, we should not be surprised

to find problems. Our situation is analogous to an astronomer who observes

the stars, but does not know how their motion affects the operation of his

own telescope.

All the examples of state-dependent utility in which one cannot re-state

the model along the line of Savage’s defense, I would argue, have one thing in

common: they describe uncertainty that affects the decision maker’s hedonic

engine, that is, her ability to enjoy life. This is true of death, illness, death

of a loved one, and so forth. Conversely, in examples that do not involve

uncertainty about one’s hedonic engine, it is quite possible that Savage’s

defense is convincing and one may re-define outcomes so as to obtain a state-

independent utility.

Considering economic applications, we find that problems that have to do

with physical and mental health, problems that involve life insurance, and so

forth are likely to require state-dependent utility model. These would also

be problems for which the Savage approach does not provide a satisfactory
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definition of subjective probabilities.

13.3 Critique of P1 and P2

13.3.1 The basic problem

The main difficulty with axioms P1 and P2, as well as with Savage’s theorem

and with the entire Bayesian approach is, in mymind, the following: for many

problems of interest, there is no sufficient information based on which one

can define probabilities.97 Referring to probabilities as subjective rather than

objective is another symptom of the problem, not a solution thereof. It is a

symptom, because, were one capable of reasoning one’s way to probabilistic

assessments, one could have also convinced others of that reasoning and result

in a more objective notion of probability. Subjective probabilities are not a

solution to the problem: subjectivity may save us needless arguments, but it

does not give us a reason to choose one probability over another. Interpreting

probabilities subjectively, each of us is entitled to his or her own opinion. But,

when left to our devices, it is only rational that we ask ourselves, why do

other people have different beliefs? How can I be so sure that I’m right and

they’re wrong? Maybe I should give some credence to their beliefs as well?

This difficulty can manifest itself in violations of P1 and/or of P2. If one

takes a strict view of rationality, and asks what preferences can be justified

based on evidence and reasoning, one is likely to end up with incomplete pref-

erences.98 One may take a weaker view of rationality, and explicitly model

preferences that are not necessarily justified, but are also not contradicted

by evidence and reasoning. This approach has the advantage of satisfying

the completeness axiom, but it does so at a cost: many preference pairs will

have to be determined quite arbitrarily. As a result, one may find that one

violates other axioms. In particular, P2 is a likely victim, because it is the

97Much of the material in this section appeared in Gilboa, Postlewaite, and Schmeidler
(2004, 2007). See also Shafer (1986).
98See the discussion in Chapter
14.
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axiom that implies, among other things, that the decision maker should be

indifferent between likelihood judgments that are well-reasoned and those

that are arbitrary.

We now turn to discuss these issues in more detail.

13.3.2 Reasoned choice vs. raw preferences

As mentioned in 7.1, in consumer theory the completeness axiom is typically

considered to be rather weak. Descriptively, it says that something will have

to be chosen. Normatively, it adds that it is better to explicitly model that

something. The completeness axiom may help us elicit the utility function

of the consumer by observing their choices and reasoning backwards. This

process may even be followed by the decision maker herself. For example,

if I observe that there are two types of mustard in my refrigerator, one is

consumed and the other isn’t, I may infer from this that I like the first more

than the second.

When my preferences are well defined and require no reasoning, a similar

process may help me elicit my subjective probabilities. For example, if I

notice that I do not buckle up for a short trip of half a mile, I can infer that I

probably do not find it very likely that an accident would occur in such short

a trip. I do not need to consciously think about the probability of an accident

in order to define my preferences. My preferences are given and, upon careful

inspection, they can be viewed as reflecting subjective probabilities.

Next assume that I have to decide whether to invest in a certain firm in

an emerging economy. Should I or should I not invest? I can try to inspect

my mind for preferences, but, as opposed to the case of the mustard or the

seat belt, there are no preferences in my head. I do not know what I prefer.

Trying to figure out my preferences, I may start thinking what would be

the probability of this economy continuing to grow at the current pace, what

is the probability of the particular firm succeeding, and so forth. In assessing

these probabilities no gain would be obtained from asking myself what my
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preferences are. In fact, this would lead me back to the probability question.

We are therefore led to a distinction between types of choices. On one

extreme there are choice situations in which preferences are well defined and

require no inference.99 Let us refer to these as “raw preferences”. On the

other extreme we find decision problems that require thinking and reasoning

to construct our preferences. Call these “reasoned choice”. The interpreta-

tion of a relation % is quite different in these situations.100

When % refers to raw preferences, as in simple consumer problems, com-
pleteness may be viewed as a very weak axiom, whereas the other axioms

impose restrictions on preferences. When % models reasoned choice, by con-
trast, completeness is the challenge: one attempts to find out one’s pref-

erences. The other axioms, being restrictions on the preferences one may

consider, can be viewed as aids to decision. By restricting the set of possible

preference relations, axioms such as transitivity and P2-P4 provide the deci-

sion maker with hints, as it were, regarding her preferences. Relatedly, such

axioms provide reasons for various preferences. The decision maker might

think, “since I prefer f to g and I know I also prefer g to h, I should prefer

f to h”. Or, “I notice that f is preferred to g given A and also given Ac. I

conclude that I actually prefer f to g unconditionally as well.”

For reasoned choice, the completeness axiom is the goal. This goal might

be attained only after the reasoning process is complete, and a probability

measure has been assessed. At that point it will be too late to use the com-

pleteness axiom to derive a probability measure. We should find a probability

measure based on other grounds if we wish to satisfy the completeness axiom.

99The phrase “preference requires no inference” is borrowed from Zajonc (1980).
100This point was made in Gilboa, Postelwaite, and Schmeidler (2004). There are many
situations that present us with intermediate cases, for instance, when one follows a rea-
soning process to conclude that a is preferred to b, while one’s gut feeling still prefers
b.
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13.3.3 Schmeidler’s critique and Ellsberg’s paradox

Cognitive unease Assume now that one has decided to bring forth all

one’s preferences. Choices will be made, let us make them explicit. But now

we have choices that are justified by reasoning (and evidence) and choices

that are not. One problem of the Bayesian approach is that it does not

distinguish between these.

David Schmeidler was bothered by these issues in the early ’80s. He

suggested the following mind experiment: you are asked to bet on a flip of

a coin. You have a coin in your pocket, which you have tested often, and

found to have a relative frequency of Head of about 50%. I also have a coin

in my pocket, but you know nothing about my coin.

If you wish to be Bayesian, you have to assign probabilities to each of

these coins coming up Head. The coin for which relative frequencies are

known should probably be assigned the probability .5. It has been flipped

many times and it has honestly earned this probability. My coin is a wild

card. You know nothing about it, but your ignorance is symmetric. You have

no reason to prefer one side to the other. But, if you were not convinced by

the Principle of Indifference, you may prefer not to assign any probability to

my coin coming up Head. Still, you have to. So you assign the probability

of .5, based on symmetry considerations alone.

Now that probabilities were assigned, the two coins have the same prob-

ability. But Schmeidler’s intuition was that they feel very different. There is

some sense that .5 assigned based on empirical frequencies is not the same

as .5 that was assigned based on default.

I emphasize the fact that Schmeidler’s work started with this intuition. As

we will see below, this intuition has a behavioral manifestation in Ellsberg’s

paradox. But Schmeidler did not start out by attempting to explain the

experimental evidence. I think that this is partly the reason that Schmeidler’s

work had a very significant impact: sometimes we should trust our intuition
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more than experiments in finding when the theory doesn’t make sense.101

Ellsberg’s two-urn paradox Ellsberg (1961) suggested two experiments.

His original paper does not report an experiment run in a laboratory, only

replies obtained from economists. The two-urn experiment is very similar to

the two coin example:

There are two urns, each containing 100 balls. Urn I contains 50 red

balls and 50 black balls. Urn II contains 100 balls, each of which is known

to be either red or black, but you have no information about how many of

the balls are red and how many are black. A red bet is a bet that the ball

drawn at random is red and a black bet is the bet that it is black. In either

case, winning the bet, namely, guessing the color of the ball correctly, yields

$100. First, you are asked, for each of the urns, if you prefer a red bet or a

black bet. For each urn separately, most people say that they are indifferent

between the red and the black bet.

Then you are asked whether you prefer a red bet on urn I or a red bet on

urn II. Many people say that they would strictly prefer to bet on urn I, the

urn with known composition. The same pattern of preferences is exhibited

for black bets (as, indeed, would follow from transitivity of preferences given

that one is indifferent between betting on the two colors in each urn). That

is, people seem to prefer betting on an outcome with a known probability of

50% than on an outcome whose probability can be anywhere between 0 and

100%.

It is easy to see that the pattern of choices described above cannot be

explained by expected utility maximization for any specification of subjec-

tive probabilities. Such probabilities would have to reflect the belief that it

is more likely that a red ball will be drawn from urn I than from urn II,

and that it is more likely that a black ball will be drawn from urn I than

from urn II. This is impossible because in each urn the probabilities of the

101Observe that in 7.4 we also concluded that our intuition (about decreasing marginal
utility) should have been trusted more than it had been.

191



two colors have to add up to one. Thus, Ellsberg’s findings suggest that

many people are not subjective expected utility maximizers. Moreover, the

assumption that comes under attack is not the expected utility hypothesis

per se: any rule that employs probabilities in a reasonable way would also

be at odds with Ellsberg’s results. The questionable assumption here is the

basic tenet of Bayesianism, namely, that all uncertainty can be quantified in

a probabilistic way. Exhibiting preferences for known vs. unknown proba-

bilities is incompatible with this tenet. It violates Machina and Schmeidler’s

probabilistic sophistication.

To see why P2 is violated in this example, we should embed it in a state

space. In principle, we should define the states as functions from acts to

outcomes. But we can save ourselves some writing if we agree that it is

impossible that both a red bet and a black bet, on the same urn, would win

$100. Thus, what a state should specify is only, for each urn, which color

would be the ball drawn from that urn. Formally,

S = {R,B}{I,II} = {s : {I, II}→ {R,B}} .

If we agree that the first coordinate denoted s(I) and the second — s(II),

we can refer to the states as {RR,RB,BR,BB}.
Let there be four acts, denoted IR, IB, IIR, IIB, where IR means bet-

ting on a red ball out of urn I, IIR — on a red ball out of urn II, etc. We

now have the following decision matrix, where 1 denotes $100, and 0 — $0:

RR RB BR BB
IR 1 1 0 0
IB 0 0 1 1
IIR 1 0 1 0
IIB 0 1 0 1

Considering A = {RR,BB}, we find that

IR(s) = IIB(s) IB(s) = IIR(s) ∀s /∈ A
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and

IR(s) = IIR(s) IB(s) = IIB(s) ∀s ∈ A.

In words, on Ac, the two acts IR and IIB are equal. This means that

if we change them on Ac, but keep them equal to each other, preferences

between them should not be reversed. But after we change IR and IIB on

Ac to equal IB = IIR, IR becomes IIR and IIB becomes IB. P2 would

therefore imply that

IR % IIB ⇔ IIR % IB

whereas modal preferences are

IR ∼ IB Â IIR ∼ IIB.

Ellsberg’s single-urn paradox The two urn example has two main ad-

vantages. First, I find its intuition very clear. Second, you need to work

a bit to define the states of the world for it, and this is a good exercise.

By contrast, the single-urn example is more straightforward in terms of the

analysis.

This time there are 90 balls in an urn. We know that 30 balls are red, and

that the other 60 balls are blue or yellow, but we do not have any additional

information about their distribution. There is going to be one draw from the

urn. Assume first that you have to guess what color the ball will be. Do

you prefer to bet on the color being red (with a known probability of 1/3) or

being blue (with a probability that could be anything from 0 to 2/3)? The

modal response here is to prefer betting on red, namely, to prefer the known

probability over the unknown one.

Next, with the same urn, assume that you have to bet on the ball not

being red, that is being blue or yellow, versus not being blue, which means red

or yellow. This time your chances are better — you know that the probability
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of the ball not being red is 2/3, and the probability of not-blue is anywhere

from 1/3 to 1. Here, for similar reasons, the modal response is to prefer not-

red, again, where the probabilities are known. (Moreover, many participants

simultaneously prefer red in the first choice situations and not-red in the

second.)

Writing down the decision matrix we obtain

R B Y
red 1 0 0
blue 0 1 0

not− red 0 1 1
not− blue 1 0 1

It is readily seen that red and blue are equal on Y . If P2 holds, changing

their value from 0 to 1 on Y should not change preferences between them.

But when we make this change, red becomes not − blue and blue becomes

not− red. That is, P2 implies

red % blue ⇔ not− blue % not− red

which is violated by the observed preferences

red Â blue not− red Â not− blue.

Ellsberg as a metaphor Ellsberg’s examples are very neat. They show an

exact violation of P2, relying on a large degree of symmetry in the problems.

But this degree of symmetry may also be misleading. In particular, people

are often tempted to come up with the symmetric prior, and, cognitive unease

aside, decide to make decisions in accordance with this prior.

For example, in the two-urn experiment, it is tempting to assume that the

probability of a black draw from the unknown urn is 50%. You can obtain

this by applying the principle of indifference to the two sides of the coin.

Alternatively, you may think about second-order probabilities, asking what
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the distribution of the urn is likely to be, and if you have a symmetric prior

over the urn distribution, your overall probability for black (and for red) will

be 50%. After such calculations, you can convince yourself that even if these

were not your original preferences, then these should be your preferences.

And the conclusion might be that, since you were convinced by Savage that

it makes sense to be Bayesian, decision makers who were tricked by Ellsberg,

as it were, should repent and adopt the natural prior.

This conclusion would be misleading, because in most questions of interest

there is no natural prior. David Schmeidler often says, “Real life is not about

balls and urns”. Indeed, important decision involve war and peace, recessions

and booms, diseases and cures. In these examples there are no symmetries

and no natural priors, and the principle of indifference cannot lead us very

far.

It is important to remember that, while Ellsberg needed all these sym-

metries to generate counterexamples to P2, these counterexamples should

only be taken as metaphors. The urn with the unknown composition may

be thought of as the unknown probability of a stock market crash. And

the question raised by Ellsberg’s paradox is, is it realistic to suppose that,

in questions involving stock market crashes, wars, and the like, people will

satisfy P2?

13.3.4 Observability of states

If you try to think about this last question seriously, you may find that the

answer is that we don’t know, and that there is probably no way to tell. P2

has a clear meaning when we draw Savage acts on the blackboard, as well as

when we draw balls from urns. But let us consider a real problem such as

determining what should be the US foreign policy. It may be very difficult

to come up with four acts, that are actually available to the US, and that

are constrained by P2.

One of the problems we will encounter in such a model is that the states of
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the world are not directly observable. We typically will not know what states

of the world the decision maker has in mind. When we have participants in

an experiment in which balls are drawn from urns, there is but one reasonable

model to describe the uncertainty they face. But when we consider a real-life

choice, different people may think of different eventualities, different possible

outcomes, and plan for different time horizons. Actual choices may not

satisfy P2 when embedded in a given model, and yet they may satisfy it

when embedded in a larger model. It is thus not always easy to tell whether

people satisfy Savage’s axioms, and, correspondingly, whether they have a

subjective probability.102

13.3.5 Problems of complexity

Finally, I should mention that the notion of a state space is likely to involve

problems of daunting complexity. We have been freely defining state spaces

as set of functions from here to there, but such definitions involve exponential

growth in the number of states. If you consider a contract that refers to n

possible binary conditions, writing down the state space that corresponds to

the contract involved 2n states. Similarly, there are 2n different regression

models that may be relevant for the explanation of one variable, if there are

n candidates for the predictors.103 It follows that, for many problems that we

can think of, actually writing down the state space model is not a practical

undertaking.

Complexity considerations are relevant for descriptive and normative pur-

poses alike. In a descriptive interpretation of the theory, it is unreasonable

to assume that people think of very many states, and it is therefore un-

102Dekel, Lipman, and Rustichini (2001) derive a subjective state space from preferences
over sets of lotteries. This derivation assumes a notion of probabilities used in the lotteries.
For the decision problems in question, these probabilities would probably have to be
intepreted as subjective. It is interesting that states can be derived from probabilities,
as opposed to the Savage’s derivation. Yet, this derivation presupposed that subjective
probabilities are a meaningful concept.
103See Aragones, Gilboa, Postlewaite, and Schmeidler (2005).
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clear whether they would miraculously exhibit behavior as if they did. In

a normative interpretation, the recommendations we make should also be

practicable.
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14 Objectivity and Rationality

There is no fundamental reason for this section to come at this point in the

discussion. However, if we haven’t discussed these issues yet, it might be a

good idea to do it now, after Savage’s theorem was discussed, and before we

look for alternative approaches.

14.1 Subjectivity and objectivity

When subjective probability was introduced, and even when it was champi-

oned by de Finetti, people tended to believe that certain things have existence

which is objective, and unrelated to the observer, that is, to us. On this back-

ground, de Finetti said “Probability does not exist”, meaning that it is not

an objective feature of the world around us, but only a concept that is in our

minds, something that we impose on reality around us, trying to make sense

of our observations.

Since then many things happened, and reality is not what it used to be.

Many people think that objective reality does not exist, that the most we

can refer to is intersubjectivity, and so forth.

Personally, because of my inability to understand ontology, I never quite

understood what can be “objective” in the classical sense. I was therefore

very excited to read the definition of objective probabilities in Anscombe

and Aumann (1963). They argue that all probabilities are subjective, but if

subjective probabilities happen to coincide, we will call them objective. That

is, “objective” is simply a nickname for a subjective term that happens to

be in agreement, not far from the meaning of “intersubjective”.

After many years, David Schmeidler convinced me that this is hardly a

satisfactory definition. His example was the following. Suppose that the

two of us are looking at a crater and wondering how deep it is. Each of us

provides his subjective assessment, and let’s suppose it turns out that both

assessments are the same, 20 feet. Next assume that David also has a meter.
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He pulls it out of his pocket, rolls it down and shows me that the depth is

20 feet. Again, we agree on the assessments, but this time it feels that there

is something more “objective” about it.

The difference is that after having measured the depth I believe that the

agreement between our assessments is not coincidental. I have a theory as

to why we had to agree on the assessment. Similarly, if a third person would

now join us and be asked to assess the depth of the crater, there will be a

difference between the two scenarios. In the first case, I may well believe

that the coincidental agreement with David will not be shared with the third

person. In the second, I am rather confident that I will be able to convince

the third person that our view is correct.

In Gilboa and Schmeidler (2001) we used this definition of objectivity,

namely one that is likely to be shared by others. Obviously, some theorizing

about the world is needed to judge claims to objectivity. To find out that

David and I have the same assessment we only need our assessments. To

reason about what a third person would agree to we need to make some

speculation about the kind of person we might encounter, the fact that the

measurement of the crater depth will be consistent, and so forth. Moreover,

there may be disagreements about these theories. For instance, David may

believe that any reasonable person would be convinced by his meter mea-

surement, and I may think that reasonable people might disagree with him.

In short, this definition is not making any reference to any reality that ex-

ists outside of our minds. But our minds are asked to imagine a few more

scenarios involving convincing other people.

14.2 Objective and subjective rationality

I have warned you earlier that I use the term “rationality” differently than

most economic theorists. The standard definitions are purely behavioral,

and equate rationality with a concept such as behaving in compliance with

Savage’s axioms, or some other set of axioms. I prefer a definition of ratio-
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nality that has to do not only with behavior, but also with cognition, and,

specifically, with reasoning about behavior.

Let us perhaps start with defining irrationality. My favorite definition is

the following. A mode of behavior is irrational for a given decision maker,

if, when the decision maker behaves in this mode, and is then exposed to

the analysis of her behavior, she feels embarrassed.104 Clearly, this definition

is subjective, quantitative, and not purely behavioral. According to this

definition, the same mode of behavior can be irrational for one person and not

for another. The measurement of irrationality depends on a rather nebulous

concept such as embarrassment. Worse still, if we consider two decision

makers who behave in the same way but differ in their intelligence, we may

find that the less intelligent one is more rational, simply because she fails to

see the logic of some axioms. That is, one may not be dubbed “irrational”

thanks to failing to see what’s wrong with one’s decisions. I tend to view all

these features as advantages of the definition.

Why is it a good definition? Let me try to convince you that it is a useful

concept for the type of discussions we are involved in. We recognize that

almost all the axioms of choice theory are under empirical and experimen-

tal attacks, and we admit that for practically every axiom there will be an

experiment refuting it. What do we do then? If we still are interested in

the social science enterprise, there are two main lines of progress: we can

try to adapt our theories to reality, making them more accurate descriptive

theories. Or we can try to preach our theories and teach decision makers to

behave in accordance with our theories. That is, we can bring the theory

closer to reality, or try to bring reality closer to the theory. Which path

should we take? I argue that the definition of irrationality above is precisely

what should guide our choice.

Consider, for example, framing effects (Tversky and Kahneman, 1981). I

104The term “embarrassed” in this context was suggested to me by Amos Tversky. A
slightly less provocative version of this definition is used in Gilboa and Schmeidler (2001a).
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have tried it in many classes, and if the students had not been exposed to

it before, framing works: for many students, choices depend on the repre-

sentation of the choice problem. In all of these classes I went on to explain

the equivalence of two representations of the same problem, and I have yet

to meet a student who insists that representation should, indeed, matter.

People who make different choices are embarrassed to discover that.105 By

the same token, I argue that the same people are less likely to fall prey to

similar framing effects the next time they are exposed to them. Indeed, it has

happened to me that I tried to trick the students only to discover that they

had already heard about framing effects from another teacher. Moreover, it

is possible that today many more people hear about framing effects in the

popular or semi-popular press than twenty years ago. It is not unthinkable

that future generations will be much more sophisticated than ours in this

respect. I do not wish to argue that framing effects will disappear. But the

prevalence of the phenomenon is sensitive to our preaching.

This is not the case, for instance, with Ellsberg’s paradox. Many people

hold on to their choices even after P2 was explained to them. Indeed, we

do not have simple algorithms to generate prior probabilities, and a decision

maker who violates P2 need not feel embarrassed about it. Correspondingly,

the Ellsberg phenomenon may be less responsive to the teachings of decision

theory than are framing effects.106

It follows that the question of irrationality may be related to the decision

problem we are facing as theorists, namely, to preach our theories as norma-

tive, or to improve their predictions as descriptive. If most people can be

105I refer here to framing effects that are simple to understand, as in the experiments of
Tversky and Kahneman. When the equivalence of two representations requires a proof,
such as Savage’s theorem, for example, I would not expect anyone to be embarrassed for
not having recognized the equivalence a priori.
106Observe that complexity considerations also play a role in this definition of irrational-
ity. It is not irrational not to play chess optimally, because one cannot compute the
optimal strategy in chess. Correspondingly, one need not be embarrassed if one fails to
see a very sophisticated strategy in chess.
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convinced by our theories, there is hope to change people’s behavior. This

may be especially relevant when the choices in question are important ones,

when they are done by teams who engage in brainstorming, etc.107 If, how-

ever, people shrug their shoulders when we explain the logic of our axioms,

or admit that these are nice axioms but argue that they are impractical, we

should better refine the theories.108

What is a rational mode of behavior, then? One can simply argue that

all that is not irrational is rational. Yet, the discussion of the completeness

axiom above suggests that it may be useful to distinguish between the two.

An arbitrary choice (of a prior, or of a decision) may not be irrational in the

same sense that framing effects are. Yet, it is also not “rational” in the sense

that it can be argued, justified, and found convincing by others. Thus, we

will use subjective rationality to refer to any mode of behavior that is not

irrational. The term objective rationality will be used for modes of behavior

that can be explained to others so that these are convinced by them. A

decision is objectively rational if the decision maker can convince others that

she is right in making it. It is subjectively rational for her if others cannot

convince her that she is wrong in making it.

In the usage suggested here, “irrationality” is not necessarily a disparag-

ing term, and “rationality” need not be a compliment. According to this

view, rationality is not a medal of honor bestowed upon selected decision

makers by the theorist. Rather, “irrational” means “is likely to change his

mind” whereas “rational” means “is likely to insist on her behavior”. The

terms are used to facilitate discussion, while the decision maker remains the

ultimate judge of the choices that are rational for her.

107For example, see Charness, Karni, and Levin (2008) on the example of the conjunction
fallacy (the celebrated Linda).
108Naturally, many modes of behavior will be considered by some people as irrational
and not by others. How irrational a mode of behavior is is an empirical question that will
depend on the education, intelligence, personal tastes, and cultural biases of the decision
makers.
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15 Anscombe-Aumann’s Theorem

The result by Anscombe and Aumann (1963) was already mentioned twice

above, and their set-up will be used twice below, so it seems like a perfect

time to introduce their model and result. As in the case of vNM, we use the

simpler set-up introduced by Fishburn (1970a).

Anscombe-Aumann’s model has outcomes X and states S as does Sav-

age’s. However, acts do not map states directly into outcomes, but into

the (mixture) space of vNM lotteries over outcomes. Formally, we remind

ourselves that the vNM lotteries are

L =

½
P : X → [0, 1]

¯̄̄̄
#{x|P (x) > 0} <∞,P

x∈X P (x) = 1

¾
and it is endowed with a mixing operation: for every P,Q ∈ L and every

α ∈ [0, 1], αP + (1− α)Q ∈ L is given by

(αP + (1− α)Q) (x) = αP (x) + (1− α)Q(x).

Now we wish to state that acts are functions from S to L. In general

we would need to endow S with a σ-algebra, and deal with measurable and

bounded acts. Both of these terms have to be defined in terms of preferences,

because we don’t have yet a utility function. Instead, we will simplify our

lives and assume that S is finite. (After all, this is one of the advantages

of this model as compared to Savage’s — in Savage’s model this assumption

isn’t possible.) We will retain this assumption also in the two theorems that

we present later in this set-up. However, all three theorems hold for general

measurable spaces.

After this apology, we can indeed define the set of acts to be F = LS. We

will endow F with a mixture operation as well, performed pointwise. That

is, for every f, g ∈ F and every α ∈ [0, 1], αf + (1− α)g ∈ F is given by

(αf + (1− α)g) (s) = αf(s) + (1− α)g(s) ∀s ∈ S.
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We will denote the decision maker’s preference order by%⊂ F×F and we
will abuse this notation as usual. In particular, we can write, for P,Q ∈ L,

P % Q, understood as fP % fQ where, for every R ∈ L, fR ∈ F is the

constant act given by fR(s) = R for all s ∈ S.

To make sure that we understand the structure, observe that there are two

sources of uncertainty: the choice of the state s, which is sometimes referred

to as “subjective uncertainty”, because no objective probabilities are given

on it, and the choice of x, which is done with objective probabilities once you

chose your act and Nature chose a state. Specifically, if you choose f ∈ F

and Nature chooses s ∈ S, a roulette wheel is spun, with distribution f(s)

over the outcomes X, so that your probability to get outcome x is f(s)(x).

For a function u : X → R we will use the notation

EPu =
X
x∈X

P (x)u(x)

for P ∈ L.

Thus, if you choose f ∈ F and Nature chooses s ∈ S, you will get a

lottery f(s), which has the expected u-value of

Ef(s)u =
X
x∈X

f(s)(x)u(x).

Anscombe-Aumann’s axioms are the following. The first three are iden-

tical to the vNM axioms. Observe that they now apply to more complicated

creatures: rather than to specific vNM lotteries, we now deal with functions

whose values are such lotteries, or, if you will, with vectors of vNM lotteries,

indexed by the state space S. The next two axioms are almost identical to

de Finetti’s last two axioms, guaranteeing monotonicity and non-triviality:

AA1. Weak order: % is complete and transitive.
AA2. Continuity: For every f, g, h ∈ F , if f Â g Â h, there exist
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α, β ∈ (0, 1) such that

αf + (1− α)h Â g Â βf + (1− β)h.

AA3. Independence: For every f, g, h ∈ F , and every α ∈ (0, 1),

f % g iff αf + (1− α)h % αg + (1− α)h.

AA4. Monotonicity: For every f, g ∈ F , f(s) % g(s) for all s ∈ S

implies f % g.

AA5. Non-triviality: There exist f, g ∈ X such that f Â g.

If you feel a little bit like putting together the vNM axioms and de

Finetti’s, this is fine. This is in fact the point: justifying de Finetti’s as-

sumption of linearity by replacing payoffs by probabilities of payoffs.

In stating the Anscombe-Aumann theorem, we will still use the language

of integration and measures, despite the fact that we assumed S to be finite.

This will make the theorem look more impressive, and it will remind us that

it holds also for more general spaces.

Theorem 7 (Anscombe-Aumann) % satisfies AA1-AA5 if and only if there
exist a probability measure µ on S and a non-constant function u : X → R
such that, for every f, g ∈ F

f % g iff
Z
S

(Ef(s)u)dµ(s) ≥
Z
S

(Eg(s)u)dµ(s)

Furthermore, in this case µ is unique, and u is unique up to positive linear

transformations.

The Anscombe-Aumann representation thus involves double integration:

the outer one is over the state space, and relative to the subjective probability

measure µ, and the inner one is the vNM expected utility calculation, where

the objective probabilities are dictated by the act and the state.
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As in Savage’s model, the monotonicity axiom says a bit more than

monotonicity: it actually implies separation of tastes from beliefs. In Sav-

age’s model the ordinal ranking of the outcomes was independent of the state

to which they were associated. Here we get the same result, but this time

the values of the functions, f(s), are vNM lotteries. Since these lotteries are

ranked the same at all states, we can attach with each state a vNM function,

but these functions are positive linear transformations of each other. The

multiplicative coefficients used to transform one function into another will

turn out to be the ratios of the probabilities of the respective states.

Anscombe-Aumann’s theorem is relatively easy to prove (see Fishburn,

1970a, pp. 176-178, and Kreps, 1988, pp. 99-111), and it was not suggested

as a major mathematical achievement. It was supposed to be a much simpler

derivation of subjective probability than Savage’s, one that can accommo-

date finite state spaces, and that made explicit the derivation of subjective

probabilities from objective ones. As a (probably unintended) by-product,

Anscombe and Aumann provided a very convenient set-up in which alterna-

tive models of decision under uncertainty can be developed.
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Part III: Alternative Behavioral Theories
We ended the discussion of Savage’s theorem by criticizing his axioms on

descriptive and normative grounds alike. If the axioms do not always hold,

and, furthermore, they might be dubious even as standards of rationality,

we can proceed in two directions, which might be combined. One is to cling

to the notion of probability, but to abandon the behavioral derivations of

Ramsey-de Finetti-Savage and seek an alternative definition of probabilities.

The other is to remain loyal to the behavioral approach, and ask, what

alternative notions of belief can describe the way that people make decisions,

or the way that they can be convinced to make decisions when they attempt

to be rational. And a combination of the two would allow both for different

notions of beliefs (not only probabilities), and different types of definitions

(not necessarily behavioral).

In the following chapters you will see all three. We begin by the second

route, which adheres to the behavioral definition but allows different notions

of beliefs, namely, non-additive probabilities (including a digression to study

prospect theory under risk) and multiple priors. We will then drop the be-

havioral approach and adopt a cognitive one (this will mark the beginning

of Part IV). Within the cognitive direction we will consider models that use

probabilities but also others that have less structured notions of beliefs.
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16 Choquet Expected Utility

16.1 Schmeidler’s intuition

If you recall the discussion of Schmeidler’s two-coin example and Ellsberg’s

paradox (13.3.3), we find that P2 is too strong. What could be an alternative?

Schmeidler’s starting point was that, should probability reflect the deci-

sion maker’s willingness to bet, then this probability cannot be additive. To

distinguish it from standard probabilities, let us denote the non-additive one

by v.109 Then, for the unknown coin, we may find that

v(H) = v(T ) = .4

while

v(H ∪ T ) = 1.

That is, a non-additive measure need not satisfy v(A ∪ B) = v(A) + v(B)

whenever A and B are disjoint. So we are led to consider real-valued set

functions, i.e., functions from subsets110 of S to the real line, or, to remind

ourselves of probabilities, into [0, 1].

It will still be natural to require the following properties:

(i) v(∅) = 0;
(ii) A ⊂ B implies v(A) ≤ v(B);

(iii) v(S) = 1.

A set function v that satisfies the above conditions will be called a non-

additive probability, or a capacity.111

109A non-additive set function is also what is known as a transferable utility game, where
v(A) is the value of a coalition A, or what the coalition can guarantee itself.
110If S is finite, we will consider all subsets. If it is infinite, one has to endow it with a

σ-algebra of events.
111Choquet (1954-5) defined the concept of a capacity, sometimes also called a charge,
with applications to physics in mind. His definition involved additional continuity require-
ments, which are vacuously satisfied when S is finite.
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Having the concept of a non-additive probability, one can now explain

such phenomena as the preference for betting on a coin with known proba-

bilities, or Ellsberg’s experiments. In both of these there are but two possible

outcomes. This means that the preference order is no more than a ranking of

events, which may fail to satisfy de Finetti’s cancellation axiom, but satisfies

monotonicity. It should not be hard to represent such a preference relation

by a real-valued function, and even a monotone one. Such a function will not

be unique. In fact, it will only be ordinal. This may be a bit of a problem

from a theoretical point of view, if we are after a definition of some notion

of belief. Yet, a numerical representation of preferences will exist.

But what do we do with acts that have more than two possible outcomes?

How do we represent preferences between them? We would like to have a

notion of integration that works for non-additive probabilities.

The natural way to define an integral is to follow Riemann’s definition.

Assume that f is a real-valued function, taking the value xi on the event Ei

where {E1, ..., Em} is a partition of S.112 That is, f =
P

i xi1Ei where 1A is

the indicator function of A ⊂ S. We will also write f = (x1, E1; ...;xm, Em).

Then, given a non-additive measure v, it makes sense to define

R(f, v) =
X
i

xiv(Ei)

that is, to sum the “areas” of the rectangles, each constructed on Ei with

height xi.

Such an intuitive definition turns out to suffer from three related difficul-

ties.

1. Ambiguity: the integral will depend on the way we write the function
f . Specifically, consider disjoint A and B and observe that

(1, A; 1, B; 0, (A ∪B)c) = (1, (A ∪B); 0, (A ∪B)c)
112Later on we will consider acts that do not assume real numbers as values. But we will
have a utility function to do the translation for us. For the time being let’s understand
how we can integrate a real-valued function.
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but in general it will not be the case that v(A∪B) = v(A)+v(B). This means

that, when we get a representation of a function f = (x1, E1; ...;xm, Em) we

have to ask ourselves whether some of the xi’s appear more than once, and

then decide how to treat them. The most reasonable definition is to take the

maximal event over which f equals a certain xi, and use these. (In a finite

state space you can also think of the minimal events, but the maximal events

idea makes just as much sense in general.)

2. Discontinuity: consider now fε = (1 + ε,A; 1, B; 0, (A ∪B)c). As
ε→ 0, fε converges (in any reasonable topology) to f0 = (1, (A ∪B); 0, (A ∪B)c),
but

R(fε, v) = (1 + ε)v(A) + v(B)→ v(A) + v(B)

and, in general

R(f0, v) = v(A ∪B) 6= v(A) + v(B)

that is, the integral R(f, v) is not continuous in the integrand.

3. Violation of monotonicity: With the notation above, assume that
v(A ∪ B) > v(A) + v(B). Then, for a small enough ε, R(fε, v) < R(f0, v),

even though fε dominates f0 pointwise. Similarly, if v(A∪B) < v(A)+v(B),

a violation of monotonicity will result when we consider ε < 0.

These are too many flaws. Something else need to be found.

16.2 Choquet Integral

The idea of Choquet integration is to look at the rectangles sideways.113

Suppose that we have a function f ≥ 0. Say, fε = (1 + ε,A; 1, B; 0, (A ∪B)c)
with ε > 0. Imagine that you are pouring water, trying to fill the area under

the curve of f . You start out, and until the water gets to height 1, you have

to cover all of A ∪ B. Let us stop when you got to this height. So far you
113The original definition is in Choquet (1953-4).
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filled a rectangle whose height is 1 and whose basis is the event A∪B. This
will take you

1 · v(A ∪B)

gallons of water. At this point the water reaches the graph of fε over the

event B, but not over A. Continue to pour, to reach the graph of fε also

under A. You will need to cover another rectangle whose height is ε, and

whose basis is the event A. This will require additional

ε · v(A)

gallons. Altogether, the integral of fε according to v will be

1 · v(A ∪B) + ε · v(A).

This water pouring story will also be the general definition. Before we

define it formally, observe that this definition (at least in this simple case)

solves all the problems of the Riemann-style definition. First, there is no

problem of ambiguity: as you pour water in, you don’t really care how f is

represented algebraically, only the graph of f matters. Second, if ε is very

small, positive or negative, the amount of water that you pour under the

graph of fε converges to that you pour under the graph of f0. Finally, as

long as v is monotone with respect to set inclusion (as we required), you will

find that the integral is monotone with respect to pointwise domination.

For the general definition, let us start with a non-negative f . Since S is

finite, we know that f takes finitely many values. Let us order them from

the largest to the smallest: that is, f = (x1, E1; ...;xm, Em) with x1 ≥ x2 ≥
... ≥ xm ≥ 0. If you follow the water pouring procedure, you will first get
to cover ∪mi=1Ei up to height xm. Then Em will drop out and you will have

to cover only ∪m−1i=1 Ei to an additional height of (xm−1 − xm) and so on. We
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will therefore define the Choquet integral of f according to v to beZ
S

fdv =
mX
j=1

(xj − xj+1)v(∪ji=1Ei) (23)

with the convention xm+1 = 0. If v is additive, this integral is equivalent

to the Riemann integral (and to
Pm

j=1 xjv(Ej)). You can also verify that

(23) is equivalent to the following definition, which applies to any bounded

non-negative f (even if S were infinite, as long as f were measurable with

respect to the algebra on which v is defined):Z
S

fdv =

Z ∞

0

v(f ≥ t)dt

where the integral on the right is a standard Riemann integral. (Observe

that it is well defined, because v(f ≥ t) is a non-increasing function of t.)

And if you wonder how the integral is defined for functions that may be

negative, the answer is simple: we want it to have the nice property that, for

every function f and constant c,Z
S

(f + c)dv =

Z
S

fdv + c

— a property that holds for non-negative f and c. So we make sure the

property holds: given a bounded f , take a c > 0 such that g = f + c ≥ 0,
and define

R
S
fdv =

R
S
gdv − c.

16.3 Comonotonicity

The Choquet integral has many nice properties — it respects “shifts”, namely,

the addition of a constant, as well as multiplication by a positive constant.

It is also continuous and monotone in the integrand. But it is not additive

in general. Indeed, if we hadZ
S

(f + g)dv =

Z
S

fdv +

Z
S

gdv
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for every f and g, we could take f = 1A and g = 1B for disjoint A and B,

and show that v(A ∪B) = v(A) + v(B).

However, there are going to be pairs of functions f, g for which the Cho-

quet integral is additive. To see this, observe that (23) can be re-written also

as Z
S

fdv =
mX
j=1

xj
£
v(∪ji=1Ei)− v(∪j−1i=1Ei)

¤
.

Assume, without loss of generality, that Ei is a singleton. (This is possible

because we only required a weak inequality xj ≥ xj+1.) That is, there is

some permutation of the states, π : S → S, defined by the order of the xi’s,

such that ∪ji=1Ei consists of the first j states in this permutation. Given

this π, define a probability vector pπ on S by pπ(∪ji=1Ei) = v(∪ji=1Ei). It is

therefore true that Z
S

fdv =

Z
S

fdpπ

that is, the Choquet integral of f equals the integral of f relative to some

additive probability pπ. Note, however, that pπ depends on f . Since different

f ’s have, in general, different permutations π that rank the states from high

f values to low f values, the Choquet integral is not additive in general.

Assume now that two functions, f and g, happen to have the same per-

mutation π. They will have the same pπ and thenZ
S

fdv =

Z
S

fdpπ and
Z
S

gdv =

Z
S

gdpπ.

Moreover, in this case f+g will also be decreasing relative to the permutation

π, and Z
S

(f + g)dv =

Z
S

(f + g)dpπ

and it follows that
R
S
(f + g)dv =

R
S
fdv +

R
S
gdv.

In other words, if f and g are two functions such that there exists a per-

mutation of the states π, according to which both f and g are non-increasing,

we will have additivity of the integral for f and g. When will f and g have
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such a permutation? It is not hard to see that a necessary and sufficient

condition is the following:

f and g are comonotonic if there are no s, t ∈ S such that f(s) > f(t)

and g(s) < g(t).

16.4 Axioms and result

Schmeidler uses the Anscombe-Aumann set-up. This requires a new defini-

tion of comonotonicity, because now the acts assume values in L, rather than

in R. For two acts f, g ∈ F , we say that f and g are comonotonic if there

are no s, t ∈ S such that f(s) Â f(t) and g(s) ≺ g(t).

To understand the notion of comonotonicity between acts and its role in

the presence of uncertainty, one may go back to Ellsberg’s examples. Why

do decision makers violate P2 in these examples? One explanation is that

the changes in the values of the functions, over the event Ac, where the two

functions are equal, affect their degree of uncertainty in an asymmetric way.

In the single urn example, for instance, red, which has a known probability,

becomes not− blue, with an unknown probability, and vice versa for blue.

This type of asymmetric effect on uncertainty can also occur when you

mix acts that are not comonotonic. Consider a simple case, with S = {s, t},
and denote functions simply by vectors with two components. Assume also

that we have already translated vNM lotteries to real numbers. Suppose that

f is (0, 100) and g — (100, 0). Further, assume complete symmetry between

the states, so that f ∼ g. Now consider mixing both f and g with h = g.

Mixing g with h will leave us with g, of course. But g can offer some hedging

against f . If you consider 1
2
f + 1

2
g, you will get an act whose expected value

is (50, 50). That is, when you mix two acts that are not comonotonic, you

can have hedging effects. If h hedges better against f than it does against g,

you can find that the independence axiom fails.

It follows that it would make sense to weaken the Independence axiom

and require that it hold only in those cases where no hedging is possible.
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Indeed, Schmeidler defined

Comonotonic Independence: For every pairwise comonotonic f, g, h ∈
F , and every α ∈ (0, 1),

f % g iff αf + (1− α)h % αg + (1− α)h.

That is, the sole modification needed in the Anscombe-Aumann model

is that now Independence is required to hold only when the acts involved

are comonotonic. And the only modification in the theorem is that the

probability may be non-additive:

Theorem 8 (Schmeidler) % satisfies AA1, AA2, Comonotonic Indepen-

dence, AA4, and AA5 if and only if there exist a non-additive probability

measure v on S and a non-constant function u : X → R such that, for every
f, g ∈ F

f % g iff
Z
S

(Ef(s)u)dv ≥
Z
S

(Eg(s)u)dv

(where the integrals are in the sense of Choquet). Furthermore, in this case

v is unique, and u is unique up to positive linear transformations.

The proof is given in Schmeidler (1989, pp. 579-581, relying on Schmei-

dler, 1986). To understand how it works, observe that, restricting attention

to acts that are constant over S, we basically have vNM lotteries, and they

satisfy the vNM axioms. (Importantly, a constant act is comonotonic with

any other act, and, in particular, all constant acts are pairwise comonotonic.)

Thus we can find a utility function that represents preferences over lotter-

ies, and we can plug it in. This simplifies the problem to one dealing with

real-valued functions. Furthermore, if S is indeed finite we have real-valued

vectors.

Now consider all vectors that are non-decreasing relative to a given per-

mutation of the states, π. They generate a convex cone, and they are all

pairwise comonotonic, so that the independence axiom holds for all three of

215



them. Moreover, these vectors generate a mixture space — when we mix two

of them, we are still inside the set. Applying a generalization of vNM’s theo-

rem such as Herstein and Milnor (1953), one gets an equivalent of Anscombe-

Aumann representation, restricted to the cone of π-non-decreasing vectors.

For this cone, we therefore obtain a representation by a probability vector pπ.

One then proceeds to show that all these probability vectors can be described

by a single non-additive measure v.
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17 Prospect Theory

17.1 Background

When I was teaching this course twenty years ago, and, in fact, even ten years

ago, I could find many students in class who had never heard of Kahneman

and Tversky. I would then spend some time on their various findings, and

on Prospect Theory (PT). These dark ages are over. Today everyone knows

about their project and about behavioral economics, and there is no need to

argue with the extreme assumptions of rationality that were religiously held

by economists throughout most of the ’70s and the ’80s. In fact, I sometimes

marvel at how fast the pendulum swings. While behavioral economics often

comes under attack, it is nowadays considered acceptable to introduce highly

irrational modes of behavior into economic models. From assuming that

economic agents are just as rational as the modeler, know all mathematical

theorems, and know even unknowable things such as a prior probability over

an over-arching state space, the field suddenly started accepting agents who

are systematically over-optimistic, ignore information at will, and violate

dynamic consistency on a daily basis.

Behavioral economics is beyond the scope of this course, which focuses on

the definition of probability from a rational point of view. Most of Kahneman

and Tversky’s contributions are too far in the realm of biases and mistakes as

to be considered rational or normative. Moreover, from the remarkable body

of work that they did, relatively little is devoted to the very definition of

probability. Because of that, and due to the popularity of their work, I could

imagine skipping it here. However, there is a striking similarity between

the evolution of Prospect Theory into Cumulative Prospect Theory on the

one hand and Choquet integration on the other, and this calls for a short

discussion, if only for the historical anecdote.
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17.2 Gain-loss asymmetry

The most important idea in Prospect Theory is, I believe, the notion of

gain-loss asymmetry.114 The idea that people react to changes and not to

absolute levels is intuitive, powerful, and empirically convincing. Incidentally,

it does not involve too much irrationality. People can be embarrassed in some

examples of the phenomena, but not in all.

Consider the following example. There are two choice situations:

Problem 1:

You are given $1,000 for sure. Which of the following two options would

you prefer?

a. to get additional $500 for sure;

b. to get another $1,000 with probability 50%, and otherwise — noth-

ing more (and be left with the first $1,000).

Problem 2:

You are given $2,000 for sure. Which of the following two options would

you prefer?

a. to lose $500 for sure;

b. to lose $1,000 with probability 50%, and otherwise — to lose noth-

ing.

Many people choose (a) in Problem 1 and (b) in Problem 2. This can

be an example of the gain-loss asymmetry: when people are faced with the

prospect of gaining something they do not have, they make decisions in a

certain way, often in accordance with the assumption of risk aversion. But

when people are faced with the prospect of losing something that they already

have, they behave quite differently. Kahneman and Tversky argued that loss

aversion, namely, our extreme dislike of losing what we have, can make us

behave in a risk loving way in the domain of losses.
114Daniel Kahneman expressed the same opinion in a personal conversation. The idea
also appeared in Markowitz (1952), and is in line with Adaptation Level Theory of Helson
(1964).
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This example is striking because it can also be thought of as a framing

effect. After all, you are asked to make the choice a priori, before you received

$1,000 or $2,000. Writing down options (a) and (b) before the game begins

shows that these are the same options in Problem 1 and in Problem 2, they

are only represented differently, as gains relative to $1,000 or as losses relative

to $2,000.

Indeed, people are embarrassed to find that they make different choices

in these two problems. But this is embarrassing mostly because the game

has not yet been played, no money was given, and there is no real reason to

think of the two options in Problem 2 as losses. By contrast, when real-life

choices are concerned, and we have enough time to allow people to adapt

to, say, a certain income level, gain-loss asymmetry cannot be described as

a mere framing effect. And it is not necessarily irrational to exhibit such

behavior.

Similarly, the endowment effect, namely, the tendency to value a good

more because it is ours (Kahneman, Knetsch, Thaler, 1991), is not neces-

sarily irrational. When applied to financial assets, most people would be

embarrassed to find that they find it hard to part from an asset just because

they have it (the “disposition effect”, see Shefrin and Statman, 1985, Odean,

1998). But, when applied to other goods, ranging from family heirloom to

one’s house, the endowment effect appears very reasonable.

I therefore believe that gain-loss asymmetry is not only a powerful phe-

nomenon, but also one that will probably be quite stubborn and hard to

uproot. Even if decision theory gets into highschool curricula and we are

allowed to preach our theories to the minds of the young, I doubt that this

phenomenon will disappear.

17.3 Distortion of probabilities

The other important idea in Prospect Theory was the notion that proba-

bilities are “distorted” in the decision making process, that is, that peo-

219



ple react to a probability p as if it actually were f(p) for some function

f : [0, 1] → [0, 1]. This idea dates back to Preston and Baratta (1948) and

Mosteller and Nogee (1951). Applying this idea to the evaluation of a lottery

(x1, p1; ...;xn, pn), we are led to replace the expected utility formulaX
i

piu(xi),

by a “probability transformation” modelX
i

f(pi)u(xi) (24)

where f : [0, 1] → [0, 1] is non-decreasing with f(0) = 0 and f(1) = 1. (See

also Edwards, 1954.)

Kahneman and Tversky (1979) dealt with “prospects”, which are the

same mathematical entities as are “lotteries”, only interpreted differently:

a monetary outcome xi in a prospect is considered to be the change from

current wealth level, rather than overall (or net) wealth. Prospect Theory

dealt with prospects with only two non-zero outcomes. Because the gener-

alization to many outcomes has not been spelled out in the original paper,

many took Prospect Theory to mean formula (24) applied to positive xi’s

and to negative xi’s separately.115 This interpretation is actually incorrect,

as was pointed out by Peter Wakker: Prospect Theory for the case of two

positive or two negative outcomes was actually following the rank-dependent

formula, which we discuss in the next section. Thus, formula (24) can be

thought of as a “separate-outcome probability transformation model” or a

variant of Prospect Theory.116

The typical finding, when assuming this model and fitting data, is that

f is above the 45◦ line for small values of p and below it for values of p

closer to 1. That is, small probabilities tend to be overestimated, while large

115With a “value” function v replacing the utility function u.
116I wish to thank Peter Wakker for pointing out this to me.
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ones — underestimated. This can explain various phenomena such as Al-

lais’s paradox (Allais, 1953) or the certainty effect (Kahneman and Tversky,

1979).117

However, formula (24) raises several difficulties. We have to assume that

f is not additive. (Function f is additive if it satisfies

f(p+ q) = f(p) + f(q)

whenever p+ q ≤ 1.) For if it were, you could first prove that f( 1
n
) = 1

n
for

every n ≥ 1, and then that f( k
n
) = k

n
for every n ≥ k ≥ 1, and finally, by

monotonicity, that f(p) = p for all p ∈ [0, 1], in which case (24) would boil
down to vNM expected utility (as long as gains are considered).

Consider, then, two probabilities p, q such that f(p + q) 6= f(p) + f(q),

say,

f(p+ q) > f(p) + f(q).

Imagine that the decision maker is offered two equivalent representations of

the same prospect:

($10, p; $10, q; $0, (1− p− q))

and

($10, p+ q; $0, (1− p− q)).

Assuming u($0) = 0, the first will be evaluated by [f(p)+ f(q)]u($10), while

the second — by f(p + q)u($10). These are not equal. Hence, we have to

decide which representation of the prospect applies. It makes sense to take

the latter representation, uniquely defined by using the minimal number of

components (xi, pi) in the representation of the prospect. Kahneman and

Tversky assumed, indeed, that an editing phase precedes the choice. (As are

some other phases, including cancellation of identical components.)

117A famous example of the certainty effect is the following: people often prefer $3,000
with certainty to $4,000 with probability .8, but they prefer $4,000 with probability .2
to $3,000 with probability .25, in violation of vNM Independence axiom. See Rubinstein
(1988) for an alternative explanation of the certainty effect.
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Next assume that we compare this prospect with

($10 + ε, p; $10, q; $0, (1− p− q)).

This one is a distinct prospect, and editing would not make it identical to

the previous one. Thus, we have to evaluate it by

f(p)u($10 + ε) + f(q)u($10).

As ε→ 0, we would expect u($10+ε)→ u($10). In fact, since u is assumed to

be non-decreasing, it can only have countably many points of discontinuity. If

$10 happens to be one of them, we can take another monetary outcome that

isn’t. Let’s assume, therefore, with no loss of generality, that u is continuous

at $10. As ε→ 0, we get

f(p)u($10 + ε) + f(q)u($10) → [f(p) + f(q)]u($10)

< f(p+ q)u($10)

— which is a violation both of continuity and of monotonicity. And if we have

f(p+ q) < f(p) + f(q), the same would hold for ε < 0.

No, you didn’t flip back a few pages without noticing, and this is not a

deja-vu. Well, literally it is: you have seen precisely these arguments when

we explained why one cannot use the standard Riemann definition of an

integral with non-additive probabilities.118

17.4 Rank-dependent probabilities and Choquet inte-
gration

The solution to the difficulties of Prospect Theory in aggregating distorted

probabilities was suggested by several authors, including Quiggin (1982) and

118Kahneman and Tversky were aware of most of these difficulties, and some of them were
dealt with by the assumptions about the pre-processing that people perform on prospects.
Fishburn (1982) noted that PT does not respect first order stochastic dominance, namely,
the monotonicity referred to above.
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Yaari (1986).119 The basic idea was that, rather than distorting the proba-

bility of a particular outcome, i.e., of the event X = a, one should apply the

function f to decumulative events, i.e., events of the form X ≥ a.

To be more precise, assume that we are given a lottery (x1, p1; ...;xn, pn)

with x1 ≥ ... ≥ xn ≥ 0.120 Let us start with standard expected utility, which
can be written as

U ((x1, p1; ...;xn, pn)) =
nX
i=1

piu(xi)

=
nX
i=1

Ã
iX

j=1

pj

!
[u (xi)− u (xi+1)]

with the convention xn+1 = 0.

Let f : [0, 1]→ [0, 1] be a non-decreasing with f(0) = 0 and f(1) = 1 and

consider

V ((x1, p1; ...;xn, pn))

=
nX
i=1

f

Ã
iX

j=1

pj

!
[u (xi)− u (xi+1)]

and observe that V can also be written as

V ((x1, p1; ...;xn, pn))

=
nX
i=1

"
f

Ã
iX

j=1

pj

!
− f

Ã
i−1X
j=1

pj

!#
u(xi).

Defining a probability vector by

qi = f

Ã
iX

j=1

pj

!
− f

Ã
i−1X
j=1

pj

!
119The same mathematical structure was axiomatized also in Weymark (1981) in the
context of social choice theory.
120Quiggin and Yaari did not emphasize gain-loss asymmetry. It is therefore more natural
to think of the objects of choice in their models as lotteries (over final wealth) rather as
propsects (of gains or losses).
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we observe that V looks like expected utility formula for a certain probability

vector which is derived from p and f . However, it also depends on the x

values, because different lotteries would give rise to a different ordering of

the pi’s. In other words, q depends on x only via the ranking of the xi’s.

This is why these models are called rank-dependent expected utility (RDEU),

or rank-dependent utility (RDU) for short.

Clearly, the rank dependent models are very similar to Choquet integra-

tion. To be precise, if you let µ denote the underlying measure, relative to

which the objective probabilities pi are given, and if you then define v = f(µ),

the Choquet expected utility relative to v coincides with the rank-dependent

model defined by f .121

However, it is important to note that rank-dependent models are, in a

sense, a very special case of Choquet expected utility: a case in which there

is an underlying probability measure which contains sufficient information to

define v. This is not the case in Ellsberg’s examples, for instance. In these

examples there is no underlying measure that can summarize all we need to

know about events. More generally, Choquet expected utility allows us to

say something about situations in which we do not have enough information

to define probability, whereas the rank dependent models do not.

121The rank dependent models in the context of risk were developed independently of
Schmeidler’s Choquet expected utility. In 1984 I was present at a seminar in which Yaari
pointed out the relationship. I believe he was the first to note this fact.
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18 Maxmin Expected Utility

18.1 Convex games

Schmeidler (1986,1989) defined a notion of uncertainty aversion, given a non-

additive probability v, by122

v(A) + v(B) ≤ v(A ∪B) + v(A ∩B).

This condition is known in transferable utility (TU) cooperative game theory

as “convexity” of v. A TU game may be identified with a non-additive

probability as defined above, where v(A) is interpreted as the “value” of

a coalition A, namely the payoff that A can guarantee itself without the

cooperation of the other players.

The notion of convexity has an interpretation of increasing marginal con-

tribution. You can verify that convexity of v is equivalent to the following

condition: for every three coalitions W,R, T with R ⊂ T and W ∩ T = ∅,

v(T ∪W )− v(T ) ≥ v(R ∪W )− v(R)

namely, the marginal contribution of the coalition W can only increase if W

joins a larger coalition (in the sense of set inclusion). Convexity of v is also

known as 2-monotonicity, super-modularity, and complementarity.

Convexity of TU games was defined by Shapley (1965), who showed that

they have a non-empty core. The core of game v is defined as all the ways

that total value (normalized to v(S) = 1) can be split among the players, so

that no sub-coalition has an incentive to deviate. Formally,

Core(v) =

⎧⎨⎩p

¯̄̄̄
¯̄ p is a probability measurep(A) ≥ v(A) ∀A ⊂ S

p(S) = v(S)

⎫⎬⎭ .

122There has since been many contributions to the study of uncertainty aversion, and
this definition is not considered satisfactory by most authors.
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Schmeidler (1986) has shown that the following is true: a game v is convex

if and only if

(i) Core(v) 6= ∅
and

(ii) For every ϕ : S → R ,Z
S

ϕdv = min
p∈Core(v)

Z
S

ϕdp

Similar results appear in Rosenmueller (1971, 1972).

18.2 A cognitive interpretation of CEU

The result above suggests the following cognitive interpretation of Choquet

integration with respect to a convex v: Consider Core(v), which is a set of

probability measures. Assume that the decision maker does not know what

the probability measure that actually governs the process she observes is,

but she believes it is one of the probabilities in the set Core(v). She has to

evaluate an act f . If she wants to be cautious, she may compute the expected

utility of f with respect to each possible measure p ∈ Core(v), and take the

minimal one. This level of expected utility is what the act f guarantees her.

If she now wishes to maximize this minimal level, she might as well maximize

the Choquet expected utility of f relative to the non-additive measure v.

This interpretation has the advantage that we can imagine the reasoning

process involved in the decision. Choquet integration is not a very familiar

concept, and it doesn’t remind us of any process that we can recognize by

introspection. By contrast, thinking of a set of measures and looking at the

worst case is something that we can think of as a model of human reasoning,

albeit a highly idealized one. Moreover, a non-additive probability is a no-

tion that most people are not familiar with. Typically, the information that

the decision maker has will not be presented in the form of a non-additive

probability. By contrast, a set of probabilities is a much more natural way

to describe the partial information we may have about a problem. In fact,
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this is the standard way to describe information in classical statistics: by a

set of distributions.

If we continue this line of reasoning, we are led to ask, is the set of

probabilities that we consider as possible necessarily the core of a game?

What happens if my information says that the true probability is in some

closed subset C, and I still want to use the maxmin approach?123

It is easy to see that if I intend to find an f with the maximal value of

J(f) = Ju,C(f) = min
p∈C

Z
S

u(f)dp (25)

I might as well assume that C is convex. That is, considering any set C and

its convex hull, conv(C), would yield the same J value for every f . Still, not

every closed and convex set of probabilities is a core of a game. Consider, for

instance, S = {1, 2, 3}, so that probability measures are points in the two-
dimensional simplex. A game is characterized by six numbers (since there

are 23 = 8 subsets of S, and two values are fixed: v(∅) = 0 and v(S) = 1).

By contrast, if you are allowed to choose any closed and convex subset of

probabilities, you have infinitely many degrees of freedom.

To see some examples of sets of probabilities that are not cores of games,

consider, for instance

C1 =
©
p = (p1, p2, p3) ∈ ∆2 |2p1 ≥ p2

ª
.

C1 is defined by a simple linear inequality, but this inequality compares the

probabilities of two events, and it cannot be written by constraints of the

form p(A) ≥ α. Such inequalities may arise if we do not know probabilities

of events, but we know conditional probabilities. For example, if we know

that p({1}|{1, 2}) ≥ 1/3, we would get 2p1 ≥ p2.

123C is assumed closed to make the minimum well-defined. Alternatively, you can think
of infimum expected utility. However, it is hard to think of realistic examples in which a
set of measures is considered possible, but an accumulation point thereof isn’t.
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Alternatively, we might have a guess that the true probability is, say,

(.5, .5, 0), but feel that we should have a “confidence set” around it, for

instance:

C2 =
©
p = (p1, p2, p3) ∈ ∆2 |kp− (.5, .5, 0)k < .2

ª
or we may feel that the probability cannot be too far from two possible

guesses:

C3 =

½
p = (p1, p2, p3) ∈ ∆2

¯̄̄̄
kp− (.5, .5, 0)k2+
kp− (0, .5, .5)k2 < .1

¾
.

Clearly, neither C2 nor C3 can be described by finitely many inequalities,

and, in particular, they are not the cores of convex games.

There is therefore an interest in a model of maxmin expected utility,

i.e., maximization of J(f) as in (25). However, before we axiomatize such a

model, let us stress that it does not generalize the Choquet expected utility

model. If you consider the latter model with a non-additive measure v that

is not convex, the Choquet integral does not equal J(f) for any subset of

measures C. It may also be the case that v has an empty core, in which case

we don’t have any candidates to be in the set C. Conceptually, Choquet

expected utility does not presuppose any notion of uncertainty aversion. We

considered convex v’s, but we can similarly define concave ones (with the

reverse inequality), and reflect uncertainty liking just as much as we do un-

certainty aversion. This is not the case in the maxmin EU model, where

uncertainty aversion (understood as focussing on the minimal expected util-

ity value) is built into the decision rule.

18.3 Axioms and result

Anscombe-Aumann’s independence condition can be further weakened as

follows:
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C-Independence: For every f, g ∈ F , every constant h ∈ F and every

α ∈ (0, 1),

f % g iff αf + (1− α)h % αg + (1− α)h.

On the other hand, an additional condition is needed:

Uncertainty Aversion: For every f, g ∈ F , if f ∼ g, then, for every

α ∈ (0, 1),124

αf + (1− α)g % f.

Thus, uncertainty aversion requires that the decision maker have a preference

for mixing. Two equivalent acts can only improve by mixing, or “hedging”

between them. Observe that uncertainty aversion is also a weakened ver-

sion of Anscombe-Aumann’s independence axiom (which would have required

αf + (1− α)g ∼ f whenever f ∼ g).

Theorem 9 (Gilboa and Schmeidler, 1989) % satisfies AA1, AA2, C-Independence,
AA4, AA5, and Uncertainty Aversion if and only if there exist a closed and

convex set of probabilities on S, C ⊂ ∆(S), and a non-constant function

u : X → R such that, for every f, g ∈ F

f % g iff min
p∈C

Z
S

(Ef(s)u)dp ≥ min
p∈C

Z
S

(Eg(s)u)dp

Furthermore, in this case C is unique, and u is unique up to positive linear

transformations.

The uniqueness of C is relative to the conditions stated. Explicitly, if

there is another set C 0 and a utility function u0 that satisfy the above repre-

sentation, C 0 = C and u0 is a plt of u.

The proof is to be found in Gilboa and Schmeidler (1989, pp. 145-149).

124It suffices to require this condition for α = 1/2.
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18.4 Interpretation of MMEU

In the informal description building up to the theorem I emphasized the

intuitive idea that the set C captures our information, and that the func-

tional J reflects uncertainty aversion. But this is not the only interpretation

possible. Indeed, Theorem 9 is in the behavioral tradition of Savage and

Anscombe-Aumann. It can be interpreted as a mathematical account that is

completely divorced from, or at least silent on the mental processes that the

decision maker engages in. We can interpret the theorem as a story about a

black box, getting pairs of acts as inputs, providing choices as outputs, where

the mathematical representation is simply an analytical tool describing the

black box.

Such an interpretation is particularly tempting when people wonder why

is uncertainty aversion so extreme in the MMEU model. When asked, “But

why are your decision makers choosing the minimal expected utility of all

those possible? Why are they so pessimistic?” it is tempting to reply, “I

never said that the set C is what they really know. It is what comes out

of the axioms. If you accept the axioms, you agree that people behave as if

they had such a set C etc.”125

While this is true, I try not to resort to this answer, because MMEU

enjoys the appeal of the simplicity of the formula and the cognitive account

one can provide thereof. It follows that other approaches are welcome (see

below).

At the same time, we need not assume that the set C is always identical

to the set of probabilities that cannot be ruled out based on hard evidence.

For example, in Ellsberg’s two-urn experiment, we know nothing about the

composition of urn II. This means that the set of measures we cannot rule

125The same type of question is not raised in the context of Choquet expected utility, even
when v is convex. The reason is probably that people barely understand what Choquet
integration is, and they do not find that their intuition guides them about its reasonability.
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out is

C1 = {(p, 1− p)|0 ≤ p ≤ 1} .

Yet, maximizing the minimal EU with respect to C1 is quite extreme indeed.

In particular, it means that getting $100 on red and nothing on black will

be equivalent to getting nothing for sure. It is possible that in this situation

a decision maker will satisfy the axioms above, and when we elicit her set of

measures we find, for example,

C2 = {(p, 1− p)|.4 ≤ p ≤ .6} .

When compared to Choquet expected utility (CEU), the MMEU model

has two main advantages. First, it appears more intuitive. Second, it has

many more degrees of freedom. To use CEU one needs to specify the state

space and define a non-additive measure on it, v. To use the MMEU model,

one may take any standard model (with a unique probability) and relax any

assumption — such that allowing a certain parameter to vary in a certain

range. Even if the model is very complex, we know that, by definition, we

get a set of measures C. The set may not be convex (and it may be hard

to tell whether it is), but we also know that every set C is observationally

equivalent (under the MMEU model) to its convex hull, and therefore we

can compute the minimal expected utility of every act for the agent under

consideration.126

18.5 Generalizations and variations

The interpretational difficulties above prompted research in several direc-

tions. One approach was suggested by Gajdos, Hayashi, Tallon, and Vergnaud

(2007). They explicitly model a set of objectively given probabilities, that

126However, Peter Wakker argues that when it comes to actual applications, involving
real decision makers whose beliefs are to be assessed, the parsimony of the CEU model
makes it much easier to use than the MMEU model.
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is, the decision maker’s information, or state of knowledge. Preferences are

defined over acts in the context of such sets of known probabilities. They

then derive an MMEU model for each given set, and discuss the relationship

between the set that represents information, namely, the “cognitive” one,

and the set that governs behavior, that is, the “behavioral” one.

Klibanoff, Marinacci, and Mukerji (2005) and Seo (2007) suggest to re-

place the minimum expected utility by some aggregation of all possible

expected utilities. To this end, they need some second-order probability,

namely, a probability over the probabilities in ∆(S). Furthermore, they need

to introduce some non-linearity in order to capture a non-neutral attitude to

ambiguity (otherwise, a prior over all priors would boil down to a Bayesian

model again). Their approaches to the problem are axiomatic.

The maxmin EU model was extended to a dynamic set-up by Epstein and

Schneider (2003). The maxmin model, as well as Choquet expected utility,

were greatly generalized by Ghirardato and Marinacci’s (2001) “biseparable”

preferences. (See also Ghirardato, Maccheroni, and Marinacci, 2005).

Another variation was introduced by Maccheroni, Marinacci, and Rusti-

chini (2006a), who introduce a concave cost function for every probability

p ∈ ∆(S), with the maxmin model being the special case for which the cost

function takes only the values {0,∞}. Maccheroni, Marinacci, and Rustichini
(2006b) provides the dynamic version of this model.

18.6 Bewley’s alternative approach

Another approach to decision under uncertainty is due to Bewley (2002). His

model also suggests that there is a set of priors, C, but the decision rule is

different: act f is preferred to act g if and only if, according to each prior

p ∈ C, the expected utility of f is higher than that of g. Clearly, if C is

not a singleton, this defines a partial order. Indeed, Bewley starts out by
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weakening the completeness axiom.127 In Bewley’s theory, when there was

no preference between f and g, choice was determined by a status quo.128

18.7 Combining objective and subjective rationality

Following the discussion of objective and subjective rationality above, one

may represent a decision maker by two binary relations, %∗ and %0.129 The
first denotes choice that is rational in the objective sense, and it is potentially

incomplete: when a preference f %∗ g can be justified, we express it. Other-
wise, we remain silent. That which cannot be justified does not exist. You

can think of f %∗ g as “Based on evidence, logic, and perhaps some sound
decision theoretic reasoning, one can prove that g is better than f .” Any

reasonable person, who honestly adopts the utility function of our decision

maker, would agree that f is at least as good as g.

This approach is appealing, especially when the right to remain silent is

given. Indeed, classical statistics, which attempts to draw objective conclu-

sions from evidence, can neither prove nor refute many claims, and science

remains silent on a variety of issues. But whereas objective rationality suf-

fices for science, it doesn’t for decision making, because the need to act is
127Bewley wrote his first working paper in 1986. It was independently developed of
the maxmin model, which also appeared as working paper in 1986. My MA thesis, in
1984, contained a chapter that axiomatized the same decision rule as Bewley’s. It was
not a very elegant axiomatization and I never translated it into English. Needless to say,
Bewley’s work was independent of it. Both results relied on Aumann (1962), who provided
a representation theorem for partial orders in a vNM model. Aumann (1962) dealt with
incompleteness of preferences in general, and was not concerned with uncertainty. Kannai
(1963) generalized Aumann’s theorem to infinitely many dimensions.
128Bewley did not have a theory of the emergence of the status quo, and this was one of
the reasons that he dropped the theory. By 1989 he had about five very exciting papers
on the topic, none of which had been published. I asked him about their publication and
he said that he might publish them together as a book. Two years later he decided that
economic theory (at large) was not the answer to the problem that bothered him, which
had originally been wage rigidity. He dropped this remarkable project without publishing
most of it. He later agreed to publish the papers only if they required minimal or no
revisions, and this is why his 1986 paper was published only in 2002.
129This section is a sketchy description of Gilboa, Maccheroni, Marinacci, and Schmeidler
(2008).
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unavoidable. Eventually, something will be chosen even if neither f %∗ g nor
g %∗ f holds. Leaving this choice unmodeled may be dangerous. If we insist
on stating only the preferences that are rational in the objective sense, we

may find ourselves making choices that are not even rational in the subjective

sense. You can think of %∗ as the advice given by an expert to a decision
maker. If this relation leaves many pairs of acts unranked, the expert can

then discover that the decision maker did not even satisfy transitivity, and

kept cycling among acts that were unranked by %∗.
It therefore seems more reasonable to bring forth the choices made, and

to try to guarantee that they are at least not irrational. Let %0 denote these
choices. It will be a complete relation, because we do not wish to leave

anything unmodeled. But, apart from completeness, it may satisfy only

weaker axioms than does %∗. For example, consider Anscombe-Aumann’s
independence axiom. We can expect %∗ to satisfy it in its original form.
Indeed, assume that f %∗ g. That is, based on evidence, scientific studies,
statistics, and logic, you manage to convince people that f is at least as

desirable as g. This now gives you a way to convince your audience that

αf + (1 − α)h is at least as desirable as αg + (1 − α)h, for any h. In

fact, the (vNM-)AA axiom is the reasoning: it provides the link between the

preference f %∗ g and the preference αf+(1−α)h %∗ αg+(1−α)h. In other
words, if we asked what are the pairs of comparisons that can be justified,

this set should be closed under transitivity, under AA independence, under

monotonicity, etc. As argued above, for reasoned choice, the completeness

axiom is the challenge, and all the other axioms can be viewed as modes

of reasoning that may help us cope with this challenge. In an attempt to

“prove” that f is preferred to g, such axioms can be the inference rules.

By contrast, %0 need not satisfy the AA independence axiom in all its

strength. It is possible that, out of ignorance, I will behave according to

f ∼0 g, say, be indifferent between betting on red or on black in Ellsberg’s
unknown urn. This does not mean that I truly believe that f is as good as
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g, and I do not purport to be able to convince others that f and g should

really be equivalent. Someone else might come along, and, with the same

utility function and the same information that I have, they might conclude

that they strictly prefer f to g. I cannot say that they would be irrational

in doing so. Nor would they be able to say that I am irrational in expressing

indifference between f and g. When we now consider αf + (1 − α)h and

αg + (1 − α)h, preferences might change. It is possible, for instance, that

αf+(1−α)h is risky, while αg+(1−α)h is uncertain. Because of the problem
of uncertainty, I do not necessarily subscribe to AA’s independence. I will not

be embarrassed to violate it in some cases. In short, subjective rationality

will satisfy certain axioms of AA, such as transitivity, but it need not satisfy

all of them. Importantly, not all the axioms that can be used as reasoning

templates, or inference rules, with %∗ can also be similarly applicable to
%0. Because %∗ deals only with objectively rational preferences, it serves
as a sounder basis for construction of new preferences than does %0. The
latter, including certain arbitrary choices, can be used for construction of

new preferences only when we feel that the axiom (the inference rule) is a

very compelling one, such as transitivity.

Clearly, which axioms are reasonable ones for either of the two relations,

%∗, %0 is a matter of subjective judgment. As an example, assume that
we agree that objective rationality, %∗, should satisfy certain axioms that
guarantee a Bewley-type representation, and that subjective rationality, %0,
should satisfy the MMEU axioms. Then there exists a set of probabilities

Cobj such that130

f %∗ g iff
Z
S

(Ef(s)u)dp ≥
Z
S

(Eg(s)u)dp ∀p ∈ Cobj. (26)

and another set of probabilities Csub such that

130GMMS (2008) offers such a characterization result. It differs from Bewley’s (2002) in
several ways. In particular, it represents weak preference by a collection of weak inequal-
ities, whereas Bewley represents strict preference by a collection of strict inequalities.
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f % g iff min
p∈Csub

Z
S

(Ef(s)u)dp ≥ min
p∈Csub

Z
S

(Eg(s)u)dp.

We can now state axioms that explicitly relate the two relations, and,

equivalently, the two sets of probabilities. For instance, a basic consistency

axiom would state

f %∗ g implies f % g

that is, a preference that is objectively rational should also be subjectively

rational; what we are convinced of we should actually do. This can be shown

to be equivalent to Csub ⊂ Cobj.131 One can also impose another axiom,

reflecting extreme caution, which says that, when comparing an uncertain

act f to a constant one c, unless there is good reason to prefer the uncertain

one, i.e., if f %∗ c doesn’t hold, we should go for the certain one, i.e., c % f .

This axiom is equivalent to Cobj ⊂ Csub. Together, the two axioms imply that

the decision maker has a single set of probabilities, used to describe objective

rationality by the anonymous rule (26), and subjective rationality by the

maxmin rule. However, one may consider other alternatives, in particular,

models in which Csub is a proper subset of Cobj.

18.8 Applications

There are several applications of CEU and of MMEU. The majority of the

applications of CEU involve a convex non-additive measure, so they can be

considered applications of MMEU as well. The following is a very sketchy

description of some applications.

Dow and Werlang (1992) showed that, in the CEU/MMEU model, a

person may have a range of prices at which she wishes neither to buy nor to

sell a financial asset. To see the basic logic, consider an unknown probability

on two states, say p ∈ [0.4, 0.6], and a financial asset X which yields 1 in the

first state and −1 in the second. The MMEU model would value both X

131See also Nehring (2002,2008) for similar reasoning.
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and −X at −0.2. Thus, it is no longer the case that an agent would switch,
at a certain price p, from demanding X to offering it. This may explain why

people refrain from trading in certain markets. It can also explain why at

times of greater volatility one may find lower volumes of trade: with a larger

set of probabilities that are considered possible, there will be more decision

makers who prefer neither to buy nor to sell.132

Epstein and Miao (2003) use uncertainty aversion to explain the “home

bias” phenomenon in international finance, namely, the observation that peo-

ple prefer to trade in their own country’s stock market, even though foreign

ones are also available. The intuition is very similar to Ellsberg’s two-urn

experiment: the home country is analogous to the known urn, where prob-

abilities can presumably be assessed. The foreign country is similar to the

unknown urn. A trader can decide whether to buy or to sell a stock in the

foreign market, just as she can decide to choose a red or a black bet on the

unknown urn. Still, people may prefer neither.

The multiple prior model has also been employed in a job search model by

Nishimura and Ozaki (2004). They ask how an unemployed agent will react

to increasing uncertainty in the labor market. In a Bayesian model, greater

uncertainty might be captured by higher variance of the job offers the agent

receives. Other things being equal, an increase in variance should make the

agent less willing to accept a given offer, knowing that he has a chance to get

better ones later on. This conclusion is a result of the assumption that all

uncertainty is quantifiable by a probability measure. Nishimura and Ozaki

(2004) show that in a multiple prior model (assuming, again, an “uncertainty

averse” agent, say, one who uses the maxmin rule) the conclusion might be

reversed: in the presence of greater uncertainty, modeled as a larger set of

possible priors, agents will be more willing to take an existing job offer rather

132This argument assumes that the decision maker starts with a risk-free portfolio. A
trader who already holds an uncertain position may be satisfied with it with a small set
of probabilities, but wish to trade in order to reduce uncertainty if the set of probabilities
is larger.

237



than bet on waiting for better ones in the future.

Hansen and Sargent (2001, 2003, 2008) apply a multiple prior model to

macroeconomic questions starting from the viewpoint that, whatever is the

probability model a policy maker might have, it cannot be known with cer-

tainty. Considering a set of priors around a given model, and asking how

robust economic policy would be to variations in the underlying probability,

they revisit and question classical results. Hansen, Sargent, and Tallarini

(1999) compare savings behavior under expected utility maximization with

savings behavior of a “robust decision maker” who behaves in accordance

with the multiple prior model. They show that the behavior of a robust de-

cision maker puts the market price of risk much closer to empirical estimates

than does the behavior of the classical expected utility maximizer.

Other applications to finance include Epstein and Wang (1994, 1995),

where the authors explain financial crashes and booms using the MMEU

model. Mukerji (1996) used CEU with a convex non-additive measure to

explain incompleteness of contracts.

This list is not exhaustive. The main point is that the multiple prior

model can yield qualitatively different, and sometimes more plausible results

than a Bayesian model. Of course, there are also many models in which mul-

tiple priors beliefs would not change anything of importance. For example,

I do not see an urging need to change Akerlof’s lemon model to allow for

multiple priors (Akerlof, 1970). The basic result of Akerlof seems robust to

the details of the modeling of uncertainty. By contrast, the no-trade the-

orem of Milgrom and Stokey (1982) does hinge on additive beliefs. As a

very general guideline, I would suggest considering the MMEU model when

a Bayesian result seems to crucially depend on the existence of a unique,

additive prior, which is common to all agents. When you see that, in the

course of some proof, things cancel out too neatly, this is the time to wonder

whether introducing a little bit of uncertainty may provide more realistic

results.
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PART IV — Cognitive Origins
We made a rather long detour into theories of decision under uncertainty

seeking a way to define subjective probabilities based on observed behavior.

The idea was one of “reverse engineering”: observing behavior and inferring

what beliefs might have induced it. Sadly, I have to admit that I do not view

the project as a great success. This is not because the theories of decision

under uncertainty that we have reviewed are flawed. In fact, I think that

they are rather good theories. Expected utility maximization in general,

and with subjective probabilities in particular, is not a bad approximation of

actual behavior in many problems. Moreover, this theory provides compelling

recommendations in an even wider array of problems. It may convince us

that with the appropriate choice of the utility function, we need not take

higher moments into account, nor consider other choice criteria. As long as

we know what probabilities are, I believe that the theory is quite impressive.

However, when we do not know what the probabilities should be, I do

not see that we have made much progress. In problems such as (3) and

(4) in Section 2, we may find that our preferences are too ill-defined, too

incomplete, and too likely to violate the other Savage axioms in order to

serve as a basis for the definition of probabilities. Savage’s axioms can help

us elicit our subjective probability measure if we have well-defined preferences

that satisfy the axioms. The axiomatization might even convince us that we

would like to have a subjective probability. But it does not help us determine

which subjective probability we should adopt if we don’t already have one.

The approach followed in Part III was to consider other decision theories,

to be used when probabilities cannot be defined. Here we take a different

path. We drop the behavioral approach and try to ask how probabilities

should be constructed. In some cases, this approach might help us define

probabilities when these are not reflected in our preferences. In others, we

may find that the current approach does not lead us far enough to generate

probabilities.

239



As hinted in Section 5.3, when there are many observations that can be

assumed to be causally independent, as in the medical example (3), there

are plausible definitions of beliefs and probabilities. One approach to these

definitions, roughly corresponding to kernel methods in statistics, is axiomat-

ically developed in the following two chapters. But when the observations, or

“cases” are interwoven by causal relationships, the methods discussed here

may be too naive to provide a definition of probability. This is also true of

other definitions of “probability”, which may be more or less intuitive, ax-

iomatically justified or not. In fact, I remain skeptical about the possibility

of defining probability in a meaningful way in such applications.

The analysis in this part is also axiomatic, but the axioms herein re-

fer to cognitive judgments rather than to behavior. And, importantly, we

explicitly refer to observations (or “cases”), and try to model the mapping

from databases of observations to beliefs. Because in this part you will not

see decisions explicitly, but you will see observations as part of the model,

you may feel that this is closer to statistics than to decision theory. Indeed,

the following two chapters may be viewed as preliminary steps towards an

axiomatic approach to statistical inference.
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19 Case-Based Qualitative Beliefs

In this chapter we deal with beliefs that may not be quantified by probabil-

ities. Rather, we think in terms of binary relations interpreted as “at least

as likely as”, akin to de Finetti’s qualitative probabilities. I first introduce

a representation theorem, and then show that the representation obtained

generalizes several known statistical techniques. I will then discuss the extent

to which the theorem can apply to problems of inductive inference that are

less structured than these well-established statistical techniques.

19.1 Axioms and result

We assume two primitives: alternatives to be ranked, A, and observations

based on which ranking will take place, X. The alternatives can be possible

predictions for a particular decision problem at hand, alternative theories,

and so forth. Neither A nor X is endowed with any structure. Moreover,

there is no a priori relationship between them. The ranking of alternatives

in A based on observations from X will give rise to such relationships.

The set of databases is defined as

D ≡ {I | I : X → Z+,
X
x∈X

I(x) <∞ }

where Z+ stands for the non-negative integers. I ∈ D is interpreted as a

counter vector, where I(x) counts how many observations of type x appear

in the database represented by I.

Algebraic operations on D are performed pointwise. Thus, for I, J ∈ D
and k ≥ 0, I + J ∈ D, and kI ∈ D are well-defined.

For I ∈ D, we assume as given (and observable) a relation %I⊂ A × A,

where a %I b is interpreted as “given the database I, alternative a is at least

as likely as alternative b”. Thus, we assume that qualitative beliefs constitute

legitimate data. These beliefs are similar to de Finetti’s qualitative proba-

bilities with two distinctions: (i) our relation is only defined on alternatives,
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and not on subsets thereof;133 (ii) we deal with a collection of relations, de-

fined on the set of alternatives, and parametrized by the possible databases

of observations.

The asymmetric and symmetric parts of %I , ÂI and ∼I , respectively, are

defined as usual.

The following result appears in Gilboa and Schmeidler (2001, 2003). To

state it, we first define a matrix v : A×X → R to be diversified if no row in
v is dominated by an affine combination of three (or fewer) other rows in it.

That is, if there are no elements a, b, c, d ∈ A with b, c, d 6= a and λ, µ, θ ∈ R
with λ+ µ+ θ = 1 such that

v(a, ·) ≤ λv(b, ·) + µv(c, ·) + θv(d, ·)

(recall that an affine combination is similar to a convex combination, but the

coefficients used in it may be negative.)

The first axiom is standard, and only requires that {%I}I be weak orders.

A1 Order: For every I ∈ D, %I is complete and transitive on A.

The next two axioms are new: they do not restrict a given %I , but rather

the relation among several such relations (for different I’s).

A2 Combination: For every I, J ∈ D and every a, b ∈ A, if a %I b (a ÂI b)

and a %J b, then a %I+J b (a ÂI+J b).

The basic idea of the Combination axiom is quite obvious: if the same

conclusion, namely that a is at least as likely as b, is reached given two

distinct databases, it should also be reached given their union. Observe that

a “union” of disjoint databases, represented by counter vectors I and J , is

represented by the sum, I + J . We will discuss the limitations of the axiom

later on.
133Though one can extend this approach to rankings over sets of alternatives, and impose
de Finetti’s cancellation axiom on the likelihood relations. See Gilboa and Schmeidler
(2002).

242



A3 Archimedean Axiom: For every I, J ∈ D and every a, b ∈ A, if a ÂI b,

then there exists l ∈ N such that a ÂlI+J b.

The Archimedean axioms states that, if database I gives you a reason to

believe that a is (strictly) more likely than b, then sufficiently many repli-

cations of database I will eventually overwhelm the evidence provided by

any other database, J . This axiom may not be very reasonable if a single

observation can prove that an alternative is certain, or impossible. But if

we are in a statistical frame of mind, in which noise variables make nothing

impossible, it seems reasonable.

Finally, we need a richness condition. It is justified by mathematical

necessity. Hopefully, you won’t find it too objectionable.

A4 Diversity: For every list (a, b, c, d) of distinct elements of A there exists
I ∈ D such that a ÂI b ÂI c ÂI d. If |A| < 4, then for any strict ordering of
the elements of A there exists I ∈ D such that ÂI is that ordering.

Theorem 10 (Gilboa and Schmeidler, 2001) {%I}I∈D satisfy A1-A4 if and
only if there is a diversified matrix v : A×X → R such that, for every I ∈ D
and every a, b ∈ A,

a %I b iff
X
x∈X

I(x)v(a, x) ≥
X
x∈X

I(x)v(b, x) (27)

Furthermore, in this case the matrix v is unique in the following sense: v

and u both satisfy (3) iff there are a scalar λ > 0 and a matrix β : A×X → R
with identical rows (i.e., with constant columns) such that u = λv + β .

The proof can be found in Gilboa and Schmeidler (2001, pp. 77-90). The

theorem is stated and proved for a different set-up, in which observations are

modeled by sets rather than by counter vectors, in Gilboa and Schmeidler

(2003). (See pp. 5-8 for the statement of the theorem.) The proof uses

Theorem 10. It is stated and proved in the Appendix (Theorem 2, pp. 16-

23). Some mathematical ideas go back to Gilboa and Schmeidler (1997).
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19.2 Four known techniques

There are several special cases of (27) that are well-known in statistics and

in machine learning:

Example A: A statistician in interested in estimating a discrete distrib-
ution. She observes the realizations of several i.i.d. random variables taken

from this unknown distribution. She then takes the empirical distribution,

namely, the relative frequencies of the various outcomes, as an estimate of

the unknown distribution.

Given a discrete random variables taking values in some set N , let A =

X = N . This is a special but interesting situation, in which past observa-

tions and future occurrences are precisely the same type of objects: the next

random variable may assume one of the values in N (hence A = N), and

past cases are values of similar random variables taking values in N (hence

X = N).

Ranking alternatives in A by their empirical frequency can be modeled

by

a %I b iff
X
x∈X

I(x)1{x=a} ≥
X
x∈X

I(x)1{a=b}

namely, by setting

v(a, x) = 1{a=x}

Example B: As in example A, a statistician is estimating an unknown
distribution. This time she believes that the random variable is real-valued

and has a continuous distribution.134 In this case, the empirical distribution

observed will never be a good enough approximation of the “true” distrib-

ution, as the former is discrete and the latter is continuous. One approach

to this problem is known as “kernel estimation” (see Akaike, 1954, Rosen-

blatt, 1956, Parzen, 1962, and, for recent texts, Silverman, 1986, and Scott,

1992): the statistician chooses a so-called kernel function k : R×R→ R+
134This methods extends in a straightforward manner to random variables that assume
values in Euclidean spaces of higher dimensions.
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with
R
k(z, x)dx = 1 and, given a sample {zi}ni=1, generates the density

f(x) =
1

n

nX
i=1

k(zi, x).

This is a straightforward extension of estimation by empirical frequencies,

where each observation is “smoothed” and represented by a density around

the actually observed value.

Here again the set of cases and the set of eventualities coincide: A =

X = R. The original problem involves the estimation of a density function.

In our prediction problem, we only ask the predictor to rank alternatives by

their plausibility. However, you can use the estimated density f(x) to rank x

values, so that a value with a higher density will be considered “more likely”.

Formally, define

x %{zi}ni=1 y iff f(x) ≥ f(y).

You can then verify that the relations
¡
%{zi}ni=1

¢
(when you range over all

databases {zi}ni=1) satisfy our axioms. In fact, they are represented by

v(a, x) = k(x, a).

Example C: An engineer has to program a machine whose task is to

identify handwriting. The machine will learn by asking the user to provide

several examples of each letter in the alphabet, and it will store these exam-

ples. When a new data point will be presented, the machine will compare it

to the examples obtained in the learning phase, and classify the new point

accordingly. Assume that each data point is represented by a real-valued

vector z ∈ Rk. One possible classification method, based on the kernel meth-

ods discussed above, is the following: equip the machine with a similarity

function s : Rk×Rk→ R+. Let there be given a new data point w ∈ Rk. For

each possible class x (the letters of the alphabet), let {zxj }nxj=1 be the examples
in the database that are known to belong to class x. Then, attach to each

class x the index

S(w, x) =
nxX
j=1

s(w, zj).
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Finally, classify the input w as belonging to class x for an x in the argmax

of S(w, ·).

This technique, referred to as kernel classification, involves more struc-

ture than the previous ones. To see that it is also a special case of the

representation above, let the set of possible classes be A, and let the set of

observations be X = Rk ×A. An observation x = (z, a) is interpreted as an

example, in which the data point z was found to belong to class a. Defining

v(a, (z, c)) = s(z)1{c=a}

(27) boils down to kernel classification.

Example D: A statistician is interested in estimating a parameter of a
distribution with a given functional form. He takes a sample of i.i.d. variables

with this distribution, and computes a maximum likelihood estimator of the

parameter.

In this example, X is the set of values that the observed random variables

might assume. A is the set of values of the unknown parameter. Observe

that these sets are typically different. They are related by the statistical

model, namely, a family of distributions over X, parametrized by A. The

statistical model is given by {f(x|a)}a∈A where, for each a ∈ A, f(·|a) is a
distribution or a density function over X. Maximum likelihood estimation

selects, for a sample {xi}ni=1, the maximizers of
Q

i f(xi|·) overA. It is natural
to extend maximum likelihood to a ranking of any two values of the unknown

parameter as follows:

a %I b iff
Y
i

f(xi|a) ≥
Y
i

f(xi|b).

Clearly, we obtain (27) by setting

v(a, x) = log(f(x|a)).
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19.3 The Combination axiom in general analogical rea-
soning

We saw that four known statistical techniques satisfy the axioms and are

special cases of (27). This gives room for hope that this representation of

likelihood rankings will be a reasonable way to represent beliefs also in less

structured environments.

Consider example (3) from Section 2 again. In this example, I ask my

physician about the probabilities of possible outcomes of my surgery. This

problem will be discussed in the next chapter. At this point, let us start

with a simpler task, of qualitative ranking of possible eventualities. That

is, assume that I will be content to have a statement such as “you are more

likely to survive the surgery than not”.

The physician is facing a classification problem, as the handwriting iden-

tification problem in example C above. Classification problems range from

pattern and speech recognition to computer-aided diagnosis and weather fore-

casting. In fact, classification problems may be viewed as rather general deci-

sion problems, with the important caveat that the decision being made does

not affect the process predicted. For example, the weather forecaster may

be right or wrong in her prediction, thus affecting her own payoff, but we

assume that her prediction does not affect the weather. This renders classifi-

cation problems conceptually simpler than are general decision problems. In

particular, the predictor can look back at history and figure out what would

have been the result of each prediction she could have made. By contrast, the

same type of learning in a general decision problem leads to counterfactual

reasoning. For example, we do not know how history would have evolved had

Hitler crossed the Channel, but we do know whether the weather forecaster

would have been right had she forecast rain yesterday.

Since both the handwriting identification problem (example C above)

and the medical forecast problem (example 3) are classification problems, we

may wonder whether (27) might not apply to the latter just as it does to
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the former. Specifically, we should ask ourselves whether the Combination

axiom is a reasonable assumption in this context. This axiom requires that,

if we reach a certain conclusion based on each of two databases separately,

we should reach the same conclusion based on their union. For concreteness,

suppose that my physician, based on her database, tells me that I’m more

likely to survive the operation than not. I then seek a second opinion, and

consult with another physician, who has been working in a different hospital,

thus having access to a different database (where the two databases may be

assumed disjoint). Suppose that he, too, thinks that I’m going to make it.

Do I want them to share their data? If not, that is, if I am happy to get

the converging expert opinion, I implicitly exhibit faith in the Combination

axiom: I probably find it hard to believe that, should they share their data,

their joint prediction would be changed. This example suggests that the

Combination axiom may be a reasonable assumption in this context, at least

as a first approximation.135

If we are willing to accept the other axioms as well, the theorem sug-

gests that there should be a function — denoted s(w, z) above — dictating

my physician’s answer: she should simply check whether the sum of s values

over the patients that she has seen surviving is larger than the same sum for

the patients she has seen dying. She should predict that I am more likely to

survive than not if and only if the former is higher than the latter.

We may think of the function s as the similarity that the physician finds

between the patients in her database and the patient for whom she is asked

to predict the outcome. This is in line with Hume (1748), who wrote, “From

causes which appear similar we expect similar effects. This is the sum of all

our experimental conclusions.” The theory presented above can be thought

of as a model of the analogical reasoning that Hume viewed as the basis for

prediction. However, as we turn to discuss the weaknesses of this axiom, it

is important to recall that (despite Hume’s casual use of the word “sum”)

135However, see the qualifications in the next section.
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analogical reasoning need not be restricted to the Combination axiom.

19.4 Violations of the Combination axiom

The Combination axiom is extensively discussed in Gilboa and Schmeidler

(2003, pp. 11-14). I will mention here only two major classes of problems

in which it is likely to be violated. The first involves problems in which the

reasoner learns how to reason. To be more concrete, assume that the reasoner

uses a similarity function to learn from the past regarding the future, but also

learns the similarity function itself from observations. This process is referred

to as “second-order induction” in Gilboa and Schmeidler (2001). It is clearly

part of the way children learn. Also, the end result of this process, namely, the

appropriate similarity function, is part of the definition of expertise. Experts

are supposed to know many facts, but also to be able to draw the “right”

analogies between different cases. However, when the similarity function is

learnt from the data, the Combination axiom is unlikely to hold.

The second class of problems involves reasoning that is not merely from

past to future cases, but that engages in theorizing as well. That is, when we

consider not only case-to-case induction but also case-to-rule induction. In

the latter, the reasoner tries to learn general theories from her observations,

and then use these theories in a deductive way to generate predictions. When

such a process takes place, the effect of cases on the eventual prediction need

not be additive. For example, a reasoner who seeks trends in the data will not

find any regularity in each single observation, but may observe a trend when

the observations are considered together. It is easy to generate examples

violating the Combination axiom based on such intuition.

When cases are causally related to each other, case-to-case induction will

not suffice. Causal relationships can be thought of as theories that relate

cases to each other. For example, if we believe that one traumatic war is going

to render another war less likely, this causal relationship can be captured by

a rule, suggesting negative correlation between wars in consecutive periods.
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It will certainly not be captured by an additive formula such as (27).

The way we reason about wars or stock market crashes may still be based

on past cases. Such reasoning involves case-to-case analogies, as well as

case-to-rule theorizing. Finding a formal theory that unifies these types of

reasoning in an elegant and insightful way is a challenge for future research.
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20 Frequentism Revisited

20.1 Similarity-weighted empirical frequencies

Consider the physician problem (example (3)) again, and (as opposed to the

previous chapter), insist that the physician provide probabilistic predictions.

As mentioned above, it is an example where many causally independent

observations exist. They were not obtained under “identical” conditions, so

that a frequentist definition of probability would not be a viable alternative

in this case. The physician has already told me that, if I insist on measuring

everything, I will find that I am a unique case in human history, and that no

data were yet collected about me. Yet, there are past cases that are more

and less similar to mine. A rather natural idea is to suggest that the notion

of empirical frequencies be used, but with weights, such that a more similar

case will have a higher weight in the calculation of the relative frequency

than a less similar case.

To be more concrete, let the variable of interest be y ∈ {0, 1}, indicating
success of a medical procedure. The characteristics of patients are x =

(x1, ..., xm). These variables are real-valued, but some (or all) of them may

be discrete. We are given a database consisting of past observations of the

variables (x, y) = (x1, ..., xm, y), denoted (xi, yi)i≤n. A new case is introduced,

with characteristics xn+1 = (x1n+1, ..., x
m
n+1), and we are asked to assess the

probability that yn+1 = 1.

This is the set-up of logistic regression, which is the most common way

of defining probabilities in such problems. You may think of logistic regres-

sion as a rule-based approach, resulting from case-to-rule induction. The

approach presented here is case-based, following case-to-case induction.

Assume that we are also equipped with a similarity function s such that,

for two vectors of characteristics, xi = (x1i , ..., x
m
i ) and xj = (x1j , ..., x

m
j ),

s(xi, xj) > 0 measures the similarity between a patient with characteristics

xi and another patient with characteristics xj. The similarity function s will
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later be estimated from the data. We propose to define the probability that

yn+1 = 1, given the function s, by136

ŷsn+1 =

P
i≤n s(xi, xn+1)yiP
i≤n s(xi, xn+1)

. (28)

According to this formula, the probability that yn+1 will be 1, namely,

that the procedure will succeed in the case of patient xn+1, is taken to be the

s-weight of all past successes, divided by the total s-weight of all past cases,

successes and failures alike.

This formula is known to statisticians as “kernel estimation” of probabil-

ity. It is known to psychologists as “exemplar learning”. Apparently, it is

another example in which descriptive models of the human mind came up

with techniques that were independently developed in statistics. Such coin-

cidences should make us feel good about ourselves: apparently, evolution has

equipped us with rather powerful reasoning techniques.

20.2 Intuition

Formula (28) is obviously a generalization of the notion of empirical frequen-

cies. Indeed, should the function s be constant, so that all observations are

deemed equally relevant, (28) boils down to the relative frequency of yi = 1

in the database. If, however, one defines s(xi, xj) to be the indicator func-

tion of xi = xj (setting the similarity to 0 in case the vectors differ from

each other, and to 1 in case they are equal), then formula (28) becomes the

conditional relative frequency of yi = 1, that is, its relative frequency in

the sub-database defined by xn+1. It follows that (28) suggests a continuous

spectrum between the two extremes: as opposed to conditional relative fre-

quencies, it allows us to use the entire database. This is particularly useful

136For simplicity, we assume that s is strictly positive, so that the denominator of (28)
never vanishes. Leshno (2007) extends the axiomatization to this case, and allows a
sequence of similarity functions that are used lexicographically as in (28).
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in the medical example, where the database defined by xi = xn+1 may be

very small or even empty. At the same time, it does not ignore the variables

x, as does simple relative frequency over the entire database. Formula (28)

uses the entire database, but it still allows a differentiation among the cases

depending on their relevance.

Observe that one may argue that the standard use of empirical frequencies

is a special case of the formula not only from a mathematical, but also from

a conceptual viewpoint: no two cases in history are ever identical. When we

collect data and assume that an experiment was conducted “under the same

conditions”, we are actually employing a similarity judgment, and determin-

ing that observations in the sample are similar enough to each other to be

considered identical.

20.3 Axiomatization

The axiomatization of the formula above, with only two outcomes, can be

found in Gilboa, Lieberman, and Schmeidler (2006). The case of n ≥ 3 out-
comes, which is more elegant, is given in Billot, Gilboa, Samet, and Schmei-

dler (BGSS, 2005). I follow this paper here.

Let Ω = {1, ..., n} be a set of states of nature, n ≥ 3. Let C be a non-

empty set of cases.137 C may be an abstract set of arbitrary cardinality. A

database is a sequence of cases, D ∈ Cr for r ≥ 1. The set of all databases is
denotedC∗ = ∪r≥1Cr. The concatenation of two databases,D = (c1, ..., cr) ∈
Cr and E = (c01, ..., c

0
t) ∈ Ct, is denoted by D ◦ E and it is defined by

D ◦E = (c1, ..., cr, c01, ..., c0t) ∈ Cr+t.

Observe that the same element of C may appear more than once in a given

database. As above, we are in a statistical mind set and consider repetitions

of observations to constitute additional evidence.

As in the case of qualitative probabilities, the sets C and Ω have no par-

ticular structure and are also unrelated a priori. Yet, the main application we

137The set of cases C plays the role of observations, X, above.
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have in mind is comparable to a classification problem, with the important

difference that this time the prediction is probabilistic rather than determin-

istic. As in a classification problem, it will be natural to assume that past

cases include observations of certain variables, say x ∈ Rk, and a realization

of one of the states of nature. That is, it will be useful to bear in mind a

concrete structure C ⊂ Rk ×Ω.

The prediction problem at hand, namely the patient who asks the physi-

cian to provide prognosis, is fixed throughout this discussion. We therefore

suppress it from the notation.

For each D ∈ C∗, the reasoner has a probabilistic belief p(D) ∈ ∆(Ω)

about the realization of ω ∈ Ω in the problem under discussion.

For r ≥ 1, let Πr be the set of all permutations on {1, ..., r}, i.e., all
bijections π : {1, ..., r}→ {1, ..., r}. For D ∈ Cr and a permutation π ∈ Πr,

let πD be the permuted database, that is, πD ∈ Cr is defined by (πD)i =

Dπ(i) for i ≤ r.

We formulate the following axioms.

Invariance: For every r ≥ 1, every D ∈ Cr, and every permutation

π ∈ Πr, p(D) = p(πD).

Concatenation: For everyD,E ∈ C∗, p(D◦E) = λp(D)+(1−λ)p(E) for
some λ ∈ (0, 1).
The Invariance axiom might appear rather restrictive, as it does not allow

cases that appear later in D to have a greater impact on probability assess-

ments than do cases that appear earlier. But this does not mean that cases

that are chronologically more recent cannot have a greater weight than less

recent ones. All we need to do in order to let recent cases matter more is

to include time as one of the variables defining a problem. If we use such a

description, all permutations of a sequence of cases would contain the same

information. More generally, if you don’t like the Invariance axiom because

there is some information about the cases that is implicit in their order, you

can make this information explicit by introducing another variable into the
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description of cases.

The Concatenation axiom is a re-incarnation of the Combination axiom

from the previous chapter, applied to probability vectors rather than to bi-

nary relations. The axiom states that the beliefs induced by the concatena-

tion of two databases cannot lie outside the interval connecting the beliefs

induced by each database separately. To understand its logic, it may be best

to imagine its behavioral implications should the probabilities we generate

be used for expected payoff maximization in a decision problem with states

of nature Ω. The Concatenation axiom could then be re-stated as follows:

for every two acts a and b, if a is (weakly) preferred to b given database D

as well as given database E, then a is (weakly) preferred to b given the data-

base D ◦ E, and a strict preference given one of {D,E} suffices for a strict
preference given D ◦ E. By a standard separation argument, this condition
holds for every possible payoff matrix if and only if the Concatenation axiom

is satisfied.

Theorem 11 (BGSS, 2005) p satisfies the Invariance axiom, the Combina-
tion axiom, and not all {p(D)}D∈C∗ are collinear if and only if there exists a
function p̂ : C → ∆(Ω), where not all {p̂(c)}c∈C are collinear, and a function
s : C → R++ such that, for every r ≥ 1 and every D = (c1, ..., cr) ∈ Cr,

p(D) =

P
j≤r s(cj)p̂(cj)P

j≤r s(cj)
. (∗)

Moreover, in this case the function p̂ is unique, and the function s is

unique up to multiplication by a positive number.

This theorem may be extended to a general measurable state space Ω

with no additional complications, because for every D only a finite number

of measures are involved in the formula for p(D). The proof can be found in

BGSS (2005, pp. 1130-1136).

The theorem provides a representation of p(D) as a weighted average

of the probability vectors p̂(cj) for all cases cj in D. If cases are, indeed,
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elements of Rk ×Ω, then a case cj = (xj, ωj) tells a story of a problem with

characteristics xj that resulted in outcome ωj. It is then natural to add an

axiom that implies that p̂ ((xj, ωj)) assigns probability 1 to ωj. This may

sound a bit extreme if you really observed only one case. However, by this

formula, p̂ ((xj, ωj)) is also the probability you will assign to states in Ω if you

have a databases consisting of 1, 000, 000 replications of (xj, ωj) (and nothing

else). In fact, one can restrict the function p to databases with many cases,

and then this assumption might seem less objectionable.

If indeed, C ⊂ Rk × Ω, the similarity weight s(cj) might depend also on

the outcome ωj. This calls for another assumption, that would rule that out

and guarantee that s(cj) = s ((xj, ωj)) depend on xj alone. With these two

additional assumptions, the formula (∗) boils down to the similarity weighted
frequencies defined in (28).

This theorem is a version of a fundamental theorem in projective geom-

etry, which has been known for about 400 years. The basic idea is that

the Concatenation axiom implies that intervals in the space of databases

are mapped onto intervals in the simplex of probabilities. Functions that

map intervals (and points) onto intervals (and points) are called projective

functions, and they have been studied already in the 1400’s, because such

functions are at the basis of perspective drawing. Perspective was discovered

in Florence at the very beginning of the 15th century, ushering the Renais-

sance. As befits Renaissance people, some artists could both draw and do

the mathematics of their art. Piero della Francesca was perhaps the most

prominent of them, and he wrote a book explaining drawing by the rules of

perspective.138

To see the analogy between formula (28) and perspective drawing, con-

sider a given database D. For each cj ∈ D, draw p̂(cj) on the simplex, and

extend it by sj. Then, take the simple arithmetic average of all resulting

vectors sj p̂(cj), and project it again onto the simplex to get p(D). Assume

138This was about 150 years before projective geometry was developed by Desargues.
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now that you are a painter, put your eye at the origin, and let the simplex

∆(Ω) be your canvas. Imagine that you are drawing the points sj p̂(cj) and

their (regular, arithmetic) average. Each point sj p̂(cj) will map to p̂(cj) on

your canvas, but their average — to the similarity-weighted average, p(D). In

other words, cases cj that are considered to be more similar to the case at

hand (which is suppressed throughout this discussion), will have larger vec-

tors sj p̂(cj) and will skew the average in their direction. This is equivalent

to drawing a three-dimensional object on a two-dimensional canvas: the sim-

ple average (in R3) maps to a weighted average (in R2), where more remote
points get a higher weight. In this sense, I like to argue that (28) defines

probabilities as frequencies viewed in perspective.139

20.4 Empirical similarity and objective probabilities

The generalization of empirical frequencies to similarity-weighted empirical

frequencies is an appealing idea. It seems to deal with situations in which

there are many observations that can be assumed causally independent,

though not identical. However, it seems to veer away from the objectiv-

ity that relative frequencies used to have. Instead of asking people for their

subjective probabilities directly, we have relegated the subjective problem to

the choice of the similarity function.

The axiomatizations of the similarity-weighted formula (one of which we

have just seen) can convince you that you might want to have a similarity

function, but they do not tell you where you should get a similarity function

from if you don’t already have one. It appears that the same critique we

raised in the context of Savage’s theorem can be raised here.

But there is one difference: the similarity function can be computed from

the data. That is, considering a database, and the similarity-weighted for-

mula, one can ask, which similarity function would have best fit the data a
139Some of my co-authors think that I get carried away here. Unfortunately, the referees
thought so, too, and we could not include the perspective analogy in the published version
of the paper.
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priori? The similarity that does that is referred to as the “empirical similar-

ity”.

To understand this definition, assume that a database ((xi, yi))i≤n is

given. Assume a certain parametrized family of similarity functions, such

as140

sw = e−dw

with

dw(x, x
0) =

sX
j≤m

wj(xj − x0j)2.

For each i, define

ŷsi =

P
j 6=i s(xj, xi)yjP
j 6=i s(xj, xi)

and

SSE(w) =
nX
i=1

(yi − ŷsi )
2.

It is now a well-defined question, which vector w ∈ Rm
+ minimizes SSE(w)

for the given database. This vector ŵ will be used to define the empirical

similarity, sŵ.

Gilboa, Lieberman, and Schmeidler (2006) develop this idea and the sta-

tistical method for similarity estimation. Gilboa, Lieberman, and Schmeidler

(2007) further argue that, when we use the empirical similarity to weigh rel-

ative frequencies, the resulting probabilities can be viewed as “objective”.

Objectivity should be taken here with a grain of salt: one may choose dif-

ferent functional forms of s, different metrics d, and various goodness-of-fit

criteria. Still, the probabilities we obtain, say, in the medical example, can be

computed by a statistician without any input from a physician. That is, the

various choices we make in order to obtain these probabilities are of the type

of choices that statisticians typically make when estimating models. There is

140The negative exponent of a norm is justified in Billot, Gilboa, and Schmeidler (2008).
The particular choice of the weighted Euclidean norm is but an example.
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no subjective, domain-specific intuition that is needed for the computation

of these probabilities.

You may recall that the Concatenation and Combination axioms were

not suggested as universal principles, and that we identified some classes

of counter-examples to them. One of these included situations in which

the similarity function itself is learnt from the data. Unfortunately, this

is precisely what we propose to do here: the “empirical similarity” is the

similarity function that resulted from such learning. How can we still use

the similarity-weighted formula, which was justified only when such learning

does not take place?

One possible way out is to assume that learning of the similarity function

takes place only in certain periods, between which there are long sequences of

no-learning periods. This assumption seems psychologically realistic: people

evidently learn from their experience what features of the similarity function

are more important, but they do not appear to perform this type of learning

with each and every new piece of evidence. One reason could be that this

assumption also makes sense from a computational viewpoint: the compu-

tation of the similarity function is not a trivial task, and it does not seem

efficient to re-calculate it every period. Assume now that we are facing a

long sequence of no-learning periods. Over this sequence, the Concatenation

axiom makes sense. Let us conjecture that Theorem 11 can be extended to

the case in which all databases are bounded in their length, providing an ap-

proximation of formula 28. If this is true, one can try to learn the similarity

function to be used in this approximated formula over the (long but finite)

sequence of periods of no-learning that one is facing.

Another approach would be to relax the assumption that there is a unique

similarity function and, correspondingly, a unique probability, and to allow

a set of similarity functions, resulting in a set of probabilities.141 This would

141Eichberger and Guedjikova (2007) also extend Theorem 11 to a set of probabilities (or
a “multiple prior”) set-up. They use a single similarity function.
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seem a more consistent approach in the sense that, aware of the fact that

the similarity function has still to be learnt, the reasoner considers a set of

similarity functions, and does not commit to a single one too soon.

Be that as it may, the process by which observations are used for the

generation of probabilistic beliefs clearly calls for further research.

Beyond these interpretational issues, you may not be excited about this

definition of “objective” probabilities by similarity-weighted frequencies cou-

pled with the empirical similarity function. One reason is that this definition

captures only case-to-case induction. Indeed, we have mentioned that the

Combination and Concatenation axioms do not appear reasonable when the

reasoner engages in case-to-rule induction followed by deduction (from rules

to specific cases in the future). As mentioned above, this type of rule-based

learning in the context of probabilities is exemplified by logistic regression.

Whereas formula 28 ignores trends and focuses on similarity, logistic regres-

sion does the opposite: it attempts to find (linear) rules, and ignores sim-

ilarity to particular cases. Human reasoning involves both analogies and

generalizations, both cases and rules. A priori, none of them seems to have

a stronger claim to “objectivity” than the other.

Better definitions of objective probabilities would be obtained if we could

(i) have reasonable criteria for the choice between rule-based and case-based

probabilities; and (ii) have models that combine the two. Both of these are

important challenges for future research.

In any event, it seems that neither similarity-weighted frequencies nor

logistic regression would offer serious contenders for the title of “objective

probabilities” in example (4). In this example (involving war in the Mid-

dle East), observations are very different from each other, and they are also

intricately causally related. We can try to identify patterns of causal re-

lationships and re-define “observations” accordingly. But we will then find

that our database involves very little observations, which are not very simi-

lar to the case at hand. It is not clear that one can indeed define objective
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probabilities in such examples. Recalling that this type of problems was also

a major challenge for the behavioral definitions of subjective probabilities, I

am left suspicious when I hear “probability” used in such contexts.
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21 Future Research

The discussion above offers several challenges to current research. The first

is to develop better models of probabilities, in particular, of objective prob-

abilities. It would be desirable to have probabilities that use analogies to

cases, but that also employ general rules and theories. Beyond combination

of case-based and rule-cased reasoning, we may wish to model explicit causal

theories, as is done by Bayesian networks (Pearl, 1986). These may be com-

bined with similarity-weighted frequencies to generate better probabilistic

assessments. In such a model, the Bayesian network reflects the presumed

causal relationships, and the conditional probabilities attached to edges in

the network can be derived from similarity-weighted frequencies employing

an empirical similarity function.

Relaxing the requirement of probabilistic representation of beliefs, one

can go back to models involving sets of probabilities, or non-additive mea-

sures, and ask where do these emerge from, trying to model the cognitive

processes that generate them. And if one continues to be more modest in

one’s demands, one may ask whether models of qualitative likelihood rela-

tions can be upgraded to include not only analogies and case-based reasoning,

but also models, theories, and rules.

Going further down the line, we can also decide to forget about beliefs

altogether. It is possible that there is no rational way to generate beliefs in

some of the complicated examples we were discussing, and we may have to

learn to live with this fact. This would probably mean that we will need

models of decision making under uncertainty that do not make explicit ref-

erences to beliefs. Such models will probably have a much more descriptive

flavor, and their claim to rationality will be qualified. In Gilboa and Schmei-

dler (2001) we developed a theory of case-based decisions, which is of this

type. The theory assumes that people choose acts that did well in similar

past cases, but it makes no reference to beliefs, probabilistic or otherwise.

However, the formal models in Gilboa and Schmeidler (2001) still relied on
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the Combination axiom. Models that would involve more sophisticated rea-

soning would need to generalize the theory by relaxing this axiom.

One can also imagine a theory of rule-based decisions. Rules can be used

(as hinted above) to generate predictions and define beliefs, where these are

used for decision making. But we can also think of behavioral rules that

directly specify which act to take. Mirroring the use of the Combination

axiom (and additive models) in case-based beliefs and case-based decisions,

it is possible that there will be some similarity between models of rules as

guides to the generation of beliefs and rules as guides to choices. In both

applications, rules will have to be evaluated based on their past performance

— be it success in predicting the future or success in obtaining desirable

outcomes. In both applications one may also have a priori biases for or

against certain rules, based on their simplicity, prior reasonability, and so

forth. Moreover, it is possible that the Combination axiom, which was found

rather restrictive when applied to the learning from past to future cases,

may be more reasonable when applied to learning from cases to rules, as

exemplified by the likelihood maximization example (example D in Section

19.2).142

There are many directions in which decision theory can be improved upon.

We can certainly deepen our understanding of the meaning of probability,

as of utility, and we also need to better understand when such concepts are

useful, and when other concepts are more appropriate. As in the example of

case-based and rule-based reasoning, we probably need a variety of theories,

elegant unifications thereof, as well as meta-theories that tell us when we

should use each theory. While a unified, clean theory may not be around the

corner, we definitely seem to be living in interesting times.

142This axiomatic derivation of the maximum likelihood principle was extended to an
additive tradeoff between the log-likelihood function and an a priori bias in Gilboa and
Schmeidler (2007).
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