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We construct an elementary equation with a single real valued parameter that is capable

of fitting any “scatter plot” on any number of points to within a fixed precision. Specifically,

given given a fixed ε > 0, we may construct fθ so that for any collection of ordered pairs

{(xj , yj)}nj=0 with n, xj ∈ N and yj ∈ (0, 1), there exists a θ ∈ [0, 1] giving |fθ(xj)− yj | < ε

for all j simultaneously. To achieve this, we apply prior results about the logistic map, an

iterated map in dynamical systems theory that can be solved exactly. The existence of an

equation fθ with this property highlights that “parameter counting” fails as a measure of

model complexity when the class of models under consideration is only slightly broad.

The mathematician John von Neumann famously admonished that with four free parameters he

could make an elephant, and with five he could make it wiggle its trunk [1]. Indeed, the number of

free parameters is often taken as a proxy of model complexity intuitively as well as in quantitative

model comparison measures like AIC [2] and BIC [3]. While these measures can be shown to be

statistically principled or optimal for certain classes of models [4], they are often used to evaluate

arbitrary models by practitioners in a given field. The aim of this short note is to show that, in

fact, very simple, elementary models exist that are capable of fitting arbitrarily many points to an

arbitrary precision using only a single real-valued parameter θ. This is not always due to severe

pathologies—one such model, studied here, is infinitely continuously differentiable as a function of

θ. The existence of this model has implications for statistical model comparison, and shows that

great care must be taken in machine learning efforts to discover equations from data [5–7] since

some simple models can fit any data set arbitrarily well.

We will consider the simple setting of a “scatter plot” of x-values at natural numbers

0, 1, 2, 3, . . . , n and y-values in (0, 1). We show how to construct an elementary function fθ that,

as θ varies, may fit any collection of ordered pairs {(xi, yj)}nj=0 to an arbitrary precision ε > 0.

The existence of a solution for x = 0, 1, 2, . . . , n implies the existence of solution for any subset of

these integers. The general approach taken here will be to first find an initial condition of a chaotic

dynamical system whose orbit comes close to values related to each yj . Then, an exact solution
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of this dynamical system yields an equation y = fθ(x) that, as x varies, recovers the system’s

dynamics with initial condition θ. This approach is related to attempts to encode computations

into chaotic dynamical systems [8, 9]. The techniques deployed here are not novel mathematically,

but this lesson from dynamical systems theory has not been explicitly articulated in the literature

on statistics and model comparison.

We will make use of the logistic map m(z) = 4z(1− z) whose iterated application can be solved

exactly [10] for a given initial value θ as

mk(θ) = sin2
[
2k arcsin

√
θ
]
. (1)

This solution follows from the double angle identity,

m(sin2(z)) = 4 sin2(z)(1− sin2(z))

= 4 sin2(z) cos2(z)

= sin(2z)2

(2)

and the requirement that m0(θ) = θ. The map m is chaotic [11] and it is well-established that m

may be viewed as a shift map on θ through its conjugacy via ϕ(z) = sin2(2πz) to the Bernoulli

map,

S(z) =


2z if 0 < x <

1

2

2z − 1 if
1

2
≤ x < 1.

(3)

S has the effect of removing the first bit of a binary expansion 0.z1z2z3 · · · of z, so that

S(0.z1z2z3 · · · ) = 0.z2z3 · · · . (4)

This property of S means that we may construct a point ω ∈ (0, 1) whose orbit under S will bring

it arbitrarily close to each member of any collection of points. Specifically, let us fix ε > 0 and

choose r ∈ N so that 2−r < ε/2. We will define y′j = ϕ−1(yj) and denote the binary expansion

of y′j as 0.y′j1y
′
j2y
′
j3 · · · . Define the parameter value ω ∈ (0, 1) by concatenating the first r binary

digits of each y′j ,

ω = 0.y′11y
′
12 · · · y′1ry′21y′22 · · · y′2r · · · y′n1y′n2 · · · y′nr. (5)

Due to the construction of ω and the ability to interpret S as removing the leftmost bit, Srj(ω)

agrees with y′j on its first r bits, so,

|Srj(ω)− y′j | < 2−r < ε/2 for all j = 0, 1, 2, . . . , n. (6)
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The ability to construct such an orbit relies ultimately on the fact that S is continuous and

topologically mixing. Since ϕ is a homeomorphism between S and m, Srj = ϕ−1 ◦ mrj ◦ ϕ.

Moreover, ϕ is Lipschitz continuous and in particular 2 |x− y| > |ϕ(x)− ϕ(y)| for all x, y ∈ (0, 1).

Putting these two facts together with (6) yields that for all j,

ε > 2 |Srj(ω)− y′j | = 2 |ϕ−1(mrj(ϕ(ω))))− ϕ−1(yj)| > |mrj(ϕ(ω))))− yj |, (7)

where the last inequality follows the Lipschitz condition and application of ϕ to each term inside

the absolute value. This presentation has elided one technical factor, which is that ϕ is not one-to-

one on (0, 1) and so ϕ−1 has two possible values. This has the consequence that in (7), mrj(ϕ(ω))))

may be close to either yj or 1 − yj , since ϕ is symmetrical about 1/2. To address this, we may

always use the lower value for ϕ−1 and scale the yj so that they are always below 0.5. This scaling

may then be inverted in the output of the final equation if desired.

Equation (7) shows that mrj will come ε close to each of the yj when started on value θ = ϕ(ω).

Thus, we may define a single parameter equation,

fθ(x) = mrx(θ) = sin2
[
2rx arcsin

√
θ
]

(8)

where choosing θ = ϕ(ω) yields that |fθ(xj)−yj | < ε for all j. Of course, the yj were freely chosen,

showing that fθ can approximate any data set {(xj , yj)}nj=0 as θ varies in [0, 1]. Note that for a fixed

ε, the number of data points n that can be fit is not bounded. In addition, this fθ is continuous

and differentiable for fixed r—indeed infinitely continuously differentiable—and so it will satisfy

nearly all regularity conditions that would normally weed out such pathological functions in the

context of parameter estimation.

To illustrate that (8) can fit an arbitrary data set as θ varies, Figure 1 shows the value

fθ(0), fθ(1), fθ(2), . . . , for two values of θ. Each parameter value was created by following the

construction above using target yj chosen at each x value from the black pixels of a line drawing

of either an elephant (left) or signature (right). The implementation used the arbitrary precision

library mpmath in python [12]. Both are able to be fit well by fθ(x) if θ is appropriately tuned.

This single parameter model provides a large improvement over the prior state of the art in fitting

an elephant [13, 14]. Note that the only shown x values are integers, and between these integers

are the rapidly oscillating sin patterns implied by (8).

The equation fθ(x) is extraordinarily sensitive to its single parameter θ and in fact will generalize

to x > n in ways that depend only on the digits of θ are after the last digit of y′n. Thus, while fitting

the data, generalization behavior is completely determined by the free parameter’s less significant
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FIG. 1: A scatter plot of fθ for θ = 0.2446847266734745458227540656 · · · plotted at integer x values,

showing that a single parameter can fit an elephant (left). The same model run with parameter θ =

0.0024265418055000401935387620 · · · showing a fit of a scatter plot to Joan Miró’s signature (right). Both

use r = 8 and require hundreds to thousands of digits of precision in θ.

digits. This implies that there can be no guarantees about the performance of fθ in extrapolation,

despite its good fit. Thus, the construction shows that even a single parameter can overfit the data,

and therefore it is not always preferable to use a model with fewer parameters. This fact is related

to the observation, in a setting of classification, that f(x) = sin(x) has an infinite VC-dimension

[15].

The existence of such a simple equation with such freedom in behavior illustrates a more basic

problem that model complexity cannot be determined by counting parameters. More generally,

uncritical use of a “parameter counting” approach ignores the fact that a single real-valued param-

eter potentially contains an unboundedly large amount of information since a real number requires

an infinite number of bits to specify. Indeed, the set of real numbers that can even be described

with finitely many bits (e.g. by a Turing machine) is countable and thus has measure zero. Given

the existence of injective maps between Rn and R [16], the number of parameters in a model cannot

be a meaningful measure of its complexity once the class of models is large enough to implement

these maps and effectively decode one single number into many. However, such embeddings are

not continuous nor likely constructible as an ordinary looking equation that a scientist is likely to

encounter.

The example provided in this paper shows that the infinite amount of information in a real valued

parameter can be decoded quite simply, using just sin and exponentiation. The existence of such a

simple yet problematic equation implies that attempts both at broad model comparison and auto-

matic discovery of equations from data may often be ill-posed. Quantitatively, parameter-counting

methods should be dispreferred relative to model comparisons based on measures that incorporate
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the precision required of real-valued parameters, including Minimum Description Length [17]. The

result also emphasizes the importance of constraints on scientific theories that are enforced inde-

pendently from the measured data set, with a focus on careful a priori consideration of the class

of models that should be compared [4].



6

[1] F. Dyson, “A meeting with Enrico Fermi,” Nature, vol. 427, no. 6972, p. 297, 2004.

[2] H. Akaike, “A new look at the statistical model identification,” Automatic Control, IEEE Transactions

on, vol. 19, no. 6, pp. 716–723, 1974.

[3] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics, vol. 6, no. 2, pp. 461–464,

1978.

[4] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: A Practical

Information-Theoretic Approach. Springer, 2003.

[5] P. Langley, G. L. Bradshaw, and H. A. Simon, “BACON.5: The discovery of conservation laws,” in

IJCAI, vol. 81, pp. 121–126, 1981.

[6] J. Koza, Genetic programming: on the programming of computers by means of natural selection. Cam-

bridge, MA: MIT Press, 1992.

[7] M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental data,” Science, vol. 324,

no. 5923, pp. 81–85, 2009.

[8] S. Sinha and W. L. Ditto, “Dynamics based computation,” Physical Review Letters, vol. 81, no. 10,

p. 2156, 1998.

[9] T. Munakata, S. Sinha, and W. L. Ditto, “Chaos computing: implementation of fundamental logical

gates by chaotic elements,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and

Applications, vol. 49, no. 11, pp. 1629–1633, 2002.
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