
12/30/03
 CHAPTER 10

INTEGER DIVISION BY CONSTANTS

Insert this material at the end of page 201, just before the poem on page 202.

10–17 Methods Not Using Multiply High
In this section we consider some methods for dividing by constants that do not use
the multiply high instruction, or a multiplication instruction that gives a double-
word result. We show how to change division by a constant into a sequence of
shift and add instructions, or shift, add, and multiply for more compact code.

Unsigned Division
For these methods, unsigned division is simpler than signed division, so we deal
with unsigned division first. One method is to use the techniques given that use
the multiply high instruction, but use the code shown in Figure 8-2 on page 132 to
do the multiply high operation. Figure 10–5 shows how this works out for the case
of (unsigned) division by 3. This is a combination of the code on page 178 and

Figure 8-2 with “int” changed to “unsigned.” The code is 15 instructions,
including four multiplications. The multiplications are by large constants and
would take quite a few instructions if converted to shift’s and add’s. Very similar
code can be devised for the signed case. This method is not particularly good and
won’t be discussed further.

unsigned divu3(unsigned n) {
 unsigned n0, n1, w0, w1, w2, t, q;

 n0 = n & 0xFFFF;
 n1 = n >> 16;
 w0 = n0*0xAAAB;
 t = n1*0xAAAB + (w0 >> 16);
 w1 = t & 0xFFFF;
 w2 = t >> 16;
 w1 = n0*0xAAAA + w1;
 q = n1*0xAAAA + w2 + (w1 >> 16);
 return q >> 1;
}

FIGURE 10–5. Unsigned divide by 3 using simulated multiply high unsigned.
1

2 INTEGER DIVISION BY CONSTANTS 10–17

Another method [GLS1] is to compute in advance the reciprocal of the divi-
sor, and multiply the dividend by that with a series of shift right and add instruc-
tions. This gives an approximation to the quotient. It is merely an approximation
because the reciprocal of the divisor (which we assume is not an exact power of
two) is not expressed exactly in 32 bits, and also because each shift right discards
bits of the dividend. Next the remainder with respect to the approximate quotient
is computed, and that is divided by the divisor to form a correction, which is
added to the approximate quotient, giving the exact quotient. The remainder is
generally small compared to the divisor (a few multiples thereof), so there is often
a simple way to compute the correction without using a divide instruction.

To illustrate this method, consider dividing by 3, i.e., computing
where The reciprocal of 3, in binary, is approximately

0.0101 0101 0101 0101 0101 0101 0101 0101.

To compute the approximate product of that and n, we could use

(32)

(29 instructions; the last 1 in the reciprocal is ignored because it would add the
term which is obviously 0). However, the simple repeating pattern of 1’s
and 0’s in the reciprocal permits a method that is both faster (9 instructions) and
more accurate:

(33)

To compare these methods for their accuracy, consider the bits that are shifted
out by each term of (32), if n is all 1-bits. The first term shifts out two 1-bits, the
next four 1-bits, and so on. Each of these contributes an error of almost 1 in the
least significant bit. Since there are 16 terms (counting the term we ignored), the
shifts contribute an error of almost 16. There is an additional error due to the fact
that the reciprocal is truncated to 32 bits; it turns out that the maximum total error
is 16.

For procedure (33), each right shift also contributes an error of almost 1 in the
least significant bit. But there are only five shift operations. They contribute an
error of almost 5, and there is a further error due to the fact that the reciprocal is
truncated to 32 bits; it turns out that the maximum total error is 5.

After computing the estimated quotient q, the remainder r is computed from

n 3⁄
0 n 232.<≤

q n 2>>
u()← n 4>>

u() n 6>>
u() … n 30>>

u()+ + + +

n 32,>>
u

q n 2>>
u() n 4>>

u()+←

q q q 4>>
u()+←

q q q 8>>
u()+←

q q q 16>>
u()+←

10–17 METHODS NOT USING MULTIPLY HIGH 3

The remainder cannot be negative, because q is never larger than the exact quo-
tient. We need to know how large r can be, to devise the simplest possible method
for computing In general, for a divisor d and an estimated quotient q too
low by k, the remainder will range from to (The upper limit
is conservative, it may not actually be attained.) Thus, using (33), for which q is
too low by at most 5, we expect the remainder to be at most 5*3 + 2 = 17. Exper-
iment reveals that it is actually at most 15. Thus for the correction we must com-
pute (exactly)

Since r is small compared to the largest value that a register can hold, this can
be approximated by multiplying r by some approximation to 1/3 of the form a/b
where b is a power of 2. This is easy to compute because the division is simply a
shift. The value of a/b must be slightly larger than 1/3, so that after shifting the
result will agree with truncated division. A sequence of such approximations is:

1/2, 2/4, 3/8, 6/16, 11/32, 22/64, 43/128, 86/256, 171/512, 342/1024, ….

Usually the smaller fractions in the sequence are easier to compute, so we
choose the smallest one that works; in the case at hand this is 11/32. Therefore the
final, exact, quotient is given by

The solution involves two multiplications by small numbers (3 and 11); these
can be changed to shift’s and add’s.

Figure 10–6 shows the entire solution in C. As shown, it consists of 14
instructions, including two multiplications. If the multiplications are changed to
shift’s and add’s, it amounts to 18 elementary instructions. However, if it is
desired to avoid the multiplications, then either alternative return statement
shown gives a solution in 17 elementary instructions. Alternative 2 has just a little
instruction-level parallelism, but in truth, this method generally has very little of
that.

A more accurate estimate of the quotient can be obtained by changing the
first executable line to

 q = (n >> 1) + (n >> 3);

(which makes q too large by a factor of 2, but it has one more bit of accuracy), and
then inserting just before the assignment to r,

 q = q >> 1;

r n q 3.*–←

r 3.÷u
k d* k d* d 1.–+

r 3÷u , for 0 r 15.≤ ≤

q q 11 r* 5>>
u().+←

4 INTEGER DIVISION BY CONSTANTS 10–17

With this variation, the remainder is at most 9. However, there does not seem to be
any better code for calculating with r limited to 9, than there is for r limited
to 15 (four elementary instructions in either case). Thus using the idea would cost
one instruction. This possibility is mentioned because it does give a code
improvement for most divisors.

Figure 10–7 shows two variations of this method for dividing by 5. The

reciprocal of 5, in binary, is

0.0011 0011 0011 0011 0011 0011 0011 0011.

As in the case of division by 3, the simple repeating pattern of 1’s and 0’s allows
a fairly efficient and accurate computing of the quotient estimate. The estimate of
the quotient computed by the code on the left can be off by at most 5, and it turns
out that the remainder is at most 25. The code on the right retains two additional
bits of accuracy in computing the quotient estimate, which is off by at most 2. The
remainder in this case is at most 10. The smaller maximum remainder permits

unsigned divu3(unsigned n) {
 unsigned q, r;

 q = (n >> 2) + (n >> 4); // q = n*0.0101 (approx).
 q = q + (q >> 4); // q = n*0.01010101.
 q = q + (q >> 8);
 q = q + (q >> 16);
 r = n - q*3; // 0 <= r <= 15.
 return q + (11*r >> 5); // Returning q + r/3.
// return q + (5*(r + 1) >> 4); // Alternative 1.
// return q + ((r + 5 + (r << 2)) >> 4);// Alternative 2.
}

FIGURE 10–6. Unsigned divide by 3.

unsigned divu5a(unsigned n) {
 unsigned q, r;

 q = (n >> 3) + (n >> 4);
 q = q + (q >> 4);
 q = q + (q >> 8);
 q = q + (q >> 16);
 r = n - q*5;
 return q + (13*r >> 6);
}

unsigned divu5b(unsigned n) {
 unsigned q, r;

 q = (n >> 1) + (n >> 2);
 q = q + (q >> 4);
 q = q + (q >> 8);
 q = q + (q >> 16);
 q = q >> 2;
 r = n - q*5;
 return q + (7*r >> 5);
// return q + (r>4) + (r>9);
}

FIGURE 10–7. Unsigned divide by 5.

r 3÷u

10–17 METHODS NOT USING MULTIPLY HIGH 5

approximating 1/5 by 7/32 rather than 13/64, which gives a slightly more efficient
program if the multiplications are done by shift’s and add’s. The instruction
counts are, for the code on the left: 14 instructions including two multiplications,
or 18 elementary instructions; for the code on the right: 15 instructions including
two multiplications, or 17 elementary instructions. The alternative code in the
return statement is useful only if your machine has comparison predicate
instructions. It doesn’t reduce the instruction count, but merely has a little instruc-
tion-level parallelism.

For division by 6, the divide by 3 code can be used, followed by a shift right
of 1. However, the extra instruction can be saved by doing the computation
directly, using the binary approximation

4/6 ≈ 0.1010 1010 1010 1010 1010 1010 1010 1010.

The code is shown in Figure 10–8. The version on the left multiplies by an
approximation to 1/6 and then corrects with a multiplication by 11/64. The ver-
sion on the right takes advantage of the fact that by multiplying by an approxima-
tion to 4/6, the quotient estimate is off by only 1 at most. This permits simpler
code for the correction; it simply adds 1 to q if r ≥ 6. The code in the second
return statement is appropriate if the machine has the comparison predicate
instructions. Function divu6b is 15 instructions, including one multiply, as
shown, or 17 elementary instructions if the multiplication by 6 is changed to
shift’s and add’s.

For larger divisors, usually it seems to be best to use an approximation to 1/d
that is shifted left so that its most significant bit is 1. It seems that the quotient is
then off by at most 1 usually (possibly always, this writer does not know), which
permits efficient code for the correction step. Figure 10–9 shows code for divid-
ing by 7 and 9, using the binary approximations

unsigned divu6a(unsigned n) {
 unsigned q, r;

 q = (n >> 3) + (n >> 5);
 q = q + (q >> 4);
 q = q + (q >> 8);
 q = q + (q >> 16);
 r = n - q*6;
 return q + (11*r >> 6);
}

unsigned divu6b(unsigned n) {
 unsigned q, r;

 q = (n >> 1) + (n >> 3);
 q = q + (q >> 4);
 q = q + (q >> 8);
 q = q + (q >> 16);
 q = q >> 2;
 r = n - q*6;
 return q + ((r + 2) >> 3);
// return q + (r > 5);
}

FIGURE 10–8. Unsigned divide by 6.

6 INTEGER DIVISION BY CONSTANTS 10–17

If the multiplications by 7 and 9 are expanded into shift’s and add’s, these func-
tions take 16 and 15 elementary instructions, respectively.

Figures 10–10 and 10–11 show code for dividing by 10, 11, 12, and 13. These
are based on the binary approximations:

If the multiplications are expanded into shift’s and add’s, these functions take 17,
20, 17, and 20 elementary instructions, respectively.

unsigned divu7(unsigned n) {
 unsigned q, r;

 q = (n >> 1) + (n >> 4);
 q = q + (q >> 6);
 q = q + (q>>12) + (q>>24);
 q = q >> 2;
 r = n - q*7;
 return q + ((r + 1) >> 3);
// return q + (r > 6);
}

unsigned divu9(unsigned n) {
 unsigned q, r;

 q = n - (n >> 3);
 q = q + (q >> 6);
 q = q + (q>>12) + (q>>24);
 q = q >> 3;
 r = n - q*9;
 return q + ((r + 7) >> 4);
// return q + (r > 8);
}

FIGURE 10–9. Unsigned divide by 7 and 9.

unsigned divu10(unsigned n) {
 unsigned q, r;

 q = (n >> 1) + (n >> 2);
 q = q + (q >> 4);
 q = q + (q >> 8);
 q = q + (q >> 16);
 q = q >> 3;
 r = n - q*10;
 return q + ((r + 6) >> 4);
// return q + (r > 9);
}

unsigned divu11(unsigned n) {
 unsigned q, r;

 q = (n >> 1) + (n >> 2) -
 (n >> 5) + (n >> 7);
 q = q + (q >> 10);
 q = q + (q >> 20);
 q = q >> 3;
 r = n - q*11;
 return q + ((r + 5) >> 4);
// return q + (r > 10);

FIGURE 10–10. Unsigned divide by 10 and 11.

4 7⁄ 0.1001 0010 0100 1001 0010 0100 1001 0010, and≈
8 9⁄ 0.1110 0011 1000 1110 0011 1000 1110 0011.≈

8 10⁄ 0.1100 1100 1100 1100 1100 1100 1100 1100,≈
8 11⁄ 0.1011 1010 0010 1110 1000 1011 1010 0010,≈
8 12⁄ 0.1010 1010 1010 1010 1010 1010 1010 1010, and≈
8 13⁄ 0.1001 1101 1000 1001 1101 1000 1001 1101.≈

10–17 METHODS NOT USING MULTIPLY HIGH 7

The case of dividing by 13 is instructive because it shows how you must look
for repeating strings in the binary expansion of the reciprocal of the divisor. The
first assignment sets q equal to n*0.1001. The second assignment to q adds
n*0.00001001 and n*0.000001001. At this point q is (approximately) equal to
n*0.100111011. The third assignment to q adds in repetitions of this pattern. It
sometimes helps to use subtraction, as in the case of divu9 above. However, you
must use care with subtraction because it may cause the quotient estimate to be
too large, in which case the remainder is negative, and the method breaks down. It
is quite complicated to get optimal code, and we don’t have a general cook-book
method that you can put in a compiler to handle any divisor.

The examples above are able to economize on instructions because the recip-
rocals have simple repeating patterns, and because the multiplication in the com-
putation of the remainder r is by a small constant, which can be done with only a
few shift’s and add’s. One might wonder how successful this method is for larger
divisors. To roughly assess this, Figures 10–12 and 10–13 show code for dividing
by 100 and by 1000 (decimal). The relevant reciprocals are

If the multiplications are expanded into shift’s and add’s, these functions take 25
and 23 elementary instructions, respectively.

unsigned divu12(unsigned n) {
 unsigned q, r;

 q = (n >> 1) + (n >> 3);
 q = q + (q >> 4);
 q = q + (q >> 8);
 q = q + (q >> 16);
 q = q >> 3;
 r = n - q*12;
 return q + ((r + 4) >> 4);
// return q + (r > 11);
}

unsigned divu13(unsigned n) {
 unsigned q, r;

 q = (n>>1) + (n>>4);
 q = q + (q>>4) + (q>>5);
 q = q + (q>>12) + (q>>24);
 q = q >> 3;
 r = n - q*13;
 return q + ((r + 3) >> 4);
// return q + (r > 12);
}

FIGURE 10–11. Unsigned divide by 12 and 13.

64 100⁄ 0.1010 0011 1101 0111 0000 1010 0011 1101 and≈
512 1000⁄ 0.1000 0011 0001 0010 0110 1110 1001 0111.≈

8 INTEGER DIVISION BY CONSTANTS 10–17

In the case of dividing by 1000, the least significant 8 bits of the reciprocal
estimate are nearly ignored. The code of Figure 10–13 replaces the binary
1001 0111 with 0100 0000, and still the quotient estimate is within 1 of the true
quotient. Thus it appears that although large divisors might have very little repe-
tition in the binary representation of the reciprocal estimate, at least some bits can
be ignored, which helps hold down the number of shift’s and add’s required to
compute the quotient estimate.

This section has shown in a somewhat imprecise way how unsigned division
by a constant can be reduced to a sequence of, typically, about 20 elementary
instructions. It is nontrivial to get an algorithm that generates these code
sequences that is suitable for incorporation into a compiler because of three diffi-
culties in getting optimal code:

1. it is necessary to search the reciprocal estimate bit string for repeating
patterns,

2. negative terms (as in divu10 and divu100) can be used sometimes,
but the error analysis required to determine just when they can be used is
difficult, and

3. sometimes some of the least significant bits of the reciprocal estimate
can be ignored (how many?)

unsigned divu100(unsigned n) {
 unsigned q, r;

 q = (n >> 1) + (n >> 3) + (n >> 6) - (n >> 10) +
 (n >> 12) + (n >> 13) - (n >> 16);
 q = q + (q >> 20);
 q = q >> 6;
 r = n - q*100;
 return q + ((r + 28) >> 7);
// return q + (r > 99);
}

FIGURE 10–12. Unsigned divide by 100.

unsigned divu1000(unsigned n) {
 unsigned q, r, t;

 t = (n >> 7) + (n >> 8) + (n >> 12);
 q = (n >> 1) + t + (n >> 15) + (t >> 11) + (t >> 14);
 q = q >> 9;
 r = n - q*1000;
 return q + ((r + 24) >> 10);
// return q + (r > 999);
}

FIGURE 10–13. Unsigned divide by 1000.

10–17 METHODS NOT USING MULTIPLY HIGH 9

Another difficulty for some target machines is that there are many variations on
the code examples given that have more instructions but that would execute faster
on a machine with multiple shift and add units.

The code of Figures 10–5 through 10–13 has been tested for all values of
the dividends.

Signed Division
The methods given above can be made to apply to signed division. The right
shift’s in computing the quotient estimate become signed right shift’s, which are
equivalent to “floor division” by powers of 2. Thus the quotient estimate is too
low (algebraically), so the remainder is nonnegative, as in the unsigned case.

The code most naturally computes the floor division result, so we need a cor-
rection to make it compute the conventional truncated toward 0 result. This can be
done with three computational instructions by adding to the dividend if the
dividend is negative. For example, if the divisor is 6, the code begins with (the
shift here is a signed shift)

 n = n + (n>>31 & 5);

Other than this, the code is very similar to that of the unsigned case. The num-
ber of elementary operations required is usually three more than in the corre-
sponding unsigned division function. Several examples are given below. All have
been exhaustively tested.

int divs3(int n) {
 int q, r;

 n = n + (n>>31 & 2); // Add 2 if n < 0.
 q = (n >> 2) + (n >> 4); // q = n*0.0101 (approx).
 q = q + (q >> 4); // q = n*0.01010101.
 q = q + (q >> 8);
 q = q + (q >> 16);
 r = n - q*3; // 0 <= r <= 14.
 return q + (11*r >> 5); // Returning q + r/3.
// return q + (5*(r + 1) >> 4); // Alternative 1.
// return q + ((r + 5 + (r << 2)) >> 4);// Alternative 2.
}

FIGURE 10–14. Signed divide by 3.

232

d 1–

10 INTEGER DIVISION BY CONSTANTS 10–17

int divs5(int n) {
 int q, r;

 n = n + (n>>31 & 4);
 q = (n >> 1) + (n >> 2);
 q = q + (q >> 4);
 q = q + (q >> 8);
 q = q + (q >> 16);
 q = q >> 2;
 r = n - q*5;
 return q + (7*r >> 5);
// return q + (r>4) + (r>9);
}

int divs6(int n) {
 int q, r;

 n = n + (n>>31 & 5);
 q = (n >> 1) + (n >> 3);
 q = q + (q >> 4);
 q = q + (q >> 8);
 q = q + (q >> 16);
 q = q >> 2;
 r = n - q*6;
 return q + ((r + 2) >> 3);
// return q + (r > 5);
}

FIGURE 10–15. Signed divide by 5 and 6.

int divs7(int n) {
 int q, r;

 n = n + (n>>31 & 6);
 q = (n >> 1) + (n >> 4);
 q = q + (q >> 6);
 q = q + (q>>12) + (q>>24);
 q = q >> 2;
 r = n - q*7;
 return q + ((r + 1) >> 3);
// return q + (r > 6);
}

int divs9(int n) {
 int q, r;

 n = n + (n>>31 & 8);
 q = (n >> 1) + (n >> 2) +
 (n >> 3);
 q = q + (q >> 6);
 q = q + (q>>12) + (q>>24);
 q = q >> 3;
 r = n - q*9;
 return q + ((r + 7) >> 4);
// return q + (r > 8);
}

FIGURE 10–16. Signed divide by 7 and 9.

int divs10(int n) {
 int q, r;

 n = n + (n>>31 & 9);
 q = (n >> 1) + (n >> 2);
 q = q + (q >> 4);
 q = q + (q >> 8);
 q = q + (q >> 16);
 q = q >> 3;
 r = n - q*10;
 return q + ((r + 6) >> 4);
// return q + (r > 9);
}

int divs11(int n) {
 int q, r;

 n = n + (n>>31 & 10);
 q = (n >> 1) + (n >> 2) -
 (n >> 5) + (n >> 7);
 q = q + (q >> 10);
 q = q + (q >> 20);
 q = q >> 3;
 r = n - q*11;
 return q + ((r + 5) >> 4);
// return q + (r > 10);
}

FIGURE 10–17. Signed divide by 10 and 11.

10–17 METHODS NOT USING MULTIPLY HIGH 11

int divs12(int n) {
 int q, r;

 n = n + (n>>31 & 11);
 q = (n >> 1) + (n >> 3);
 q = q + (q >> 4);
 q = q + (q >> 8);
 q = q + (q >> 16);
 q = q >> 3;
 r = n - q*12;
 return q + ((r + 4) >> 4);
// return q + (r > 11);
}

int divs13(int n) {
 int q, r;

 n = n + (n>>31 & 12);
 q = (n>>1) + (n>>4);
 q = q + (q>>4) + (q>>5);
 q = q + (q>>12) + (q>>24);
 q = q >> 3;
 r = n - q*13;
 return q + ((r + 3) >> 4);
// return q + (r > 12);
}

FIGURE 10–18. Signed divide by 12 and 13.

int divs100(int n) {
 int q, r;

 n = n + (n>>31 & 99);
 q = (n >> 1) + (n >> 3) + (n >> 6) - (n >> 10) +
 (n >> 12) + (n >> 13) - (n >> 16);
 q = q + (q >> 20);
 q = q >> 6;
 r = n - q*100;
 return q + ((r + 28) >> 7);
// return q + (r > 99);
}

FIGURE 10–19. Signed divide by 100.

int divs1000(int n) {
 int q, r, t;

 n = n + (n>>31 & 999);
 t = (n >> 7) + (n >> 8) + (n >> 12);
 q = (n >> 1) + t + (n >> 15) + (t >> 11) + (t >> 14) +
 (n >> 26) + (t >> 21);
 q = q >> 9;
 r = n - q*1000;
 return q + ((r + 24) >> 10);
// return q + (r > 999);
}

FIGURE 10–20. Signed divide by 1000.

12 INTEGER DIVISION BY CONSTANTS 10–18

10–18 Remainder by Summing Digits
This section addresses the problem of computing the remainder of division by a
constant without computing the quotient. The methods of this section apply only
to divisors of the form for k an integer greater than or equal to 2, and in
most cases the code resorts to a table lookup (an indexed load instruction) after a
fairly short calculation.

We will make frequent use of the following elementary property of congru-
ences:

THEOREM C. If and then

The unsigned case is simpler and is dealt with first.

Unsigned Remainder
For a divisor of 3, multiplying the trivial congruence repeatedly by
the congruence we conclude by Theorem C that

Thus a number n written in binary as satisfies

which is derived by using Theorem C repeatedly. Thus we can alternately add and
subtract the bits in the binary representation of the number to obtain a smaller
number that has the same remainder upon division by 3. If the sum is negative you
must add a multiple of 3, to make it nonnegative. The process can then be repeated
until the result is in the range 0 to 2.

The same trick works for finding the remainder after dividing a decimal num-
ber by 11.

Thus, if the machine has the population count instruction, a function that
computes the remainder modulo 3 of an unsigned number n might begin with

 n = pop(n & 0x55555555) - pop(n & 0xAAAAAAAA);

However, this can be simplified by using the following surprising identity discov-
ered by Paolo Bonzini [PB]:

(34)

2k 1,±

a b≡ mod m() c d≡ mod m(),

a c+ b d+≡ mod m() and

ac bd≡ mod m().

1 1 (mod 3)≡
2 1– (mod 3),≡

2k
1 mod 3(), k even,

1– mod 3(), k odd.

≡

…b3b2b1b0

n …= b3 23⋅ b2 22⋅ b1 2⋅ b0+ + + + … b3– b2 b1– b0+ + mod 3(),≡

pop x m&() pop x m&()– pop x m⊕() pop m().–=

10–18 REMAINDER BY SUMMING DIGITS 13

Proof:

Since the references to 32 (the word size) cancel out, the result holds for any word
size. Another way to prove (34) is to observe that it holds for and if a 0-
bit in x is changed to a 1 where m is 1, then both sides of (34) decrease by 1, and
if a 0-bit of x is changed to a 1 where m is 0, then both sides of (34) increase by 1.

Applying (34) to the line of C code above gives

 n = pop(n ^ 0xAAAAAAAA) - 16;

We want to apply this transformation again, until n is in the range 0 to 2, if possi-
ble. But it is best to avoid producing a negative value of n, because the sign bit
would not be treated properly on the next round. A negative value can be avoided
by adding a sufficiently large multiple of 3 to n. Bonzini’s code, shown in
Figure 10–21, increases the constant by 39. This is larger than necessary to make
n nonnegative, but it causes n to range from –3 to 2 (rather than –3 to 3) after the
second round of reduction. This simplifies the code on the return statement,
which is adding 3 if n is negative. The function executes in 11 instructions, count-
ing two to load the large constant.

int remu3(unsigned n) {
 n = pop(n ^ 0xAAAAAAAA) + 23; // Now 23 <= n <= 55.
 n = pop(n ^ 0x2A) - 3; // Now -3 <= n <= 2.
 return n + (((int)n >> 31) & 3);
}

FIGURE 10–21. Unsigned remainder modulo 3, using population count.

pop x m&() pop x m&()–

 pop x m&() 32 pop x m&()–()–= pop a() 32 pop a().–=

 pop x m&() pop x m | () 32 DeMorgan.–+=

 pop x m&() pop x m&() pop m() 32–++= pop a b | () =

 pop a b&() pop b().+

 pop x m&() x m&() | () pop m() 32 Disjoint.–+=

 pop x m⊕() pop m()–=

x 0,=

14 INTEGER DIVISION BY CONSTANTS 10–18

Figure 10–22 shows a variation that executes in four instructions plus a sim-
ple table lookup operation (e.g., and indexed load byte instruction).

To avoid the population count instruction, notice that because
 A binary number can be viewed as a base 4 number by taking its

bits in pairs and interpreting the bits 00 to 11 as a base 4 digit ranging from 0 to 3.
The pairs of bits can be summed using the code of Figure 5–2 on page 66, omit-
ting the first executable line (overflow does not occur in the additions). The final
sum ranges from 0 to 48, and a table lookup can be used to reduce this to the range
0 to 2. The resulting function is 16 elementary instructions plus an indexed load.

There is a similar but slightly better way. As a first step, n can be reduced to
a smaller number that is in the same congruence class modulo 3 with

 n = (n >> 16) + (n & 0xFFFF);

This splits the number into two 16-bit portions, which are added together. The
contribution modulo 3 of the left 16 bits of n is not altered by shifting them right
16 positions, because the shifted number, multiplied by is the original num-
ber, and More generally, if k is even. This is
used repeatedly (five times) in the code shown in Figure 10–23. This code is 19
instructions. The instruction count can be reduced by cutting off the digit sum-
ming earlier and using an in-memory table lookup, as illustrated in Figure 10–24
(nine instructions plus an indexed load). The instruction count can be reduced to
six (plus an indexed load) by using a table of size 0x2FE = 766 bytes.

int remu3(unsigned n) {

 static char table[33] = {2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1};

 n = pop(n ^ 0xAAAAAAAA);
 return table[n];
}

FIGURE 10–22. Unsigned remainder modulo 3, using population count and a table lookup.

int remu3(unsigned n) {
 n = (n >> 16) + (n & 0xFFFF); // Max 0x1FFFE.
 n = (n >> 8) + (n & 0x00FF); // Max 0x2FD.
 n = (n >> 4) + (n & 0x000F); // Max 0x3D.
 n = (n >> 2) + (n & 0x0003); // Max 0x11.
 n = (n >> 2) + (n & 0x0003); // Max 0x6.
 return (0x0924 >> (n << 1)) & 3;
}

FIGURE 10–23. Unsigned remainder modulo 3, digit summing and an in-register lookup.

4 1 (mod 3),≡
4k 1 (mod 3).≡

216,
216 1 (mod 3).≡ 2k 1 (mod 3)≡

10–18 REMAINDER BY SUMMING DIGITS 15

To compute the unsigned remainder modulo 5, the code of Figure 10–25 uses
the relations and It is 21 elementary instruc-
tions, assuming the multiplication by 3 is expanded into a shift and add.

The instruction count can be reduced by using a table, similarly to what is
done in Figure 10–24. In fact, the code is identical except the table is:

 static char table[62] = {0,1,2,3,4, 0,1,2,3,4,
 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4,
 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4,
 0,1,2,3,4, 0,1,2,3,4, 0,1};

For the unsigned remainder modulo 7, the code of Figure 10–26 uses the rela-
tion (nine elementary instructions plus an indexed load).

As a final example, the code of Figure 10–27 computes the remainder of
unsigned division by 9. It is based on the relation As shown, it is
nine elementary instructions plus an indexed load. The elementary instruction
count can be reduced to six by using a table of size 831 (decimal).

int remu3(unsigned n) {
 static char table[62] = {0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1};

 n = (n >> 16) + (n & 0xFFFF); // Max 0x1FFFE.
 n = (n >> 8) + (n & 0x00FF); // Max 0x2FD.
 n = (n >> 4) + (n & 0x000F); // Max 0x3D.
 return table[n];
}

FIGURE 10–24. Unsigned remainder modulo 3, digit summing and an in-memory lookup.

int remu5(unsigned n) {
 n = (n >> 16) + (n & 0xFFFF); // Max 0x1FFFE.
 n = (n >> 8) + (n & 0x00FF); // Max 0x2FD.
 n = (n >> 4) + (n & 0x000F); // Max 0x3D.
 n = (n>>4) - ((n>>2) & 3) + (n & 3); // -3 to 6.
 return (01043210432 >> 3*(n + 3)) & 7; // Octal const.
}

FIGURE 10–25. Unsigned remainder modulo 5, digit summing method.

16k 1 (mod 5)≡ 4 1 (mod 5).–≡

8k 1 (mod 7)≡

8 1 (mod 9).–≡

16 INTEGER DIVISION BY CONSTANTS 10–18

int remu7(unsigned n) {

 static char table[75] = {0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4};

 n = (n >> 15) + (n & 0x7FFF); // Max 0x27FFE.
 n = (n >> 9) + (n & 0x001FF); // Max 0x33D.
 n = (n >> 6) + (n & 0x0003F); // Max 0x4A.
 return table[n];
}

FIGURE 10–26. Unsigned remainder modulo 7, digit summing method.

int remu9(unsigned n) {

 int r;
 static char table[75] = {0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2};

 r = (n & 0x7FFF) - (n >> 15); // FFFE0001 to 7FFF.
 r = (r & 0x01FF) - (r >> 9); // FFFFFFC1 to 2FF.
 r = (r & 0x003F) + (r >> 6); // 0 to 4A.
 return table[r];
}

FIGURE 10–27. Unsigned remainder modulo 9, digit summing method.

10–18 REMAINDER BY SUMMING DIGITS 17

Signed Remainder
The digit summing method can be adapted to compute the remainder resulting
from signed division. However, there seems to be no better way than to add a few
steps to correct the result of the method as applied to unsigned division. Two cor-
rections are necessary: (1) correct for a different interpretation of the sign bit, and
(2) add or subtract a multiple of the divisor d to get the result in the range 0 to

For division by 3, the unsigned remainder code interprets the sign bit of the
dividend n as contributing 2 to the remainder (because But for
the remainder of signed division the sign bit contributes only 1 (because

 Therefore we can use the code for unsigned remainder and
correct its result by subtracting 1. Then the result must be put in the range 0 to
That is, the result of the unsigned remainder code must be mapped as follows:

This adjustment can be done fairly efficiently by subtracting 1 from the unsigned
remainder if it is 0 or 1, and subtracting 4 if it is 2 (when the dividend is negative).
The code must not alter the dividend n because it is needed in this last step.

This procedure can easily be applied to any of the functions given for the
unsigned remainder modulo 3. For example, applying it to Figure 10–24 on
page 15 gives the function shown in Figure 10–28. It is 13 elementary instructions
plus an indexed load. The instruction count can be reduced by using a larger table.

Figures 10–29 to 10–31 show similar code for computing the signed remain-
der of division by 5, 7, and 9. All the functions consist of 15 elementary opera-
tions plus an indexed load. They use signed right shifts and the final adjustment
consists of subtracting the modulus if the dividend is negative and the remainder
is nonzero. The number of instructions can be reduced by using larger tables.

int rems3(int n) {
 unsigned r;
 static char table[62] = {0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1};

 r = n;
 r = (r >> 16) + (r & 0xFFFF); // Max 0x1FFFE.
 r = (r >> 8) + (r & 0x00FF); // Max 0x2FD.
 r = (r >> 4) + (r & 0x000F); // Max 0x3D.
 r = table[r];
 return r - (((unsigned)n >> 31) << (r & 2));
}

FIGURE 10–28. Signed remainder modulo 3, digit summing method.

d 1–().–

231 mod 3 2).=

231–() mod 3 1).=
2.–

0 1 2, ,() 1 0 1, ,–() 1 0 2–, ,–().⇒ ⇒

18 INTEGER DIVISION BY CONSTANTS 10–18

int rems5(int n) {
 int r;
 static char table[62] = {2,3,4, 0,1,2,3,4, 0,1,2,3,4,
 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4,
 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4,
 0,1,2,3,4, 0,1,2,3};

 r = (n >> 16) + (n & 0xFFFF); // FFFF8000 to 17FFE.
 r = (r >> 8) + (r & 0x00FF); // FFFFFF80 to 27D.
 r = (r >> 4) + (r & 0x000F); // -8 to 53 (decimal).
 r = table[r + 8];
 return r - (((int)(n & -r) >> 31) & 5);
}

FIGURE 10–29. Signed remainder modulo 5, digit summing method.

int rems7(int n) {
 int r;
 static char table[75] = {5,6, 0,1,2,3,4,5,6,
 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2};

 r = (n >> 15) + (n & 0x7FFF); // FFFF0000 to 17FFE.
 r = (r >> 9) + (r & 0x001FF); // FFFFFF80 to 2BD.
 r = (r >> 6) + (r & 0x0003F); // -2 to 72 (decimal).
 r = table[r + 2];
 return r - (((int)(n & -r) >> 31) & 7);
}

FIGURE 10–30. Signed remainder modulo 7, digit summing method.

int rems9(int n) {
 int r;
 static char table[75] = {7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0};

 r = (n & 0x7FFF) - (n >> 15); // FFFF7001 to 17FFF.
 r = (r & 0x01FF) - (r >> 9); // FFFFFF41 to 0x27F.
 r = (r & 0x003F) + (r >> 6); // -2 to 72 (decimal).
 r = table[r + 2];
 return r - (((int)(n & -r) >> 31) & 9);
}

FIGURE 10–31. Signed remainder modulo 9, digit summing method.

10–19 REMAINDER BY MULTIPLICATION AND SHIFTING RIGHT 19

10–19 Remainder by Multiplication and Shifting Right
The method described in this section applies in principle to all integer divisors
greater than 2, but as a practical matter only to fairly small divisors and to divisors
of the form As in the preceding section, in most cases the code resorts to
a table lookup after a fairly short calculation.

Unsigned Remainder
This section uses the mathematical (not computer algebra) notation
where a and b are integers and to denote the integer x, that sat-
isfies

To compute observe that

(35)

Proof: Let where δ and k are integers and Then

The value of the last expression is clearly 0, 1, or 2 for δ = 0, 1, or 2 respectively.
This allows changing the problem of computing the remainder modulo 3 to one of
computing the remainder modulo 4, which is of course much easier on a binary
computer.

Relations like (35) do not hold for all moduli, but similar relations do hold if
the modulus is of the form for k an integer greater than 1. For example, it
is easy to show that

For numbers not of the form there is no such simple relation, but
there is a certain uniqueness property that can be used to compute the remainder
for other divisors. For example, if the divisor is 10 (decimal), consider the expres-
sion

(36)

Let where Then

2k 1.–

a mod b,
b 0,> 0 x b,<≤

x a (mod b).≡
n mod 3,

n mod 3 4
3
---n mod 4.=

n 3k δ,+= 0 δ 2.≤ ≤

4
3
--- 3k δ+() mod 4 4k

4δ
3

------+ mod 4 4δ
3

------ mod 4.= =

2k 1–

n mod 7
8
7
---n mod 8.=

2k 1,–

16
10
------n mod 16.

n 10k δ+= 0 δ 9.≤ ≤

16
10
------n mod 16 16

10
------ 10k δ+() mod 16

16δ
10

--------- mod 16.= =

20 INTEGER DIVISION BY CONSTANTS 10–19

For δ = 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, the last expression takes on the values 0, 1,
3, 4, 6, 8, 9, 11, 12, and 14 respectively. The latter numbers are all distinct. Thus
if we can find a reasonably easy way to compute (36), we can translate 0 to 0, 1 to
1, 3 to 2, 4 to 3, and so on, to obtain the remainder of division by 10. This will gen-
erally require a translation table of size equal to the next power of 2 greater than
the divisor, so the method is practical only for fairly small divisors (and for divi-
sors of the form for which table lookup is not required).

The code to be shown was derived by using a little of the above theory and a
lot of trial and error.

Consider the remainder of unsigned division by 3. Following (35), we wish to
compute the rightmost two bits of the integer part of This can be done
approximately by multiplying by and then dividing by by using a
shift right instruction. When the multiplication by is done (using the
multiply instruction that gives the low-order 32 bits of the product), high-order
bits will be lost. But that doesn’t matter, and in fact it’s helpful, because we want
the result modulo 4. Therefore, because = 0x55555555, a possible plan
is to compute

Experiment indicates that this works for n in the range 0 to Almost
works, I should say; if n is nonzero and a multiple of 3, it gives the result 3. Thus
it must be followed by a translation step that translates (0, 1, 2, 3) to (0, 1, 2, 0)
respectively.

To extend the range of applicability, the multiplication must be done more
accurately. Two more bits of accuracy suffices (that is, multiplying by
0x55555555.4). The following calculation, followed by the translation step,
works for all n representable as an unsigned 32-bit integer:

It is of course possible to give a formal proof of this, but the algebra is quite
lengthy and error-prone.

The translation step can be done in three or four instructions on most
machines, but there is a way to avoid it at a cost of two instructions. The above
expression for computing r estimates low. If you estimate slightly high, the result
is always 0, 1, or 2. This gives the C function shown below (eight instructions,
including a multiply).

int remu3(unsigned n) {
 return (0x55555555*n + (n >> 1) - (n >> 3)) >> 30;
}

FIGURE 10–32. Unsigned remainder modulo 3, multiplication method.

2k 1,–

4n 3⁄ .
232 3⁄ 230

232 3⁄

232 3⁄

r 0x55555555 n*() 30.>>
u←

230 2.+

r 0x55555555 n n 2>>
u()+*() 30.>>

u←

10–19 REMAINDER BY MULTIPLICATION AND SHIFTING RIGHT 21

The multiplication can be expanded, giving the following 13-instruction
function that uses only shift’s and add’s.

The remainder of unsigned division by 5 may be computed very similarly to
the remainder of division by 3. Let with Then

 = = For r = 0, 1, 2, 3, and
4, this takes on the values 0, 1, 3, 4, and 6 respectively. Since =
0x33333333, this leads to the function shown in Figure 10–34 (11 instructions,
including a multiply). The last step (code on the return statement) is mapping
(0, 1, 3, 4, 6, 7) to (0, 1, 2, 3, 4, 0) respectively, using an in-register method rather
than an indexed load from memory. By also mapping 2 to 2 and 5 to 4, the preci-
sion required in the multiplication by is reduced to using just the term
n >> 3 to approximate the missing part of the multiplier (hexadecimal 0.333…).
If the “accuracy” term n >> 3 is omitted, the code still works for n ranging from
0 to 0x60000004.

The code for computing the unsigned remainder modulo 7 is similar, but the
mapping step is simpler; it is necessary only to convert 7 to 0. One way to code it
is shown in Figure 10–35 (11 instructions, including a multiply). If the accuracy
term n >> 4 is omitted, the code still works for n up to 0x40000006. With both
accuracy terms omitted, it works for n up to 0x08000006.

int remu3(unsigned n) {
 unsigned r;

 r = n + (n << 2);
 r = r + (r << 4);
 r = r + (r << 8);
 r = r + (r << 16);
 r = r + (n >> 1);
 r = r - (n >> 3);
 return r >> 30;
}

FIGURE 10–33. Unsigned remainder modulo 3, multiplication (expanded) method.

int remu5(unsigned n) {
 n = (0x33333333*n + (n >> 3)) >> 29;
 return (0x04432210 >> (n << 2)) & 7;
}

FIGURE 10–34. Unsigned remainder modulo 5, multiplication method.

n 5k r+= 0 r 4.≤ ≤
8 5⁄()n mod 8 8 5⁄() 5k r+() mod 8 8 5⁄()r mod 8.

232 5⁄

232 5⁄

22 INTEGER DIVISION BY CONSTANTS 10–19

Code for computing the unsigned remainder modulo 9 is shown in Figure 10–
36. It is six instructions, including a multiply, plus an indexed load. If the accuracy
term n >> 1 is omitted and the multiplier is changed to 0x1C71C71D, the func-
tion works for n up to 0x1999999E.

Figure 10–37 shows a way to compute the unsigned remainder modulo 10. It
is eight instructions, including a multiply, plus an indexed load instruction. If the
accuracy term n >> 3 is omitted, the code works for n up to 0x40000004. If both
accuracy terms are omitted, it works for n up to 0x0AAAAAAD.

As a final example, consider the computation of the remainder modulo 63.
This function is used by the population count program at the top of page 68. Joe
Keane [Keane] has come up with the rather mysterious code shown in Figure 10–
38. It is 12 elementary instructions on the basic RISC.

The “multiply and shift right” method leads to the code shown in Figure 10–
39. This is 11 instructions on the basic RISC, one being a multiply. This would not
be as fast as Keane’s method unless the machine has a very fast multiply and the
load of the constant 0x04104104 can move out of a loop. If the multiplication is
expanded into shifts and adds, it becomes 15 elementary instructions.

int remu7(unsigned n) {
 n = (0x24924924*n + (n >> 1) + (n >> 4)) >> 29;
 return n & ((int)(n - 7) >> 31);
}

FIGURE 10–35. Unsigned remainder modulo 7, multiplication method.

int remu9(unsigned n) {
 static char table[16] = {0, 1, 1, 2, 2, 3, 3, 4,
 5, 5, 6, 6, 7, 7, 8, 8};

 n = (0x1C71C71C*n + (n >> 1)) >> 28;
 return table[n];
}

FIGURE 10–36. Unsigned remainder modulo 9, multiplication method.

int remu10(unsigned n) {
 static char table[16] = {0, 1, 2, 2, 3, 3, 4, 5,
 5, 6, 7, 7, 8, 8, 9, 0};

 n = (0x19999999*n + (n >> 1) + (n >> 3)) >> 28;
 return table[n];
}

FIGURE 10–37. Unsigned remainder modulo 10, multiplication method.

10–19 REMAINDER BY MULTIPLICATION AND SHIFTING RIGHT 23

Timing tests were run on a 667 MHz Pentium III, using the GCC compiler
with optimization level 2, and inlining the functions. The results varied substan-
tially with the “environment” (the surrounding instructions) of the code being
timed. For this machine and compiler, the multiplication method beat Keane’s
method by about five to 20 percent. With the multiplication expanded, the code
sometimes did better and sometimes worse than both of the other two methods.

Signed Remainder
As in the case of the digit summing method, the “multiply and shift right” method
can be adapted to compute the remainder resulting from signed division. Again,
there seems to be no better way than to add a few steps to correct the result of the
method as applied to unsigned division. For example, the code shown in Figure 10–
40 is derived from Figure 10–32 on page 20 (12 instructions, including a multiply).

Some plausible ways to compute the remainder of signed division by 5, 7, 9,
and 10 are shown in Figures 10–41 to 10–44. The code for a divisor of 7 uses quite
a few extra instructions (19 in all, including a multiply); it might be preferable to
use a table as is shown for the cases in which the divisor is 5, 9, or 10. In the latter
cases the table used for unsigned division is doubled in size, with the sign bit of
the divisor factored in to index the table. Entries shown as u are unused.

int remu63(unsigned n) {
 unsigned t;

 t = (((n >> 12) + n) >> 10) + (n << 2);
 t = ((t >> 6) + t + 3) & 0xFF;
 return (t - (t >> 6)) >> 2;
}

FIGURE 10–38. Unsigned remainder modulo 63, Keane’s method.

int remu63(unsigned n) {
 n = (0x04104104*n + (n >> 4) + (n >> 10)) >> 26;
 return n & ((n - 63) >> 6); // Change 63 to 0.
}

FIGURE 10–39. Unsigned remainder modulo 63, multiplication method.

int rems3(int n) {
 unsigned r;

 r = n;
 r = (0x55555555*r + (r >> 1) - (r >> 3)) >> 30;
 return r - (((unsigned)n >> 31) << (r & 2));
}

FIGURE 10–40. Signed remainder modulo 3, multiplication method.

24 INTEGER DIVISION BY CONSTANTS 10–19

int rems5(int n) {
 unsigned r;
 static signed char table[16] = {0, 1, 2, 2, 3, u, 4, 0,
 u, 0,-4, u,-3,-2,-2,-1};

 r = n;
 r = ((0x33333333*r) + (r >> 3)) >> 29;
 return table[r + (((unsigned)n >> 31) << 3)];
}

FIGURE 10–41. Signed remainder modulo 5, multiplication method.

int rems7(int n) {
 unsigned r;

 r = n - (((unsigned)n >> 31) << 2); // Fix for sign.
 r = ((0x24924924*r) + (r >> 1) + (r >> 4)) >> 29;
 r = r & ((int)(r - 7) >> 31); // Change 7 to 0.
 return r - (((int)(n&-r) >> 31) & 7);// Fix n<0 case.
}

FIGURE 10–42. Signed remainder modulo 7, multiplication method.

int rems9(int n) {
 unsigned r;
 static signed char table[32] = {0, 1, 1, 2, u, 3, u, 4,
 5, 5, 6, 6, 7, u, 8, u,
 -4, u,-3, u,-2,-1,-1, 0,
 u,-8, u,-7,-6,-6,-5,-5};

 r = n;
 r = (0x1C71C71C*r + (r >> 1)) >> 28;
 return table[r + (((unsigned)n >> 31) << 4)];
}

FIGURE 10–43. Signed remainder modulo 9, multiplication method.

int rems10(int n) {
 unsigned r;
 static signed char table[32] = {0, 1, u, 2, 3, u, 4, 5,
 5, 6, u, 7, 8, u, 9, u,
 -6,-5, u,-4,-3,-3,-2, u,
 -1, 0, u,-9, u,-8,-7, u};
 r = n;
 r = (0x19999999*r + (r >> 1) + (r >> 3)) >> 28;
 return table[r + (((unsigned)n >> 31) << 4)];
}

FIGURE 10–44. Signed remainder modulo 10, multiplication method.

10–20 CONVERTING TO EXACT DIVISION 25

10–20 Converting to Exact Division
Since the remainder can be computed without computing the quotient, the possi-
bility arises of computing the quotient by first computing the
remainder, subtracting this from the dividend n, and then dividing the difference
by the divisor d. This last division is an exact division, and it can be done by mul-
tiplying by the multiplicative inverse of d (see Section 10–15 on page 190). This
method would be particularly attractive if both the quotient and remainder are
wanted.

Let us try this for the case of unsigned division by 3. Computing the remain-
der by the multiplication method (Figure 10–32 on page 20) leads to the function
shown in Figure 10–45.

This is 11 instructions, including two multiplications by large numbers. (The
constant 0x55555555 can be generated by shifting the constant 0xAAAAAAAB
right one position.) In contrast, the more straightforward method of computing the
quotient q using (for example) the code of Figure 10–6 on page 4, requires 14
instructions, including two multiplications by small numbers, or 17 elementary
operations if the multiplications are expanded into shift’s and add’s. If the remain-
der is also wanted, and it is computed from r = n - q*3, the more straightfor-
ward method requires 16 instructions including three multiplications by small
numbers, or 20 elementary instructions if the multiplications are expanded into
shift’s and add’s.

The code of Figure 10–45 is not attractive if the multiplications are expanded
into shift’s and add’s; the result is 24 elementary instructions. Thus the exact divi-
sion method might be a good one on a machine that does not have multiply high,
but it has a fast modulo multiply and slow divide, particularly if it can easily
deal with the large constants.

unsigned divu3(unsigned n) {
 unsigned r;

 r = (0x55555555*n + (n >> 1) - (n >> 3)) >> 30;
 return (n - r)*0xAAAAAAAB;
}

FIGURE 10–45. Unsigned remainder and quotient with divisor = 3, using exact division.

q n d⁄=

232

26 INTEGER DIVISION BY CONSTANTS 10–21

For signed division by 3, the exact division method might be coded as shown
in Figure 10–46. It is 15 instructions, including two multiplications by large con-
stants.

As a final example, Figure 10–47 shows code for computing the quotient and
remainder for unsigned division by 10. It is 12 instructions, including two multi-
plications by large constants, plus an indexed load instruction.

10–21 A Timing Test
The Intel Pentium has a 32×32 ⇒ 64 multiply instruction, so one would expect
that to divide by a constant such as 3, the code shown at the bottom of page 178
would be fastest. If that multiply instruction were not present, but the machine had
a fast 32×32 ⇒ 32 multiply instruction, then the exact division method might be a
good one, because the machine has a slow divide and a very fast multiply. To test
this conjecture, an assembly language program was constructed to compare four
methods of dividing by 3. The results are shown in Table 10–4.

The machine used was a 667 mHz Pentium III (ca. 2000).
The first row gives the time in cycles for just two instructions: an xorl to

clear the left half of the 64-bit source register, and the divl instruction, which
evidently takes 40 cycles. The second row also gives the time for just two instruc-
tions: multiply and shift right 1 (mull and shrl). The third row gives the time
for a sequence of 21 elementary instructions. It is the code of Figure 10–6 on
page 4 using alternative 2, and with the multiplication by 3 done with a single

int divs3(int n) {
 unsigned r;

 r = n;
 r = (0x55555555*r + (r >> 1) - (r >> 3)) >> 30;
 r = r - (((unsigned)n >> 31) << (r & 2));
 return (n - r)*0xAAAAAAAB;
}

FIGURE 10–46. Signed remainder and quotient with divisor = 3, using exact division.

unsigned divu10(unsigned n) {
 unsigned r;
 static char table[16] = {0, 1, 2, 2, 3, 3, 4, 5,
 5, 6, 7, 7, 8, 8, 9, 0};

 r = (0x19999999*n + (n >> 1) + (n >> 3)) >> 28;
 r = table[r];
 return ((n - r) >> 1)*0xCCCCCCCD;
}

FIGURE 10–47. Signed remainder and quotient with divisor = 10, using exact division.

10–22 A CIRCUIT FOR DIVIDING BY 3 27

instruction (leal). Several move instructions are necessary because the machine
is (basically) two-address. The last row gives the time for a sequence of 10
instructions: two multiplications (imull) and the rest elementary. The two
imull instructions use four-byte immediate fields for the large constants. (The
signed multiply instruction imull is used, rather than its unsigned counterpart
mull, because they give the same result in the low-order 32 bits and imull has
more addressing modes available.)

The exact division method would be even more favorable compared to the
second and third methods if both the quotient and remainder were wanted,
because they would require additional code for the computation
(The divl instruction produces the remainder as well as the quotient.)

10–22 A Circuit for Dividing by 3
There is a simple circuit for dividing by 3 that is about as complex as a 32-bit
adder. It can be constructed very similarly to the elementary way one constructs a
32-bit adder from 32 1-bit “full adder” circuits. However, in the divider signals
flow from most significant to least significant bit.

Consider dividing by 3 the way it is taught in grade school, but in binary. To
produce each bit of the quotient, you divide 3 into the next bit, but the bit is pre-
ceded by a remainder of 0, 1, or 2 from the previous stage. The logic is shown in
Table 10–5. Here the remainder is represented by two bits ri and si, with ri being

TABLE 10–4. UNSIGNED DIVIDE BY 3 ON A PENTIUM III

Division Method Cycles

Using machine’s divide instruction (divl) 41.08

Using 32×32 ⇒ 64 multiply (code on page 178) 4.28

All elementary instructions (Figure 10–6 on page 4) 14.10

Convert to exact division (Figure 10–45 on page 25) 6.68

TABLE 10–5. LOGIC FOR DIVIDING BY 3

ri+1 si+1 xi yi ri si

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 – – –

1 1 1 – – –

r n q 3.*–←

28 INTEGER DIVISION BY CONSTANTS 10–22

the most significant bit. The remainder is never 3, so the last two rows of the table
represent “don’t care” cases.

A circuit for dividing by 3 is shown in Figure 10–48. The quotient is the word
consisting of bits y31 through y0, and the remainder is

Another way to implement the divide by 3 operation in hardware is to use the
multiplier to multiply the dividend by the reciprocal of 3 (binary 0.010101…),
with appropriate rounding and scaling. This is the technique shown on pages 158
and 178.

References

[Keane] Keane, Joe. Newsgroup sci.math.num-analysis, July 9, 1995.

[PB] Bonzini, Paolo. Private communication (email of December 27, 2003).

FIGURE 10–48. Logic circuit for dividing by 3.

2r0 s0.+

0

0

x31

ri+1

si+1

xi

ri

si

x0

...

...

...

...

y31 yi y0

r0

s0

yi ri 1+ si 1+ xi+=

ri ri 1+ si 1+ xi ri 1+ xi+=

si ri 1+ si 1+ xi ri 1+ si 1+ xi+=

	Chapter 10
	Integer Division by Constants
	10–17 Methods Not Using Multiply High
	Unsigned Division
	Signed Division

	10–18 Remainder by Summing Digits
	Unsigned Remainder
	Signed Remainder

	10–19 Remainder by Multiplication and Shifting Right
	Unsigned Remainder
	Signed Remainder

	10–20 Converting to Exact Division
	10–21 A Timing Test
	10–22 A Circuit for Dividing by 3
	References

