Nepal Human Development Report 2014

Beyond Geography

Unlocking Human Potential

Nepal Human Development Report 2014

Beyond Geography

Unlocking Human Potential

Nepal Human Development Report 2014

Beyond Geography, Unlocking Human Potential

Copyright © 2014

Published by Government of Nepal National Planning Commission Singha Durbar, Kathmandu Tel: (+977)-014211136 Fax: (+977)-014211700 Email: npcs@npc.gov.np Web: www.npc.gov.np

United Nations Development Programme Post Office Box 107 Pulchowk Kathmandu, Nepal Tel: 977-1-5523200 Email: registry.np@undp.org Website: http://www.np.undp.org

All rights reserved. No parts of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission.

ISBN: 978-9937-8874-0-3

Design and Processed: Print Communication Pvt. Ltd. Thapathali, Kathmandu, Nepal

Cover photo: Chandra Shekhar Karki

Printed in Nepal

Team for the Preparation of

Nepal Human Development Report 2014

Team of Authors

Pitamber Sharma – Team Leader Basudeb Guha-Khasnobis Dilli Raj Khanal

Researchers

Prakash Shrestha Pawan Kanel

Statistical Assistants

Tika Gautam Anwesha Aditya

Edito

Gretchen Luchsinger

Peer Reviewers

Kul Chandra Gautam, Pushkar Bajracharya, Posh Raj Panday, Bina Pradhan, Bhuwan Bajra Bajracharya, Madan Pariyar, Hari Pradhan, Stella Tamang, Rajendra Dev Acharya, Akhilesh Upadhyay and Tula Narayan Shah

Reviewers from HDRO, RBAP and IC4HD

Thangavel Palanivel, Bishwa Nath Tiwari, Scott Standley and Tasneem Mirza, Elena Borsatti, Meenakshi Kathel, Meenaz Munshi and Jonathan Hall

STEERING COMMITTEE

- Janak Raj Shah, Former Hon'ble Member, National Planning Commission – Chairperson
- Yuba Raj Bhusal*, Former Member Secretary, National Planning Commission – Member
- Pushpa Lal Shakya, Joint Secretary, National Planning Commission Secretariat- Member
- Baikuntha Aryal, Joint Secretary, Ministry of Finance Member
- Hari Lamsal, Joint Secretary, Ministry of Education Member
- Narayan Gopal Malego*, then Joint Secretary, Ministry of Physical Planning and Works - Member
- Padam Chand, Joint Secretary, Ministry of Health and Population - Member
- Hari Poudel, Joint Secretary, Ministry of Women, Children and Social Welfare - Member
- Suman Aryal, Deputy Director General, Central Bureau of Statistics - Member
- Rajiv Pokhrel, Under Secretary, Ministry of Health and Population – Member
- Bhagwat Khanal, Under Secretary, Ministry of Physical Planning, Infrastructure and Transport - Member
- Sharmila Karki, President, NGO Federation Member
- Netra Prasad Timsina, Former President, NGO Federation
 Member
- Ashutosh Tiwari, Association of INGOs Member
- Prakash Giri, Federation of Nepalese Chamber of Commerce and Industry (FNCCI) - Member
- Ram B. BK, National Dalit Commission Member
- Shoko Noda, Country Director, UNDP Member
- Rabi Shanker Sainju, Programme Director, National Planning Commission Secretariat- Member Secretary

^{*} Yuba Raj Bhusal is currently Secretary, Ministry of Finance.

^{*} Narayan Gopal Malego is currently Secretary, Ministry of Commerce and Supplies.

Message

t is my pleasure to note that the Nepal Human Development Report 2014 has come out with unique features - a different theme, useful data sets and innovations in methodologies and analysis. Indeed, the Report is a huge intellectual contribution to the development debate of Nepal.

This Report focuses on the productive abilities of the regions, households and individuals. The report also reinforces the fact that there are inequalities between and within regions, as well as social groups. It reveals that there is ethnic dimension to the geographic disparity. It also points out human development does not only depend upon access to facilities and productive abilities but also on the opportunities available.

report rightly recommends strengthening inclusive growth and looking into innovation in development models for problems that defy general economics. Inclusive Growth and innovation in development models are important at this time, as Nepal tries to move out of a long drawn out political transition and its commitment to graduating from Least Developed Country to a Developing Country status by 2022.

While Nepal has already met Economic Vulnerability Index necessary for graduation and about to meet the Human Asset Index, we are far behind in meeting the criteria for Gross National Income. To meet the projected GNI per capita - US\$2,094 - Nepal needs to invest to the tune of 16.7 trillion rupees in terms of the current prices between 2013/14 and 2021/22.

Given the fast pace with which the economy needs to grow - 8% annually - for graduation from a least developed country, Nepal needs to invest in areas that are growing fast like the services sector. And given the inequality, as portrayed by this Human Development Report and the reports published earlier, the state has to focus on agriculture, infrastructure, education, health and the social sector to decrease inequality.

For that Nepal will have to focus on leading sectors like hydro-power, industries, tourism, agriculture and services and make use of economic growth centers identified in this report to spur the growth that the country needs. It further needs to increase the productivity of the population with a focus on health, education and gainful employment of the youth population.

Prof. Dr. Govind Raj Pokharel

Vice-chairperson

Mouhand

National Planning Commission

Foreword

The productive abilities of citizens are the real assets of a country. With right skill sets, even countries without significant natural endowment succeed to attain high level of development and prosperity. Nepal Human Development Report 2014 'Beyond Geography, Unlocking Human Potential,' traverses a field that has not been fully explored before, namely, variation in productive abilities of different regions, households and individuals. For the first time in almost a decade, the report also provides a wealth of data and information on human development at the district level based on the 2011 population Census and other relevant surveys. The Report comes at a time when the country is making efforts to move out of an extended political transition and has envisioned graduating from a least developed to a developing country by 2022.

The Report presents rigorous statistical analysis across space and time, using the available national data. The large statistical database created in the process, can be used by the Government and other development

stakeholders to formulate policies and judicious budget allocations to sectors, regions, districts and socio-economic groups. The Report shows that the pattern of regional inequalities in human development as well as productive abilities remains entrenched, but there are indications that the gaps may be narrowing. To reduce the inequalities further, the rate of economic growth has to be enhanced without compromising the essential quality of equality and equity. The Report suggests that fusing of the two dimensions may be relevant in setting a federal development agenda that facilitates a multi-pronged approach to raising productive ability which can ensure sustainable human development.

A report of this nature is always a team effort. We would like to thank the team leader, authors and researchers, the National Planning Commission Secretariat and the United Nations Development Programme staff, as well as the members of the Steering Committee, peer reviewers, both national and international, and many others who in various ways contributed in the preparation of the Report.

Dr. Som Lal Subedi

Member-Secretary

National Planning Commission

Government of Nepal

Jamie McGoldrick

JE, WGD

UN Resident Coordinator

Acknowledgements

√he Nepal Human Development Report 2014 is a joint effort of the National Planning Commission and UNDP. However, the findings, analysis and policy recommendations of the Report are those of the authors alone.

In line with UNDP Corporate Policy on national human development reports, the preparation of the Nepal Human Development Report 2014 started after the formation of a NHDR Steering Committee in May 2012 followed by a National Stakeholder Workshop on 22 June 2012 that determined the theme of the report. We are thankful to the leadership of Janak Raj Shah, former member of the National Planning Commission, who chaired the meeting.

Based on feedback and inputs received in the workshop, Basudeb Guha-Khasnobis, Senior Economist, UNDP Nepal, prepared a concept note on assessing Nepal's productive ability and its impact on human development. The concept note was approved by the Steering Committee in November 2012. The Steering Committee also identified a team of authors led by Pitamber Sharma, with Basudeb Guha-Khasnobis and Dilli Raj Khanal as members. The authors were supported by researchers Prakash Shrestha and Pawan Kanel and statistical assistants Tika Gautam and Anwesha Aditya. The team worked in close consultation with the National Planning Commission and UNDP throughout 2013. We would like to acknowledge the intellectual contribution and perseverance of the entire team.

The analysis presented in the report would not have been possible without the support provided by the Central Bureau of Statistics. Grateful acknowledgements are due to Deputy Director Generals Suman Aryal and Rudra Suwal, and Director Ishwori Prasad Bhandari of the Central Bureau of Statistics.

The team presented the preliminary draft to the Steering Committee meeting on 12 December 2013 for their guidance and inputs. The initial draft was revised based on the inputs of the Steering Committee members. Also, in order to ensure effective participation of various stakeholders and national ownership in finalizing the report, four consultations were organized with 1) representatives of various government ministries and departments, 2) political parties, 3) civil society and the private sector, and 4) development partners on 24-25 February 2014. We thank all the participants of the stakeholder consultations for their valuable feedback.

In parallel, the report went through a peer review process. In addition to 11 national peer reviewers, the UNDP Human Development Report office, the UNDP Regional Bureau for Asia and the Pacific, and the International Centre for Human Development provided valuable feedback. The written comments received from the peer reviewers and comments from stakeholder consultation were incorporated into the report, and the final document was edited by Gretchen Luchsinger.

The report would not have been possible without the continuous support and guidance from the National Planning Commission, particularly Secretary Yubaraj Bhusal and Joint Secretary and National Project Director, Strengthening National Planning and Monitoring Capacity of NPC project, Pushpa Lal Shakya. Joint Secretaries Teertha Raj Dhakal and Gopi Nath Mainali also contributed to finalizing the Report. Moreover, Rabi Shanker Sainju, Programme Director of NPCS also contributed to initiate the work. The support and follow-up of UNDP Country Director Shoko Noda, Assistant Country Director Heema Khadka, Programme Analyst Dharma Swarnakar; and Communication Analysts John Narayan Parajuli and Tapa Dipti Sitaula from UNDP Nepal was equally invaluable. We also extend our appreciation to Narayan Raj Maharjan, GIS Analyst from the UN Resident Coordinator's Office for producing the necessary maps.

Our thanks also go to the staff of UNDP-funded Strengthening National Planning and Monitoring Capacity project of the National Planning Commission, especially National Project Manager Gyanendra Kumar Shrestha and Communications and Documentation Officer Arjun Bahadur Kumal, who supported the entire process. Our thanks are also due to Hari Marasini of Print Communication who took the responsibility of designing and printing the report.

Contents

Foreword	vii
Message	viii
Acknowledgements	ix
Overview	1
CHAPTER 1	
Enhancing Productive Abilities of People and Regions	5
Capability, inclusive growth and a productive economy	6
Report objectives	7
The regional framework	7
Salient features of the analysis	8
CHAPTER 2	
Progress in Human Development	11
Measuring human development	11
Comparing South Asian nations on the HDI	12
Regional HDI values for 2011	12
2011 HDI values for the nine eco-development regions	13
HDI values by district for 2011	14
HDI values by caste and ethnicity	17
Gender and human development	18
The human poverty index	21
HPI values over time	24
CHAPTER 3	
Regional Access to Facilities and Household Well-being Indexes	27
Individual ability index	28
Household well-being index	28
Regional access to facilities index	29
Measurement issues	29
Calculating the regional access to facilities index	29
Calculating the household well-being index	31
Caste and ethnicity	35
Concluding remarks	35
CHAPTER 4	
Labour and Total Factor Productivity	39
Labour productivity at the district level	39
Labour productivity in the nine eco-development regions	41
Some findings on total factor productivity and manufacturing	43
Industry dynamics of total factor productivity	46
Conclusions	50

CHAPTER 5

You	th Pr	oductive Ability and Employment Status	53
		ability and actual employment	55
		ork and productive ability	
Cast	e and o	ethnicity	59
Prod	uctive	abilities across the nine eco-development regions	62
Conc	luding	remarks	62
CHA	PTER	8.6	
Con	clusi	ions and Recommendations	65
Huma	an dev	elopment: trends and implications	66
Labo	ur and	total factor productivity: trends and implications	67
Trend	ls in th	ne regional access to facilities, household well-being and individual ability indexes	67
Polic	y impli	cations and key messages	69
Rihl	ioars	aphy	75
JIIJI	iogra	apriy	73
ANN	EXES	3	
Anne	x 1:	Data Sources and GNI Calculations	81
Anne		Technical Notes on Calculating the HDI and Related Indexes	84
Anne	x 3:	Caste and Ethnicity Classification	
Anne	x 4:	Values of the HDI and Related Indexes	
Anne	x 5:	Per Capita Gross National Income	99
Anne	x 6:	Construction of the Principal Component Analysis based indexes	
Anne	x 7:	Percentage of Households by the Nine Eco-development Regions and Deciles	
Anne	x 8:	Labour Productivity by Districts and Regions	
Anne	x 9:	Nepal Standard Industrial Classification Codes	
Anne	x 10:	Number of Firms by Nepal Standard Industrial Classification Codes and the Nine Eco-development Regions	
Anne	x 11:	Numbers of People Employed in Different Industries and by Region	116
Anne	x 12:	Technical Note on the Total Factor Productivity Methodology	117
Anne	x 13:	Total Factor Productivity Index (Log) of Different Industrial Types by Regions and Over Time	119
Anne	x 14:	Average Total Factor Productivity by Industry and Eco-development Region Over Time	121
Anne	x 15:	Regional Composition of Ability Deciles	- 124
Anne	x 16:	Employment by Sector	- 125
FIGI	IRES		
2.1		trends for SAARC countries, 2005-2011	
2.2	-	onal HDI values based on the old and new methodologies, 2011	
2.3		values for the nine eco-development regions, 2011	
2.4		values by major caste and ethnic groups, 2011	
2.5	-	parative GDI values for ecological and development regions over time, 2001, 2006 and 2011	
2.6		parative GEM values over time, 2001, 2006 and 2011	
2.7		scores across areas and regions, 2001 and 2011	
2.8		scores across the 15 eco-development regions, 2001 and 2011	
3.1	-	between deciles, percentages	
3.2		in the average household well-being index between the Kathmandu Valley and other eco-development regions, 1995, 2004 and 2011	
4.1		ict labour productivity ict labour productivity relative to Kathmandu	
4.2	DIST	ICL IADOUL DIOUUCLIVILY TEIALIYE LO NALIIIIAIIUU	4U

4.3	Histogram of the district labour productivity index	41
4.4	Labour productivity of different sectors	41
4.5	Regional and sector labour productivity	42
4.6	Region and sector labour productivity relative to the national average	42
4.7	Regional spatial distribution of labour productivity	43
4.8	Labour productivity and the HDI by district	43
4.9	Labour productivity and the HDI by region	44
4.10	Labour productivity and poverty levels in 75 districts	44
4.11	Average aggregate total factor productivity in nine eco-development regions	47
4.12	Total factor productivity and the HDI in the nine eco-development regions	47
4.13	Dynamics of the average total factor productivity of different industries	48
5.1	Distribution of ability in households based on caste and ethnicity, per decile, 1995-2011	60
5.2	Average individual productive ability of regions relative to the Kathmandu Valley	62
MAP	os en la companya de	
2.1	HDI values across the 15 eco-development regions, 2011	13
2.2	HDI values for the nine eco-development regions, 2011	14
2.3	HDI values across districts, 2011	15
2.4	HDI values across the 15 eco-development regions, 2001, 2006 and 2011	16
2.5	HPI values across the 15 eco-development regions, 2011	21
2.6	HPI values across nine eco-development regions, 2011	
2.7	HPI values across districts, 2011	23
2.8	HPI values across 15 eco-development regions, Nepal 2001, 2006 and 2011	24
TABI	LES	
2.1	Districts categorized by HDI values, 2011	15
2.2	Districts with the highest and lowest HDI scores, 2001 and 2011	16
2.3	Districts with the highest positional changes in HDI status	17
2.4	Poverty incidence by caste and ethnicity, 2011	
2.5	Percentage shortfall of GDI over HDI scores by region, 2001, 2006 and 2011	
2.6	Districts categorized by HPI values, 2011	20
2.7	Districts with the highest and lowest HPI values, 2001 and 2011	21
3.1	Access to facilities scores	29
3.2	Access index of the nine eco-development regions	30
3.3	Scoring drinking water sources in regions	
3.4	Deciles of the household well-being index	
3.5	A gradual increase in urban residents	
3.6	The number of female-headed households is growing	
3.7	Mean household well-being index values and ranks of the nine eco-development regions	
5.1	Male-female productive ability	
5.2	Gender composition of deciles, 1995	
5.3	Gender composition of deciles, 2003	
5.4	Gender composition of deciles, 2011	
5.5	Distribution of rural and urban populations, 1995	
5.6	Distribution of rural and urban populations, 2003	
5.7	Distribution of rural and urban populations, 2011	
5.8	Mean hours spent in various sectors of employment by rural and urban areas, and gender, 1995	
5.9	Mean hours spent in various sectors of employment by rural and urban areas, and gender, 2003	
5.10	Mean hours spent in various sectors of employment by rural and urban areas, and gender, 2011	
5.11	Mean hours spent in various sector of employment by rural and urban areas, and gender, 2003	
6.1	Comparing the human development and productive ability indexes by the nine eco-development regions, 2011	68

Overview

Nepal's 2014 Human Development Report assesses productive abilities at different interrelated levels by using the available national data. It indicates the trends in spatial inequalities and outlines the prospects of unlocking the human potential and achieving high-quality inclusive growth.

epal Human Development Report 2014 comes at a time when the country is making efforts to move out of an extended political transition and has resolved to accelerate its graduation from a least developed to a developing country by 2022. The importance of inclusive growth and human development to sustain peace, achieved after a long conflict, has been deeply ingrained among all stakeholders. The agenda for the years to come is high-quality growth and equitable development in its broadest sense.

The criteria for graduating from the least developed country category include achievements in per capita gross national income (GNI), the Human Assets Index and the Economic Vulnerability Index.¹ Increasing the growth rate from the current level of below 4 percent is indispensable, without compromising the essential quality of inclusiveness. At the same time, Nepal needs to maintain recent gains on some of the sub-indicators for the human assets and economic vulnerability indexes, and address shortfalls on some others.

With this background, the central theme for the present Nepal Human Development Report—the spatial dimensions of productive abilities—was developed jointly with the National Planning Commission and other relevant stakeholders. The report aims to assess productive abilities at different, interrelated levels. The measures of abilities developed in this report suggest how much capacity the Government has to accomplish high and inclusive growth in the coming years and indicate the extent to which current

capabilities are being translated into measur-

The report presents a rigorous statistical analysis across space and time, using the available national data. Since there is currently no single, universally accepted definition or measure of productive ability, the report asserts that this can be reflected, directly or indirectly, by a number of indicators. The large statistical database created in the process, it is hoped, may be used by the Government and other development stakeholders to target policies and rationalize budget allocations to sectors, regions, districts and socio-economic groups.

Structure of the report

The report is organized in six chapters. Chapter 1 introduces it in the context of previous Nepal Human Development Reports and defines, for analytical purposes, nine eco-development regions, instead of the 15 conventional ones.

Chapter 2 presents the standard human development indexes at the district level, for the first time in a decade; at the regional level; and, data permitting, at the level of various social groups. The indexes include the wellknown Human Development Index (HDI) and its variations including caste/ethnic and gender dimensions, as devised by the global Human Development Report. All of these emphasize looking beyond income as an indicator of development. Their values reflect the effects of past policies in strengthening human

capital, which is expected to contribute positively to any indicator of productive ability. The overall picture that emerges is that HDI values are improving, but inequalities among regions and social groups remain mostly intact, although there are signs that some of these may be narrowing. The analysis also points to specific caste, ethnic and geographic dimensions of persisting inequalities.

Chapter 3 features an innovation in measuring potential productive ability. The HDI and related indexes are essentially based on individuals. While important in their own right, these measures can be complemented by plausible indicators of productive ability that treat regions and households as units. The chapter constructs a regional access to facilities index for each of the nine eco-development regions and analyses trends over the past two decades. The index is essentially a composite measure of the ease with which households can access certain facilities that are covered by Nepal Living Standards Survey and are critical for well-being. From a policy perspective, the index may be used to guide resource allocations for infrastructure to make Nepal's diverse regions more comparable in the pursuit of inclusive growth and development.

The chapter also constructs a household well-being index for all households covered by successive survey rounds. This index is based on all information in the surveys that reflects, directly or indirectly, the overall socio-economic well-being of a household. The index is analysed along a number of dimensions, including regional, rural and urban, male- and female-headed households, and so on. Additionally, it is classified according to caste and ethnicity. It helps make the basic argument that an individual's productive ability is significantly affected by the well-being of the household s/he comes from. Improving household well-being through appropriate policies, therefore, indirectly improves the nation's productive ability.

To achieve high and inclusive growth the mismatch between indicators of human development and productive ability has

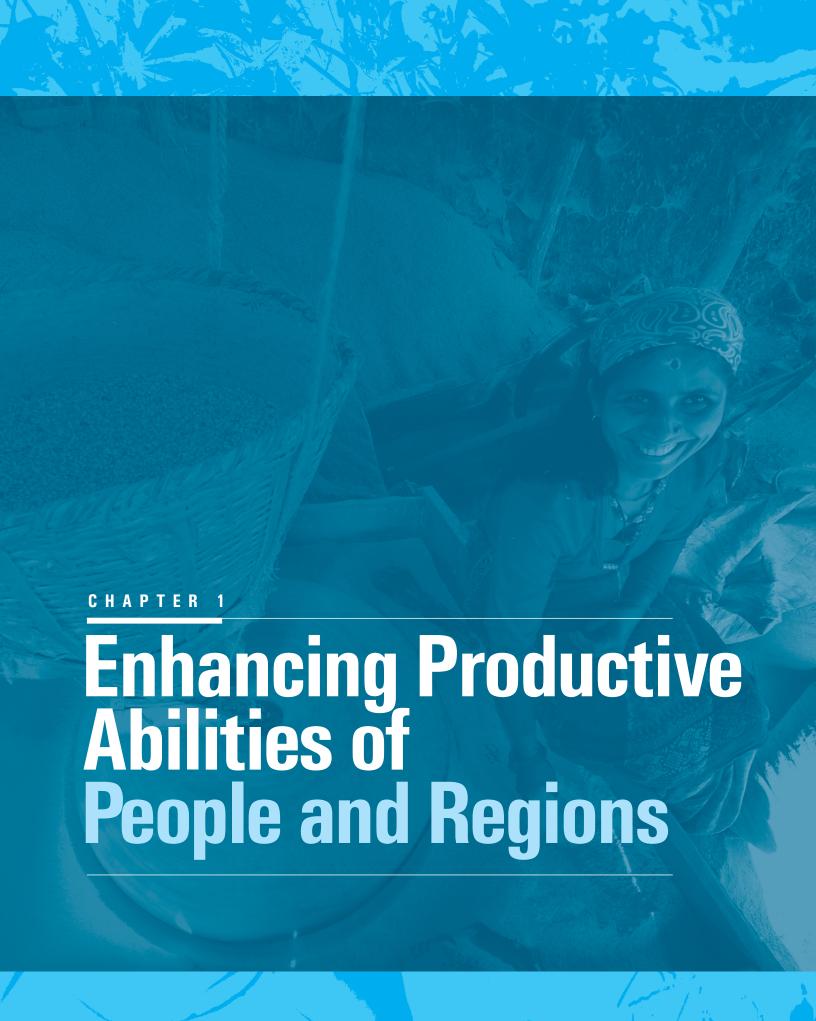
The report shows that there has been no change in the ranking of regions by the regional and household indexes over time; lagging regions continue to lag. While inequalities among different social groups remain, these inequalities may be narrowing, however.

Chapter 4 estimates sectoral labour productivity as well as total factor productivity of the manufacturing sector at the regional and industry levels, on the basis of available Census and survey information. These two well-known measures of actual productivity provide a broad picture of the level of and inequalities in productivity at regional levels, and indicate the context within which individual and household productive abilities need to be appreciated. Analysis of these measures could guide policy choices, since they identify sectors and regions where productivity is already high, and that in principle may serve as engines and epicentres of growth. The report also identifies exceptional regions with a mismatch between indicators of human development and productive ability, mainly in the Eastern and Central Tarai. Rectification of the mismatch is needed in order to achieve high and inclusive development.

Chapter 5 constructs a youth ability index at the individual level for the population group aged 15-39, based on all three Nepal Living Standards Surveys. It examines trends along many relevant dimensions, with an information set much larger than that used by the HDI and related indexes. The youth ability index includes the personal characteristics of individuals, such as health, education and possible indicators of psychological well-being, albeit limited by data, and the status of the household s/he comes from. Household capital, proxied by the well-being index calculated in Chapter 3, is included as a determinant of the potential productivity of an individual. Statistical analysis reveals a high degree of inconsistency between the potential productive ability of youth, and the type and hours of work they seem to be performing. To reap the demographic dividend² of a young population, this ought to be addressed quickly.

Chapter 6 presents major conclusions and policy recommendations emanating from the analysis. It calls for pursuing policies to accelerate the narrowing of regional inequalities in human development as well as productive abilities. It urges focusing on lagging regions, expanding the reach of inclusive policies, prioritizing urban management and rural-urban linkages, and preparing for opportunities presented by the demographic dividend.

Major findings


By focusing on spatial inequalities in human development and the productive abilities of people, this report presents a picture that is both sobering and encouraging. The status quo of gaps in regional human development and productive abilities persists, but inequalities seem to be narrowing. This indicates the need to maintain, but with renewed vigour, the path of inclusive growth and development, encompassing all regions as well as socio-economic groups that have been left behind. The pace of economic growth needs to accelerate, and be accompanied by large-scale employment generation and enhanced productivity in sectors such as high-value agricultural niches, industry and infrastructure development. These efforts should in part be oriented towards harnessing the tremendous vibrancy and energy of a growing population of young people.

Innovative statistical analysis combining the spatial and ethnic dimensions of productive ability makes the critical point that ethnicity, on which the current political discourse is primarily focused, has a spatial dimension. The report suggests that a fusing of the two dimensions may be relevant in setting a federal development agenda focused on a multi-pronged approach to raising productive ability and accelerating human development.

The pace of economic growth needs to accelerate and be accompanied by large scale employment generation and enhanced productivity.

¹ The former is based on two education and two health indicators; the latter on eight indicators of different sectors related to the structural aspects of the economy.

² The demographic dividend generally refers to the process of accelerated economic growth that accompanies changes in the age structure of a country's population as it moves from high to low birth and death rates, resulting in fewer young and older people relative to the working-age population.

1.

Enhancing Productive Abilities of People and Regions

The route to poverty alleviation and human development involves building up basic capabilities and enhancing the productive abilities of people. Inclusivity is best anchored in fair and comparable distribution of productive abilities.

Human Development Report in 1990, the concept of human development has provided the most compassionate yardstick to assess people's progress. The idea that development has no meaning except with reference to the human being and the sum total of who s/he is, and what s/he is capable of, has been profoundly challenging to notions of development based solely on incomes and economic growth.

The distinctiveness of human development is the focus on people's well-being, through the expansion of human capabilities and choices to live full, creative lives with freedom and dignity. Capabilities or potential abilities to achieve valuable functionings define the life of an individual, or collectively a community or nation. This perception has opened new vistas in assessing development and exploring pathways for progress. The human development perspective provides a basis for development priorities that include principles such as equality and sustainability, and the pursuit of better health, education, information, security, quality of life, governance, political and social freedoms, participation and inclusion, and so on for every citizen, not just the majority.

Successive Nepal Human Development Reports have assessed the status of human development at national, regional and district levels, while focusing on specific themes of contemporary relevance. The first report in 1998 was grounded in a political economy perspective, and preceded from an analysis of basic development structures and processes, including aspects of natural and human resources, economy, polity and culture. It recommended a series of actions to reorient society, polity, the economy and public finances that were seen as imperative to human development. The 2001 report considered poverty reduction and governance, with persistent poverty seen as a direct result of weak governance institutions and ineffective implementation of programmes and policies. The report recommended reforms in administrative and fiscal decentralization, and called for enhancing local governance, encouraging local government and NGO partnerships, and promoting the empowerment of marginalized groups.

The 2004 Report examined poverty reduction from an empowerment perspective, emphasizing equal opportunities for all. It advocated building empowerment on three pillars: people-responsive state institutions, removal of social barriers and discrimination, and stronger local organizational capacity and social capital. For the 2009 Report, on state transformation and human development, persistent inequality in human development was identified as both the cause and effect of exclusion. Different options were explored in restructuring the state and reforming the political system to accommodate the interests of different groups. A 10-point agenda proposed federalism to foster social justice, inclusion and participation that would result in lasting peace and human development.

Capability, inclusive growth and a productive economy

All of Nepal's Human Development Reports have highlighted the persistence of inequality and poverty, and advocated policy and institutional initiatives to promote inclusion and empowerment. These issues resonate strongly in Nepal. From a capability perspective, poverty is a basic "capability failure" in achieving "certain crucially important functionings up to a certain minimally adequate level" (Sen 1993, p. 4). The route to poverty alleviation involves building up basic capabilities through the addition and/or enhancement of crucially important functionings.

There is no consensus on what basic capabilities are, or should be, however, and whether or not, given human diversity and associated value judgments, such a list, if drawn, can be universally accepted. While discourse on this approach is relatively rich at the conceptual and philosophical levels, operational guidance remains limited. A critical constraint in producing an empirical measure is that household surveys are not typically designed to capture the required broader information set.

Similarly, the concepts of inclusive growth and inclusive development do not have universally accepted operational measures. If one were to emerge, it would have to comprise a sense of the distribution of well-being, reduction in inequality and poverty, and the availability and distribution of opportunities.

In general, inclusion, or the lack of it, factors into the process through which growth or development happens. Inclusive growth is seen as reducing disadvantages, expanding opportunities and discouraging exclusion, and is non-discriminatory. Inclusive development subsumes non-income dimensions of well-being, and includes distribution not only across individuals, but also across groups differentiated by gender, ethnicity, regional location, and so on. The hallmarks of inclusive growth are wider participation and benefit sharing, and the breaking of discriminatory barriers to create a more level playing field. Openness, transparency, proportional representa-

tion and recognition, just and equal distribution, and redistribution of opportunities and achievements are conditions fostering inclusive development.

Enhanced functionings and abilities of individuals and groups in general, and of the more disadvantaged and marginalized populations as well as regions1 in particular, are the building blocks of a more inclusive, participatory society. For countries like Nepal, where provision of productive employment opportunities is a major challenge, inclusive development also needs to be broadly based across economic sectors, and involve a large part of the country's labour force, especially youth aged 15-39 years.² An indispensable requirement for targeted policy intervention is sufficiently disaggregated evidence on productive abilities reflected in the socio-economic status of households and individuals, as well as the development status of regions. This requires an assessment of ground conditions related to these measures.

For poverty reduction, inclusive growth and development to be economically and politically sustainable, Nepal cannot rely only upon foreign aid, remittances, or other redistributive and transfer measures. Inclusivity is best anchored in fair and comparable distribution of productive capabilities where human beings, the "ultimate resource," show their ingenuity and productivity. Inclusive growth achieved in this way is rooted in the productive economy, and therefore likely to be self-sustaining.

This direction is particularly important for Nepal, given the many limits on the potential for transfer mechanisms, including administrative and governance bottlenecks, and the significant number of economic activities remaining outside the market system. Further, Nepal is presently in the midst of a political transition. In spite of the differing ideological positions of political parties, the emerging consensus seems to be that while the role of the state will remain crucial in areas such as education, health, infrastructure development and social security, market-based approaches can be effective in achieving and sustaining growth over

Inclusive growth rooted in the productive economy is likely to be selfsustaining. the long run. Where the scope of redistribution may be limited, the emphasis should be on affirmative action as a mechanism for enhancing the productive potential of disadvantaged groups.

Report objectives

Since the adoption of democracy in 1990, Nepal has pursued several strategies to address multidimensional human development, inclusivity and growth. The present political transition notwithstanding, the efforts of the Government, supported by development partners, have broadly been to accelerate aggregate growth through investments in social and physical infrastructure, and create enabling institutional mechanisms. Efforts are also ongoing to develop the rule of law and the democratic character of institutions at all levels. However, structural problems related to control over and access to resources remain largely unaddressed.

This report attempts to assess productive capability at the levels of regions, households and individuals, as determined by development efforts of the past two decades or so. Based on available data, the report creates a comprehensive information set, at suitably disaggregated levels, that could guide policy interventions towards inclusive growth and development in the coming years. The set is preliminary because it takes into account only certain indicative aspects of the production structure of Nepal. It does not explicitly account for regional resource endowments, except as these are reflected in factor productivity. In due course, richer data sets may be available to address the possible limitations of the measures used here.

One aspect of regional productive abilities is reflected in the status of labour and total factor productivity, discussed in chapter 4 of the report. The other aspect, regional development status, is indicative of access to social, economic and physical infrastructure, as detailed in chapter 3. Measures of the productive abilities of households and individuals

developed in chapters 3 and 5 are closer to the concepts of "well-being" and "ability" status commonly used in development economics. Broadly speaking, well-being involves many dimensions: education and occupation of family members and the welfare of the household as a measure of goods and services accessibility. Measures of well-being usually serve as an input to other analyses such as of inequality or poverty; tabulation of population characteristics by quintiles or deciles; or regressions that involve welfare as an explanatory or dependent variable, and aim at explaining, for example, household health status. In policy-oriented applications, these measures are also utilized to make decisions regarding the allocation of resources and programmes to benefit the poor.

The regional framework

The report focuses on spatial inequalities in productive abilities primarily at the regional level. With the adoption of the development region concept after its Fourth Plan (1970-1975), Nepal has, for analytical purposes, been divided into three east-west or latitudinal ecological regions (Mountains, Hills and Tarai), and five development regions (Eastern, Central, Western, Mid Western and Far Western) oriented from north to south. A combination of the two yields 15 eco-development regions. Districts, not village development committees, are the primary units for inclusion in the ecological and development regions, irrespective of the fact that a number of Mountain districts include areas with ecological attributes typical of the Hill region.

The idea behind the eco-development regions was that they would be regarded as having specific resource and spatio-economic attributes, with implications for subregional planning, resource mobilization and policy formulation. The experience of the past several decades indicates that while the eco-development regions have continued to be used as the framework for subregional data presen-

Measures of wellbeing serve as input to analysis of inequality and poverty. tation and analysis, the subregions themselves have been neither planning units nor units of policy analysis. The case of the Central Hills region elucidates the fallacy of this framework, as the indicators of the Kathmandu Valley simply overwhelm those for other districts. The concept of 15 eco-development regions has been redundant for all practical purposes of policy and programme formulation and assessment.

In this report, the 15 eco-development region framework is used for presenting human development data for the sake of comparison with the previous reports. To facilitate a more realistic analysis of human development, as well as other productivity-related indicators, including the Human Development Index (HDI), a nine eco-development region framework is also utilized. This basically treats the three Kathmandu Valley districts as one unit, and clubs together the Mountains, Hills and Tarai of the Eastern and Central eco-development regions, and the Mid Western and Far Western eco-development regions.

The nine regions, with the number of districts in parentheses, are: the Eastern and Central Mountains (6), the Eastern and Central Hills (14), the Eastern and Central Tarai (12), the Kathmandu Valley (3), the Western Hills (11), the Western Tarai (3), the Western, Mid Western and Far Western Mountains (10), the Mid Western and Far Western Hills (11), and the Mid Western and Far Western Tarai (5).

The nine-region framework was used to recognize the Eastern and Central Tarai, the Kathmandu Valley, and the Mid Western and Far Western Hills and Mountains as distinct regional entities by virtue of their location, human development and productive potential, as well as their socio-ethnic characteristics, and their status in Nepal's political economy. It also facilitates use of Nepal Living Standards Survey data, the basis of much of the forthcoming analysis, and does not deviate too much from the 15-region framework. The nine-region

breakdown serves only as an analytical device to portray spatial inequalities in Nepal.

While it would have been more desirable to include the Western Mountains as a separate region, this was not possible for the simple reason that each eco-development region needs to have enough data-points for survey information to be representative. With the Nepal Living Standards Survey data, the Western Mountains region has no data-points; it was therefore combined with the Mid Western and Far Western Mountain regions. Almost all districts in the Western, Mid Western and Far Western Mountain regions lie in the high Himalayas and the trans-Himalayan area. The Western Mountain districts of Manang and Mustang have a demographic and economic profile quite different from the Mid Western and Far Western Mountains by virtue of relatively small populations, higher levels of migration, remittance income and the impact of tourism. Wherever possible, data for the Mid Western and Far Western Mountains have been provided separately to account for this difference.

Salient features of the analysis

Several salient features of the Report's empirical analyses deserve attention upfront. First, the HDI and total factor productivity estimates compare the actual status of economic and development outcomes across the nine regions. These are cross-sectional estimates, and can be used only for comparisons at specific time periods on which the data are based.

Second, the regional, household and individual indexes are derived from principal component analysis and are embedded in the domain of "potential." For example, the regional access to facilities index shows how easy or difficult access is/was for households. It does not indicate whether or not or how often households use the facilities. Its purpose is to examine whether or not gaps in the develop-

The nine-region framework is used only as an analytical device to portray spatial inequalities. ment status of regions have narrowed or widened in the past 20 years, and which dominant facilities define development status.

Third, the household well-being index is based on the premise that multiple characteristics³ need to be factored into an assessment of the potential strength or resilience of a household. These characteristics are derived both from public investment, such as in access to facilities, and a whole range of private investments that the household undertakes over time. Examining trends over time and across groups gives a sense of how effective various endeavors by the Government have been in strengthening as well as equalizing household status.

High and comparable productive status is a prerequisite for eventual inclusive income or consumption growth. The household well-being index serves, in principle, two purposes: It reflects the impact of both government and household efforts in shaping the comparative well-being of households over time; and it is a key indicator of the possible contribution of the status of the household in expanding (or contracting) an individual member's potential. Putting it simply, two individuals with identical health, education and other personal characteristics often face different opportunity sets depending on the household they come from.

Fourth, most existing global measures of human development are designed under the binding constraint of having to use only those dimensions that have reliable data and are comparable across all countries. In a national context, it is possible to use a much larger information set relevant to the measurement of

development at various levels: regional, house-hold and individual. Another issue linked to the constraint of international comparability is that even within the limited set of indicators, weights are usually assigned in a predetermined manner. In this report, principal component analysis addresses these potential drawbacks by using every piece of information carefully collected by Nepal Living Standards Survey, and deriving optimal, not pre-determined, weights for each variable entering the construction of indexes.

Fifth, the three rounds of Nepal Living Standards Survey provide the only available data set for inter-temporal analysis. The surveys were not necessarily designed to fully address the questions asked in this report. Nevertheless, they provide a reasonable description of access to facilities by region and information on household indicators of well-being.

Finally, the index on the productive ability of individuals should not be viewed as a capability index, because the survey on which it was based was not designed to capture the conceptual details of this approach. The index goes beyond the personal characteristics of an individual and incorporates household status as an important determinant of a person's potential. Household status itself is a composite of a wide range of variables. At best, it is an instrument for or an indicator of how a person's opportunity set is determined. The logical connection between the access to facilities, household well-being and individual ability indexes is explained in chapter 3.

Nepal Living Standards Survey data set used for inter-temporal analysis provide a reasonable description of productive ability.

Given the extremely diverse topography of Nepal, with some remote and inaccessible areas, uniform development of various regions is critical for eventual inclusive growth.

According to Nepal's Youth Policy, people aged 16-40 are classified as youth. For this Report, we have used greater than 15 and less than or equal to 40 year olds as the working age group.

³ See annex 6, table A6.2.

2.

Progress in Human Development

The human development index values for all ecological and development regions have improved over time. Comparative improvements are also seen in gender development index and gender empowerment measures across regions. Overall, the human poverty situation has improved. However, the disparities among geographical regions and ethnic groups remain entrenched though there are indications that the gaps may be narrowing.

uman development in Nepal, at various disaggregated spatial and social group levels, has been reported in successive Nepal Human Development Reports since 1998. Slight methodological changes notwithstanding, Human Development Index (HDI) values are more or less comparable over time. They reveal both inequalities in human development across geographical regions and social groups, and the extent and direction of progress. The status of human development can then be appreciated in the context of economic, social and political policies pursued by the State.

This chapter presents the HDI and its well-known companion indexes. Chapters 3 and 5 offer comparative perspectives by exploring how various aspects of human development relate to the productive potential of regions and people.

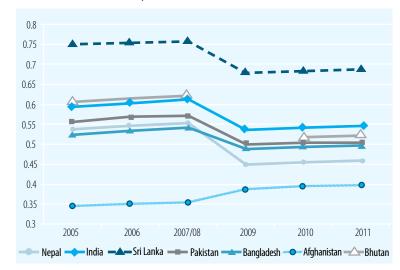
Measuring human development

Human development is fundamentally concerned with expanding people's choices, which has multiple dimensions and can be quite complex. This problem was simplified by the global Human Development Report's introduction of the HDI as a simple composite index. Similar indexes include the Gender-related Development Index (GDI), the Gender Empowerment Measure (GEM) and the Human Poverty Index (HPI). These easily understood measures indicate the state of people's lives in various dimensions.

The HDI reflects average achievements in three respects:

- A long and healthy life, measured by life expectancy at birth;
- Knowledge, measured by adult literacy and mean years of schooling; and
- A decent standard of living, measured by GNI per capita in purchasing power parity (PPP\$).

For this report, the HDI has been calculated for:


- The whole country;
- Urban and rural areas;
- Three ecological regions;
- Five development regions;
- Fifteen eco-development regions (resulting from the three ecological regions and five development regions);
- Nine eco-development regions (as defined in chapter 1);
- Districts; and
- Eleven caste and ethnic groups, comparable with previous reports, with additional values for selected groups.

HDI values by district are calculated using the latest available data. This comprises 2011 Census data for health and education indicators, and, for the first time in the income calculation, new national accounts estimates of the Central Bureau of Statistics (2011) for per capita GNI in PPP\$. Data from the 2011 National Living Standards Survey have been used to compute income for caste and ethnic groups. For full details on data sources, see annex 1.

The concept and computation of the HDI and related indexes is presented in annex 2. Caste/ ethnic classification is presented in annex 3.

FIGURE 2.1


HDI trends for SAARC countries, 2005-2011

Source: UNDP 2009, 2011.

FIGURE 2.2

Regional HDI values based on the old and new methodologies, 2011

Source: Annex 4, table A4.1

Comparing South Asian nations on the HDI

The HDI score for Nepal in 2011 is 0.458, the lowest ranking among the countries of the South Asian Association for Regional Cooperation (SAARC), aside from Afghanistan (figure 2.1). Since 2007-2008, Bangladesh has moved ahead of Nepal. Despite Nepal ranking second in terms of life expectancy at birth and improvements in education indicators, it still has a low level of per capita income. With higher scores in all three dimensions, Sri Lanka leads the SAA-

RC countries on the HDI, followed by India in the second place, Bhutan in the third and Pakistan in the fourth. Poor education and health status are the major factors for India's relatively low score overall.

Regional HDI values for 2011

The 2010 global Human Development Report changed the way of calculating the HDI, from using an arithmetic to a geometric mean. This method yields a lower HDI value compared to similar values reported in 2006 nationally and across all regions. Nepal's national HDI value, based on the geometric mean, is 0.490 for 2011, compared to 0.541 for 2011, using the arithmetic mean. Values obtained by the two methods for the country, urban and rural areas and ecological and development regions are provided for comparison in figure 2.2.

However, irrespective of the methodology, and in spite of changed HDI values, the overall HDI pattern remains similar across all regions, with no changes in rank.

Using the more robust method of the geometric mean for 2011 HDI calculations, among the ecological regions, the Hills has the highest HDI value at 0.520, compared to the Tarai at 0.468 and the Mountains at 0.440. Within the development regions, the Central region, at 0.510, ranks at the top, followed by the Western, Eastern, Mid Western and Far Western regions (annex 4, figure A4.1).

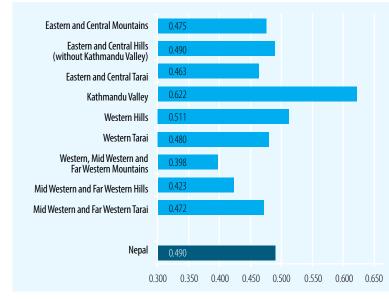
The lowest HDI value is for the Mountains, at 0.440. This is primarily due to low scores for life expectancy in the region's five districts, Dolpa, Jumla, Kalikot, Bajura and Humla. This region includes two districts with the lowest values for education, Humla and Mugu, and three districts with the lowest values for income, Bajhang, Bajura and Kalikot.

Among the development regions, the Far Western region at 0.435 and the Mid Western region at 0.447 have the lowest HDI values, reflecting very low scores in all three dimensions. The highest value for the Central region at 0.510 results from high scores in education and

HDI values across the 15 eco-development regions, 2011

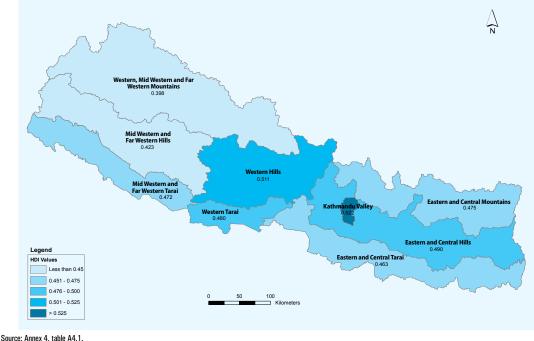
higher per capita income, mainly in Kathmandu, Lalitpur, Bhaktapur and Manang districts. Ramechhap and Gorkha districts score high in life expectancy (annex 4, table A4.1).

Among the 15 eco-development regions, the Central Hills has the highest HDI score at 0.571, and the Far Western Mountains the lowest at 0.386. In the Tarai, the Eastern Tarai has the highest value at 0.485; the Central Tarai the lowest at 0.443. Among the Hill regions, the Far Western Hills has the lowest HDI score, at 0.409. For the Mountains, Western Mountains fares better at 0.529 by virtue of higher incomes in Manang and Mustang. Far Western Mountains lags behind at 0.386, largely due to low educational level and per capita income (map 2.1).


2011 HDI values for the nine ecodevelopment regions

The nine-eco-development-region framework provides a discerning picture of inequalities in regional HDI values for 2011 (figure 2.3 and map 2.2). The Kathmandu Valley region has the highest HDI score at 0.622, stemming

largely from high scores for educational attainment and level of per capita income. Kathmandu, Lalitpur and Bhaktapur are at the top of the four highest ranking HDI districts in Nepal. The Western Hills at 0.511 followed by the Eastern and Central Hills (without the


FIGURE 2.3

HDI values for the nine eco-development regions, 2011

Source: Annex 4, table A4.1.

HDI values for the nine eco-development regions, 2011

Source. Ailliex 4, table A4.1.

Kathmandu Valley) at 0.490 have the second and third highest HDI scores. The HDI value for the Western Mountains at 0.529 exceeds that of the Mid Western Mountains at 0.392 and the Far Western Mountains at 0.386. When the Western, Mid Western and Far Western Mountains are lumped together, their overall HDI value is 0.398.

Only the Kathmandu Valley and Western Hills have higher HDI values than the national average of 0.490. The former's score is 1.6 times higher than that of the Western, Mid Western and Far Western Mountains, underscoring huge gaps and inequalities in human development across the nine regions.

The Eastern and Central Tarai, comprising 11 Tarai districts from Parsa to Jhapa, has a score of 0.463, making it modestly better off than the Western, Mid Western and Far Western Mountains, and the Mid Western and Far Western Hills.

HDI values by district for 2011

At the district level, Kathmandu, Lalitpur, Kaski, Bhaktapur and Manang have the highest HDI values for 2011, whereas Bajura, Bajhang, Kalikot, Humla and Achham have the lowest ones (see map 2.3).

Overall, in 2011, there are 10 districts — eight in the Mid Western and Far Western Mountains and Hills, and two in the Eastern Tarai—that have very low HDI values of less than 0.4. The next 16 districts—including nine in the Mid Western and Far Western Hills and Mountains, and four in the Eastern Tarai—have HDI scores between 0.4 and 0.449. Thirty districts, mostly in the Hills, have scores between 0.45 and 0.499. Another 13 districts, mainly in the Eastern and Central Hills, have scores between 0.5 and 0.549. The six districts with the highest HDI values are in the Kathmandu Valley, together with Kaski, Manang and Chitwan.

Mid West and Far Western Hills and Mountains and large parts of Central and Eastern Tarai are behind in human development.

TABLE 2.1

Districts	categorized	hy UDI	waluaa	2011
DISTRICTS	categorizeg	DV HDI	values.	ZUII

HDI values	Districts with HDI scores in ascending order	Number of districts
< .400	Bajura, Bajhang, Kalikot, Humla, Achham, Rautahat, Mahottari, Jajarkot, Rolpa, Mugu	10
.400 —.449	Dolpa, Sarlahi, Doti, Siraha, Jumla, Pyuthan, Baitadi, Dailekh, Rukum, Dhanusha, Kapilbastu, Darchula, Saptari, Sindhuli, Salyan, Dadeldhura	16
.450 – .499	Sindhupalchowk, Bara, Dolakha, Kailali, Rasuwa, Dhading, Parsa, Gulmi, Nuwakot, Bardiya, Okhaldhunga, Ramechhap, Kanchanpur, Uday- pur, Baanke, Surkhet, Baglung, Bhojpur, Gorkha, Arghakhanchi, Dang, Sankhuwasabha, Myagdi, Nawalparasi, Khotang, Taplejung, Sunsari, Makwanpur, Rupandehi, Paanchthar	30
.500 — .549	Palpa, Solukhumbu, Tanahu, Lamjung, Mustang, Parbat, Morang, Dhankuta, Jhapa, Kavrepalanchowk, Illam, Terhathum, Syangja	13
> .550	Chitwan, Manang, Bhaktapur, Kaski, Lalitpur, Kathmandu	6
Source: Annex	4, table A4.1.	

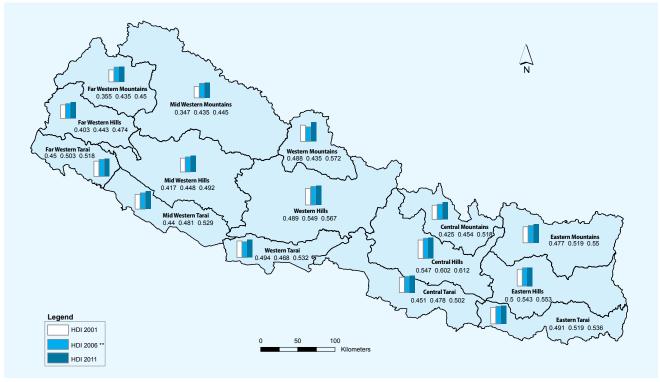
A clear pattern emerges where the Mid Western and Far Western Hills and Mountains and parts of the Central and Eastern Tarai lag behind in human development (table 2.1).

Rural-urban HDI gaps

The 2011 urban-rural gap in HDI is large, at 19.7 percent based on the geometric mean compared to 11.2 percent using the arithmetic mean. This essentially reflects persistent discrepancies in income and education between urban and rural areas.

The HDI over time

Computing the HDI on the basis of the arithmetic mean can be used to track trends in ecological and development regions over time. This shows steady improvements in values


MAP 2.3

HDI values across districts, 2011

Source: Annex 4, table A4.1.

HDI values across the 15 eco-development regions, 2001, 2006 and 2011

Source: UNDP Nepal, 2004 and 2009, annex 4, table A4.1.

over the last decade, across all ecological and development regions as well as districts.

Among the ecological regions, the Hills continue to lead with an HDI score of 0.569, followed by the Tarai at 0.521, a pattern seen in 2001 as well as 2006. The pace of HDI improvement has been faster in the Mountains, from 0.436 in 2006 to 0.496 in 2011. In spite of its relatively low HDI score, the Mid Western development region has made some gains, from 0.452 in 2006 to

0.503 in 2011, although considerable catching up remains.

Among the 15 eco-development regions, the Central Hills, including the Kathmandu Valley, has the highest HDI value at 0.612, followed by the Western Mountains at 0.572 and the Western Hills at 0.567. The Mid Western Mountains region has the lowest HDI rank at 0.445, a pattern that has remained constant over the years (map 2.4).

TABLE 2.2

Districts with the highest and lowest HDI scores, 2001 and 2011

Highest				Lowest			
2001 2011			2001		2011		
Kathmandu	(0.652)	Kathmandu	(0.666)	Mugu	(0.304)	Bajura	(0.425)
Bhaktapur	(0.595)	Lalitpur	(0.640)	Bajura	(0.310)	Bajhang	(0.430)
Kaski	(0.593)	Kaski	(0.623)	Kalikot	(0.322)	Kalikot	(0.432)
Lalitpur	(0.588)	Bhaktapur	(0.618)	Bajhang	(0.331)	Humla	(0.432)
Rupandehi	(0.546)	Manang	(0.608)	Jajarkot	(0.343)	Achham	(0.446)

^{** 2006} data is for 13 domains following the Nepal Demographic Health Survey Dataset. The combined value for Western Mountains has been used for Western, Mid Western and Far Western Mountains also

TABLE 2.3

Districts with the highest positional changes in HDI status (2001-2001)

District	Position	District	Position	
Dang	↑ 28	Sinduli	↓ 18	
Khotang	↑ 20	Rupandehi	↓ 16	
Rasuwa	↑ 17	Udaypur	↓ 15	
Solukhumbu	↑ 12	Rautahat	↓ 14	
Taplejung	↑ 12	Baglung	↓ 14	
Source: LINDP Napal 2004, appey 4, table 44.1				

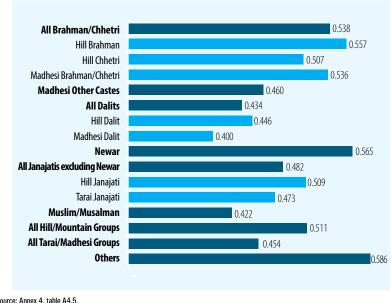
District level comparisons over time can be made by computing the HDI based on the arithmetic mean (table 2.2). The four highest HDI districts in 2001 are also the highest in 2011, with some changes in ranks. Rupandehi, fifth in 2001, was replaced by Manang in 2011. Kathmandu and Kaski have retained the first and third places, while Bhaktapur, which used to be second, is now fourth and Lalitpur has moved from fourth to second. Three of the five lowest HDI districts, Bajura, Bajhang and Kalikot, are the same in 2001 and 2011. Humla and Achham replace Mugu and Jajarkot in 2011 among the districts with the lowest scores. The huge progress made by Mugu in education has helped improve its HDI ranking.

Between 2001 and 2011, the most significant improvements in HDI ranks are for Dang, up 28 positions; Khotang, up 20; Rasuwa, up 17; and Solukhumbu and Taplejung, up 12 positions each. This has been primarily a result of considerable progress in income. For Rasuwa, a jump in the mean years of schooling has contributed to the improvement. Examples of considerable slippage include Sindhuli, down 18 positions; Rupandehi, down 16; Udaypur, down 15; and Rautahat and Baglung down 14 (table 2.3). Districts maintaining the same positions include Kathmandu, Kaski, Syangja, Parbat, Sankhuwasabha, Bhojpur, Kailali and Kalikot.

Similar to earlier trends, the urban HDI value in 2011, at 0.630, remains higher than the rural HDI score, at 0.517. But there is noticeable improvement in the rural HDI

since 2006. The urban HDI value, by contrast, remained constant in 2011 compared to 2006. This underlines the issue of sustainability in HDI improvements. Remarkably, the difference in life expectancy between rural and urban areas has narrowed considerably.

HDI values by caste and ethnicity


For 2011, HDI geometric mean values by caste and ethnicity are based on both Census and Nepal Living Standards Survey information. The population weights of various castes and ethnic groups have been derived from the 2011 Census; per capita income data by caste and ethnic groups are calculated from the 2011 survey (figure 2.4).

Inequalities in human development by caste and ethnicity have been noted since the first Nepal Human Development Report in 1998. These remain pronounced, despite some evidence that they may be reducing over time.

Among the four major caste and ethnic clusters—the Brahmans/Chhetris, the Janajatis, the Dalits and the Muslims-the Brahmans/ Chhetris rank at the top with an HDI value of

FIGURE 2.4

HDI values by major caste and ethnic groups, 2011

Source: Annex 4, table A4.5.

TABLE 2.4

Poverty incidence by caste and ethnicity, 2011

Caste and ethnic groups	Poverty headcount rate	Percent of poor			
Hill Brahman	10.3	5.2			
Hill Chhetri	23.4	16.6			
Tarai Brahman	18.6	0.4			
Tarai middle caste	28.7	17.6			
Hill Dalit	43.6	15.2			
Tarai Dalit	38.2	6.9			
Newar	10.3	2.5			
Hill Janajati	28.3	24.4			
Tarai Janajati	25.9	7.3			
Muslim	20.2	3.5			
Other	12.3	0.5			
NEPAL	25.2	100.0			
Source: Nepal Living Standards Survey 2011.					

0.538, followed by the Janajatis (excluding the Newars) at 0.482, the Dalits at 0.434 and the Muslims at 0.422. This pattern was also seen in 2006. Among identified castes and ethnic groups, Hill Brahmans have the highest HDI score at 0.557, and the Madhesi Dalits have the lowest. The Muslims and Dalits have HDI values 27 and 24 percent lower respectively than that of the Brahmans/Chhetris.

There are significant variations within caste and ethnic clusters. The HDI score for the Hill Chhetris is 0.507, which is about 9 percent lower than that of the Hill Brahmans. There are also differences between the Tarai and Hill Janajatis. The latter fare better with an HDI value of 0.509, compared to 0.473 for the former. A similar picture emerges among the Dalits. Hill Dalits rank at 0.446 compared to 0.400 for the Madhesi Dalits. Among all Janajatis and Dalits, those from the Hills have better HDI scores than those from the Tarai or Madhes. Inequalities in HDI scores linked to caste and ethnicity thus also have a geographic dimension. The HDI rank for all Hill/Mountain groups is 0.511, compared to 0.454 for all Tarai/Madhesi groups.

There are exceptions to general patterns. Among the Janajatis, the Newars and Thakalis have much higher HDI scores, since the Newars mostly live in urban areas and the Thakalis due to their entrepreneurial qualities.

Previous Nepal Human Development Reports have emphasized that among the three components of the HDI, differences in educational attainment largely explain inequalities between high and low HDI values for caste and ethnic groups (annex 4, figure A4.5). This is underscored by the low educational attainment of the Dalits in general and the Madhesi Dalits in particular, and of the Muslims. Low levels of education as well as social and economic exclusion translate into limited opportunities in economic and political spheres.

Income, poverty, and caste and ethnicity

Nepal Living Standards Survey shows a clear association between caste and ethnicity, and levels of income, revealing a picture similar to that of the HDI. As a group, the Brahmans/Chhetris have the highest income per capita, followed by the Janajati and the Dalit. The per capita income of Hill Brahman is 1.7 times higher than that of the Dalit in general, and two times higher than that of the Madhesi Dalit.

Survey data show that consumption-based poverty varies quite significantly across different castes and ethnic groups (table 2.4). The poverty incidence or poverty headcount rate for Nepal is 25.2 percent. But Hill Brahmans have a low incidence of 10.3 percent compared to 43.6 percent for Hill Dalits and 38.2 percent for Tarai Dalits. The poverty incidence among Hill and Tarai Janajatis is 28.3 percent and 25.9 percent, respectively (table 2.4). Also, one in every four poor in Nepal is a Hill Janajati.

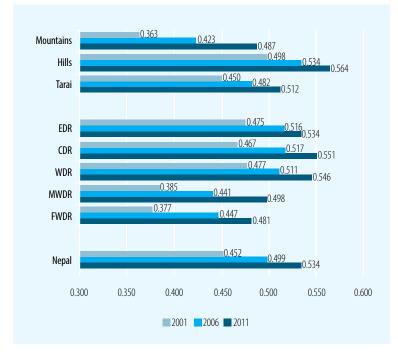
Gender and human development

The Gender Development Index (GDI) and Gender Empowerment Measure (GEM) have been used to measure inequality between men and women. The GDI captures inequality in terms of the same dimensions as the HDI—

Caste/ethnic inequalities in HDI scores also have a geographic dimension. long and healthy life measured by life expectancy at birth, knowledge measured by adult literacy and mean years of schooling, and a decent standard of living measured by GNI per capita in PPP \$. The GEM indicates the relative empowerment of women and men in various political and economic spheres. It reflects opportunities open to women, rather than their capabilities, in three key areas: political participation and decision-making, economic participation and decision-making, and power over economic resources. The methodologies to compute the GDI and GEM are described in annex 2.

The Gender Development Index

The GDI has been computed using the arithmetic mean and the geometric mean. The score for Nepal for 2011 is 0.534, based on the arithmetic mean. Using the geometric mean gives a figure of 0.482. Irrespective of these methods, the regional pattern is broadly similar.


Among the ecological regions, the GDI value based on the geometric mean is the highest for the Hills at 0.515, followed by the Tarai at 0.458 and the Mountains at 0.430. The low GDI score for the Mountains is mainly due to low values in all three dimensions of the index. Indicators for life expectancy at birth and mean years of schooling for both sexes are the lowest in the Mountains and the highest in the Hills. Female adult literacy is also very low in the Mountains at 37.7 percent, compared to 43.3 percent in the Tarai and 56.4 percent in the Hills.

Among the development regions, a picture similar to that of the HDI emerges. The Central region, at 0.503 based on the geometric mean, has the highest GDI value, followed by the Western region at 0.491 and the Eastern region at 0.481. The Far Western and Mid Western regions have the lowest values at 0.423 and 0.442, respectively, primarily due to low life expectancy and adult female literacy (annex 4, figure A4.2).

A comparison of GDI values over time, using the arithmetic mean, shows progress na-

FIGURE 2.5

Comparative GDI values for ecological and development regions over time, 2001, 2006 and 2011

Source: UNDP Nepal, 2004 and 2009, annex 4, table A4.2.

tionally and in the ecological and development regions (figure 2.5).

Nationally, there is an 18 percent improvement in the GDI score between 2001 and 2011. Improvement is above the national average in the Mountains at 34.1 percent, the Mid West-

TABLE 2.5

Percentage shortfall of GDI over HDI scores by region, 2001, 2006 and 2011

National	2001	2006	2011
Nepal	4.0	2.0	1.3
Ecological region			
Mountains	6.0	3.0	1.8
Hills	2.7	1.7	0.9
Tarai	5.9	2.4	1.7
Development region			
Eastern	3.7	1.9	1.5
Central	4.7	2.6	1.3
Western	2.9	1.0	1.3
Mid Western	4.2	2.4	1.0
Far Western	6.7	3.0	2.4

Source: UNDP Nepal 2009, annex 4, table A4.1 and A4.2. The shortfall is computed using ((HDI-GDI)/HDI)x100 for each region.

FIGURE 2.6

Comparative GEM values over time, 2001, 2006 and 2011

Source: UNDP Nepal, 2004 and 2009, annex 4, table A4.3.

ern region at 29.3 percent and the Far Western region at 27.5 percent. The Central region has a GDI value 1.14 times higher than that of the Far Western region in 2011, compared to 1.24 times in 2001, underscoring the closing gap between the best and worst performing regions in the last decade, although gender disparities in life expectancy, education and income remain major challenges across Nepal. Nationally, women's average income, for example, is 57 percent lower than the average for men.

The difference between HDI and GDI scores, expressed as a percentage of the former,

is often taken as a measure of gender inequality. A higher value indicates greater inequality. A comparison for 2001, 2006 and 2011 shows that gender inequality has declined in all ecological and development regions (table 2.5). The decline has been most significant in the Mountains and the Far Western and Mid Western regions. The only exception is the Western region, where GDI scores have not kept up with improvements in HDI values.

The Gender Empowerment Measure

The value of the GEM for Nepal for 2011 is 0.568. Among ecological regions, the Mountains has the lowest value at 0.483, while the Hills has the highest at 0.572. This is due to the former's low share of women in Parliament at 18.6 percent, compared to 28.9 percent for the latter and 32.9 percent for the Tarai, as well as low combined income values.

Among development regions, the Eastern region has the highest GEM at 0.575, followed by the Central and Western regions. This pattern varies from that of the GDI. The Far Western region has the lowest GEM value of 0.523, primarily due to its low share of women in administrative and professional positions.

A comparison of the GEM for 2001, 2006 and 2011 shows a rise in values in all ecological and development regions over time. Among ecological regions, the Tarai displays rapid growth between 2006 and 2011. For the development regions during the same

TABLE 2.6

Districts categorized by HPI values, 2011

HPI values	Districts in descending order of HPI values	Districts
<25	Kaski, Lalitpur, Bhaktapur, Jhapa, Kathmandu, Parbat, Chitwan	7
25 – 29	Palapa, Syangja, Morang, Manang, Rupandehi, Taplejung, Sunsari, Kanchanpur, Illam, Lamjung, Baglung, Kavrepalanchok, Arghakhanchi, Gulmi, Dhankuta, Nawalparasi, Makwanpur, Myagdi, Khotang, Kailali, Udaypur, Tanahu	22
30 - 34	Mustang, Banke, Bardiya, Solukhumbu, Terhathum, Bhojpur, Darchula, Dhading, Gorkha, Sankhuwasabha, Panchthar, Pyuthan, Dang	13
35 – 39	Okhaldhunga, Nuwakot, Dolakha, Dadeldhura, Ramechhap, Surkhet, Parsa, Sindhuli, Sindhupalchowk, Kapilvastu, Saptari, Rolpa, Rukum, Baitadi	14
40 - 44	Bara, Salyan, Dailekh, Dhanusa, Jumla, Rasuwa, Siraha, Bajura, Doti, Sarlahi, Jajarkot, Dolpa, Mahottari	13
> 50*	Kalikot, Mugu, Bajhang, Rautahat, Achham, Humla	6

^{*}There is no district with a value between 45 and 49. Source: Annex 4, table A4.4.

TABLE 2.7

Districts with the highest and lowest HPI values, 2001 and 2011

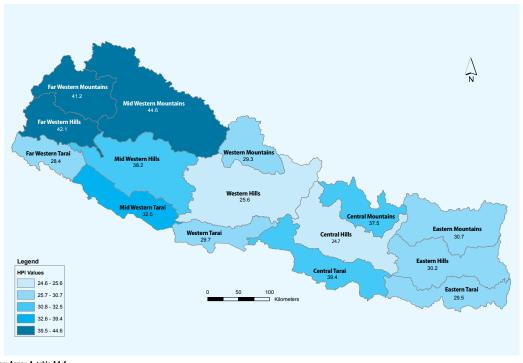
Highest					Lowest		
2001		20	2011		2001		
Humla	(63.8)	Humla	(49.26)	Kaski	(24.9)	Kaski	(16.50)
Dolpa	(61.9)	Accham	(46.68)	Lalitpur	(25.0)	Lalitpur	(19.18)
Mugu	(61.1)	Rautahat	(46.43)	Kathmandu	(25.8)	Bhaktapur	(19.43)
Bajhang	(59.9)	Bajhang	(45.32)	Jhapa	(29.2)	Jhapa	(21.82)
Achham	(59.2)	Mugu	(45.22)	Rupandehi	(29.2)	Kathmandu	(22.45)

Source: UNDP Nepal 2004, annex 4, table A4.4.

period, GEM values improved most significantly in the Mid Western region (figure 2.6).

The Human Poverty Index

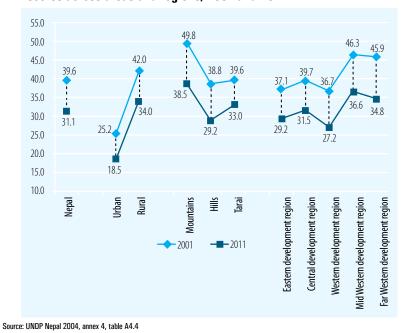
If the HDI reflects the expansion of opportunities and choices, the Human Poverty Index (HPI) captures the denial as a result of income and capability deprivation. The HPI value for Nepal in 2011 is 31.12. There are variations by rural and urban residence, and


by ecological and development regions (annex 4, figures A4.3). Urban-rural differences are considerable, with rural poverty nearly 1.8 times higher than urban poverty.

Among ecological regions, the HPI is lowest in the Hills at 29.20 and highest in the Mountains at 38.51. Both the Mountains and Tarai regions have HPI values less than the national average.

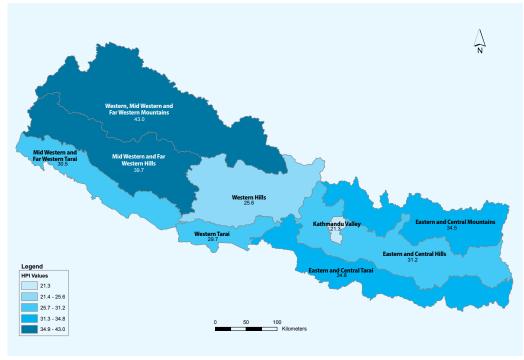
Among the development regions, the value is lower than the national average only in the Western region at 27.20 and the

MAP 2.5

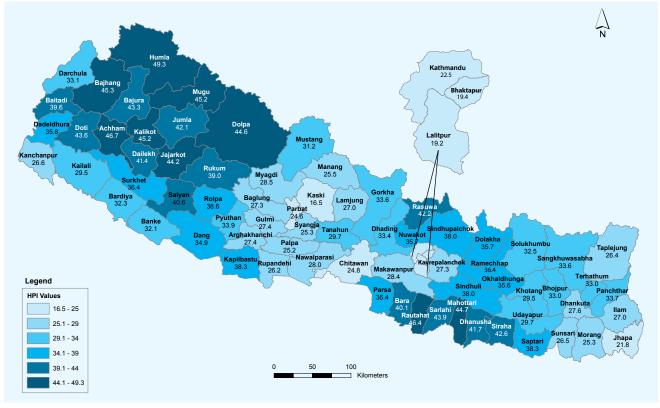

HPI values across the 15 eco-development regions, 2011

Source: Annex 4, table A4.4.

FIGURE 2.7


HPI scores across areas and regions, 2001 and 2011

Eastern region at 29.22. The Mid Western region has the highest rank at 36.63, which is 1.3 times higher than that of the Western region. High levels of human poverty in the Mid Western and Far Western regions reflect deprivations in health, education and sanitation. In these two regions, the most deprived districts in terms of health are Dolpa, Bajura, Kalikot and Bajhang. The most deprived districts in terms of education are Rautahat, Mahottari, Humla, Sarlahi, Mugu and Siraha, where adult illiteracy rates are over 60 percent. Dailekh, Dang, Achham, Jajarkot and Salyan, mainly in the Mid Western region, are the most deprived in terms of access to safe drinking water, whereas the highest prevalence of child malnutrition is in Humla and Bajhang, where more than 60 percent of children are malnourished.


MAP 2.6

HPI values across the nine eco-development regions, 2011

Source: Annex 4, table A4.4.

HPI values across districts, 2011

Source: Annex 4, table A 4.4.

Among the 15 eco-development regions, those with particularly high levels of deprivation leading to human poverty are the Mid Western Mountains with an HPI value of 44.63, the Far Western Hills at 42.07 and the Far Western Mountains at 41.21. The Eastern, Central and Western Hills, the Eastern and Western Tarai, and the Western Mountains have HPI values below the national average. The Central and Western Hills, with scores of 24.65 and 25.62, respectively, show the lowest levels of deprivation (map 2.5).

Among the nine eco-development regions, the Kathmandu Valley, with an HPI value of 21.28, is the least deprived, and the Western, Mid Western and Far Western Mountains at 42.98 are the most deprived (map 2.6). Most of the districts from the latter

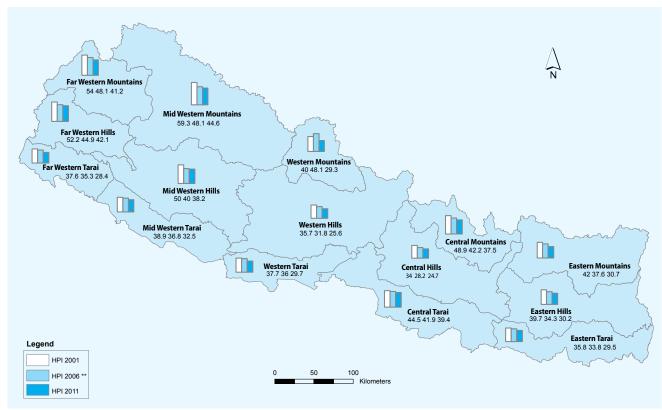
region perform poorly on all three dimensions of the HPI—health, education and income. The Kathmandu Valley region at 21.28, the Western Hills at 25.62, the Western Tarai at 29.69, and the Mid Western and Far Western Tarai at 30.47 have lower HPI values than the national average (annex 4, figure A4.4).

A look at HPI values by district shows that seven districts score less than 25. These are mostly districts with high HDI ranks. Another 22 districts, including 15 from the Hills, have HPI values between 25 and 29. In contrast, all six districts with HPI scores over 50 are from the Mid Western and Far Western Hills and Mountains, with the sole exception of Rautahat. Of the 13 districts with HPI values in the 40-44 range, five are from the Eastern Tarai (table 2.6 and map 2.7).

HPI values over time

Nationally, the HPI fell between 2001 and 2011 by 8.5 points, or 21.4 percent. HPI scores declined for both ecological and development regions over the same period (figure 2.7). Among the ecological regions, the greatest decline took place in the Hills at 24.8 percent. The Western region had the steepest decline among the development regions at 25.9 percent. The smallest declines in each category were for the Tarai at 16.7 percent and the Central region at 20.7 percent.

Among the 15 eco-development regions, the most significant decline was in the Mountains regions, particularly the Mid Western Mountains at 14.7 points and

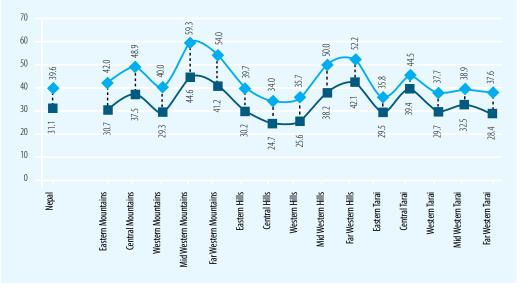

the Far Western Mountains at 12.8 points. The lowest decline was in the Central Tarai (5.1 points), followed by the Eastern Tarai (6.3 points) and the Mid Western Tarai (6.4 points) (figure 2.8 and map 2.8).

A district level comparison of HPI ranks over the decade from 2001 to 2011 shows a familiar picture (table 2.7). Four of the five districts with the highest HPI values—Humla, Achham, Bajhang and Mugu—are the same in 2001 and 2011, with some change in rankings. Dolpa dropped from the list in 2011, replaced by Rautahat, a Tarai district. Similarly, four of the five districts with the lowest HPI values—Kaski, Lalitpur, Jhapa and Kathmandu—remain the same. Rupandehi was replaced by Bhaktapur in 2011.

High human poverty index for the Mid Western and Far Western Mountains reflects poor achievements in all education, health and income dimensions.

MAP 2.8

HPI values across the 15 eco-development regions, 2001, 2006 and 2011



Source: UNDP Nepal, 2004 and 2009, annex 4, table A4.4.

** 2006 data is for 13 domains following the Nepal Demographic Health Survey Dataset. The combined value for Western Mountains has been used for Western, Mid Western and Far Western Mountains also.

FIGURE 2.8

Source: UNDP Nepal 2004, annex 4, table A4.4.

Nepal's trends in human development over the past decade show overall improvement accompanied by considerable, often entrenched regional and social inequalities. Three particular features stand out. First, regions already behind in human development remain that way, although inequalities among regions have begun narrowing. Second, there is a geographic dimension to caste and ethnic inequalities, with the Hills generally in a

more favourable position. Third, there may be two "problem" regions with respect to human development—namely, the contiguous Mid Western and Far Western Hills and Mountains, and the Eastern and Central Tarai. These exhibit contrasting spatial, developmental and socio-economic characteristics. The following chapters will assess how the productive potential and abilities of regions and people relate to human development.

Regions that are behind in human development remain so but inequalities among regions are narrowing. Regional Access to Facilities and Household Well-being Indexes

Regional Access to Facilities and Household Well-being Indexes

Access to facilities in a region is an important factor in the well-being of households residing there. The well-being of a household, in turn, affects the potential productivity of its members.

hapter 2 reported the current values of the Human Development Index (HDI) and related indexes at the national and district levels, and, data permitting, for socio-economic groups. The results reflect the effect of past policies in strengthening human capital, which is expected to contribute positively to any other indicator of productive abilities.

To sustain its recent remarkable progress in the reduction of extreme poverty, Nepal now clearly needs higher economic growth, which should be inclusive in the sense of allowing everyone to benefit from it. Nepal also aspires to graduate to the status of a developing country by 2022. One of the benchmarks for graduation from its current least developed country status is that per capita income must rise to \$1,192 and remain at that level for three consecutive years. Essentially, this means almost doubling 2013 per capita income.

The current growth rate of less than four percent is not sufficient to reach this benchmark or even to sustain Nepal's recent progress in poverty reduction. Monetary and fiscal stimulus can only have a temporary effect on the growth of gross domestic product (GDP). The move to a permanent high growth path requires a long-term, sustained increase in the productive abilities of households, individuals and regions. Further, productive abilities need to be comparable across men and women, rural and urban areas, ethnicities, religions and so on.

This chapter aims to inform policymaking linked to growth, inequality and least developed country graduation in two main ways. It explores current ground realities. It also considers what more can be done to achieve higher growth that is also inclusive by assessing the multidimensional potential productive capability of Nepal's households and regions; an assessment of individual productivity among youth, as a third tier, follows in chapter 5.

The chapter offers an innovation in the unit of measuring productive abilities, moving beyond the HDI and related indexes, which are essentially based on individuals. While important in their own right, these measures can be complemented by plausible indicators of productive ability that entail treating regions and households as units.

Single measures like income or consumption do not adequately capture an individual's or household's well-being. In fact, they may provide confusing and conflicting evidence, whether measured in aggregate or per capita terms, and say little about potential productive abilities. Without a rigorous assessment of potential productivity, especially how it has evolved over time, public resources—comprising both public sector investment and social assistance programmes—are unlikely to be targeted and used most effectively.

This chapter looks beyond consumption and income in defining and measuring well-being. Its multidimensional approach has strong intellectual roots² and is a pillar of the "human face" approach to development—a key policy priority in Nepal for reasons that are readily appreciated. Apart from its moral and philosophical appeal, this approach, when applied to a rigorous assessment of productive abilities, should provide important information to policy makers for evaluating which policies have been

successful in promoting relatively uniform capabilities, and what more can be done to narrow gaps and strengthen the average level of abilities.

Productive abilities comprise several features, with information on them usually available in periodic comprehensive household surveys. This chapter argues that for higher growth, individuals need to be capable, households need to be capable of supporting their individual members; and regions need to be capable of supporting resident households (and firms). To reach low inequality in development outcomes, a level playing field is required for all three, because they are interlinked. This chapter introduces an individual ability index, a household well-being index and a regional access to facilities index. It makes no claim to providing a universal operational measure, particularly of "capability," through any of these measures, especially for individuals.

Individual ability index

As a broad conceptual background, the *capability* of an individual:

- Is not just what one *actually* achieves, but also what one can *potentially* achieve;
- Is not just the choice one has made, but rather one's freedom to make alternative choices; and
- Is a wider concept of well-being than income or consumption, because it values freedom.

In the context of Nepal, this report measures the productive ability of young individuals using two sets of factors:

- The health and education level of individuals and other relevant personal characteristics available in the successive Nepal Living Standards Surveys; and
- The well-being of the households that individuals belong to.

Household well-being is important because even when two individuals have identical personal characteristics, their options or opportunity sets are still influenced by household status. Household well-being may be construed as a (partial) instrument to capture an individual's freedom.

Productive abilities measured with these two sets of factors reflects the potential of a person. High and comparable individual potential today is an essential pre-requisite for high and inclusive growth in the years to come. More discussion of the individual ability index, focused on youth, follows in chapter 5.

Household well-being index

Information on a variety of household characteristics, including health, education, fertility, consumption, income and migration, makes it possible to analyse the interplay of different aspects that influence the quality of household members' lives. The well-being of a household as a unit depends on:

- A broad set of family characteristics, including the education level of the head of the family, financial and physical assets, the type of dwelling, the number of dependents, indebtedness, and so on, and
- The level of development of the region where the household belongs.

The household well-being index combines variables from each area, based on Nepal Living Standards Survey data.

In the first category, household well-being relies on two kinds of private investment: those made by household members in the condition of their dwellings, and acquisition of assets including land, property and consumer durables.

For the second category, the level and efficiency of public investment is important, meaning that two households, identical except for the regions where they are located, can have very different productive abilities. The level of development of the region, especially in terms of ease of access to public facilities such as roads, schools, hospitals, information systems, etc., determines the productive ability of a household.

Regional, household and individual productive abilities are inter-linked.

Regional access to facilities index

The Nepal Living Standards Surveys have gathered information on how much time it takes a household member to reach nearby facilities, such as early child development centres; primary, secondary and higher secondary schools; health posts; public hospitals and clinics; bus stops; paved roads; shops; markets; banks; agricultural centres; drinking water; internet access; police stations; post offices and community centres.

The regional access to facilities index, for the nine eco-development regions defined in chapter 1, is based on times to reach these facilities. The shorter the time, the better the household access in a particular region. The general level of a region's development is the average of the access to facilities index of all its households. A higher value indicates more advanced development.

Measurement issues

To calculate the individual, household and regional indexes, the report uses principal component analysis.³ It has the following advantages:

- It allows use of every piece of relevant information gathered by the three rounds of the Nepal Living Standards Survey that logically contribute to, or reflect, higher potential at the individual, household and regional levels;
- For the access to facilities index, it takes into account the interrelation between different elements of access and eliminates data redundancy;
- It generates optimal weights for each element in constructing the index; and
- It shortlists those elements—from a much longer list—that are the core determinants of the index, and where policy intervention would be most effective.

Principal component analysis is commonly used to construct wealth indexes (such as in the Demographic and Health Surveys) and a variety of socio-economic indexes. In Nepal, this report marks the first comprehen-

sive attempt to apply the technique to data from the National Living Standards Surveys.

The HDI and similar indexes are based on small sets of information due to the requirement of international comparability, and give subjective and pre-assigned weights. In a national context, one can use a much larger set of information to conceptualize human development, such as based on productive abilities, and create more robust estimates. Principal component analysis also gives weights endogenously. It reduces the dimensionality of data in a scientific way, getting rid of variables strongly correlated with other "primary" variables. This helps policy makers to focus on those aspects that are most critical in themselves and also in influencing multiple other aspects.

Calculating the regional access to facilities index

Data from the three National Living Standards Surveys in 1995, 2003 and 2011 were used to construct the regional access index. Annex 6, table A6.1 provides the complete list of all facilities factored into the calculation. Scores for each facility were assigned by a scheme outlined in table 3.1.

TABLE 3.1

Access to facility scores

Time taken to reach closest facility	Score
Facility next to household	6
Less than 30 minutes	5
30 minutes to 1 hour	4
1-2 hours	3
2-3 hours	2
3 hours and more	1
Not applicable/no facility around	0

With data from the first National Living Standards Survey in 1995, principal component analysis yielded three principal components based on the eigenvalue criterion. The first component placed the highest weights on access to health posts, paved roads, bus stops,

A region's development level is the average of the access to facilities index of all its households. A higher value indicates more advanced development.

Access to drinking water emerges as a significant determinant of regional development

status in 2003 and

2011.

markets, cooperatives, agricultural centres and commercial bank branches. The second component is defined mainly by access to dirt roads and *haat bazaars*,⁴ while the third by access to primary schools and local shops.

Based on data from the second Nepal Living Standards Survey in 2003, the first component placed the highest weights on access to bus stops, paved roads, dirt roads, markets, agricultural centres, cooperatives, banks, drinking water and telephone booths. The second component was defined by access to dirt roads and *haat bazaars*, while the third by primary schools, health posts, local shops and post offices.

Analysis of data from the third survey in 2011 resulted in eight principal components, with the first placing highest weights on primary, secondary and higher secondary schools, hospitals, private clinics, bus stops, paved roads, dirt roads, local shops, markets, agricultural centres, cooperatives, post offices, telephones, police, internet access and libraries. The second included health posts, dirt roads, *haat bazaars* and drinking water in the dry season. The third emphasized drinking water in the rainy season and the fifth access to early child development centres. Components 4, 6, 7 and 8 do not have any significant weights⁵ on any facility.

The 10 most important facilities common to all three surveys are: health posts, paved roads, bus stops, markets, cooperatives,

agricultural centres, dirt roads, *haat bazaars*, primary schools and local shops.

The questionnaires for the three surveys were not identical, however. The third gathered information on facilities not included in the second, and so on. While the common list above is indicative of the persistent importance of certain facilities, the second and third surveys contain significant information specific to them. For example, in the third survey, facilities such as internet access, libraries and early childhood development centres emerged as important determinants of overall development status. The most significant omission from the first survey is drinking water, which features prominently in the second and third surveys.

The access index for the nine eco-development regions at three points of time, 1995, 2003 and 2011, are shown in table 3.2. The absolute value of the index may be compared across regions within a particular year, but not across periods.

Analysis of the index reveals that the Kathmandu Valley ranks first, while the Western, Mid Western and Far Western Mountains is the least developed region. The rankings, or relative levels of access, remained unchanged during 1995-2011, but the gap in mean between the most and least developed regions has narrowed over time. In 1995, the Kathmandu Valley was 2.5 times as developed as the West-

Access index of the nine eco-development regions

	1995					2	003			2	2011	
Region	Mean	Standard deviation	Coefficient of variation	Rank	Mean	Standard deviation	Coefficient of variation	Rank	Mean	Standard deviation	Coefficient of variation	Rank
Kathmandu Valley	74.8	7.8	10.4	1	848	6.3	7.5	1	78.3	11.9	15.2	1
Eastern and Central Tarai	67.6	13.6	20.2	3	74.3	13.5	18.1	3	70.8	11.1	15.7	3
Eastern and Central Hills	40.9	16.2	39.7	6	41.9	22.5	53.8	6	48.6	22.4	46.0	6
Eastern and Central Mountains	39.9	17.0	42.7	7	37.8	14.3	37.9	7	46.6	18.4	39.6	7
Western Tarai	68.3	8.9	13.1	2	78.0	12.9	16.5	2	71.4	10.1	141	2
Western Hills	47.6	16.6	34.8	5	49.4	23.7	48.0	5	587	17.9	30.4	5
Mid Western and Far Western Tarai	61.4	12.8	20.9	4	68.9	15.9	23.1	4	69.5	13.2	19.1	4
Mid Western and Far Western Hills	39.1	16.8	43.0	8	34.3	20.1	58.7	8	41.0	20.4	49.8	8
Western, Mid Western and Far Western Mountains	28.9	8.5	29.3	9	26.9	15.8	58.5	9	37.3	20.3	54.5	9
Nepal	55.2	19.8	35.8		60.6	24.7	40.8		61.7	20.3	32.9	

Source: Computed from raw National Living Standards Survey data using principle component analysis

ern, Mid Western and Far Western Mountains, but only twice as developed in 2011.

There are strong inequalities in access to facilities within the less developed regions, reflected by the high coefficient of variation. In fact, inequality of access in the Western, Mid Western and Far Western Mountains in 2011 was twice that of 1995. It increased in five out of the nine regions between 1995 and 2011, although the mean score improved.

Some key conclusions from the index are that the regions are most unequal in terms of the access of households to the 10 facilities identified above. While access gaps across regions have narrowed, intra-regional inequalities have risen sharply in less developed areas. This may be a concern, because inequality in access to facilities can eventually lead to inequality in development outcomes.

Calculating the household well-being index

Based on the Nepal Living Standards Surveys, 39 variables, both publicly provided and privately procured, were scored for the household well-being index. A complete list is provided in annex 6, table A6.2, along with the scoring method (table 3.3 features an example).

The 39 variables were combined with the regional access index to create the household well-being index, meaning that a total of 63 variables were jointly analysed. Before presenting the results in various disaggregated forms, some important trends can be highlighted.

A higher value on the index indicates a more capable household. The index is, however, not symmetrically distributed. Indexes based on the first and second Nepal Living Standards Surveys are skewed to the right as means exceed median values. Therefore, they have relatively fewer high values. On the contrary, the distribution of the index based on the third survey is slightly skewed to the left; the bulk of the values, including the median, lie to the right of the mean. It therefore has relatively fewer low values. This indicates that household well-being

TABLE 3.3

Scoring drinking water sources in regions

Score
7
6
5
4
3
2
1

shows a tendency towards more uniformity of late, which is a welcome development.

Common to findings from the calculation of all three indexes is the predominance of the access index and assets owned by either individuals or households, jointly described as physical capital. The first principal component is always dominated by physical capital; it garners the highest weights in all three surveys, emerging as the most important contributor to household well-being.

Physical capital comprises both public and household investments. Some variables in a household's well-being come from its own investments in, for example, materials for walls, roofs, floors and windows; sanitary systems; garbage disposals; toilet facilities and the like. Access to facilities such as for health, education and information, on the other hand, comes from public investment. They can also make positive contributions to well-being.

The Nepal Living Standards Survey measures access in terms of one-way travel time to reach a certain facility. The time depends on the mode of transport, such as on foot, bicycle, rickshaw, automobile or bus. The mode in turn depends on a household's distance to that facility and affordability, which is private. So access to facilities has both public and private investment components. Facilities provided by the Government are public investments affecting a household's productive capability. On the other hand, access to household utilities and amenities, distance to a facility and mode of transport to that facility are private decisions.

Household well-being is determined by both physical as well as human capital.

Public investment has growing impact on household wellbeing. Apart from the physical capital that a household owns, human capital emerges as a second major factor in determining the value of the household well-being index. Human capital is primarily a private good. For instance, an ailing individual makes decisions to consult a doctor, homeopath, traditional healer and so on, and chooses the place of consultation, such as a private or public hospital, although the existence of a government hospital is essentially a public investment. Similarly, a household's decision to send children to school and/or college and for how many years is a private decision, while setting up a school in a given locality is a public provision.

Compared to 1995, in 2003 and more so in 2011, the importance of variables depending on public investment became more pronounced in the principal component—physical capital—of the household well-being index. The principal component in 1995 mostly comprised of private goods, including housing characteristics. In contrast, in 2003 it involved both private goods like housing materials, as well as public provisions in terms of access to paved roads, bus stops, markets, agriculture centres and cooperatives. In 2011, it mainly consisted of access to government facilities such as secondary and higher secondary

schools, public hospitals, roads, post offices, police stations, libraries, bus stops, market agricultural centres and cooperatives. All require public investments in infrastructure. This finding strongly reiterates the role of public investment in strengthening productive abilities. In this respect, Nepal is facing a challenge of full utilization of its fiscal space due to political instability.

After the calculation of the household well-being index, sample households were arranged in descending order and divided into 10 approximately equal sets. The deciles created in this way range from the most well-off (first decile) to the least well-off (last decile) households. A calculation of the mean capability score of each decile found that, based on data from all three Nepal Living Standards Surveys, differences in scores are uneven, implying that the index is not uniformly distributed. The maximum difference in mean is between the first two deciles in the first and second surveys, and between the last two deciles in the third survey. This can be interpreted as meaning that households in 1995 and 2003 belonging to the uppermost decile were in a relatively better position than those in the same decile in 2011. On the other hand, in 2011, the least well-off deciles were in a poorer condition than in 1995 and 2003.

TABLE 3.4

Deciles of the household well-being index

		2011		2003	1995		
Deciles	Mean	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	
Decile 1	48.855	4.745	39.164	7.439	49.872	7.751	
Decile 2	43.348	0.909	30.950	1.510	40.533	1.555	
Decile 3	40.684	0.691	25.598	1.394	35.546	1.394	
Decile 4	38.500	0.630	21.289	1.122	31.233	1.035	
Decile 5	36.522	0.531	17.979	0.820	27.874	0.925	
Decile 6	34.624	0.606	15.422	0.670	24.806	0.888	
Decile 7	32.206	0.835	13.359	0.577	22.000	0.747	
Decile 8	28.851	1.200	11.117	0.735	19.213	0.825	
Decile 9	23.943	1.665	8.114	0.990	16.535	0.745	
Decile 10	15.970	3.863	4.166	1.446	12.134	2.677	
Total	33.382	8.880	16.986	9.380	25.853	9.868	

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

TABLE 3.5

A gradual increase in urban residents

Year	Area					D	eciles					Overall	Mean	Standard
		Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	-		deviation
2011	Urban	70.7	49.8	32.4	18.4	10.7	8.9	8.2	12.6	15.7	13.4	20.9	38.1	9.492
	Rural	29.3	50.2	67.6	81.6	89.3	91.1	91.8	87.4	84.3	86.6	79.1	32.1	8.264
2003	Urban	86.5	70.6	31.8	11.7	7.4	6.9	3.0	2.3	1.1	.1	16.5	29.6	7.117
	Rural	13.5	29.4	68.2	88.3	92.6	93.1	97.0	97.7	98.9	99.9	83.5	14.4	9.169
1995	Urban	42.5	32.1	13.8	5.2	3.2	3.7	2.7	.9	0	.1	7.3	39.2	9.911
	Rural	57.5	67.9	86.2	94.8	96.8	96.3	97.3	99.1	100	99.9	92.7	24.7	9.060

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

Differences in mean scores between deciles have started decreasing step by step, however. In the first survey, the maximum difference was 10; this fell to 8 in the second survey and 7.85 in the third. Evidence on narrowing gaps is thus mixed under this classification. One significant feature of the decomposition is the high value of the standard deviation in the topmost and bottom deciles, as shown in table 3.4.

Based on table 3.4, figure 3.1 presents a visual representation of how gaps between deciles have evolved over time.

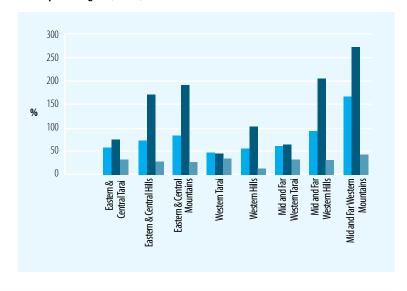
The distances between deciles increased quite sharply between 1995 and 2003, a trend observed in all the different indexes measuring potential productive abilities that follow in this chapter and chapter 5. Distances came down in 2011. Similar spikes in consumption and income inequality have been recorded elsewhere. A possible explanation may be the onset of liberalization in the first period, which, in the experience of most developing countries, is accompanied by at least a temporary rise in inequality. The fact that inequality started subsequently declining may be a reflection of the Kuznets' curve phenomenon. In any case, this is a positive trend.

In terms of the relative status of rural and urban households during the last 15 years, comparison of calculations based on data from the three Nepal Living Standards Surveys indicates that over time the proportion of urban households is growing, though gradually. In 1995, only 21.23 percent of total households in Nepal lived in urban areas. The figure in-

creased to 29.75 percent in 2003 and to 34.86 percent in 2011.

The urban mean (table 3.5) is greater than the rural mean, according to data from all three surveys, but the gap is slowly narrowing. The difference in the average well-being score between rural and urban Nepal was 15 in 1995 and 2003; it came down to seven in 2011. The urban proportion in the lower deciles increased significantly of late. This suggests a need for appropriate policies to manage urbanization, without neglecting the development of rural areas, where most of Nepal's citizens are located.

Nepal is primarily a patriarchal society, with 73.4 percent of households headed by male members in 2011. Nonetheless, the pro-


Idune 3. I

Gaps between deciles, percentages

FIGURE 3.2

Gaps in the average household well-being index between the Kathmandu Valley and other eco-development regions, 1995, 2003 and 2011

portion of female-headed households has risen over the past 15 years.

In 1995, just 13.6 percent of household heads were females, a figure that climbed to 19 percent in 2003 and 26.6 percent in 2011. Table 3.6 shows that the share of female-headed households in the top decile rose from 5.1 percent to 18.9 percent during 1995-2011. The share of female-headed households rose more significantly in the upper deciles than in the lower, less well-off deciles. The gap in mean well-being between male- and female-headed households has come down sharply over the years.

Annex 7 shows the distribution of households by deciles and regions, providing detailed information on how shares have

evolved over time. The majority of households in the highest decile belong to the Kathmandu Valley, as could be expected, across data from all three surveys. The Eastern and Central Tarai had the second largest share of the highest decile in 1995 at 28 percent, but that fell to only 9.3 percent in 2011. The Western Hills, on the other hand, shows higher presence in the top decile in 2011 than in 1995.

From the perspective of inclusive development, households in all regions should advance as equally as possible. But the nine eco-development regions are still remarkably different in terms of household well-being. Table 3.7 shows average well-being scores of each region as well as their ranks during 1995-2011.

The first and last ranks remain unchanged between 1995 and 2011. But there are some significant changes in rankings of some of the other regions. In the last column, regions whose rankings went up are underlined, while those whose rankings fell are circled. The most striking fall is that of the Western Tarai, followed by the Eastern and Central Tarai, and the Mid Western and Far Western Tarai. Generally, average household status in the Tarai fell relative to the other regions.

A comparison of the relative gaps between the Kathmandu Valley and the eight other regions is shown in figure 3.2. Once again, gaps widen between 1995 and 2003, but subsequently close. In fact, the average household well-being index gaps between the Kathmandu Valley and the other eight regions are smaller in 2011 than in 1995.

TABLE 3.6

The number of female-headed households is growing

Year	Gender				'	D	eciles .					Overall	Mean	Standard
		Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10			deviation
2011	Male	81.1	78.4	75.4	74.4	75.6	71.6	69.0	72.1	69.8	71.5	73.4	33.67	8.96
	Female	18.9	21.6	24.6	25.6	24.4	28.4	31.0	27.9	30.2	28.5	26.6	32.58	8.60
2003	Male	84.6	82.3	83.6	84.2	81.3	82.2	76.6	78.4	75.8	78.2	80.4	17.287	9.504
	Female	15.4	17.7	16.4	15.8	18.7	17.8	23.4	21.6	24.2	21.8	19.6	15.753	8.745
1995	Male	94.9	93.1	88.2	89.1	88.9	87.4	85.0	83.7	83.3	77.8	86.4	26.295	9.921
	Female	5.1	6.9	11.8	10.9	11.1	12.6	15.0	16.3	16.7	22.2	13.6	22.839	8.932

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

TABLE 3.7

Mean household well-being index values and ranks of the nine eco-development regions

		,	·		Ranks		
Eco-development region	1995	2003	2011	1995	2003	2011	
Kathmandu Valley	43.17	31.30	41.98	1	1	1	
Eastern and Central Tarai	27.36	18.00	31.68	4	4	7	
Eastern and Central Hills	24.96	11.57	33.12	6	6	4	
Eastern and Central Mountains	23.47	10.73	33.26	7	7	3	
Western Tarai	29.29	21.65	31.32	2	2	8	
Western Hills	27.84	15.48	37.05	3	5	2	
Mid Western and Far Western Tarai	26.95	19.08	32.09	5	3	<u>6</u>	
Mid Western and Far Western Hills	22.47	10.30	32.26	8	8	(5)	
Western, Mid Western and Far Western Mountains	16.22	8.41	29.52	9	9	9	

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

Caste and ethnicity

The average household well-being index varies widely depending on the caste or ethnicity of household heads. The mean score is high for upper-caste groups like the Brahmans and Chhetris. The share of the upper castes is high in the top deciles, showing a downward trend towards the bottom. Among the Tarai Brahmans and Chhetris, however, the fall in the share in the top decile is quite pronounced, as is the rise in the lower deciles.

Among the Janajatis, the share has significantly risen in the upper and middle deciles, with declines in the lower deciles. The share of Newars and Thakalis has decreased somewhat in the upper deciles with a relatively small rise in the lower deciles. Traditionally considered lower-caste groups are mostly concentrated in the bottom deciles. There has been some increase in the share of Dalits in the upper deciles, but the proportion remains largely unaffected in the middle and lower deciles. The share of Muslims in the lower deciles has climbed sharply.

One positive sign is that differences in averages among caste and ethnic groups have started falling. Chapter 5 provides detailed analysis of the evolution of household wellbeing and individual ability indexes according to caste and ethnicity.

Concluding remarks

While the regional access and household well-being indexes are connected, each is important in its own right. The access index shows the ranking and gaps of the nine regions. The well-being index logically depends on the access index, and a set of other variables that are essentially households' own investments.

The access index underscores the need to close regional gaps in order to achieve more evenness in household well-being. But investment in human capital, such as education of the household head, and physical capital, such as sanitation, also emerge as priorities. Our analysis underscores equitable education, already prioritized by the Government, as a key determinant of household well-being, rather than enrolment rates at the national level. For physical capital, Nepal is slightly behind sanitation-related Millennium Development Goal (MDG) targets, as addressed in its MDG acceleration framework. The framework's priority of "toilets for girls in schools" is not the issue identified in the present analysis, which has more to do with sanitation facilities in the household.

Mean gaps in both the access and well-being indexes widened during 1995-2003 and started narrowing during 2003-2011. This

Well-being gaps between socioeconomic groups are narrowing. could be explained by ad hoc liberalization in the first period, followed by more emphasis on inclusive progress. There was also disruption of development in remote rural areas because of violent conflict during 1996-2005, which was rectified in the later period. Conflict, disturbances and economic upheavals also explain the increase in income inequality during 1995-2003 and decline thereafter, suggesting that conflict had a more seriously negative impact on the well-being of poorer and more vulnerable communities.

The Kuznets's curve phenomenon is well known. Lower inequality during 2003-2011 was not accompanied by higher growth, however, but by lower growth. This is an interesting phenomenon, where Nepal seems to have moved in a reverse direction along the Kuznets's curve. While "inclusion without growth" is just as unattractive as "growth without inclusion," the trend towards inclusion in well-being at least implies that a foundation for stronger inclusive growth is being built. Narrowing gaps in well-being is consistent with the lower inequality of income and consumption reported elsewhere. Combining the two sets of facts, the policy message is that more emphasis is needed to step up the rate of growth, while continuing to strengthen the efforts made through social protection policies, in particular to reduce inequality.

While growth is urban-centric in many developing countries, this is not necessarily a good prescription for Nepal, given its immense spatial diversity. The comparison with the Kathmandu Valley is emphasized with a view to urging more investment in agriculture across this predominantly rural country.

The nine eco-development regions can be clearly ranked from best to worst in terms of access to facilities. The ranking has not changed in the last nearly 20 years, implying that regions relatively developed in 1995 remained so in 2003 and 2011. The Kathmandu Valley region, the Western Tarai, and the East-

ern and Central Tarai rank in the top three, while the Eastern and Central Mountains, the Mid Western and Far Western Hills, and the Western, Mid Western and Far Western Mountains rank in the bottom three. In general, the Tarai regions have fared better than the Hills regions.

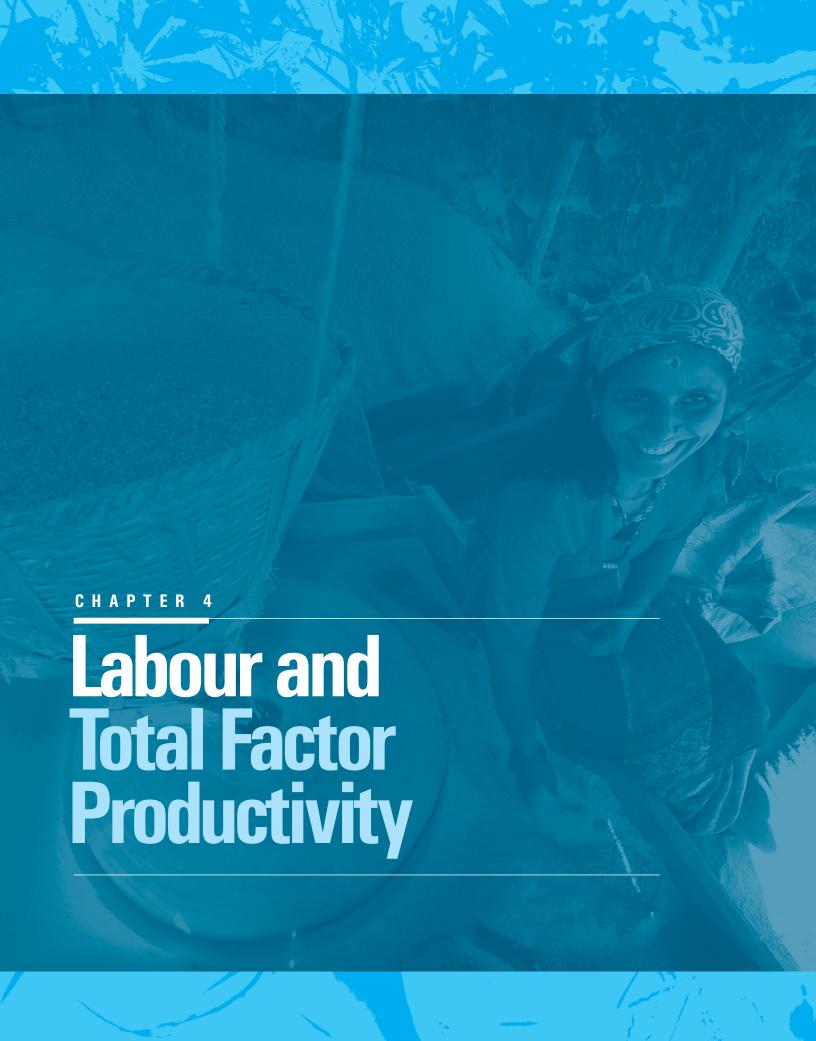
The gap between the most and least developed regions seems to be easing over time, however. In terms of development status as measured by access to facilities, in 1995, the Kathmandu Valley and the Western Tarai were, respectively, 2.6 and 2.3 times more developed than the Western, Mid Western and Far Western Mountains. Although there was a spike in 2003, this differential has decreased to 2 and 1.9, respectively, in 2011. There are strong inequalities within the less developed regions, nonetheless. The coefficient of variation in the Western, Mid Western and Far Western Mountains in 2011 is not only high, but nearly twice as high as in 1995. Inequality increased within four of the nine regions, mainly the Mountains and Hills, in 2011 compared to 1995. Given the inability of the Government to fully utilize its fiscal space to increase public investment, development partners are well advised to invest in schools, health posts and roads, especially in rural areas.

The household well-being index shows significant changes during 1995-2011. The Kathmandu Valley consistently ranks at the top, while the Western, Mid Western and Far Western Mountains rank the lowest. Among the regions that have advanced are the Western Hills, the Eastern and Central Mountains, and the Eastern and Central Hills. Regions that have regressed in ranking are the Western Tarai, the Eastern and Central Tarai, and the Mid Western and Far Western Tarai. Comparison of the Kathmandu Valley and other regions shows that in spite of considerable inequalities, the gaps in 2011 are smaller than in 1995. Evidence from the Tarai regions indicates that

Vigorous investment in agriculture is required in order to reduce regional imbalance in wellbeing. even though access to facilities is an important determinant of household status, there were other factors that had significant impacts, especially in terms of the other human development indicators reported in chapter 2.

Although this report does not find too much discrepancy between male- and female-headed households yet, this may quickly change due to the high rate of out-migration of male members of rural households. The male-female ratio in Nepal has gone down quite dramatically to 94 men per 100 women, according to the 2011 Census.

Overall, the fact that the mean gaps in potential productive abilities, have not widened, as reflected by the access and well-being indexes, is an extremely positive outcome. In fact, rural and urban gaps have narrowed. Some discrepancies between the nine eco-development regions, as well as different ethnic groups, have remained persistent, which is typical in a mountainous country. This situation needs very firm action, including in terms of donors and development partners who, in some cases, avoid difficult regions due to higher "business costs."


Guha-Khasnobis 2012a.

² Guha-Khasnobis 2012b.

For details on principle component analysis, see the technical appendix.

⁴ Haat bazaars refer to temporary local markets that operate on certain day(s) of the week or sometimes month.

The value of squared cosines of each variable in a factor is taken as the significance of that variable.

Labour and Total Factor Productivity

Aggregate labour productivity is low and has to be improved. Enhancing productivity, particularly in manufacturing, could propel growth and development. Yet there is no stable pattern of growth. Regions have a shrinking number of firms and jobs. Correcting policy lapses and structural impediments could reverse these trends.

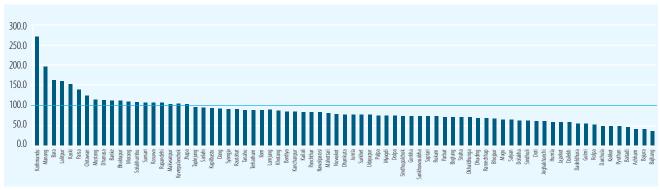
Productivity increases are vital for sustaining high growth, which is a principle basis for economic advancement and improvement in people's well-being. As a measure of output in relation to input (Hulten, 2001), productivity indicates the efficiency of inputs in firms and industries during the production process, revealing the strengths and weaknesses of an entire production system. Productivity increases with the rising efficiency of factors of production.

Analysis of productivity indicators needs due attention in policy-making for providing not only sector and micro-level policy guidance, but also for overall policy direction from a macroeconomic perspective, which is critical for a low-income country like Nepal. In chapters 2 and 3, we examined the extent of productive capacity at the regional, household, as well as individual levels in some traditional as well as innovative ways. This chapter analyses district labour productivity, and the total factor productivity of manufacturing establishments in order to get a quantitative sense of the actual usage of such productive capacity in delivering concrete outputs.

Labour productivity at the district level

Labour productivity offers a dynamic measure of economic growth, competitiveness and living standards. It is the value of goods and services produced in a period of time, divided by the hours of labour used to produce them. It measures output produced per unit of labour, and is usually reported in terms of output per hour worked or output per employed person. Put another way, labour productivity is equal to the ratio between a volume measure of output and a volume measure of input use.

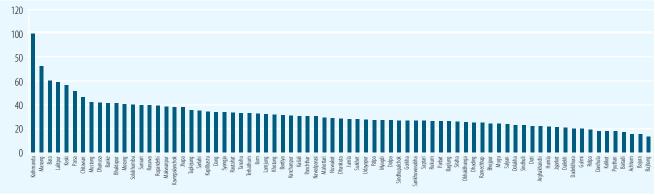
Constraints on data availability make the detailed calculation difficult in Nepal; this chapter computes labour productivity by district as: $\frac{Y_i}{L_i}$, where district GDP is output (Y_i) and the economically active population is labour (Li). Labour productivity has been calculated for 2010/11 based on the data provided by the Central Bureau of Statistics.


Labour productivity is also computed for the primary, secondary and tertiary sectors for the nine eco-development regions. A lack of time series data on district GDP and the labour force did not allow a comparative analysis of change over time. Computation at a single point of time provides cross-sectional distribution of labour productivity over different districts and regions.

Low and skewed labour productivity distribution by district

Average national labour productivity stands at Rs. 118,107.7. Figures 4.1 and 4.2 present an index of district labour productivity compared to the national average and the Kathmandu district. Out of 75 districts, 56 are below the national average; only 19 are above or equal to it. Kathmandu, with the highest ranking, has labour productivity almost three times greater than the national average. The

FIGURE 4.1


District labour productivity (Relative to National Average)

Source: Calculated based on district level GDP and economically active population provided by Central Bureau of Statistics, annex 8 table A8.1.

FIGURE 4.2

District labour productivity (Relative to Kathmandu)

Source: Calculated based on district level GDP and economically active population provided by Central Bureau of Statistics, annex 8 table A8.1.

top districts after Kathmandu are Manang, Bara, Lalitpur and Kaski. Manang, a mountainous district, has low population density and is a tourist destination.

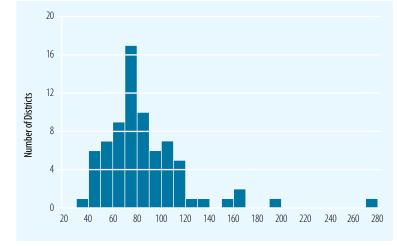
Districts from the Far Western and Mid Western development regions, such as Bajhang, Bajura, Achham, Baitadi, Pyuthan, Kalikot, Darchula and Rolpa, are at the bottom. Labour productivity in these districts is less than 20 percent of the level in Kathmandu. Figure 4.3 further shows the distribution of district labour productivity through a histogram that very much skews to the left, indicating that many districts have less than average labour productivity.

A majority of districts achieve around 80 percent of the national average, a lopsided pat-

tern reflecting large gaps in the skills of workers and use of improved technology, both of which are key to higher productivity. Labour productivity is thus not only low, but also involves a very uneven distribution of capabilities.

Another perspective on labour productivity is given by averages for three broad economic sectors (figure 4.4). The primary sector, mainly agriculture, has an average labour productivity of Rs. 68,562.8, which is about 58 percent of overall national average productivity (annex 8, table A8.2). This is substantially lower than the average in the secondary sector, encompassing manufacturing, construction and electricity, gas and water, where the average is Rs. 198,486.2. The tertiary or services sector average is Rs. 225,684.3.

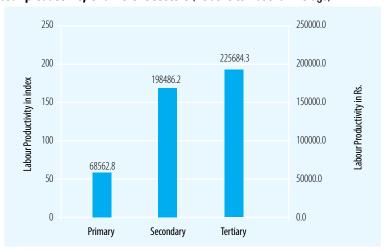
Nationally, agriculture suffers from low investment, and lacks commercialization and modernization. Two-thirds of people in the labour force are engaged in it, but the majority are unskilled, lacking knowledge on updated cultivation practices. The sector largely depends on the monsoon, while access to modern inputs and extension service is limited and poor in quality. Underemployment is a serious problem. Many young people have left farming for foreign employment. Nepal has become a net food importer.


In terms of contribution to GDP and employment, the secondary sector is in an early stage as it absorbs only about 9 percent of the labour force and contributes to less than one-fifth of total GDP. Experience in other developed countries shows that the manufacturing sector can generate higher economic growth and large scale employment simultaneously. Contrarily, Nepal has faced de-industrialization along with a fast move to economic and trade liberalization.

On the positive side, the tertiary sector is relatively efficient even compared to the secondary sector, as is the case in many emerging economies. This sector now contributes more than half of total GDP. Wider and more judicious use of modern banking, finance and telecommunication facilities as well as more skilled manpower could further speed up labour productivity in this sector compared to the others. High productivity in services stems mainly from Kathmandu and some other districts, however, and overall the sector has not generated enough employment to absorb excess labour from agriculture.

Annex 8 presents the top 10 districts with high labour productivity in the three sectors, which reveals some interesting facts. The same districts do not have the highest labour productivity in all sectors, indicating variations in comparative advantages. Some districts in the Mountains, such as Manang, Taplejung and Mustang, achieve top labour productivity rates in the primary sector. Khotang, Mugu, Manang, Dolpa and Humla

FIGURE 4.3

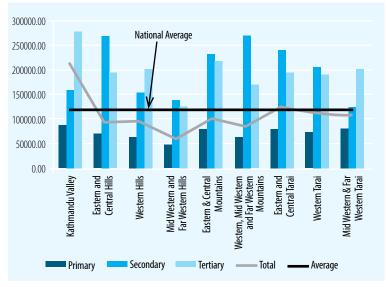

Histogram of the district labour productivity index

Source: Calculated based on district level GDP and economically active population provided by Central Bureau of Statistics, annex 8 table A8.1.

FIGURE 4.4

Labour productivity of different sectors (Relative to National Average)

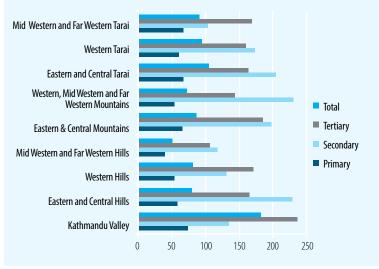
Source: Calculated based on district level GDP and economically active population provided by Central Bureau of Statistics, annex 8 table A8.2


do so in the secondary sector, and Rasuwa, Sankhuwasabha, Nuwakot and Jumla in the tertiary sector.

Labour productivity in the nine ecodevelopment regions

Labour productivity calculations across the nine eco-development regions show that the Kathmandu Valley has the highest score, followed by the Eastern and Central Tarai (figure 4.5 and annex 8, table A8.2). Other regions

FIGURE 4.5


Regional and sector labour productivity (in Rs.)

Source: Calculated based on district level GDP and economically active population provided by Central Bureau of Statistics, annex 8 table A8.2.

FIGURE 4.6

Region and sector labour productivity relative to the national average

Source: Calculated based on district level GDP and economically active population provided by Central Bureau of Statistics, annex 8 table A8.2.

have labour productivity below the national average. Mid Western and Far Western Hills rank lowest. Lower productivity is due to inadequate and poor quality physical and human capital. It affirms the low capability of these regions from the standpoint of human development.

In all nine regions, the labour productivity of the primary sector is low compared to the secondary and tertiary sectors, showing the relative backwardness and inefficiency of agricultural activities. Primary sector labour productivity in the Hills and Mountains is lower than in the Tarai.

Productivity is highest in the secondary sector in almost all regions except the Kathmandu Valley, the Western Hills, and the Mid Western and Far Western Tarai, where the tertiary sector ranks highest.

The Western, Mid Western and Far Western Mountains have the highest labour productivity in the secondary sector, due to the strong performance of manufacturing establishments, such as distilleries, and paper and furniture industries; producers of herbal products; and construction activities. These engage a limited number of people, however.

The index of labour productivity in the nine regions relative to the national average is presented in figures 4.6 and 4.7.

Labour productivity, the HDI and poverty reduction

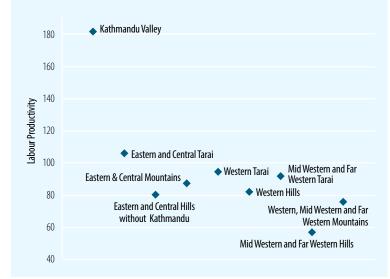
Higher labour productivity could mean people having more potential to increase their incomes, which could enhance human development through greater spending on health and education. Figures 4.8 and 4.9 present the relationship between labour productivity and the Human Development Index (HDI) for the 75 districts and nine eco-development regions, respectively, indicating a positive correlation. Figure 4.10 shows that when productivity is high, there is a strong possibility that poverty will decline, suggesting that the former could be a cornerstone of poverty reduction efforts.

The total factor productivity of manufacturing establishments

Modern growth theory suggests two fundamental sources of economic growth: the rate of factor accumulation and total factor productivity. After Solow (1957), many theoretical works have tried to decompose the growth rate of aggregate output into a component explained by factor growth and a Solow residual component—or total factor productivity (Amin 2002). A higher growth path based on higher total factor productivity is considered preferable to increased application of inputs, as the latter is deemed unsustainable due to supply constraints and the phenomenon of diminishing returns. Total factor productivity as a crucial measure of efficiency is thus an important indicator in policy-making and reform processes (Saliola and Seker 2011).

Broadly, two types of factors influence the economic performance of a firm: internal ones, such as technology, management practices and marketing strategies, and external ones, such as public policy and the institutional environment (Subramanian et al. 2005). Put another way, total factor productivity is driven primarily by technology, the quality of human and physical capital, and institutional factors related to governance and management that shape the environment for entrepreneurial activities.

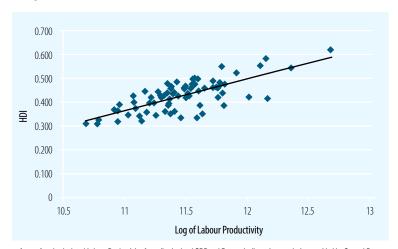
A rigorous quantitative analysis below examines trends in total factor productivity in the manufacturing sector in Nepal, the expansion of which is key for fast structural transformation, higher economic growth, employment generation and sustainable development. Attention to this sector is particularly important given its currently low and declining contribution to GDP.


Some findings on total factor productivity in manufacturing

Changing numbers of manufacturing establishments

Data from three manufacturing surveys conducted by the Central Bureau of Statistics were

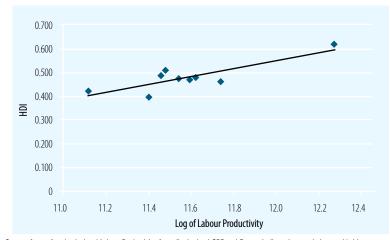
FIGURE 4.7


Regional spatial distribution of labour productivity

Source: Calculated based on district level GDP and economically active population provided by Central Bureau of Statistics, annex 8 table A8.2.

FIGURE 4.8

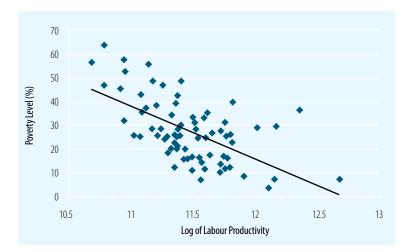
Labour productivity and the HDI by district


Source: Annex 4 and calculated Labour Productivity from district level GDP and Economically active population provided by Central Bureau of Statistics, annex 8 table A8.1.

used to compute and compare the total factor productivity of different industries in various eco-development regions. The surveys show that there were 3,557 firms in 1997, 3,213 in 2002 and 3,446 in 2007 (annex 10), an overall decline. The dip in 2002 can be explained by internal conflict at that time.

Manufacturers of food products and beverages, wood products, chemicals, and rubber and plastic products, as well as printing and publishing firms in-

FIGURE 4.9


Labour productivity and the HDI by region

Source: Annex 4 and calculated Labour Productivity from district level GDP and Economically active population provided by Central Bureau of Statistics, annex 8 table A8.2.

FIGURE 4.10

Labour productivity and poverty levels in 75 districts

Source: Small Area Estimates of Poverty by Central Bureau of Statistics and Calculated labour productivity from district level GDP and Economically active population provided by Central Bureau of Statistics, annex 8 table A8.1.

creased in number over the period, whereas producers of textiles and apparel, leather products, paper products and fabricated metal products declined substantially. Apparel manufacturing firms suffered from the elimination of quotas by the United States as per the 2004 ruling by the World Trade Organization.

Firms where numbers increased between 1997 and 2007 included those producing non-metallic mineral products (e.g., bricks, tiles, cement, lime, concrete and plaster, and glass), base metals, and electrical machinery and apparatuses, as well as furniture.² By 2007, the top five types of manufacturers by number included food products and beverages, textiles, non-metallic mineral products, textile industries, furniture and wood industries (such as sawmills). These are mainly low-tech industries, suggesting that Nepal lacks modern high-tech manufacturing firms.

Regionally, the Kathmandu Valley witnessed a substantial fall in its number of manufacturing firms, from 1,338 in 1997 to 798 in 2007. The government policy of shifting manufacturing industries out of the capital city due to environmental concerns, and the closing of many garment and carpet industries contributed to the decline. Half the manufacturing firms disappeared in the Eastern and Central Mountains because of poor business environment caused by internal conflict and power outages, among other reasons. Only in the Eastern and Central Tarai did a continuous increase in firms take place. New industries such as a producer of medical equipment and three companies manufacturing motorcycles and their parts opened after 2002. In the Western, Mid Western and Far Western Mountains, 12 additional firms opened between 2002 and 2007.

Due to the closure of a substantial number of firms in the Kathmandu Valley, the Eastern and Central Tarai had the highest share of industries, at 42 percent, by 2007. The Western, Mid Western and Far Western Mountains had only 17 manufacturers, less

than half the number in the Mid Western and Far Western Hills, and less than 1 percent of those in the Eastern and Central Tarai.

While manufacturing firms concentrated mainly in the Eastern and Central Tarai, the number operating in the Kathmandu Valley remained high. The Western Tarai, Western Hills, and Mid Western and Far Western Tarai also hosted a fair number.

Since the density of firms is largely determined by easy market access and available physical infrastructure, only a few located in the Eastern and Central Mountains, the Mid Western and Far Western Hills, and the Western, Mid Western and Far Western Mountains. Factors constraining industrial development in these regions, include lack of physical infrastructure including electricity and roads, and social infrastructure such as education and health services. Access to markets and technology, skilled manpower and finance are other major problems.

Employment creation in manufacturing establishments

Despite increases in the number of firms in 2007 compared to 2002, employment generated by them declined. The total number of manufacturing jobs was 196,708 in 1997, which fell to 191,853 in 2002 and 177,550 in 2007 (annex 11). This resulted from a shift to more capital-intensive production as well as the closing of many firms producing labour-intensive products. Employment fell substantially in textile and apparel manufacturing, and in tobacco and leather companies. Despite significant job increases in firms producing plastic products and some incremental increase in other areas, job creation lagged behind job losses.

In 1997, textile manufacturers were the top employment generators, followed by makers of construction materials. By 2007, the latter had become the main job creators, followed by manufactures of textiles, and food and beverages.

Changes in employment in manufacturing establishments by region shows that the Kathmandu Valley emerged as the main loser, with the number of jobs falling from 99,383 in 1997 to 38,909 in 2007. The Eastern and Central Tarai witnessed a gain in employment from 59,196 jobs in 1997 to 92,360 in 2007. The Western Tarai, and the Mid Western and Far Western Tarai also observed a rise. Employment in the Eastern and Central Hills, the Eastern and Central Mountains, and the Mid Western and Far Western Hills declined.

Average total factor productivity of manufacturing establishments

The overall total factor productivity of manufacturing firms declined from 1997 to 2002, but increased by 2007 (annex 13, table A13.4). Except for a few industries, almost all exhibited a similar trend, due to the severe adverse impacts of internal conflict from 1996 to 2007 and growing competition from cheap imports under an immature liberal trade regime. Seven different types of manufacturing firms, including those involved in publishing and printing, and in producing tobacco, leather, coke, base metals, radio, television and communication equipment, and motor vehicles were among those with negative average productivity. Except tobacco industries, which lost comparative advantages in Nepal, productivities of other types of firms improved by 2007.

In 1997, manufacturers of chemicals and chemical products, electrical machinery and apparatuses, and wood and wood products had an average total factor productivity higher than one, a benchmark for greater productivity. In 2002, only firms involved in publishing, printing and reproducing recorded media had attained this level. By 2007, five different types of firms had exceeded it, comprising jute, carpet, pashmina and textile factories; sawmills and plywood factories; lube oil and lubricant industries; electronics manufacturers; and producers of medical instruments.

Many firms witnessed a decline of total factor productivity in 2007, compared to 2002, such as those in publishing and printOnly a few industries have comparative advantages in Nepal; liberal trade policy has done little to help manufacturing. ing, and manufacturers of non-metallic mineral products. In 2007, the firms producing motor vehicles had the lowest total factor productivity, followed by those manufacturing machinery and equipment. Other industries had low scores for various reasons such as energy shortages, political instability, frequent strikes, sour industrial relations and increasing competition.

Total factor productivity trends reveal that only a few industries have comparative advantages in Nepal. The trade policy regime has done very little to help manufacturing firms increase their productivity and efficiency, contrary to arguments often made favouring this approach. A cumulative adverse effect has been seen in export performance, which has markedly deteriorated. Amid a continued rise in imports, the trade deficit reached 28 percent of GDP in 2012-2013, posing a serious problem for economic sustainability.

In recent years, Nepal has been exporting copper wire, galvanized iron pipes, jute, noodles, ayurvedic medicine, plastic utensils, polyester yarn, ready-made garments, shoes and sandals, toothpaste, wire, zinc sheeting and aluminium to India, and paper products, pashmina, ready-made garments, leather goods, tanned skins and woollen carpets to other countries.³ Except for the category encompassing jute, ready-made garments, pashmina and woollen carpets, all other industries had a total factor productivity that was less than the overall average. Because of this, Nepal has been losing competitiveness in international markets.

Total factor productivity of manufacturing in the nine eco-development regions

The 2007 average total factor productivity scores of manufacturing in the nine ecodevelopment regions are presented in figure 4.11 (see also annex 13, table A13.5). The results are largely consistent with general socio-economic development trends in particular regions depicted in different recent

surveys. Comparatively, the Kathmandu Valley and Tarai regions had higher productivity than the Hills and Mountains regions, which lack the necessary infrastructure and environment for developing manufacturing. The Kathmandu Valley had the highest productivity, followed by the Western Tarai, and the Eastern and Central Tarai, while the Western, Mid Western and Far Western Mountains had the lowest. This scenario was similar in 1997 and 2002.

By 2007, many regions had recovered earlier productivity losses, except the Mid Western and Far Western Hills, and the Western, Mid Western and Far Western Mountains, which are the most deprived areas in Nepal.

Patterns in different regions reflect capabilities for manufacturing and employment. Compared to the Kathmandu Valley, the Eastern and Central Tarai, and the Western Tarai, other regions have relatively limited productivity, indicating both underdevelopment and a lack of investment in enhanced capabilities. This explains the migration of people from these regions to urban areas such as the Kathmandu Valley and cities in the Tarai.

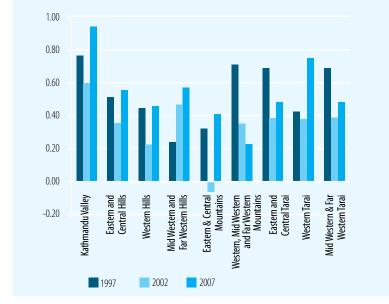
Total factor productivity and the HDI

Figure 4.12 presents average total factor productivity in 2007 and the HDI values of the nine eco-development regions. There is a positive correlation between the two, with higher productivity associated with higher HDI values. The former can contribute to the latter by raising capability and efficiency.

Industry dynamics of total factor productivity

Figure 4.13 and annex 14 present a detailed picture of total factor productivity across different industrial types in the nine eco-development regions and shows their comparative advantages.

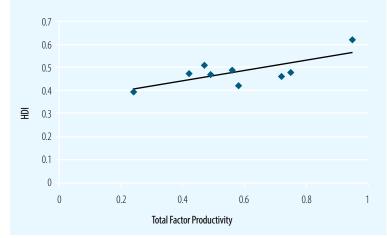
Higher total factor productivity can contribute to the HDI by raising capability and efficiency.


Among the major industry types, between 1997 and 2007, food and beverage manufacturers recorded factor productivin provement total ity in all regions except the Western, Mid Western and Far Western Mountains, reflecting the backwardness of that region even in basic food and beverage makers, and the survival problems of existing firms. These industries attained high productivity in the Kathmandu Valley, the Eastern and Central Tarai, the Eastern and Central Mountains, and the Western Tarai (annex 14, figure A14.1).

In 2007, tobacco industries were located only in the Eastern and Central Tarai, the Eastern and Central Hills, and the Western Tarai regions. They had disappeared from the Western Hills, and the Mid Western and Far Western Tarai. The performance of these firms has been very diverse among regions. Industry productivity, though decelerating, remained positive in the Eastern and Central Hills; some improvements were recorded in the Western Tarai. The Eastern and Central Tarai saw negative productivity in 2007 (annex 14, figure A14.2). Labour problem in large cigarette factories (such as Janakpur Cigarette Factory and Surya Nepal), the use of old technology in small tobacco factories, and disruptions in supplies of raw materials help explain low and even negative productivity.

Despite a substantial decline in their numbers, textile and apparel industry—comprising mainly producers of readymade garments, carpets, and pashmina and jute products—on average achieved moderate increases in productivity in the Kathmandu Valley, the Eastern and Central Tarai, the Western Tarai, the Western Hills, and the Mid Western and Far Western Tarai. But there was a fall in the Eastern and Central Hills, the Eastern and Central Mountains, and the Mid Western and Far Western Hills (annex 14, figure A14.3). Productivity declined over time in the Eastern and Central Mountains, despite limited

FIGURE 4.11


Average aggregate total factor productivity in the nine eco-development regions

Source: Annex 13, table A13.5

FIGURE 4.12

Total factor productivity and the HDI in the nine eco-development regions

Source: Annex 4 and annex 13, table A13.5

numbers of firms. Average productivity in the Kathmandu Valley, and the Eastern and Central Tarai was above one, while it was less than that in the other eco-development regions. In the Western, Mid Western and Far Western Mountains, these industries have disappeared.

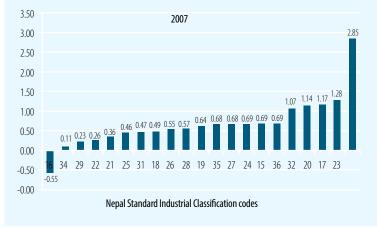

In general, firms in this category face tough competition from imports and are losing competitiveness in international markets.

FIGURE 4.13

Dynamics of the average total factor productivity of different industries

Source: Annex 13, table A13.4

Carpets and garments are major export items, but exports have been declining particularly since 2001. Many carpet industries have closed due to decreasing demand in international markets, including due to concerns about child labour and the lack of a Nepalese trademark. After the expiration of the quota system, ready -made garments faced tough competition in global markets. Duty free or quota free market access facilities have been obstructed on the pretext of rules of origin, and also some countries are still reluctant to provide such facilities despite agreed commitments.

The average total factor productivity of tanning and leather firms was negative in 1997 (annex 14, figure A14.4). Many factories closed in the Western Hills, and the Mid Western and Far Western Tarai. Their overall number declined precipitously from 77 in 1997 to 36 in 2007. A marginal rise in their productivity by 2007 took place in the Kathmandu Valley, the Eastern and Central Tarai, the Eastern and Central Hills, and the Western Tarai, despite absolute values remaining low compared to other types of firms. This group of industries includes mainly footwear manufacturing, and tanning and leather dressing firms. In recent years, Nepal has been exporting shoes and sandals to India, and ready-made leather goods and tanned skins to other countries. With increased export potentials, as well as possibilities for enlarging domestic markets, such industries could flourish, especially aided by schemes to enhance productivity and efficiency.

The total factor productivity of firms manufacturing wood and wood products, except furniture, and articles of straw and plaiting materials declined in all regions in 2002 and recorded some improvement in 2007 (annex 14, figure A14.5). But productivity remained low in 2007 compared to 1997. Regionally, substantial improvements had taken place in the Mid Western and Far Western Hills by 2007, suggesting the com-

parative advantage of such products in these regions. The average productivity of these firms was very low in the Eastern and Central Mountains in 2007; they are absent from the Western, Mid Western and Far Western Mountains. Since these industries rely on forest materials, productivity is directly affected by the availability and pricing of supplies.

The total factor productivity of paper and paper product manufacturers in the Western, Mid Western and Far Western Mountains was high compared to other regions in 2007 (annex 14, figure A14.6). A few firms produce traditional paper popular in export markets—hate kagaj, which is also called Nepali paper. Nepal has a long history of these exports. Productivity was also high in the Western Tarai, which has stationary and packaging firms, and two large paper mills, but low in regions such as the Western Hills. In the latter, firms are relatively weak and face competition from imported goods since they mainly use traditional production methods. The Mid Western and Far Western Tarai does not have this type of firms.

In contrast to trends in other areas, the total factor productivity of firms engaged in publishing, printing and reproducing recorded media improved in 2002 over 1997, but declined substantially in 2007 (annex 14, figure A14.7). These firms are mainly concentrated in the Kathmandu Valley, the Eastern and Central Tarai, the Western Tarai, the Western Hills, and the Mid Western and Far Western Tarai. Though they existed for some time in the Eastern and Central Hills, and the Eastern and Central Mountains, they have now disappeared from these regions. Overall productivity was very low in 2007 despite an expansion in the number of publishing and printing firms. High input costs, including for paper, ink, negatives and plates, and energy shortages have had adverse impacts. firms in the Kathmandu Valley have high productivity through access to modern inputs and regular upgrading of technology.

Manufacturers of chemicals and chemical products had quite high total factor productivity in 1997, which substantially declined in 2002, except in the Western Hills. This group includes firms producing paints, herbal products, soaps, medicines and other chemicals. Although productivity improved in 2007 on average, it remains below the 1997 level. Regionally, it rose substantially in the Mid Western and Far Western Tarai, but was quite low in the Kathmandu Valley (annex 14, figure A14.8). The Western Tarai, and the Mid Western and Far Western Tarai have high potential for these businesses because of higher productivity and ready availability of raw materials.

As in many other industries, the average total factor productivity of manufacturers of rubber and plastic products declined in 2002 and improved in 2007. The Mid Western and Far Western Tarai were the only regions where productivity rose above one (annex 14, figure A14.9). The Western Hills had very low scores in 2007. It has only one firm, the Gorakhkali Rubber Factory, which continuously faces efficiency and management problems.

The average total factor productivity of firms producing non-metallic mineral products remained less than one in all regions in 2007. It was higher than one in the Eastern and Central Mountains in 2002, and in the Western, Mid Western and Far Western Mountains in 1997 (with only one firm, in Darchula district). This group mainly includes brick factories, crusher factories, cement industries, concrete producers and stone product makers. Average productivity did not improve in most regions. There was slight improvement in the Kathmandu Valley, the Eastern and Central Tarai, and the Western Tarai (annex 14, figure A14.10). Chronic electricity shortages and increased environmental concerns impacted these industries despite their higher potential for growth.

Producers of base metals and fabricated metal products, except machinery and

Chronic electricity shortages constrict some industries, despite their higher potential for growth. equipment, improved their total factor productivity significantly in 2007, compared to very low levels in 1997 and 2002 (annex 14, figure A14.11). But the higher level was recorded only in the Eastern and Central Hills, the Eastern and Central Mountains, and the Mid Western and Far Western Hills. These firms may have more prospects for expansion in these regions.

Among firms producing electrical machinery and apparatuses, total factor productivity steeply declined in 2002 compared to 1997 (annex 14, figure A 14.12). Though there was some improvement by 2007, values were still below those of 1997. Total factor productivity in 2007 exceeded a score of one only in the Western Tarai, and the Mid Western and Far Western Tarai. In the Western Hills, it continuously declined into the negative in 2007, but in the Mid Western and Far Western Tarai it turned positive in 2007 from a negative in 2002. These manufacturers do not operate in the mountain regions. The Western Tarai, and the Mid Western and Far Western Tarai have potential for more of these firms.

The average total factor productivity of furniture firms declined in 2002 over 1997 and improved in 2007 (annex 14, figure A14.13). Still, the value is less than one.

Conclusions

Industrialization of lagging regions has to address policy lapses and structural and institutional impediments. Structural change and economic transformation are closely associated with productivity enhancement in major economic sectors. Countries that have been able to divert away from agriculture and other traditional products have been successful in accelerating development and achieving relatively rapid poverty reduction. With greater agricultural productivity, and the movement of labour and other resources from agriculture into modern economic activities, especially industry, overall productivity has risen along with incomes.

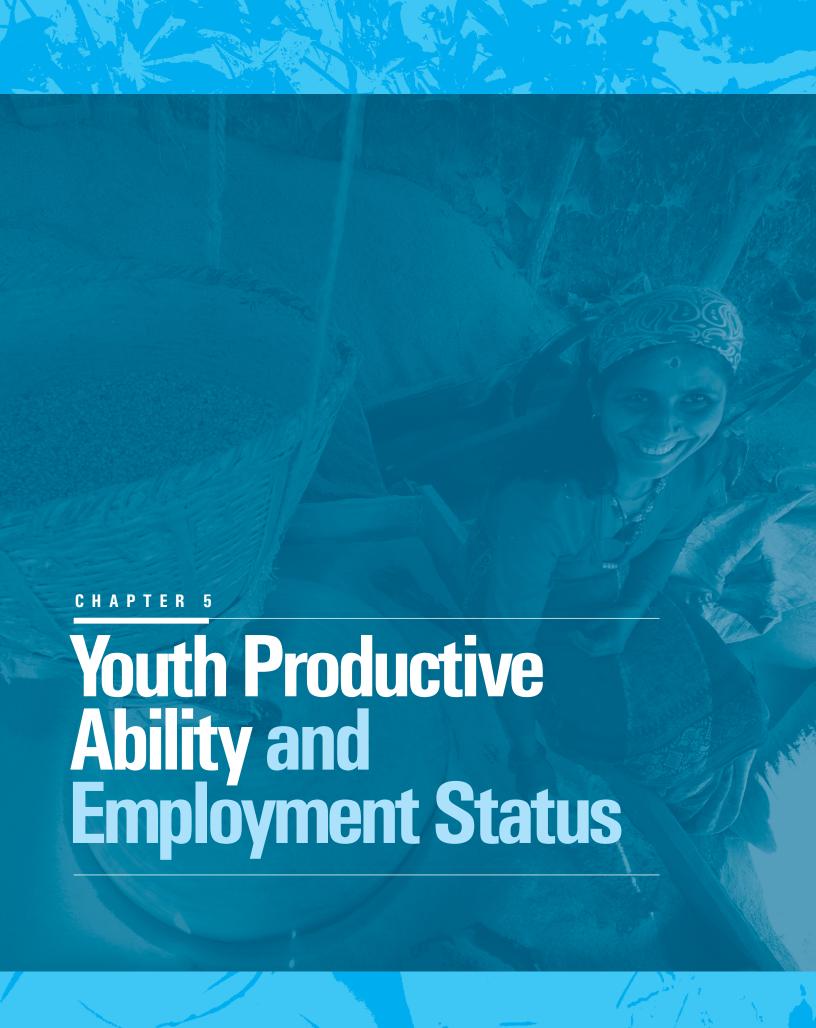
A rigorous quantitative analysis of trends in total factor productivity in the manufacturing sector broadly corroborates that productivity expansion will be key to high growth and sustainable development in Nepal, and is critical from the perspective of human development and capabilities.

Analysis based on the manufacturing surveys indicates that there is currently no stable growth pattern. Except in the Eastern and Central Tarai, all other eco-development regions saw declines in the number of manufacturing firms between 1997 and 2007.

Despite some incremental increases in the numbers of some types of firms from 2002 to 2007, employment generated by them actually declined, indicating a jobless revival. Capital-intensive modes of production and the closing of manufacturers of labour-intensive products had adverse impacts, especially in the Kathmandu Valley, followed by the Eastern and Central Hills, and the Eastern and Central Mountains. Trends in total factor productivity show that under the existing production structure, only limited industries have comparative advantages in Nepal

Current policies have done little to raise the efficiency and productivity of firms essential for industrialization, or to develop an adequate investment environment. A growing trade deficit and a lack of strategies to cope with increased competition from imports has meant that many industries, instead of flourishing, have collapsed over time. This has especially been the case in backward regions, even in those that otherwise have strong potential for growth. An industrialization drive focusing on lagging regions will be unlikely unless policy lapses, and structural and institutional impediments are corrected. Such an effort could spur private investment.

Across the nine eco-development regions, the average total factor productivity of manufacturing is largely consistent with general trends in socio-economic development. Although the Kathmandu Valley has the highest productivity, even that level is far


behind those of other South Asian countries. Productivity in the Western, Mid Western and Far Western Mountains region is very low. Insufficient industrial capability to raise productivity coupled with the lack of policies to promote industrialization, especially in underdeveloped regions, has undermined the basic tenet of more equitable and balanced development. The nine eco-development regions generally display a positive correlation between total factor productivity and HDI values, and a negative correlation between labour productivity and poverty.

The underlying reasons for disparities in labour and total factor productivity, across sectors, industries and regions, need to be more closely examined. Generally, such differences are attributed to gaps in productive abilities among different segments of the working population in general, and youth in particular. This issue is analysed in the next chapter.

According to Nepal Standard Industrial Classification codes 15, 20, 24, 25, 22, 17 and 18, 19, 21 and 28, respectively. See annex 9 for a list of codes.

According to Nepal Standard Industrial Classification codes 26, 27, 31 and 36 respectively.

Nepal Standard Industrial Classification Codes 27, 28, 17, 15, 24, 25, 15, 17, 19, 24, 31, 27, 28, 21, 17, 17, 19, 19 and 17, respectively.

5.

Youth Productive Ability and Employment Status

The working age population needs to be employed in occupations which matches their true ability. Reforms are necessary to ensure that human capital is strengthened in a comparable manner, and utilized fully.

In chapter four, estimates of labour and total factor productivity were analysed in detail. Labour productivity, in particular, is an indicator of the actual performance of Nepal's workforce in transforming its productive ability into economic output. Chapter 5 examines the potential productive ability of citizens aged 15-39, comparing it across regions and ethnic groups, and considering prospects for realizing a "demographic dividend" in the coming decades. Nepal has a young population, with about 33 percent of its people below the age of 15, and 57 percent between the productive ages of 15-59.

The measurement of individual productive ability, introduced in chapter 3, is backed by rich conceptual literature, but the index developed here is context specific, depending on available data in the Nepal Living Standards Surveys. It also focuses on people aged 15-39, approximately the working-age or youth population. All information on factors potentially contributing to individual ability was used, and principal component analysis employed to isolate dominant variables and create a unique index for each individual. A main question driving the analysis was whether or not Nepal's young people are performing to their full potential.

The productive ability of an individual is assumed to depend on a number of personal characteristics, including health and education status, and family or household factors. The latter is summarized by the household well-being index presented in chapter 3, which also incor-

porates regional development status through the access to facilities index. Directly and indirectly, the individual ability index is based on the maximum number of possible variables.

With data from the first Nepal Living Standards Survey, principal component analysis yielded four components for constructing the index, defined as the presence of a father and mother at home; the education levels of the father, mother and individual; marital and household well-being status; and chronic illness or any disabilities. Data from the second survey revealed the same pattern, except that household well-being status dropped out as a significant variable in any of the components. Calculations based on the third survey yielded six principal components with household well-being status re-emerging as the most significant variable in the third component.

The individual ability indexes calculated from the surveys were grouped into deciles. Annex 15, tables A15.1, A15.2 and A15.3 show the share of each of the nine eco-development regions in each decile in 1995, 2003 and 2011.

In 1995, 42 percent of individuals in the top or most capable decile came from the Kathmandu Valley. In 2011, this share fell to 32 percent. During the same period, the share of the Kathmandu Valley in the bottom or least capable decile went up from a negligible 0.6 percent to 7.6 percent. The Eastern and Central Tarai has the highest share of individuals in the bottom decile, at around 33 percent. Table 5.1 shows the mean index in each region, separately for males and females, along with the dispersion.

There are no significant potential productive ability gaps between young men and women in Nepal across the regions. Based on data from Nepal Living Standards Survey 2011, the average ability of women in Kathmandu is slightly higher than that of men.

There is more variation in female capability at present than in 2003 and 1995, how-

ever. The gender compositions of the deciles are given in tables 5.2, 5.3 and 5.4, showing significant changes over time. The share of females in the highest decile is substantially higher than that of males in 2011, compared to 1995 and 2003. The female shares are more or less equal in the upper deciles in 1995 and 2011, in contrast to 2003, when they were

TABLE 5.1

Male-female productive ability

		Distribut		dual ability index by	the nine eco-	· ·		995-2011		
Eco-developmer	nt region		1995			200			2011	
Mean		Mean	Standard deviation	Coefficient of variation	Mean	Standard deviation	Coefficient of variation	Mean	Standard deviation	Coefficient of variation
Kathmandu	Male	17.16	11.0	64.52	70.75	15.65	22.12	63.88	10.86	17.00
	Female	15.74	8.03	51.03	63.90	18.22	28.52	63.99	11.04	17.25
Valley	Total	16.46	9.72	59.05	67.34	17.32	25.71	63.94	10.95	17.13
Fastara and	Male	11.85	7.50	63.33	55.05	21.80	39.60	59.91	11.65	19.45
Eastern and	Female	11.50	5.03	43.74	46.62	17.70	37.97	55.66	12.01	21.57
Central Tarai	Total	11.68	6.44	55.14	50.74	20.25	39.91	57.48	12.04	20.94
F	Male	11.46	6.66	58.13	54.42	21.14	38.84	60.01	12.03	20.04
Eastern and	Female	11.45	6.17	53.89	47.68	17.56	36.84	57.91	11.21	19.35
Central Hills	Total	11.45	6.40	55.92	51.05	19.71	38.62	58.77	11.59	19.72
Eastern	Male	10.23	5.54	54.16	56.91	18.76	32.97	59.65	12.74	21.35
and Central	Female	10.52	4.04	38.45	49.20	17.72	36.02	57.58	12.25	21.28
Mountains	Total	10.37	4.84	46.66	52.76	18.59	35.24	58.40	12.47	21.36
	Male	12.38	7.94	64.13	61.54	20.02	32.54	61.23	11.51	18.80
Western Tarai	Female	11.66	4.68	40.16	50.61	17.84	35.25	58.00	11.42	19.69
	Total	12.02	6.50	54.14	55.93	19.69	35.21	59.30	11.56	19.49
	Male	11.19	7.86	70.25	58.55	21.64	36.96	65.94	7.93	12.03
Western Hills	Female	12.52	8.56	68.40	55.05	17.16	31.16	61.85	10.53	17.03
	Total	11.90	8.26	69.46	56.61	19.35	34.19	63.46	9.80	15.44
	Male	12.33	7.32	59.39	54.24	22.22	40.97	62.10	9.99	16.08
Mid Western and	Female	11.47	4.50	39.23	48.89	18.13	37.08	57.84	11.32	19.57
Far Western Tarai	Total	11.90	6.08	51.11	51.63	20.49	39.69	59.50	11.01	18.51
	Male	9.79	6.02	61.51	48.67	22.98	47.21	60.48	9.44	15.62
Mid Western and	Female	10.62	6.06	57.07	45.58	16.98	37.25	54.50	11.05	20.28
Far Western Hills	Total	10.22	6.05	59.20	47.08	20.16	42.81	56.84	10.85	19.09
Western, Mid	Male	9.00	5.25	58.30	46.04	21.87	47.51	60.13	10.05	16.72
Western and Far	Female	8.98	2.62	29.24	39.47	14.62	37.03	51.65	12.01	23.25
Western Mountains	Total	8.99	4.14	46.07	42.80	18.92	44.19	55.43	11.93	21.52
	Male	12.14	8.09	66.65	57.09	21.76	38.11	61.66	11.08	17.97
Overall	Female	11.95	6.37	53.35	50.34	18.63	37.00	58.26	11.85	20.34
	Total	12.04	7.28	60.43	53.64	20.50	38.21	59.69	11.65	19.52

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

TABLE 5.2

Gender composition of deciles, 1995

Candar	Distribution of the individual ability index by gender, percent Gender												
dender	Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	Total		
Male	55.6	50.5	48.1	47.5	45.8	45.4	44.7	44.7	50.5	63.7	49.7		
Female	44.4	49.5	51.9	52.5	54.2	54.6	55.3	55.3	49.5	36.3	50.3		
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

TABLE 5.3

Gender composition of deciles, 2003

C d			I	Distribution of 1	the individual a	bility index by	gender, percen	t			Takal
Gender	Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	Total
Male	61.6	67.1	69.0	56.7	41.4	44.1	31.9	16.1	27.3	73.5	48.9
Female	38.4	32.9	31.0	43.3	58.6	55.9	68.1	83.9	72.7	26.5	51.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

TABLE 5.4

Gender composition of deciles, 2011

Candan			[Distribution of 1	the individual a	bility index by	gender, percen	t			Takal
Gender	Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	Total
Male	42.1	50.1	49.3	58.3	52.6	47.0	40.6	33.8	21.4	26.7	42.2
Female	57.9	49.9	50.7	41.7	47.4	53.0	59.4	66.2	78.6	73.3	57.8
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

lower. The share of females in the lowest decile is significantly higher than that of males in 2011, varying from 1995 and 2003.

While there are no clear signs of potential gender inequality in average productive ability and decile composition, this does not imply the absence of gender discrimination. Equal potential capabilities need to be examined in terms of achievement, a point explored in the next section.

Tables 5.5, 5.6 and 5.7 show the shares of rural and urban populations in each decile as calculated from data in the three Nepal Living Standards Surveys. Urban individuals always dominate the highest decile. In 2011, the share of rural individuals was higher in the other nine deciles.

A significant trend is the rise in the share of urban individuals in the lower deciles between

1995 and 2011. For example, the urban share in the lowest decile was 3.9 percent in 1995, but rose steeply to 19.2 percent in 2011. The number of urban people below the poverty line doubled in the same period. The productive ability gap between rural and urban areas is not all that significant except for the highest decile, however.

Productive ability and actual employment

The "main sector of employment" defined in the Nepal Living Standards Survey is the sector where the majority of working hours for seven days preceding the survey date were spent. If an individual was engaged in multiple sectors, the one in which s/he spent the most hours is regarded as the main sector.

TABLE 5.5

Distribution of rural and urban populations, 1995

Rural-					Per	cent					Tatal
urban	Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	Total
Urban	58.3	61.6	43.7	19.0	9.7	5.6	4.3	3.0	10.5	3.9	22.0
Rural	41.7	38.4	56.3	81.0	90.3	94.4	95.7	97.0	89.5	96.1	78.0
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

TABLE 5.6

Distribution of rural and urban populations, 2003

Rural- urban		Percent									
	Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	Total
Urban	71.8	33.2	35.7	48.2	33.6	18.5	23.6	12.8	15.4	12.9	30.6
Rural	28.2	66.8	64.3	51.8	66.4	81.5	76.4	87.2	84.6	87.1	69.4
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis

TABLE 5.7

Distribution of rural and urban populations, 2011

Rural- urban		Percent									
	Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	Total
Urban	60.0	42.8	49.6	37.5	44.5	38.6	34.9	28.1	16.6	19.2	37.2
Rural	40.0	57.2	50.4	62.5	55.5	61.4	65.1	71.9	83.4	80.8	62.8
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis

Based on that definition, the dominant mode of employment in Nepal is "self-employment in agriculture" for both young males and females, followed by "wage employment in nonagriculture." The other options are "wage employment in agriculture" and "self-employment in non-agriculture." The share of "wage employment in agriculture" declined continuously from 12.2 percent in 1995 to 2.8 percent in 2011. The share of "self-employment in agriculture" also decreased, from 70.7 percent in 1995 to 61.3 percent in 2011. Conversely, the share of "wage employment in non-agriculture" increased every year, from 9.5 percent in 1995 to 12.6 percent in 2011. The share of "self-employment in nonagriculture" gradually rose from 7.7 percent in 1995 to 12.7 percent in 2011. Although the "wage employment in non-agriculture" share is not high in terms of magnitude, it has increasingly become a preferred sector of employment.

Annex 16, tables A16.1, A16.2 and A16.3 show the shares of the four main employment sectors for each decile based on data from all three Nepal Living Standards Surveys, disaggregated by gender. The employment sector shares differ across deciles, with increases in the share of "wage employment in agriculture" in the lower deciles, while the share of "self-employment in non-agriculture" falls. This implies that individuals who have more productive potential, as measured by the ability index, have a preference for working independently, while those who are less able fall back as wage labourers in agriculture. There is also a tendency for more able individuals to find work in the "wage employment in nonagriculture" sector, which is a positive indication.

But "self-employment in agriculture" remains the dominant sector across all deciles.

Both males and females from higher deciles have lower proportional engagement in the "wage employment in agriculture" sector. Based on data from the third Nepal Living Standards Survey, the sector shares of both increase from decile 1 to decile 10. The percentage of males is 2.6 percent in decile 1 and 16.8 percent in decile 10, while for females it is 7.4 percent in decile 1 and 17.8 percent in decile 10.

In contrast, the percentage of individuals in "self-employment in non-agriculture" decreases from 23.2 percent in decile 1 to 11.3 percent in decile 10. Education and training with good health are the likely determinants of this tendency, since these factors increase the ability to absorb risks associated with this sector.

"Wage employment in non-agriculture" and "self-employment in agriculture" include the majority of people. The share of "wage employment in non-agriculture" ranges from 32.8 percent in decile 1 to 18.5 percent in decile 10. But this percentage varies by gender. Among males it is quite similar in all deciles, but for females it ranges from 28.2 percent in decile 1 to 12.5 percent in decile 10.

Employment sector distribution varies substantially between rural and urban areas. In the latter, the portion of people engaged in "wage employment in agriculture" from decile 1 is only 0.8 percent, which is negligible. "Self-employment in agriculture" in urban areas increases from 15.9 percent in decile 1 to 28.4 percent in decile 10. Many urban households do not own agricultural land; those who do tend to cultivate it themselves.

Working for wages

outside agriculture

is emerging as a

employment.

preferred mode of

Looking at the overall distribution of employment sectors, participation is increasing in non-agriculture for a number of reasons. Earning cash is possible from "wage employment in non-agriculture," the wage rate is higher, and it is easier to work there. There could be other reasons to explore.

Hours of work and productive ability

The Nepal Living Standards Surveys gathered information on the number of hours worked by each individual in each occupation. The analysis below relates the hours worked with individual productive ability. If the last section considered *where* young people are working and how this relates to their abilities, this one examines *how*

TABLE 5.8

Mean hours spent in various sectors of employment by rural and urban areas, and gender, 1995

Urban/rural	Gender	Wage employment in agriculture	Wage employment in non-agriculture	Self-employment in agriculture	Self-employment in non- agriculture
	Male	31.90	41.97	18.12	40.35
Urban	Female	21.48	33.54	22.41	35.87
	Total	26.35	39.78	20.86	38.68
	Male	20.93	25.66	26.65	29.51
Rural	Female	15.75	22.35	30.49	25.78
	Total	18.47	25.31	28.79	28.19
	Male	21.32	30.61	26.26	34.16
Total	Female	16.01	28.64	29.98	30.33
	Total	18.79	30.30	28.35	32.78
	Male	362	.012	036	038
Correlation urban	Female	198	037	142	025
	Total	297*	.004	095	027
Correlation rural	Male	076*	.079*	018	031
	Female	.014	.026	055**	.100
	Total	032	.060	041**	.012

Source: Computed from Nepal Living Standards Survey raw data. Note: * and ** denote 1% and 5% significance levels respectively.

TABLE 5.9 Mean hours spent in various sectors of employment by rural and urban areas, and gender, 2003

Urban/rural	Gender	Wage employment in agriculture	Wage employment in non-agriculture	Self-employment in agriculture	Self-employment in non- agriculture	
'	Male	34.94	41.27	31.32	37.72	
Urban	Female	31.38	31.05	31.71	31.01	
	Total	33.15	39.95	31.55	35.48	
	Male	26.50	48.94	26.16	47.11	
Rural	Female	28.38	40.97	25.25	37.70	
	Total	27.75	46.92	25.57	43.77	
	Male	34.54	45.33	30.76	42.43	
Total	Female	31.11	38.20	30.86	34.53	
	Total	32.78	43.91	30.82	39.71	
	Male	136*	.148**	105**	011	
Correlation urban	Female	010	.077	097**	.004	
	Total	042	.137**	095**	.043	
	Male	.555	109*	157*	187**	
Correlation rural	Female	.123	089	157**	094	
	Total	.171	093*	133**	068	

TABLE 5.10 Mean hours spent in various sectors of employment by rural and urban areas, and gender, 2011

Urban/rural	Gender	Extended economic work	Household work	Total in four sectors	Wage employment in agriculture	Wage employment in non-agriculture	Self- employment in agriculture	Self- employment in non-agriculture
	Male	1.45	5.16	45.04	10.43	43.18	10.70	45.07
Urban	Female	4.52	23.35	30.11	6.92	36.31	10.35	34.21
	Total	3.12	15.04	38.07	7.94	40.70	10.48	40.26
Rural	Male	9.55	5.81	28.62	9.58	24.87	11.89	29.95
	Female	16.18	24.04	18.90	8.64	19.33	13.00	21.57
	Total	13.56	16.84	22.97	8.98	23.34	12.57	25.90
	Male	6.26	5.55	34.59	9.66	32.85	11.73	37.21
Total	Female	12.13	23.80	21.87	8.44	28.40	12.64	27.12
	Total	9.68	16.17	27.65	8.87	31.45	12.29	32.52
	Male	075 **	.013	112	.270	024	068	053
Correlation urban	Female	103**	246**	004	306**	064**	027	016
uibaii	Total	101**	207**	032	121	042	041	017
	Male	130**	146**	191**	067	028	122**	035
Correlation rural	Female	182**	194**	059**	066	.204**	097**	065
Tutal	Total	264**	223**	057**	062	.053*	103**	017

Source: Computed from Nepal Living Standards Survey raw data.

TABLE 5.11

Mean hours spent in various sectors of employment by rural and urban areas, and gender, 2003

		Mean ability inde	ĸ	1		
Eco-development region	1995	2003	2011	1995	2003	2011
Kathmandu Valley	16.47	67.35	63.94	1	1	1
Easternand Central Tarai	11.69	50.74	57.48	5	7	6
Eastern and Central Hills	11.46	51.06	58.77	6	6	5
Eastern and Central Mountains	10.38	52.77	58.41	7	4	7
Western Tarai	12.02	55.93	59.30	2	3	4
Western Hills	11.90	56.62	63.47	3	2	2
Mid Western and Far Western Tarai	11.90	51.64	59.50	3	5	3
Mid Western and Far Western Hills	10.23	47.09	56.85	8	8	8
Western, Mid Western and Far Western Mountains	9.00	42.81	55.44	9	9	9

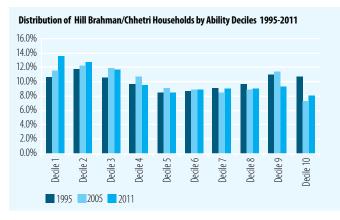
much they work in their respective sectors, a broad indication of the extent to which potential ability is reflected in actual output. Tables 5.8, 5.9 and 5.10 show the patterns.

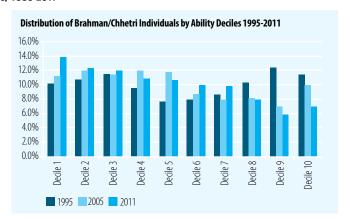
Both rural and urban individuals worked more hours in the "wage employment in non-agriculture" and "self-employment in agriculture" sectors, based on data from the first survey, but hours in rural areas were much lower in number than in urban areas. The correlation between potential ability and hours worked are not at all positively significant, except for males in "wage employment in non-agriculture." In this category, higher productive ability is positively associated with more hours worked.

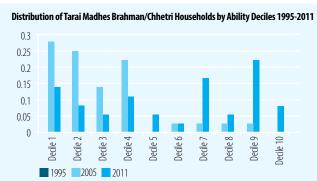
Calculations from data in the second survey show that patterns of hours spent in each sector remain the same, but the positive correlation between capability and hours for males in "wage employment in non-agriculture" is no longer valid. All other correlations are either very low or negative. Data from the third survey reveal no significant or meaningful correlations between capability and hours of work in any sector. This, by far, is the most worrisome feature of how human capital is used in Nepal. The productive abilities of men and women are comparable, auguring well for inclusive growth. But the weak correlation between ability and actual productivity is a stumbling block that needs attention.

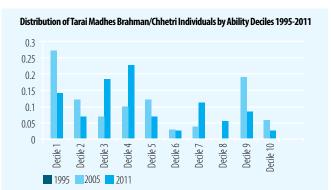
Caste and ethnicity

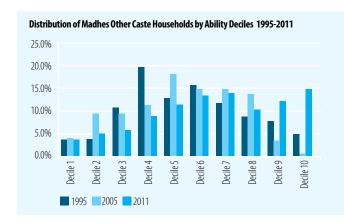
Calculations for this report classified young individuals by caste and ethnicity. Households were classified according to the caste or ethnicity of the household head. Figure 5.1 presents the distribution by decile of households and individuals for each of these groups for all three Nepal Living Standards Surveys. By looking at the household and individual indexes for each group next to each other, it is possible to get a visual impression of whether the two patterns are identical. The extent to which they are similar implies the importance of household status in forming individual status. When they differ, it means individuals are breaking free from their family status background.

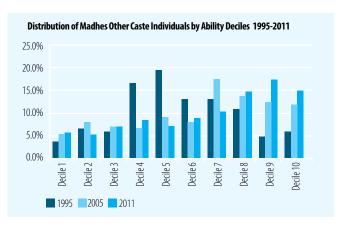

Shares of Hills Brahman/Chhetri households as well as individuals have increased in the upper deciles and fallen in the lower ones. Shares of Tarai Madhesi Brahman/Chhetri households have fallen quite dramatically in the upper deciles and risen sharply at the lower end. The movement of individuals in this group is in opposite directions, however, implying that the personal characteristics of individuals dominate household characteristics to a significant extent. Data classification issues meant this group could not be separately examined in 1995.

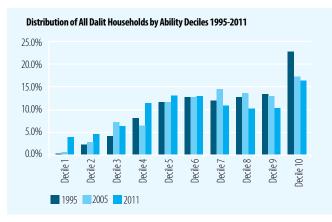

The shares of other Madhesi caste households and individuals have risen sig-

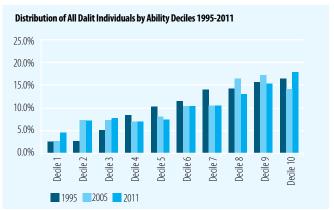

Individuals are not able to take full advantage of their abilities.

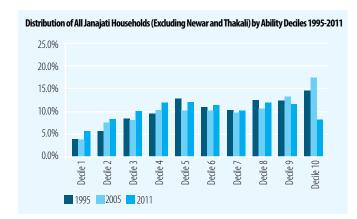

FIGURE 5.1

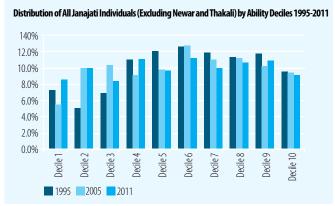

Distribution of ability in households based on caste and ethnicity, per decile, 1995-2011

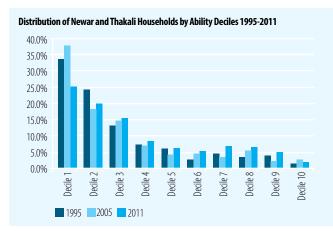


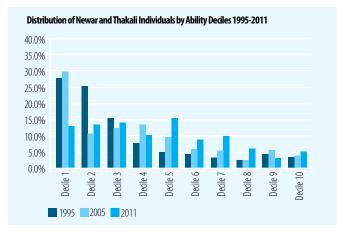


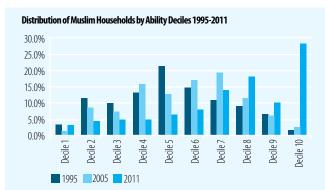


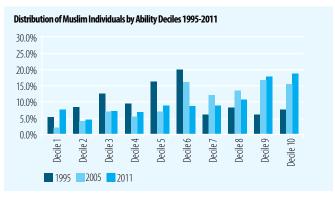












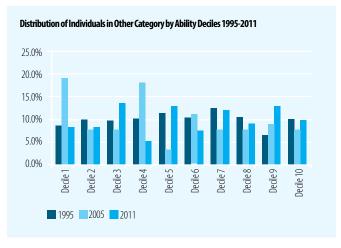
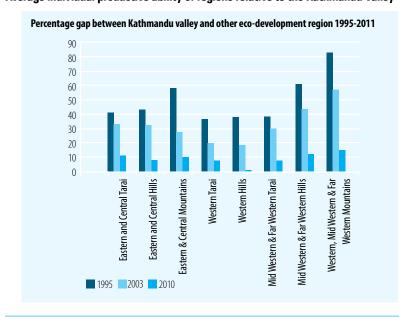



FIGURE 5.2

Average individual productive ability of regions relative to the Kathmandu Valley

Gaps in ability seem to be narrowing. nificantly in the lower deciles, but without much change in the upper deciles. The shares of Dalit households and individuals show a steep rise in the upper deciles, but have remained the same in the lower ones. The shares of Janajati households (excluding Newar and Thakali) rose substantially in the upper deciles, compared to the shares of Newar and Thakali households and individuals, which fell there. Muslim households' and individuals' shares rose sharply in the lower deciles, by far the most significant departure from inclusiveness.

Productive abilities across the nine ecodevelopment regions

The average productive ability indexes of young individuals in each of the nine eco-development regions were calculated, as shown in table 5.11, for 1995, 2003 and 2011.

Not much changed in terms of top and bottom scores. Ranks 1, 8 and 9 applied to the same regions in all three periods. There are some variations in the middle, but these are not dramatic. Gaps in the productive abilities of individuals across regions still prevail, although, as figure 5.2 depicts, they are narrowing.

Concluding remarks

Measuring individual productive ability at different levels helps assess the outcomes of past policies aiming at inclusion, and ascertain the potential for inclusive growth in the future. This report chose a three-index sequence: the development status of regions, as measured by access to facilities, which contributes to (among other things) household well-being, both of which in turn contribute to (among other things) individual ability.

Focused on people aged 15-39, the individual productive ability index discussed in this chapter reveals that household well-being significantly affects individual members. This influence was more pronounced in 1995 and 2011.

Regionally, as seen in all the measures in this report, the Kathmandu Valley ranks at the top of the individual abilities index, and the Western, Mid Western and Far Western Mountains ranks the lowest. The Kathmandu Valley is followed by the Western Hills, the Mid Western and Far Western Tarai, the Western Tarai, the Eastern and Central Hills, and the Eastern and Central Tarai. Relative to 1995, the Western Hills, Mid Western and Far Western Tarai, and Eastern and Central Hills have progressed, while the Eastern and Central Tarai, and the Western Tarai have gone down in rank.

The Kathmandu Valley has the highest ability share in the top decile, followed by the Eastern and Central Tarai. The Western Hills has increased its portion over the years. But the share of the Kathmandu Valley in the bottom decile has also risen between 1995 and 2011.

The mean value of the individual ability index is highest in the Kathmandu Valley followed by the Western Hills. The Western, Mid Western and Far Western Mountains con-

sistently has the lowest mean. While the ranking of regions by mean ability remains almost the same over time, the gap between the Kathmandu Valley and the Western, Mid Western and Far Western Mountains has declined from 1.83 in 1995 to 1.15 in 2011.

The mean values of the individual ability index disaggregated by gender show no significant differences between men and women, but in general, the index for females is slightly lower than that for males. By 2011, while the share of females in the top decile had increased remarkably, women also had a much larger share in the lowest decile. The male-female gap appears to be narrowing over time, however.

Calculation of data from all three Nepal Living Standards Surveys showed a higher urban share in the top decile and a more pronounced rural share in the lower deciles. Judging by the mean value of the index, the difference between urban and rural areas appears to be decreasing over time.

In terms of caste and ethnicity, there is no substantive difference between the household well-being and the individual ability index for the Hill Brahmans/Chhetris. For other groups, the picture is different. The share of other Madhesi caste groups in the lower deciles has increased relative to the household well-being index, as is true also for the Dalits, Janajatis and Muslims. At the same time, the shares of the Dalits, Janajatis and Muslims in the top decile have risen relative

to the household well-being index. This indicates that the individual ability index has much greater resilience than the household well-being index for these groups.

The most worrisome finding in this chapter is the lack of association between the ability of youth and their productive engagement, as indicated by actual employment by sectors and hours of work. Overall, the trends give a positive indication of inclusive outcomes as well as potential. There are important gaps, however, especially across regions, which require more attention in terms of public investment. The disturbing, and perhaps unsurprising, finding is the low correlation between productive ability and gainful employment both in terms of sectors and hours of work. For higher growth, more capable workers need to be employed in higher value added sectors. For such growth to be inclusive, existing gaps in potential need to be narrowed with targeted interventions in the various dimensions analysed in chapters 3 and 5. This suggests an important policy message: The labour market is not oriented towards making the most of the demographic dividend.

These findings are, in principle, consistent with Nepal's progress in terms of the MDGs and the HDI, although the analysis is much more refined and disaggregated, with significant methodological improvisations in capturing broader information sets and endogenously assigning weights to each component.

The trends indicate good potential for more inclusive development outcomes in the near future.

Conclusions and Recommendations

The report highlights the persistence of inequalities and imbalances in human development and productive abilities and indicates the potentials for reducing gaps offering evidence to guide assessment of past policies and those that might shape future steps. A guiding objective of state restructuring could be to reduce regional inequalities in socio-economic development and resource endowments.

uman development in its broadest sense depends on expanding human capabilities. The concept of capability, however, while conceptually and philosophically rich, defies identification of a set of indicators measuring its multiple and complex dimensions. The fact that capability encompasses "process," "outcome" and "choice" accompanied by the "freedom" to choose makes pinpointing indicators a trying task.

This Nepal Human Development Report has attempted to look at and assess some aspects of capability through traditional measures, as well as composite multidimensional indexes drawing on a range of available data at the household and individual levels. These give some idea of the existing and potential status of abilities, in a manner not done before in Nepal.

Unlike previous Nepal Human Development Reports, this one has a predominantly spatial focus, comparing different regions and districts. It finds that inequality is often rooted in geography. But over the past decades, and particularly after the pursuit of economic liberalization as the signature theme of economic policies since the 1990s, the question of spatial inequalities and imbalances in development has largely remained unattended. The logic of economic liberalization, which has persisted as the dominant discourse in development, has tended to view spatial inequalities as either self-correcting over the long run through trickle-down effects, or as a function of the imperatives of resource endowments and factor costs that largely guide investments both in

the public and private sectors. This perspective has mostly failed to address concerns raised by the socio-political discourse nurtured by the people's movement of 2006, namely, that of dealing with questions of social, economic, political and spatial exclusion and resulting inequalities.

The report's main thrust has been to explore such issues in terms of the productive abilities of regions, and their households and individuals. Measures of these have been approximated on the basis of the three Nepal Living Standard Surveys conducted since 1995—the main source of longitudinal information on a broad range of issues affecting productive abilities. The report also presents regional information on factor productivity derived from national Census data and periodic manufacturing surveys, and calculations of the Human Development Index (HDI) and related indexes.

Through the use of these various measures and indexes, the report has sought to explore three basic areas of inquiry:

- The status and potential of different regions in Nepal and discernible trends over time;
- The gender, rural and urban, and ethnic implications of current status, potential and trends over time; and
- The influence of public policies on current status, potential and trends, and how policies can address emerging issues.

These three areas elucidate how human development bears on regional development, household well-being and individual ability and vice-versa. Nepal's social and economic

diversity is matched in equal measure by its spatial diversity, and often the two are related in complex ways.

Since this reality has frequently been neglected in policy platforms, the report attempts to redress the lacunae. It makes the most of existing information, while aiming to lay the basis for the generation of more pertinent spatial data relevant to human development. It highlights not only the persistent nature of inequalities and imbalances, but also the potentials for reducing gaps, offering evidence to guide assessments of past policies and those that might shape future steps.

Social sector policies need to recognize the caste and ethnic dimensions of human development.

Human development: trends and implications

The trends in the HDI and Human Poverty Index (HPI) reported in chapter 2 have been positive across all regions, and caste and ethnic groups. The pace of change over time across regions has not been as fast as one would expect, however. Regions that rank lowest in these measures continue to lag behind, and broad regional inequalities persist, although there are signs that gaps could be narrowing.

Given the nature of variables that comprise the HDI and HPI, any strategy for improving their values needs to take a systemic approach that is framed by well-articulated priorities for the short and medium term. A systemic focus could be on strengthening basic education and health systems, including those for safe drinking water and child nutrition at the grass-roots. The short and medium term priority in education could be to improve general literacy and school attendance, and reduce school dropout rates.

Another emphasis important to human development could be on raising household incomes through large-scale local level employment generation in agriculture and infrastructure. In view of massive labour migration abroad, one feasible option may be to train potential migrants in areas of labour demand so that earnings from safe and well-monitored

foreign labour migration can be substantially enhanced.

The HDI and HPI rankings clearly show that regions that have rapidly improved HDI scores, such as the Western Hills and Western Mountains, are those making strides in literacy and education, and where earnings from remittances as well as tourism have improved. Lagging regions—such as the Mid Western and Far Western Hills, the Western, Mid Western and Far Western Mountains, and the Central Tarai—have been behind in these areas.

Social sector policies need to recognize the caste and ethnic dimensions of human development. Clear and ongoing caste and ethnic inequalities are revealed in different educational achievements and earnings. This strengthens the argument for deliberate strategies to increase inclusiveness by providing educational and economic opportunities for disadvantaged ethnic and caste groups such as the Dalits and Muslims

The same applies to disadvantaged regions such as the Western, Mid Western and Far Western Mountains, and the Mid Western and Far Western Hills. Nepal has pursued national strategies to promote education and health services. While these need to be effectively implemented, it may also be necessary to prioritize regions with low HDI and high HPI indicators for specific and targeted interventions to bring about rapid improvements.

The supply of infrastructure, and improvements in quality and access, without question have to be continually enhanced in all regions. At the same time, different contexts need to be well understood. In the Eastern and Central Tarai, for example, where a better score on the regional access to facilities index does not translate into a better HDI value, access alone does not seem to be a sufficient condition for use of physical and social infrastructure, mainly in education and health. Here, strengthening the demand side is as much a priority. A broader strategy focused explicitly on caste and ethnic as well as gender dimensions is called for.

While public policies can play a role in creating and reorienting development infrastructure, the case of the Eastern and Central Tarai illustrates the pivotal role of social mobilization and awareness in spurring demand for services, particularly among marginalized and disadvantaged caste and ethnic groups, as well as those who are poor. Civil society organizations and political parties have pivotal roles to play in this kind of societal transformation.

Labour and total factor productivity: trends and implications

Knowledge, skills and infrastructure, including agricultural extension services, are key to augmenting labour productivity from a human development perspective. The very low aggregate labour productivity seen in the Hills and Mountains regions of Nepal points to the need for area-specific policies linked to, among other goals, the development of human capital and physical infrastructure.

For a country where two-thirds of the labour force is engaged in agriculture, improvement in the productivity of the primary sector is a prerequisite for overall increases in the productivity of the economy, and consequent economic transformation and prosperity. A two-pronged approach—first, transformation of agriculture from subsistence to commercialization and modernization, and second, absorption of a growing labour force in the secondary and tertiary sectors by utilizing available and potential resources—needs high priority.

Nepal's diverse ecological regions have many unexplored and unexploited potentials in the field of agro-based industries, herbal products, hydropower and tourism. Specific policies and programmes focused on agriculture and biodiversity products could promote productivity. In remote Hill and Mountain regions, agricultural productivity also depends on access to roads, and education and health infrastructure. Easy availability of technical and vocational education is necessary for up-

ping efficiency, and developing entrepreneurial and business skills. In view of the problems in promoting industrialization, it would also be prudent to pursue policies bolstering employment in modernized agriculture.

In the manufacturing sector, total factor productivity needs to substantially improve, with a particular focus on regions where it is very low or negative. Priorities may include: intra-firm restructuring through more capital injection, introduction of improved technology, and enhancement of resource allocation efficiency backed by more support services and facilities. A new initiative with policy packages including institutional support measures may be required for prioritizing development of new industries in lagging regions, based on resource endowments and comparative advantages promising dynamic gains in the long run. Similar incentives could be important for encouraging industries that contribute to both import substitution and export promotion. Strengthening comparative advantages in backward regions in part entails development of road and energy infrastructure.

Industrialization led by higher total factor productivity and sustainable high growth will require a more robust private sector development strategy, with a focus on an environment attractive to domestic and foreign investors. Sufficient incentives and level playing fields are important ingredients. Further, the complementary and facilitating roles of the State have to be spelled out more distinctly. Ambiguities or policy conflicts, coordination failures and unfair market manipulation will need top attention in the process of shifting resources from unproductive to productive use in high-potential areas.

Trends in the regional access to facilities, household well-being and individual ability indexes

The construction of the regional access to facilities, household well-being and individual ability indexes at the regional level was a novel Improvement in agricultural productivity is a prerequisite for overall increase in productivity.

Better access to facilities does not necessarily translate into better household well-being and individual ability. exercise using the three information-rich Nepal Living Standards Surveys to trace development trends in spatial inequalities over time. The indexes are a result of the complex interplay of different variables.

Three particular features of the indexes are notable. First, the relative positions of different regions on particular indexes remain unchanged over time. Second, the top-ranking region, the Kathmandu Valley, and the bottom-ranking one, the Western, Mid Western and Far Western Mountains, are the same across all three indexes. Third, the indexes do not always converge. Better access to facilities does not necessarily translate into better household well-being or individual ability because of intervening variables.

Table 6.1 compares the human development and productive ability indexes for the nine regions identified for analytical purposes. This shows some critical features with clear policy implications. The predominance of the Kathmandu Valley in all indexes results from a highly centralized polity where the valley receives clear priority in investments in development infrastructure and services, and consequent expansion of opportunities. As the population, political and economic significance of the valley continues to grow unabated, this is likely to remain the case in the future. Kathmandu will also continue to attract the largest proportion of young and aspiring migrants.

A major challenge for policy planners is to create a decentralized polity where economic activities and opportunities are created in other regions. This would have the added benefit of helping to ensure that Kathmandu does not suffer from diseconomies of scale, resulting in pollution, overcrowding, problems in the provision of services and perils from natural disasters. All of these can potentially threaten its economic base, mainly tourism, services and foot-loose industries.

The Eastern and Central Tarai, on the other hand, presents a situation where labour and total factor productivity as well as access to facilities index values are among the highest in the country, but human development, human poverty, household well-being and individual ability index values are among the lowest. Concerted policy attention could address this mismatch between productive ability and human development.

With some variations, human development, and labour and total factor productivity, are also mismatched in the Western Hills. Achievements in human development there need to be complemented by increases in productivity.

The most entrenched problem of human development and productive ability is in the Mountains and Hills of the Mid Western and Far Western regions. Here, a more comprehensive approach to development is required. It needs

TABLE 6.1

Comparing the human	development and	d productive ability i	indexes by the nine	eco-development	regions, 2011

Regions	HDI	Rank	HPI	Rank	Labour productivity	Rank	Total factor productivity*	Rank	Access to facilities index	Rank	Household well-being index	Rank	Individual abilities index	Rank
Kathmandu Valley	0.622	1	21.28	1	181.35	1	0.95	1	78.3	1	41.98	1	63.94	1
Eastern and Central Hills	0.490	3	31.21	5	80.11	7	0.56	5	48.6	6	33.12	4	58.77	5
Western Hills	0.511	2	25.62	2	81.93	6	0.47	7	58.7	5	37.05	2	63.47	2
Mid Western and Far Western Hills	0.423	8	39.68	8	57.0	9	0.58	4	41.0	8	32.26	5	56.85	8
Eastern and Central Mountains	0.475	5	34.51	6	87.26	5	0.42	8	46.6	7	33.26	3	58.41	7
Western, Mid Western and Far Western Mountains	0.398	9	42.98	9	75.86	8	0.24	9	37.3	9	29.52	9	55.44	9
Eastern and Central Tarai	0.463	7	34.81	7	106.11	2	0.72	3	70.8	3	31.68	7	57.48	6
Western Tarai	0.480	4	29.69	3	94.45	3	0.75	2	71.4	2	31.32	8	59.30	4
Mid Western and Far Western Tarai	0.472	6	30.47	4	91.73	4	0.49	6	69.5	4	32.09	6	59.50	3
Nepal	0.490		31.12		100		0.72							

Source: Derived from tables in chapters 2, 3, 4 and 5 of this report.

^{*} for 2007

to focus on both software, namely, education, health and services, and hardware, comprising physical infrastructure, to raise productivity.

Policy Implications and Key Messages

This report has sought to show that regional development status in association with other variables reflects the well-being of households, and that household well-being in association with other variables reflects the ability of individual members over time. The results of its analysis more or less offer affirmation, notwithstanding the fact that data from the Nepal Living Standards Surveys are selective, and do not include many of the structural variables and processes through which socio-economic inequalities are produced and reproduced.

The findings have obvious implications for Nepal's planning efforts, particularly for the upcoming 13th national development plan. The attempt here is to flag some preliminary, but key, messages. According to the plan's approach paper, development is envisaged to be multidimensional, with priority given to hydropower and energy, agriculture, basic education, health, drinking water, physical infrastructure, good governance, tourism, trade and the environment, among other issues, and to increasing the contributions of the private, government and cooperative sectors. Various indicators in this report can guide stakeholders in building inclusivity into this process to further close gaps among social groups and regions. Key messages and some specific policy recommendations are as follows.

A. Incorporate considerations of regional inequalities in budgeting and planning.

Regional development inequalities are apparent in the access to facilities index for the nine eco-development regions. The advantage of the Kathmandu Valley remains undiminished, while the Mid Western and Far Western Mountains and Hills in general continue to suffer relative neglect. Regional inequalities

stem from relatively low levels of public investment in roads, education and health infrastructure. Over the past decades, regional inequalities have fallen slightly through some investments in these areas, although progress will likely not be sustained without focused and scaled-up support. Improved road access is one particularly important contributor to enhanced access to facilities that contributes to human development; it can also spur private sector activities.

A regional approach to infrastructure development could comprehensively link regional natural resource endowments with potential at the household and individual levels. This requires that infrastructure development, particularly roads, focuses on quality, and is complimented by "development packages" to promote "niche" local development potentials that open opportunities for the private sector.

In the impending process of federalization, the Committee on State Restructuring of the last Constituent Assembly has laid down two principles for the delineation of provinces-identity, and capability or economic viability. A judicious and balanced approach to these two principles, with particular emphasis on economic viability, conditioned by the distribution of natural resources, is integral to enhancing the role of provinces in reducing regional inequality, promoting inclusive development and improving provincial resiliency. A guiding objective of state restructuring could be to reduce regional inequalities in socioeconomic development and resource endowments, and promote regional resiliency.

This report highlights spatial trends in Nepal that provide a rationale for more judiciously allocating resources across regions and socio-economic groups. To monitor progress in the coming years, national surveys would need to incorporate additional regional and ethnic dimensions in their sampling frameworks. In the last decade, Nepal has been at the forefront of adopting many path-breaking policies to facilitate inclusive development, but weak monitoring has meant that the intent of

Regional inequalities often stem from levels of public investment in roads, education and health infrastructure.

these remains far from realized. Strengthening the monitoring arm of the national planning body would go far in facilitating better implementation.

Major policy recommendations are:

- Assign budget allocations to improve access to facilities commensurate with the percentage gaps in the access index. For example, allocations to improve access to facilities in the Western, Mid Western and Far Western Mountains could be roughly twice those for the Kathmandu Valley. Appropriate adjustments may be needed, depending on the number of people inhabiting the regions, but the central focus should be on closing access index gaps.
- Incorporate the HDI as an important element in the allocation of development budgets at the district level. The HDI has been used in the formula for the allocation of block grants to district and village development committees. But it has not been taken into consideration in the allocation of sectoral development budgets at the district level in specific areas such as drinking water, sanitation, etc. The incorporation of the HDI would not only give objectivity and transparency to such allocations, but also factor human development status into budget disbursements. As more and more relevant data become available, this system can be fine-tuned.
- Incorporate capability improvements as a basic feature of district and local level periodic plans. Development of district and village development periodic plans is among the mandated functions of the district and village development committees. Aspects of capability are generally included, but there is a need to be more explicit, at least initially, with respect to: adult literacy in general and female literacy in particular; skill enhancement, in the context of local resources and traditional/indigenous knowledge, through formal and informal systems; improvements

in health with respect to some key indicators; creation of productive and incomeenhancing employment; and representation of women and marginalized groups in economic, social and political forums and organizations of public significance, such as management committees of schools and health centres, and user committees related to drinking water, irrigation and natural resource management. This process would require the maintenance and generation of data related to these aspects, which would further enhance the database on capability.

B. Focus on human development in the Eastern and Central Tarai, and the Mid Western and Far Western Hills and Mountains.

The general perception in Nepal has been that the Eastern and Central Tarai, by virtue of better access, better used agricultural and industrial production potential, and past public investments has benefitted from focused policy attention. This report shows the fallacy of this notion. The Eastern and Central Tarai ranks high in access to facilities, labour productivity and total factor productivity, but human development achievements and household well-being are precarious and not aligned with economic standing (table 6.1). On the social front, particularly in education and health, the Eastern and Central Tarai clearly needs attention. The districts from Saptari to Parsa could receive more emphasis, since they also have significant Dalit populations.

Even as the supply of infrastructure, facilities and human resources needs to be expanded and strengthened, mass social mobilization strategies are also necessary to build demand for services, particularly among groups marginalized by poverty, caste and ethnicity, and/or gender.

Policy recommendations are:

 Ensure education, health and empowerment programmes focus specifically on the lower economic classes, disadvantaged caste

Capability improvement has to be a basic feature of local plans.

and ethnic groups, and women. The second group includes Dalits and Muslims, especially. Programmes backed by social mobilization need to proactively provide incentives to encourage school attendance and use of basic health facilities and improved sanitation. Literacy programmes in particular have to be taken up in the spirit of a social mission involving community leaders, political parties and civil society in general.

C. Expand the scope and reach of inclusive policies.

This report shows that inequalities in house-hold well-being and individual ability increased among regions and deciles between 1995 and 2003, and appear to be narrowing thereafter. The increase could be a consequence of a number of factors. These include ad hoc liberalization policies that reduced public investments in lagging regions, a lack of deliberately inclusive policies focusing on disadvantaged regions and population groups, and the disruption of development projects and public services in remote rural areas due to conflict.

Narrowing inequalities since 2003 could stem from factors such as: the increased allocation of development funds to the local level, and socially inclusive policies expanding public investments to disadvantaged groups; increased remittances from labour migration by disadvantaged groups such as the Janajatis and Dalits; and the end of conflict after the Comprehensive Peace Agreement. The Mid Western and Far Western Hills and Mountains have not benefited as much from remittances as the Western Hills. Following the logic of the Kuznets curve, the phenomenon of increased inequality is normally associated with higher rates of economic growth in the early phases of industrialization. This was clearly not the case in Nepal.

Without sufficient economic growth, the State cannot continue to effectively and aggressively pursue inclusive policies that assist the underprivileged. If the inequality gap is to be sustainably lowered, growth has to be accelerated, including by pursuing policies to

increase labour and total factor productivity. At the same time, socially inclusive policies in education and health, and social protection for vulnerable groups need to be strengthened. Besides shorter term development gains, this would enhance the long-term resilience of communities and regions. "Inclusion without growth" may be a trying economic proposition, but "growth without inclusion" could defeat the very purpose of development, which is to expand the capabilities of people, and bring to fruition the potential within each individual in society.

Cross-national studies show that an important part of social inclusion policies is the use of social transfer programmes to help households in extreme and persistent poverty, such as by providing direct assistance in cash or kind, with the prime objective of reducing poverty and vulnerability. Recent studies confirm that such programmes strengthen the productive capacity of poor households and lead to growth (Barrientos 2011). They have potential for lifting credit constraints, providing greater security, and enabling reallocation of household resources leading to improved household investment and productive capacity. Social transfers are thus mechanisms, not only for dealing with poverty and vulnerability, but also for advancing economic growth and resilience.

Policy recommendation are:

- Focus on sectors with high economic and employment growth. These include health, education, transport and communication, financial services and public administration.
- Within these four sectors, channel proportionately more public investment into health and education. Private and/or public-private partnerships could be aggressively pursued in the other two areas. One emphasis could be on developing the operational modalities of public-private partnerships for infrastructure.
- Design and expand social security and social transfer programmes. In Nepal, social assistance programmes are an insignificant

While economic growth has to accelerate, socially inclusive policies need to be strengthened.

proportion of annual government expenditures.1 The range and volume of programmes for the social security of the poor, marginalized, disadvantaged and elderly needs to be expanded. Designing social transfer programmes to maximize growth effects could be an important part of policies to advance inclusion.

D. Prioritize urban management, and strengthen rural and urban links.

Regions that appear relatively more dynamic from a productivity point of view, such as the Kathmandu Valley, the Eastern and Central Tarai, and the Western Tarai, are those where urbanization is accelerating growth. This report shows that while there are expected inequalities among urban and rural areas, the gaps seem to be closing, largely due to access to facilities and the nascent process of increasing links between urban and rural areas. At the same time, while poverty measured by numbers of people seems to be declining in rural areas, it is rising in urban ones.

Managing pro-poor urban growth, and strengthening urban and rural links, therefore, could be two areas for policy attention in coming years. The objective should be to bring about sustainable increases in HDI values and reductions in human poverty.

In spite of the relatively low levels, Nepal's urbanization has been largely spurred by growth in the tertiary sector, unlike the historical experience of urbanization in the Western world. The growth of manufacturing and industrialization in general is limited to specific regions with particular advantages. While industrialization will eventually have to absorb the surplus labour force from agriculture, given the present state of inertia, this is likely to take time.

As one step forward, there could be greater emphasis on realizing potentially productive niches in agriculture. This would require not only increasing investments in the modernization and commercialization of agriculture and agro-processing, but also the strengthening of rural and urban links where such potential exists. It could complement input and output connections between urban and rural areas, and reduce bottlenecks in input supply and marketing, and in the flow of technology and capital for agro-based industrialization as well as small and medium enterprises. The reduction of urban and rural differentials could also deter excessive population movement to urban areas.

Further, in this topographically diverse country, multiple centres of growth are required. Stronger urban and rural connections, supported by greater investment in agriculture, could generate a class of growth centres most relevant to Nepal.

Major policy considerations include:

- Facilitate development of a balanced regional urban system. The expansion of the road network has induced growth in a number of urban areas, small towns and market centres. Many of these act only as bulking and distribution centres; however, their potentials in mobilizing resources from surrounding areas remain unused. The viability and growth of these towns-leading to a more balanced urban system, with attendant balanced regional urbanization, economic diversification and improved access to urban facilities and services—could be enhanced by developing potentially productive niches in areas around them. This requires programmes, tied to the resources available in different places, that aim to strengthen urban and rural links through better access, flow of information, and financial and other support services.
- Prioritize agriculture. Although agriculture offers low output and employment growth, the sector has also suffered from benign neglect in Nepal, particularly with respect to increasing output and exploring potentials for agricultural processing and agro-based industries. On the positive side, it requires relatively low investment per unit of output; in that respect, it is significantly below the national average. The sector warrants much

Stronger urban-rural links need to support greater investments in agriculture. more than the 15 percent share of public capital spending, mainly for modernization and developing value added agro-based industries, envisaged for the 13th national development plan. Agriculture also needs to be made more attractive to young, educated and innovative people, as well as returnee labour migrants. This would mean commercialization and higher investment in agricultural infrastructure.

• Make urban planning and management pro-poor. Increasing poverty in urban areas should be an area of serious concern. As the tempo of urbanization increases and movement to urban areas picks up significantly, urban poverty is likely to increase. Sustainable improvement in urban HDI values will depend on pro-poor urban planning and management. In terms of infrastructure and access to facilities, resources could be augmented for housing, public transportation, drinking water and sanitation, which are important variables in the household wellbeing index.

E. Build on the opportunities of the demographic dividend.

While individual ability is shaped by house-hold well-being, it is also influenced by other factors, such as increasing literacy, better ability to take advantage of existing opportunities, and heightened awareness and aspirations. As a group, youth seem to be more willing to break from the traditional mold and seek more equality in all spheres. Policies and programmes need to proactively build on this potential for transformation.

Evidence suggests that Nepal is not yet well prepared to reap the advantages of the demographic dividend. Thirty percent of the total economically active population, much of which comprises youth, remains underproductive. The rising trend of labour migration abroad points to a dysfunctional domestic labour market. Annually, nearly 450,000 youth enter it, but gainful and productive employment opportunities remain far short of de-

mand, producing a significant mismatch between youth potential and actual employment status. Market-based and public employment generation schemes could begin to redress this issue, along with mismatches across regions and socio-economic groups.

Major policy recommendations are:

• Rapid expansion of productive and gainful employment opportunities could absorb the increasing youth population before the demographic dividend becomes a demographic nightmare in the form of social unrest, political instability, etc. Agriculture, the mainstay of the economy, shows low growth in employment and output. While 64 percent of the population works in agriculture, according to the third Nepal Living Standards Survey, its share of GDP is only 35 percent. Modernization could not only raise productivity, but make it an attractive sector for more youth to seek employment within.

Sectors such as mining, manufacturing, trade, hotels and real estate have the highest employment elasticity, and are good for employment generation. But their recent rate of growth has been slow. Revitalizing them could boost employment growth relatively quickly. Transportation and communication, financial services, public administration, education and health have fared well in growth of output and employment. Existing policy initiatives in these sectors could be continued and strengthened, as they provide the best economic opportunities for young people at the moment.

• Pursue strategies to derive maximum employment and income advantages from safe labour migration. The long-term implications of labour migration notwithstanding, it is likely to remain a dominant feature of the Nepali economy for at least another decade or more, attracting a significant proportion of youth. Strategies to increase benefits from migration could particularly emphasize: the creation of an information base and analysis of skills demand to match supply; skills training programmes to enhance the income of potential migrants; social security

Rapid expansion in productive employment is essential to reap the advantage of the demographic dividend.

- schemes to ensure secure and safe migration; and greater options for return migrants, including investment and other opportunities. Development and implementation of these strategies rests on creating a comprehensive database and generating deeper analysis of the impacts and implications of labour migration. In view of the importance of labour migration, it could clearly be a priority for policy action.
- Significantly raise the budget allocated to technical education to enhance the employability of youth in the labour market or about to enter it. Youth employability is largely a function of their technical and vocational skills and competencies, underscoring the urgency of providing technical and vocational education at school and post-school levels. The budget allocated to technical education at present is meagre and needs to be substantially raised. Other essential measures to reduce mismatches in skills demand and supply include a concerted focus on expanding literacy, and improving the quality and relevance of basic school education and skills training.
- Address gender gaps in education, health, employment, economic and political decisionmaking, and the social and legal empowerment of women. There is almost a 20-percentage-point gap in literacy between men and women, to cite just one of many indicators capturing deeply rooted gender biases. Eighteen of 75 districts had female illiteracy rates over 40 percent in 2011. In spite of inequality in education outcomes, the potential of women shows remarkable comparability with that of men. Yet, women do not have commensurate accomplishments in economic, social and political spheres. Gender relations as a whole need to be addressed, and appropriate programmes designed to reduce discriminatory barriers, empower women, and raise awareness of the importance of gender equality as a basic principle of rights and development. Closing gender gaps will serve the twin purposes of deepening inclusivity and better positioning Nepal to benefit from the demographic dividend, as younger women comprise an increasing proportion of the active labour force.

Strategies for safe and better remunerative labour migration need emphasis.

Social protection expenditure includes social insurance, social assistance and labour market programmes. Social assistance programmes comprise six components: social transfers in cash or kind; in-kind transfers including targeted food subsidies for poor and vulnerable people, school children, child welfare, etc.; disaster relief programmes; assistance to the elderly; health assistance, e.g., for infants and expectant mothers; and disability programmes. An Asian Development Bank study showed that in 2009, the Government of Nepal spent 2.1 percent of GDP on social protection. Only 0.9 percent of GDP went to social assistance programmes (Rana 2012).

Bibliography

- **Acharya, B. R. 2010.** "Urban poverty: A sociological study of Shankhamul squatters." *Dhaulagiri Journal of Sociology and Anthropology* 4: 179–192.
- **Acharya, S., and B. C. Luitel.** 2006. "The functioning and effectiveness of scholarship and incentive schemes in Nepal." Kathmandu: UNESCO.
- **Actionaid. 2011.** "Right to education." www.actionaid.org/ne-pal/what-we-do/education.
- **AERC Research Paper No. 116.** Nairobi: African Economic Research Consortium.
- **Amin, A.A. 2002.** "An examination of the sources of growth in Cameroon's economy."
- **Asselin, L. M. 2002.** "Composite Indicator of Multidimensional Poverty." Unpublished paper. Gauss Institut de Mathématique.
- **Barrientos, A. 2012.** "Social Transfer and Growth: What Do We Know? What Do We Need to Find Out?" *World Development* 40(1): 11–20.
- Bennett, Lynn and Dilli Ram Dahal. 2008. Caste, Ethnic and Regional Identity in Nepal: Further Analysis of the 2006, Nepal Demographic and Health Survey. Calverton, Maryland: Macro International Inc.
- Booyson, F., S. van der Berg, R. Burger, R. M. von Maltitz and G. du Rand. 2005. "Using an Asset Index to Assess Trends in Poverty in Seven Sub-Saharan African countries." Paper presented at a conference on multidimensional poverty hosted by the International Poverty Centre, 29-31 August, Brasilia. www.undp-povertycentre. org/md-poverty/papers/Frikkie_.pdf.
- **Central Bureau of Statistics.1996.** Nepal Living Standards Survey 1995/96. Kathmandu.
- ——. 2002. Population Census 2001. Kathmandu.
- ——.2004. Nepal Living Standards Survey 2003/04. Vols. 1 and 2. Kathmandu.
- -----.2009. Nepal Labor Force Survey 2008. Kathmandu.
- ———.2011a. Nepal Living Standards Survey 2010/11. Vol. 1. Kathmandu.
- ———.2011b. Nepal Living Standards Survey 2010/11. Vol. 2. Kathmandu
- ———.2012. Nepal Population and Housing Census 2011.
- Chen, S., and M. Ravallion. 2000. "How Did the World's Poorest Fare in the 1990s?" Policy Research Working Paper 2,409. World Bank: Washington DC. http://econ.worldbank.org/external/default/main?pagePK=64165259&theSitePK=469382&piPK=64165421&menuPK=64166093&entityID=000094946_00081406502730.

- Clarke, D. A. 2005. The Capability Approach: Its Development, Critiques and Recent Advances. GPRC-WPS-032. Global Poverty Research Group, Economic and Social Research Council
- **Department of Education. 2011.** *School-level educational statistics of Nepal.* Consolidated report. Kathmandu.
- ———.2013. Flash report 2013. Kathmandu.
- **Department of Forest Research and Survey. 1999.** Forest and shrub cover of Nepal 1994. Kathmandu.
- **Department of Health Services. 2001.** Annual report 2001/02. Kathmandu
 - ----.2010. Annual report 2009/10. Kathmandu.
- ———.2011. Annual report 2010/11. Kathmandu.
- **Department of Water Supply and Sewerage.** Departmental database. Kathmandu.
- ———.2011. Nationwide coverage and functionality status of water supply and sanitation in Nepal. Kathmandu.
- **Family Health Division. 2009.** Nepal maternal mortality and morbidity study 2008/09. Kathmandu.
- **Filmer, D., and L. Pritchett. 2001.** "Estimating Wealth Effects without Expenditure Data—or Tears: An Application to Educational Enrollments in States of India." *Demography* 38(1): 115–132.
- **Gal, P. 2013.** "Measuring Total Factor Productivity at the Firm Level using OECD-ORBIS." OECD Economics Department Working Paper No. 1,049. OECD.http://dx.doi.org/10.1787/5k46dsb25ls6-en.
- **Guha-Khasnobis, B.2012a.** "Alternative measures of socioeconomic status and their implications for development policy in Nepal." Paper presented at the expert group meeting on the Nepal Human Development Report, June.
- ———. 2012b. "Prosperity Comes from Capabilities: Way to an Inclusive and Resilient Nepal." Mimeo. UNDP.
- **Hulten, C. R. 2001.** "Total Factor Productivity. A Short Biography." *New Developments in Productivity Analysis*: 1–54. National Bureau of Economic Research.
- Integrated Regional Information Networks. 2007. "Impoverished urban squatters face high risk of poor health." www.irinnews.org/report/72319/nepal-impoverished-urban-squatters-face-high-risk-of-poor-health.
- International Centre for Integrated Mountain Development. 2011. "Glacial lakes and glacial lake outburst floods in Nepal." Kathmandu.
- **K.C., S. 2009.** "Socio-economic distribution of geographical accessibility in Nepal." *Studies in Nepali History and Society.*

- ———. **2013.** "Community vulnerability to floods and landslides in Nepal." *Ecology and Society* 18(1):8.http://dx.doi. org/10.5751/ES-05095-180108.
- **Krishnan, V.** Constructing an Area-based Socioeconomic Status Index: A Principle Components Analysis Approach."

 PhD thesis, Early Child Development Mapping Project.
 Edmonton, Canada: University of Alberta.
- **Krugman, P. 1994.** "The Myth of Asia's Miracle." *Foreign Affairs* 73: 62–78.
- **Lustig, N. 2011.** "Multidimensional Indices of Achievements and Poverty: What Do We Gain and What Do We Lose?" Louisiana Working Paper 1,121. New Orleans, Louisiana: Department of Economics, Tulane University.
- McMillan, M., and D. Rodrik. 2011. Globalization, Structural Change and Productivity Growth. International Food Policy Research Institute and the John F. Kennedy School of Government, Harvard University.
- **Ministry of Education Services. 2012-2013.** *Education statistics of Nepal 2013.* Flash report 1. Kathmandu
- **Ministry of the Environment. 2012.** *Mountain environment and climate change in Nepal.* Kathmandu.
- **Ministry of Finance. 2008.** *Economic survey 2011/12.* Kathmandu.
- ———.2011. Economic survey 2010/11. Kathmandu.
- ——. 2012. Economic survey 2009/10. Kathmandu.
- ———.2013. Development cooperation report 2011/12. Kathmandu.
- **Ministry of Health. 1992.** Nepal fertility, family planning and health status survey 1991: A preliminary report. Kathmandu.
- Ministry of Health, New ERA and Macro International Inc. 1997. Nepal Family Health Survey 1996. Kathmandu.
- **Ministry of Health, New ERA and ORC Macro 2002.** Nepal Demographic and Health Survey 2001. Kathmandu.
- Ministry of Health and Population, New ERA and Macro International Inc. 2007. Nepal Demographic and Health Survey 2006. Kathmandu.
- Ministry of Health and Population, New ERA and ICF International Inc. 2012. Nepal Demographic and Health Survey 2011. Kathmandu.
- **Ministry of Health and Population. 2010.** *National health services programme-II, 2010-2015.* Kathmandu.
- ———. **2012.** Nepal adolescents and youth survey 2010/11. Kathmandu.
- **Ministry of Physical Planning and Works. 2009.** "National shelter policy 2009." Kathmandu.
- Moser, C., and A. Felton. 2006. Intergenerational Asset Accumulation and Poverty Reduction in Guayaquil, Ecuador 1978-2004. The Brookings Institution.
- ———. **2007.** "The Construction of an Asset Index Measuring Asset Accumulation in Ecuador." CPRC Working Paper 87. Washington, DC: The Brookings Institution.
- National Planning Commission. 1991. Census 1991. Kathmandu.

- ——. 2001. National report on follow-up to the World Summit for Children 2001.
- ——. 2010c. "Three-year interim plan (2011/12-2013/14)." Kathmandu.
- ——. 2011. "Three-year-plan approach paper." Kathmandu.
- ———. **2012a.** "Approach paper to the thirteenth plan." Kathmandu.
- ——. 2012b. "MDG acceleration framework: Improving access to sanitation." Kathmandu.
- National Planning Commission and UNDP (United Nations Development Programme). 2011. "MDG needs assessment for Nepal 2010." Kathmandu.
- **National Planning Commission and World Bank. 2013.** Nepal: Small area estimates of poverty, 2011. Kathmandu.
- **NESAC (Nepal South Asia Centre).1998.** *Nepal Human Development Report 1998.* Kathmandu.
- NORAD (Norwegian Agency for Development Cooperation). 2009. "Joint evaluation of Nepal's Education for All 2004-2009 Programme." Oslo.
- Office of the Prime Minister and Council of Ministers, Gender-Based Violence Unit. 2012. "A study on gender-based violence in selected rural districts of Nepal." Kathmandu.
- Rana, A. S. 2012. "Nepal: Updating and Improving the Social Protection Index." Project no. 44,152 (RCD–TA), technical assistance consultant's report. Asian Development Bank.
- Ranieri, R., and R. A. Ramos. 2013. "Inclusive Growth: Building up a Concept." Working paper no. 104. International Policy Centre for Inclusive Growth, UNDP.
- Saliola, F., and M. Seker. 2011. "Total Factor Productivity Across the Developing World."Enterprises note no. 23. World Bank Group.www.enterprisesurveys.org/~/media/FPDKM/EnterpriseSurveys/Documents/Enterprise%20Notes/Productivity-23.pdf.
- Sen, A. K. 1992. *Inequality Reexamined*. Oxford: Clarendon Press.
- ——. 1993. "Capability and Well being." In M. C. Nussbaum and A. K. Sen, eds., *The Quality of Life*. Oxford: Clarendon Press.
- ———.2005. "Human Rights and Capabilities." *Journal of Human Development* 6(2): 151–166.
- Sharma, P. 2014. Some Aspects of Nepal's Social Demography: Census 2011 Update. Kathmandu: Social Science Baha/ Himal Books.
- **Shrestha, B. K. 2013.** "Squatter settlements in the Kathmandu valley: Looking through the prism of land rights and tenure security." *Urban Forum* 24: 119–135.
- **Sigdel, C. 2013.** "Kumrose now on its way to become Nepal's first fossil-free village." http://news.xinhuanet.com/english/world/2013-05/31/c_132422183.htm.
- **Subramanian, U., W. P. Anderson and K. Lee. 2005.** "Measuring the Impact of the Investment Climate on Total Factor Productivity: The Case of China and Brazil." World Bank Policy Research Paper 3,792.

- **United Nations. 2009.** The Millennium Development Goals Report 2009. New York.
- ——. 2012. Millennium Development Goal 8, the global partnership for development: Making rhetoric a reality. MDG gap task force report. New York.
- ———. **2013a.** The Millennium Development Goals Report 2013. New York.
- ———. **2013b.** A new global partnership: Eradicate poverty and transform economies through sustainable development. New York.
- **UNDP (United Nations Development Programme). 1992.** *Human Development Report 1992.* New York.
- ——. 2005. Human Development Report 2005. New York.
- ——. 2009. Human Development Report 2009. New York.
- ——. 2010. Human Development Report 2010. New York.
- ----. 2011. Human Development Report 2011. New York.
- ------.2013. Human Development Report 2013: The Rise of the South: Human Progress in a Diverse World. New York.
- UNDP (United Nations Development Programme) Nepal. 2001 Nepal Human Development Report 2001 Poverty.
 - **2001.** Nepal Human Development Report 2001: Poverty Reduction and Governance. Kathmandu.
- ——. 2004. Nepal Human Development Report 2004: Empowerment and Poverty Reduction. Kathmandu.
- ———. 2009a. Nepal Human Development Report 2009: State Transformation and Human Development. Kathmandu.
- ———. **2009b.** Nepal Readings in Human Development. Kathmandu
- ———. 2013. Addendum to the MDG country report guidelines. Kathmandu.

- UNESCO (United Nations Educational, Scientific and Cultural Organization). 2012. "High dropout and repetition rates challenge Nepal in achieving universal primary education by 2015." http://www.unesco.org/new/en/kathmandu/about-this-office/single-view/news/high_dropout_and_repetition_rates_challenge_nepal_n_achieving_universal_primary_education_by_2015/#sthash.AZe2zPJm.dpuf.
- UNICEF (United Nations Children's Fund) and WHO (World Health Organization). 2010. Progress in drinking water and sanitation, 2013 updates. Kathmandu.
- UN Women. 2013. "A transformative stand-alone goal on achieving gender equality, women's rights and women's empowerment: Imperatives and key components." New York.
- **WFP (World Food Programme). 2006.** *Standardised school feeding survey: Country status report.* Kathmandu.
- WHO (World Health Organization), UNICEF (United Nations Children's Fund), UNFPA (United Nations Population Fund) and World Bank. 2012. "Trends in maternal mortality 1990 to 2010." www.who.int/reproductivehealth/publications/monitoring/9789241503631/en/.
- Van Beveren, I. 2007. "Total Factor Productivity Estimation: A Practical Review." LICOS Discussion Paper Series 182/2007. Leuven: Centre for Institutions and Economic Performance.
- **Young, A. 1995.** "The Tyranny of Numbers: Confronting the Statistical Realities of the East Asian Growth Experience." *Quarterly Journal of Economics* 110(3): 641–680.

Annexes

Annex 1: Data Sources and GNI Calculations	81
Table A1.1 Major data sources used to calculate HDI and related indexes	81
Table A1.2 Estimates of GNI by districts (data source and methodology)	82
Annex 2: Technical Notes on Calculating the HDI and Related Indexes	84
Human Development Index	84
Gender Development Index	85
Gender Empowerment Measure	86
Human Poverty Index	88
Table A2.1: Goalposts for HDI dimensions	85
Table A2.2: Goalposts for life expectancy at birth for computing the GDI	85
Table A2.3: Dimensions and indicators of the GEM	86
Annex 3: Caste and Ethnicity Classification	89
Annex 4: Values of the HDI and Related Indexes	90
Table A4.1: HDI values by region, 2011	90
Table A4.2: GDI values by region, 2011	93
Table A4.3: GEM values by region, 2011	93
Table A4.4: HPI values by region, 2011	94
Table A4.5: HDI values by caste and ethnicity, 2011	96
Table A4.6: Per capita income by caste and ethnicity, 2011	97
Figure A4.1: HDI values by region, 2011	97
Figure A4.2: GDI values across development regions, 2011	97
Figure A4.3: HPI values by region, 2011	93
Figure A4.4: HPI values across the nine eco-development regions	98
Figure A4.5: The HDI and its components by major caste and ethnicity, 2011	98
Annex 5: Per Capita Gross National Income	99
Annex 6: Construction of the Principal Component Analysis based indexes	102
The methodology	102
The three indexes	103
Calculating the "development status" index of a region	103
Table A6.1: Details of codes and facilities	105
Table A6.2: Variables in the household well-being index	106
Annex 7: Percentage of Households by the Nine Eco-development Regions and Deciles	108
Table A7.1: Calculations for 1995	108
Table A7.2: Calculations for 2003	108
Table A7.3: Calculations for 2011	109

Annex 8: Labour Productivity by Districts and Regions	110
Table A8.1: Districtwise Labour Productivity and in Index	111
Table A8.2: Regionwise Labour Productivity and Relative to National Average	112
Table A8.3: Ranking of top 10 districts by labour productivity	113
Annex 9: Nepal Standard Industrial Classification Codes	114
Annex 10: Number of Firms by Nepal Standard Industrial Classification Codes and the Nine Eco-development Regions	115
Annex 11: Numbers of People Employed in Different Industries and by Region	116
Annex 12: Technical Note on the Total Factor Productivity Methodology	117
Box A12.1 Illustration of total factor productivity methodology	117
Annex 13: Total Factor Productivity Index (Log) of Different Industrial Types by Regions and Over Time	119
Table A13.1: Calculations by the nine eco-development regions, 1997	119
Table A13.2: Calculations by the nine eco-development regions, 2002	119
Table A13.3: Calculations by the nine eco-development regions, 2007	120
Table A13.4: Average total factor productivity by industry in 1997, 2002 and 2007	120
Table A13.5: Total factor productivity averages for the nine eco-development regions	121
Annex 14: Average Total Factor Productivity by Industry and Eco-development Region Over Time	121
Figure A14.1: Average TFP of Food and Beverage Industry	121
Figure A14.2: Average TFP of Tobacco Industry	121
Figure A14.3: Average TFP of Textile and Apparel Industry	122
Figure A14.4: Average TFP of Tanning and Dressing of Leather, Manufacture of Luggage and Handbags	122
Figure A14.5: Average TFP of Saw Mill, Plywood and Other Wood-based Industry (except furniture)	122
Figure A14.6: Average TFP of Manufacture of Paper and Paper Products	122
Figure A14.7: Average TFP of Publishing, Printing and Reproduction of Recorded Media	122
Figure A14.8: Average TFP of Firms Producing Chemical and Chemical Products	122
Figure A14.9: Average TFP of Firms Producing Rubber and Plastic Products	123
Figure A14.10: Average TFP of Firms Producing Non-metallic Mineral Products	123
Figure A14.11: Average TFP of Firms Producing Basic Metals and Fabricated Metal Products (except machinery and equipment)	123
Figure A14.12: Average TFP of Firms Producing Electrical Machinery and Apparatus	123
Figure A14.13: Average TFP of Firms Producing Furniture	123
Annex 15: Regional Composition of Ability Deciles	124
Table A15.1: Calculations for 1995	124
Table A15.2: Calculations for 2003	124
Table A15.3: Calculations for 2011	125
Annex 16: Employment by Sector	125
Table A16.1: Calculations for 1995	125
Table A16.2: Calculations for 2003	126
Table A16.3: Calculations for 2011	126

Data Sources and GNI Calculations

The major data source used to calculate the Human Development Index (HDI) and its related indexes are the National Population and Housing Census 2011, the Nepal Demographic and Health Survey 2011 and the Nepal Living Standards Survey 2011. The data sources used for computing each indicator are provided in table A1.1.

Due to limitations in data quality and availability, several direct and indirect techniques were applied to calculate life expectancy at birth (e₀) and the proportion of the population not surviving beyond age 40. As data from schedule II of the 2011 National Population and Housing Census were not available, e₀ could not be computed using information on reported number of children ever born and children surviving among those born alive, classified by ages of women in the reproductive years to generate life tables essential for calculating e₀ and the proportion of the population not surviving beyond age 40. These values were calculated using information on the distribution of death according to age and sex by constructing life tables using raw Census data. Obtained values were high due to under-enumeration of death statistics and therefore were adjusted.

The adult literacy rate, the percentage share of the population, the percentage of the population without access to safe drinking water and the adult illiteracy rate were acquired from the Central Bureau of Statistics (2012). Mean years of schooling data were obtained from the National Population and Housing Census, and 2011 raw data from the Population Division of the Central Bureau of Statistics. The corresponding figures for regional levels were obtained by considering the population weights of districts.

Information on the nutritional status of children under age five was retrieved from the 2011 Nepal Demographic and Health Survey as it was the only reliable source for the particular reference period. However, these data were limited to the national, and ecological, development and eco-development regional levels (the survey classified 13 domains). For the district and remaining eco-development regional levels, the values for this indicator were computed using the change in ratio estimated from UNDP Nepal (2004) and the Ministry of Health and Population (2012).

Per capita income was obtained from the National Accounts Division of the Central Bureau of Statistics. The report calculated value added per capita income for 75 districts. It calculated per capita income for caste and ethnicity from the 2011 Nepal Living Standards Survey. Per capita income in US dollars was then adjusted to calculate the per capita income PPP \$ using the ratio obtained from UNDP (2011).

TABLE A1.1

Maior data	sources used	to calculate l	HDI and re	savahni hatel
iviaivi uata	2001662 0260	LU GAIGUIALE I	NVI AIIU IE	iaten illuexe2

Data	Source	Calculated indicators	Calculated indexes
National Population and Housing Census 2011	Central Bureau of Statistics 2012	Adult literacy rate Percentage of population without access to safe drinking water Adult illiteracy rate	HDI, GDIHPIHPI
National Population and Housing Census 2011	• 2011 Census, raw data	Life expectancy at birth Mean years of schooling Percentage of people not expected to survive to age 40 Percentage share of female in administrative and managerial positions Percentage share of female in professional and technical positions	HDI, GDI HDI, GDI HPI GEM GEM
Nepal Demographic and Health Survey 2011	Ministry of Health and Population, New ERA and ICF International Inc. 2012	Percentage of children who are malnourished (under five years of age)	• HPI
National Accounts of Nepal	Central Bureau of Statistics for 2011	GNI per capita	• HDI, GDI, GEM
Nepal Living Standards Survey 2011	Central Bureau of Statistics 2011	Per capita income (caste and ethnicity)	• HDI
Constituent Assembly database	Election Commission Nepal	Percentage share of female in parliamentary representation	• GEM

TABLE A1.2

Estimates of GNI by districts (data source and methodology)

Industrial classification		Data collected	Source of data	Methodology
	Agriculture	Production of cereals, cash crops, spices, pulses, vegetables, fruits, milk, meat, eggs, wool, etc.	Ministry of Agriculture and Development	The total output per district was obtained by multiplying the production and price. This output was used as an indicator to distribute the total gross value added by district.
griculture		Production of timber	Department of Forests	The total output of timber by district was obtained by multiplying the production and price.
and forestry	nd forestry Forestry	Number of households using firewood as a main source of cooking fuel	Census 2011, Central Bureau of Statistics	The total output of firewood by district was calculated by multiplying the number of households using firewood, the quantity required per household and unit price.
		Average quantity required per household and unit price	Nepal Living Standards Survey 2011, Central Bureau of Statistics	The indicator was obtained by adding the output of firewood and output of timber by district to allocate the gross value added by district.
Fishing	Fish	Production of fish	Ministry of Agriculture and Development	The total output by district was obtained by multiplying the production and price.
Mining and quarrying	Mining	Revenue collected from mining activities	Local Body Financial Commission/ Ministry of Federal Affairs and Local Development	Revenue collected by district was used as an indicator.
	Quarrying	Construction output	Central Bureau of Statistics	Construction output by district was used as an indicator.
	Modern	Census of Manufacturing Establishment 2006/07		The district gross value added from the census of modern manufacturing and small
Manufacturing	Small	Survey of Small Manufacturing Establishments 2008/09	Central Bureau of Statistics	manufacturing was obtained and extrapolated to 2010-2011.
	Unincorporated	Nepal Living Standards Survey 2011	-	The Nepal Living Standards Survey ratio was used to estimate the number of household operations, household manufacturing and gross value added by district.
	Electricity	Revenue and quantity sold by district	Nepal Electricity Authority	The quantity sold by district/revenue collected was used as an indicator to decompose the
	Licentery	Households using electricity as main source lighting	Census 2011, Central Bureau of Statistics	gross value added at the district level.
Flored de consul		Number of bio-gas plants	Alternative Energy Promotion Centre	- The indictor was derived from the number of bio-gas plants by district; multiplying by gross
Electricity, gas and water	Gas	Gross value added per bio-gas plant	Bio-gas survey, Central Bureau of Statistics	value added per plant was used to decompose the gross value added at the district level.
		Number of households using tap water	Census 2011, Central Bureau of Statistics	The Indictor was derived from the number of households using tap water by district;
	Water	Average revenue paid by household	Nepal Living Standards Survey 2011, Central Bureau of Statistics	multiplying by average revenue paid by household was used to decompose the gross value added at the district level.
Construction	Construction	Capital expenditure of village and district development committees and central Government	Local Body Financial Commission/ Ministry of Federal Affairs and Local Development	Total construction activities were divided into two categories, government and private. For government construction, the sum of the capital expenditure of village and district development committees, the central Government and municipalities was used as an indicator.*
		Household construction	Nepal Living Standards Survey 2011, Central Bureau of Statistics	The number of households with construction activities by district was estimated by using the Nepal Living Standards Survey ratio to total households; cost per household construction activity was also used from the Nepal Living Standards Survey.
Wholesale and retail trade	Wholesale and retail trade	Value added tax on sales	Inland Revenue Department	The value added tax on sales collected by district was used to decompose the gross value added at the district level.
	Hotels	Number of hotels by type	Ministry of Tourism	- The number of hotels and restaurants by types and district was multiplied by respective gross
Hotels and restaurants	Restaurants	Number of tourist standard restaurants	Central Bureau of Statistics	value added obtained from the survey to obtain the indicator at the district level.
	Road transport	Distribution of vehicles on the basis of road network and total population	Department of Roads	The indicator was obtained from the number of vehicles per district multiplied by gross value added per vehicle to decompose the gross value added at the district level.
Transport storage and	Air transport	Number of passengers	Civil Aviation Authority of Nepal	The number of passengers per airport/district was used as an indicator.
Transport, storage and communications	Storage	N/A	N/A	As transport.
	Communications	Revenue from landlines, revenue and subscribers by zone, and number of households using cell phones	Nepal Telecom, Ncell	Total subscribers and revenue by zone were distributed to the district level on the basis of the number of households using cell phones through Nepal Telecom and Ncell.

		Number of commercial banks by types	Nepal Rastra Bank	— The net interest income of major commercial banks (Nepal Bank Limited, Rastriya Banijya
Financial	Financial	Number of development banks by types	Nepal Rastra Bank	Bank and Agriculture Development Bank) was distributed by district on the basis of fixed and
intermediation	intermediation	Net interest income by bank	Nepal Rastra Bank	savings deposits. For remaining commercial and development banks, interest income was distributed by district on the basis of the number of branches (unweighted). Total net interest
		Bank deposits by branches of major commercial banks	Nepal Bank Limited, Rastriya Banijya Bank, Agriculture Development Bank	income by district was used as an indicator.
	Real estate	Revenue collected on land registration	Local Body Financial Commission/ Ministry of Federal Affairs and Local Development	Revenue from land registration by district was used to decompose the gross value added of real estate at the district level.
Real estate, renting and business activities	Renting	Revenue from rent (rental tax)	Financial Comptrollers General Office	Revenue from rent by district was used to decompose the gross value added of renting at the district level.
Business activities		Business taxes	Local Body Financial Commission	Revenue from business tax by district was used to decompose the gross value added of business activities at the district level.
Public administration and defense	Public administration and defense	Government expenditure on compensation of employee and intermediate consumption by district	Financial Comptrollers General Office	Total government expenditure on compensation of employee and intermediate consumption (current expenditure) by district was used as an indicator.
		Number of students currently attending school by types	Flash reports	
Education	Education	Number of students currently attending collage by types	University Grants Commission	The total number of students studying at different levels of school and college was multiplied by the total expenditure on education per student by level, type and eco-development region.
		Expenditure on education per student by level, type and geographical location	Nepal Living Standards Survey 2011	
	Health and cocial	Number of patients using different types of health institutions	Department of Health Services	The purpher of considerable or by health institution and by district upon multiplied by
Health and social work	Health and social work	Total expenditure per patient by type of health institution and geographical location	Nepal Living Standards Survey 2011	 The number of service takers by health institution and by district was multiplied by expenditure per patient by type of health institution to derive the indicator.
		Central government, and district and village development committee expenditures on culture and recreation	Financial Comptrollers General Office	
		Government expenditure on sports	National Sports Council	_
Other community, social and personal	Other community, social and personal	Number of FM radio stations and gross value added per station	Ministry of Information and Communication, Central Bureau of Statistics survey	For culture and recreation, the sum of government, village and district development committee, and municipality expenditure was used as an indicator. For sports, government and Nepal Sports Council expenditure was used an indicator. For radio and TV channels, the number was obtained from the Ministry of Information and Communication; gross value
service activities	service activities	Number of television channels and gross value added per channel	Ministry of Information and Communication, Central Bureau of Statistics survey	added was derived from a Central Bureau of Statistics survey. Census data on the motion picture and music industry was used as an indicator for motion pictures.
		Census of motion pictures and music industry	Central Bureau of Statistics, 2011	_

 $^{^*} For the central \ Government \ and \ municipal ities, total \ expenditure \ on \ building \ and \ civil \ construction \ is \ taken into \ account.$

ANNEX 2:

Technical Notes on Calculating the HDI and Related Indexes

Human Development Index

The HDI is a composite index measuring average achievement in three basic dimensions of human development: a long and healthy life, knowledge and a decent standard of living. The HDI, for this report, is computed as the geometric mean (unlike its predecessors, which used the arithmetic mean) of the normalized indexes measuring achievements in each of these three dimensions. As a result of the use of the geometric mean, poor performance in any dimension is now directly reflected in the HDI, and there is no longer perfect substitutability across dimensions, keeping in mind that health, education and income are all equally important (UNDP 2010). This report, for the first time, also takes the geometric mean of the adult literacy rate and mean years of schooling to compute the combined education index.

Data sources

Data sources comprised the Central Bureau of Statistics (2012) for life expectancy at birth, mean years of schooling and the adult literacy rate, and the National Accounts of Nepal (Central Bureau of Statistics) for GNI per capita (PPP \$).

Dimensions and goalposts for the HDI

Life expectancy at birth: Life expectancy at birth is the number of years a newborn infant could expect to live if prevailing patterns of age-specific mortality rates at the time of birth stay the same throughout the infant's life (UNDP 2011). Life expectancy at birth is a summary measure of the health status of the population and was computed from life tables constructed from the ${}_{n}m_{x}$ (central death rate) values obtained from the National Population and Housing Census (Central Bureau of Statistics 2012) raw data.

Adult literacy rate: Adult literacy rates were calculated from the National Population and Housing Census (ibid.) for people aged 15 years and above who can read and write.

Mean years of schooling: Mean years of schooling for all regions were computed from National Population and Housing Census (ibid.) raw data.

GNI per capita: GNI per capita is the aggregate income of an economy generated by its production and its ownership of factors of production, less the incomes paid for the use of factors of production owned by the rest of the world, converted to international dollars using PPP rates, divided by mid-year population.

See table A2.1 for goalposts in calculating the dimensions of the HDI.

TABLE A2.1:

Goalposts for HDI dimensions

Dimension	Maximum	Minimum
Life expectancy	85	25
Adult literacy	100	0
Mean years of schooling	15	0
Per capita income (PPP \$)	40,000	100

Having defined the goal posts, the sub-indexes are calculated as follows:

 $Dimension\ index = \frac{Actual\ value-minimum\ value}{Maximum\ value-minimum\ value}$

Computing the HDI (Example: Mountain)

Region	Life expectancy at birth (in years)	Adult literacy rate (%)	Mean years of schooling	GNI per capita (PPP \$)
Mountains	66.98	51.46	3.02	965

Life expectancy index

$$=\frac{66.98-25}{85-25} = \frac{41.98}{60} = 0.700$$

Adult literacy index

$$=\frac{51.46-0}{100-0}=\frac{51.46}{100}=0.515$$

Mean years of schooling index

$$=\frac{3.02-0}{15-0} = \frac{3.02}{15} = 0.202$$

Educational attainment index

$$= \sqrt{0.515 \times 0.202} = 0.322$$

Adjusted GNI per capita (PPP \$) index

$$= \frac{\log (965) \cdot \log (100)}{\log (40,000) \cdot \log (100)} = 0.378$$

HDI output table

Region	Life expectancy index	Educational attainment index	Income index	HDI (geometric mean of the three indexes)
Mountains	0.700	0.322	0.378	0.440

Gender Development Index

The GDI measures achievements in the same basic capabilities (dimensions) as the HDI but takes into consideration inequality in achievements between women and men. The values of the GDI range between 0 and 1. A GDI value of 1 indicates perfect gender equality whereas 0 indicates perfect gender inequality.

Dimensions and goalposts for the GDI

There is strong evidence that the maximal potential life expectancy is greater for women than for men, given similar health care and nutritional opportunities (UNDP 2009). As a result, the goalposts for life expectancy at birth are different for males and females, as shown in table A 2.2.

Computing the GDI

The first step is to create indexes for all indicators using their respective goalposts for both sexes, except for life expectancy, where the goalposts are slightly different as discussed above. The second step involves the computation of the equally distributed equivalent index, which is done using the following formula:

[(Female proportion share) (Female indicator)⁻¹)] + [(Male proportion share) (male indicator)⁻¹)] ⁻¹

This will produce three equally distributed indexes, one each for life expectancy, educational achievement and income. The final step is to aggregate these by taking their arithmetic mean as well as geometric mean, as done for HDI calculations.

TABLE A2.2:

	Female	Male
Maximum	87.5	82.5
Minimum	27.5	22.5

Computing the GDI (Example Hills)

Percentage share of population Female 0.523 Male 0.477

Step I: Computing the equally distributed life expectancy index

Life expectancy
Female 71.44
Male 66.83
Life expectancy index
Female 0.732
Male 0.739

Equally distributed life expectancy index [Female population share×(female life expectancy index)-1 + male population share×(male life expectancy index)-1]-1

= $[0.523 \times (0.732)^{-1} + 0.477 \times (0.739)^{-1}]^{-1}$ = 0.735

Step II: Computing the equally distributed educational attainment index

Adult literacy rate Female 56.39 Male 78.86 Mean years of schooling Female 3.85 Male 5.13 Adult literacy index Female 0.564 Male 0.789 Mean years of schooling index Female 0.257 Male 0.342 Educational attainment index Female 0.380 Male 0.519

TABLE A2.3:

Dimensions and indicators of the GEM

Dimensions	Indicators
Political participation and decision-making	Female and male shares of parliamentary seats
Economic participation and decision-making	Percentage share of females and males in administrative and managerial positions
	Percentage share of females and males in professional and technical positions
Power over economic resources	Female and male estimated earned income (PPP \$)

Equally distributed education index

[Female population share×(female educational attainment index)⁻¹ + male population share×(male educational attainment index)⁻¹]⁻¹ = 0.436

Step III: Computing the equally distributed income index

GNI per capita (PPP \$)
Female 1,095
Male 1,558
Adjusted GNI per capita index
Female 0.399
Male 0.458

Equally distributed income index

[Female population share×(female income index)⁻¹ + male population share×(male income index)⁻¹]⁻¹

=0.426

F	Region	Equally distrib- uted life expec- tancy index	Equally distrib- uted educational attainment index	uted income	GDI
F	Hills	0.735	0.436	0.426	0.515

Gender Empowerment Measure

The GEM seeks to determine how much women have been empowered or enfranchised to take part in different aspects of public life in comparison with men. It measures gender inequality in key areas of economic and public participation and decision-making. Its value ranges from 0 to 1 with higher values denoting higher empowerment of women and lower values indicating opportunities for women are severely constrained (UNDP 2009). The GEM focuses on women's opportunities rather than their capabilities, and captures inequality along the dimensions presented in table A 2.3

The percentage share of females and males in parliamentary seats is obtained from the Constituent Assembly election database. This does not include the 26 members of the CA who were not nominated at the time of

data compilation. Likewise, the percentage of females and males in administrative and managerial positions and in professional and technical positions is calculated from Nepal Population and Housing Census (2011) raw data.

Constructing the GEM

The first step in constructing the GEM is to compute the equally distributed equivalent index by using the following formula:

[(Female proportion share) (Female indicator)-1)] +[(Male proportion share) (male indicator)⁻¹)] ⁻¹

The index for each indicator is then divided by 50, to obtain the indexed value of each indicator, with the rationale that in an ideal society, with equal empowerment of the sexes, each would have a share of 50 percent i.e., women's share would equal men's share. The indexes for administrative and managerial positions, and professional and technical positions are then combined by taking the arithmetic mean to get the index for economic participation and decision-making. Unlike the GDI, the GEM evaluates income not for its contribution to, but as a source of, economic power that frees the earner to choose from a wider set of possibilities and exercise a broader range of options. Therefore, while calculating the GEM, income is not adjusted for the laws of diminishing returns (UNDP 2009). The arithmetic mean of the indexes for each of the three dimensions results in the GEM.

Computing the GEM (Example Tarai)

Percentage share of population Female 0.508 Male 0.492

Step I: Computing indexes for parliamentary representation, administrative and managerial positions, and professional and technical positions

Percentage of parliamentary representation

Female 32.86 Male 67.14

Percentage of administrative and managerial positions

> Female 27.56 Male 72.44

Percentage of professional and technical positions

Female	27.11
Male	72.89
Income (GNI PPP \$)	
Female	769
Male	1345

Equally distributed equivalent percentage for parliamentary representation

[Female population share×(female share in parliamentary representation)-1 + male population share × (male share in parliamentary representation)-1]-1

=43.87

Equally distributed equivalent percentage for administrative and managerial positions

[Female population share×(female share in administrative and managerial positions)-1 + male population share×(male share in administrative and managerial positions)-1]-1

= 39.63

Equally distributed equivalent percentage for professional and technical positions

[Female population share×(female share in professional and technical positions)-1 + male population share × (male share in professional and technical positions)-1] -1

=39.22

Income index for females = {(769 - 100) / (40,000 - 100)} = 0.017Income index for males = {(1345 - 100) / (40,000 - 100)} = 0.031

Equally distributed income index

[Female population share×(female income index)-1 + male population share×(male income index)-1]-1

= 0.022

Indexing parliamentary representation 43.87 / 50 = 0.877

Indexing administrative and managerial positions

Indexing professional and technical positions 39.22 / 50 = 0.784

Combining the indexes for administrative/ managerial and professional/technical positions

= (Index of administrative and managerial positions + Index of professional and technical positions) / 2

$$= (0.793 + 0.784) / 2$$
$$= 0.788$$

Now, GEM = (Parliamentary representation index + combined administrative/managerial and professional/technical index + income index) / 3

$$= (0.877 + 0.788 + 0.022) / 3$$
$$= 0.563$$

Human Poverty Index

The HPI measures average deprivation in the three basic dimensions of human development—a long and healthy life, knowledge and a decent standard of living. Deprivation is measured by considering the following indicators:

Deprivation in a long and healthy life (vulnerability to death at an early age) is measured by the proportion of the population not expected to survive beyond age 40. Values for this indicator are calculated from I (the number of persons surviving at the beginning of the indicated age interval, x, in this case 40 years out of the total number of births assumed as the radix of the life table, 100,000) values from constructed life tables based on Nepal Population and Housing Census 2011 raw data. Deprivation in knowledge is measured by the adult illiteracy rate calculated from the Central Bureau of Statistics (2012). Deprivation in economic provisioning/a decent standard of living is measured by the unweighted average of two indicators—the percentage of the population without access to safe drinking water, and the percentage of children under age five who are malnourished—as they capture deprivation in economic provisioning more practically than other indicators for developing countries like Nepal. The percentage of the population without access to safe drinking water is calculated from the Central Bureau of Statistics (2012) and the percentage of malnourished children under age five is obtained from the Ministry of Health and Population (2012) and UNDP Nepal (2004).

Computing the HPI

Region	Percentage of people not expected to survive beyond age 40	Adult illiteracy rate	Percentage of people with- out access to safe water	Percentage of malnourished children under age five	Deprivation in economic provisioning
	(P ₁)	(P ₂)	(P ₃₁)	(P ₃₂)	$(P_3) = [(P_{31}) + (P_{32})]/2$
Mountains	10.62	48.54	23.48	52.9	38.19

HPI =
$$\sqrt[3]{\frac{1}{3}[(P_1)^3 + (P_2)^3 + (P_3)^3]}$$

= $\sqrt[3]{\frac{1}{3}[(10.62)^3 + (48.54)^3 + (38.19)^3]}$
= 38.51

ANNEX 3:

Caste and Ethnicity Classification

Major category/group	Sub-category	Caste and ethnic groups in the 2011 Census
1 Hill caste	1.1 Hill Brahmans	1.1 Hill Brahman
	1.2 Hill Chhetris	1.2 Chhetri, Thakuri, Sanyasi
2 Tarai/Madhesi castes	2.1 Tarai/Madhesi Brahmans/Chhetris	2.1 Tarai Brahman, Nurang, Rajput, Kayastha
	2.2 Tarai/Madhesi other castes	2.2 Badhaee, Barai, Bin, Dev, Dhunia, Gaderi/Bhedihar, Hajam/Thakur, Haluwai, Kahar, Kalwar, Kamar, Kanu, Kathabaniyan, Kewat,
	2.2.1 Yadav	Koiri/Kushwaha, Kori, Kumhar, Kurmi, Lodh, Lohar, Mali, Mallaha, Nuniya, Rajbhar, Rajdhob, Sonar, Sudhi, Teli, Yadav
3 Dalits	3.1 Hill Dalits	3.1 Badi, Damai/Dholi, Gaine, Kami, Sarki
	3.2 Tarai/Madhesi Dalits	3.2 Bantar/Sardar, Chamar/ Harijan/Ram, Chidimar, Dhandi, Dhankar/Dharikar, Dhobi, Dom, Dusadh/Paswan/Pasi, Halkhor, Kalar,
		Khatwe, Musahar, Natuwa, Sarbaria, Tatma/Tatwa
4 Janajatis	4.1 Mountain Janajatis	4.1 Bhote, Byasi/Sauka, Dolpo, Lhomi, Lhopa, Sherpa, Thakali, Topkegola, Walung
	4.4.1 Thakali	4.2 Athpariya, Bahing, Bantawa, Brahmu/Baramo, Chamling, Chepang/Praja, Chhantyal/Chantel, Dura, Ghale, Gharti/Bhujel,
	4.2 Hill Janajatis	Gurung, Hayu, Hyolmo, Jirel, Khaling, Khawa, Kulung, Kusunda, Lepcha, Limbu, Loharung, Magar, Mewahang/Bala, Nachhiring,
	4.4.2 Newar	Newar, Pahari, Rai, Sampang, Sunuwar, Tamang, Thami, Thulung, Yakkha, Yamphu
	4.3 Bhitri Madhesi Janajatis	4.3 Bote, Danuwar, Darai, Kumal, Majhi, Raji, Raute
	4.4 Tarai/Madhesi Janajatis	4.4 Amat, Dhanuk, Dhimal, Gangai, Jhangad/Dhagar, Kisan, Koche, Meche, Munda, Pattharkatta/ Kuswadia, Rajbanshi,
		Satar/Santhal, Tajpuriya, Tharu
5 Muslim	5 Muslim*	5 Muslim
6 Others	6 Others*	6 Bengali, Marwari, Punjabi/Sikh, Foreigners

^{*} Jain (other category, included in the 2001 Census) and Churaute (Muslim category, included in 1991 and 2001) have been excluded in the 2011 caste/ethnic groups.

ANNEX 4:

Values of the HDI and Related Indexes

TABLE A4.1: HDI values by region, 2011

Area/region/district				пеацп	5		Education	auon		шсоше			
Area/region/district		Population											
				Life expectancy	ctancy	Adult literacy		Mean years of schooling	schooling	Per capita income (PPP \$)		Arithmetic mean (old methodology)	Geometric mean (new methodology)
	Female	Male	Total	Value	Index	Value	Index	Value	Index	Value	lndex		
Nepal	13,645,463	12,849,041	26,494,504	08.80	0.730	59.57	0.596	3.90	0.260	1160	0.409	0.541	0.490
Urban	2,217,771	2,306,049	4,523,820	68.93	0.732	79.27	0.793	4.94	0.330	2248	0.520	0.630	0.579
Rural	11,427,692	10,542,992	21,970,684	68.81	0.730	54.98	0.550	3.69	0.246	936	0.373	0.517	0.464
Mountains	919,200	862,592	1,781,792	86.99	0.700	51.46	0.515	3.02	0.202	965	0.378	0.496	0.440
Hills	5,953,940	5,440,067	11,394,007	69.02	0.734	66.77	899:0	4.46	0.297	1316	0.430	0.569	0.520
Tarai	6,772,323	6,546,382	13,318,705	68.85	0.731	54.24	0.542	3.52	0.235	1052	0.393	0.521	0.468
Eastern development region	3,021,072	2,790,483	5,811,555	69.02	0.734	60.72	09:0	3.99	0.266	1088	0.398	0.542	0.490
Central development region	4,815,361	4,841,624	6,656,985	69.84	0.747	58.54	0.585	4.11	0.274	1429	0.444	0.558	0.510
Westem development region	2,634,168	2,292,597	4,926,765	69.03	0.734	64.82	0.648	4.12	0.275	1104	0.401	0.553	0.499
Mid Westem development region	1,840,232	1,706,450	3,546,682	08.99	0.697	55.74	0.557	3.27	0.218	906	0.368	0.503	0.447
Far Westem devel opment region	1,334,630	1,217,887	2,552,517	66.84	0.697	55.31	0.553	3.27	0.218	191	0.340	0.493	0.435
Eastern and Central Mountains	475,938	433,806	909,744	69.03	0.734	55.41	0.554	3.32	0.221	1219	0.417	0.531	0.475
Eastem and Central Hills (without Kathmandu)	1,843,865	1,672,272	3,516,137	89.69	0.745	60.39	0.604	3.77	0.251	1128	0.404	0.545	0.490
Eastern and Central Tarai	4,305,574	4,220,062	8,525,636	19.69	0.744	51.24	0.512	3.41	0.228	1046	0.392	0.518	0.463
Kathmandu Valley	1,211,056	1,305,967	2,517,023	69.13	0.735	82.52	0.825	6.83	0.456	2434	0.533	0.657	0.622
Western Hills	1,550,759	1,260,376	2,811,135	27.69	0.746	68.55	0.685	4.39	0.293	1100	0.400	0.567	0.511
Western Tarai	1,074,173	1,021,467	2,095,640	67.87	0.715	59.71	0.597	3.76	0.251	1097	0.400	0.532	0.480
Western, Mid Westem and Far Westem Mountains	443,262	428,786	872,048	65.04	0.667	46.76	0.468	2.70	0.180	701	0.325	0.455	0.398
Mid Western and Far Western Hills	1,348,260	1,201,452	2,549,712	67.20	0.703	54.11	0.541	3.02	0.201	710	0.327	0.486	0.423
Mid Western and Far Western Tarai	1,392,576	1,304,853	2,697,429	67.20	0.703	59.44	0.594	3.69	0.246	1037	0.390	0.524	0.472
Eastern Mountains	205,112	186,977	392,089	67.67	0.711	62.43	0.624	3.61	0.241	1407	0.441	0.550	0.496
Central Mountains	270,826	246,829	517,655	70.13	0.752	50.30	0.503	3.10	0.206	1077	0.397	0.518	0.458
Western Mountains	9,236	10,754	19,990	65.04	0.667	64.47	0.645	4.17	0.278	2329	0.525	0.572	0.529
MidWestem Mountains	192,886	195,827	388,713	63.64	0.644	42.99	0.430	2.51	0.168	811	0.349	0.445	0.392
Far Western Mountains	241,140	222,205	463,345	65.87	0.681	48.89	0.489	2.79	0.186	538	0.281	0.450	0.386
Eastem Hills	844,825	756,522	1,601,347	68.87	0.731	65.33	0.653	4.09	0.272	1107	0.401	0.553	0.498
Central Hills	2,210,096	2,221,717	4,431,813	69.72	0.745	72.10	0.721	5.41	0.361	1878	0.489	0.612	0.571
Western Hills	1,550,759	1,260,376	2,811,135	22.69	0.746	68.55	0.685	4.39	0.293	1100	0.400	0.567	0.511
Mid Western Hills	887,268	800,229	1,687,497	66.92	0.699	55.82	0.558	3.11	0.207	745	0.335	0.492	0.430
Far Western Hills	460,992	401,223	862,215	89.79	0.711	50.71	0.507	2.84	0.189	643	0.311	0.474	0.409

	•	Роршацоп										
Area/region/district				Life expectancy	ıncy	Adult literacy	Me	Mean years of schooling		Per capita income (PPP \$)	\$) Arithmetic mean	Geometric mean
	Female	Male	Total	Value	Index	Value	Index	Value Inc	Index	Value Index		w me modology
Eastem Tarai	1,971,135	1,846,984	3,818,119	69.19	0.736	58.65	0.586	3.98 0	0.266		0.392 0.536	0.485
Central Tarai	2,334,439	2,373,078	4,707,517	70.03	0.751	44.82	0.448	2.94 0.	0.196	1045 0.	0.392 0.502	0.443
Western Tarai	1,074,173	1,021,467	2,095,640	67.87	0.715	59.71	0.597	3.76 0	0.251	1097 0.	0.400 0.532	0.480
MidWesternTarai	760,078	710,394	1,470,472	97.69	0.711	58.65	0.587	3.64 0	0.243	1117 0.	0.403 0.529	0.476
Far Westem Tarai	632,498	594,459	1,226,957	02'99	0.695	60.39	0.604	3.75 0.2	0.250	940 0.	0.374 0.518	0.466
Taplejung	606'99	60,552	127,461	65.83	0.681	65.72	0.657	3.89 0.7	0.260	1313 0.	0.430 0.545	0.494
Panchthar	101,631	90,186	191,817	68.12	0.719	16.99	699.0	4.21 0.	0.281	1082 0.	0.398 0.552	0.498
lllam	149,128	141,126	290,254	67.95	0.716	73.46	0.735	4.74 0.3	0.316	1260 0.	0.423 0.578	0.526
Лара	427,554	385,096	812,650	67.79	0.705	69.92	0.699	4.77 0.3	0.318	1226 0.	0.418 0.565	0.518
Morang	498,658	466,712	965,370	69.05	0.734	64.91	0.649	4.39 0.7	0.293	1251 0.	0.422 0.562	0.513
Sunsari	392,258	371,229	763,487	68.33	0.722	62.88	0.629	4.21 0.	0.281	1104 0.	0.401 0.545	0.496
Dhankuta	86,897	76,515	163,412	69.04	0.734	68.59	989:0	4.36 0.7	0.290	1257 0.	0.423 0.570	0.517
Terhathum	54,426	47,151	101,577	68.05	0.718	69.36	0.694	4.56 0.3	0.304	1419 0.	0.443 0.575	0.527
Sankhuwasabha	83,517	75,225	158,742	68.42	0.724	63.16	0.632	3.60 0.2	0.240	1193 0.	0.414 0.546	0.488
Bhojpur	96,406	86,053	182,459	68.33	0.722	63:09	0.631	3.72 0.2	0.248	999 0.	0.384 0.537	0.479
Solukhumbu	54,686	51,200	105,886	68.83	0.731	57.51	0.575	3.30 0.2	0.220	1841 0.	0.486 0.558	0.502
Okhaldhunga	79,297	68,687	147,984	70.56	0.759	56.14	0.561	3.43 0.7	0.229	957 0.	0.377 0.529	0.468
Khotang	109,220	97,092	206,312	70.24	0.754	61.98	0.620	3.78 0.2	0.252	1132 0.	0.405 0.552	0.494
Udaypur	167,820	149,712	317,532	69.29	0.738	02'09	209'0	3.81 0.2	0.254	920 0.	0.370 0.533	0.475
Saptari	325,438	313,846	639,284	71.34	0.772	45.44	0.454	3.21 0.2	0.214	801 0.	0.347 0.498	0.437
Siraha	722,728	310,101	637,328	71.29	0.772	39.96	0.400	2.82 0.7	0.188	.0 689	0.322 0.474	0.408
Dhanusa	376,239	378,538	754,777	69.53	0.742	41.89	0.419	2.97 0.7	0.198	938 0.	0.374 0.487	0.431
Mahottari	316,564	311,016	627,580	69.47	0.741	37.04	0.370	2.46 0.7	0.164	681 0.	0.320 0.454	0.388
Sarlahi	379,973	389,756	769,729	70.06	0.751	38.00	0.380	2.42 0.7	0.162	809 0.	0.349 0.469	0.402
Sindhuli	154,069	142,123	296,192	70.04	0.751	51.08	0.511	3.08 0.2	0.205	822 0.	0.352 0.504	0.440
Ramechhap	109,260	93,386	202,646	72.90	0.798	52.10	0.521	3.37 0.2	0.225	951 0.	0.376 0.532	0.468
Dolakha	99,554	87,003	186,557	70.85	0.764	53.60	0.536	3.26 0	0.218	922 0.	0.371 0.522	0.459
Sindhupalchok	149,447	138,351	287,798	69.57	0.743	49.51	0.495	3.02 0	0.201	1110 0.	0.402 0.514	0.455
Kavrepalanchok	199,001	182,936	381,937	70.86	0.764	62.77	0.628	4.18 0	0.279	1399 0.	0.440 0.572	0.520
Lalitpur	230,050	238,082	468,132	70.30	0.755	79.68	0.797	6.47 0.	0.431	1894 0.	0.491 0.640	0.601
Bhaktapur	149,767	154,884	304,651	70.48	0.758	78.13	0.781	6.19 0.	0.413	1379 0.	0.438 0.618	0.573
Kathmandu	831,239	913,001	1,744,240	68.55	0.726	84.04	0.840	7.05 0.4	0.470	2764 0.	0.554 0.666	0.632
Nuwakot	144,684	132,787	277,471	70.81	0.763	50.59	0.506	3.26 0.2	0.218	1086 0.	0.398 0.524	0.466
Rasuwa	21,825	21,475	43,300	70.91	0.765	41.32	0.413	2.88 0.	0.192	1520 0.	0.454 0.520	0.461
Dhading	178,233	157,834	336,067	70.86	0.764	53.26	0.533	3.20 0.2	0.213	982 0.	0.381 0.524	0.461
Makwanpur	213,793	206,684	420,477	80.89	0.718	61.79	0.618	3.63 0.2	0.242	1410 0.	0.442 0.551	0.497
Rautahat	335,643	351,079	686,722	70.99	0.766	33.89	0.339	2.19 0.	0.146	757 0.	0.338 0.460	0.386
Bara	336,464	351,244	80,7/08	70.50	0.758	43.25	0.433	2.72 0.	0.182	1480 0.	0.450 0.519	0.457
Parsa	288,659	312,358	601,017	70.25	0.754	48.69	0.487	3.09 0.2	0.206	1223 0.	0.418 0.522	0.464
Chitwan	300,897	279,087	579,984	82.69	0.746	72.23	0.722	5.01 0.3	0 334	1537 0.	0.456 0.598	0.551

	•	Population								21102111			5
Area/region/district				Life ex	Life expectancy	Adult literacy		Mean years	Mean years of schooling	Per capita income (PPP \$)	(PPP \$)	Arithmetic mean (old methodology)	Geometric mean (new methodology)
	Female	Male	Total	Value	Index	Value	Index	Value	Index	Value	Index		
Lamjung	91,811	75,913	167,724	70.94	0.766	63.62	0.636	4.01	0.268	1186	0.413	0.564	0.507
Tanahu	179,878	143,410	323,288	70.14	0.752	68.32	0.683	4.17	0.278	1072	0.396	0.565	0.506
Syangja	163,315	125,833	289,148	89.69	0.745	70.37	0.704	4.73	0.315	1215	0.417	0.579	0.527
Kaski	255,713	236,385	492,098	70.51	0.758	78.57	0.786	5.76	0.384	1561	0.459	0.623	0.576
Manang	2,877	3,661	6,538	65.04	0.667	70.82	0.708	4.79	0.320	3166	0.577	0.608	0.568
Mustang	6,359	7,093	13,452	65.04	0.667	61.35	0.613	3.86	0.257	1922	0.493	0.552	0.508
Myagdi	62,246	51,395	113,641	70.05	0.751	65.16	0.652	3.75	0.250	1028	0.389	0.552	0.490
Parbat	81,289	65,301	146,590	70.55	0.759	67.57	9/9:0	4.56	0.304	1013	0.386	0.566	0.510
Baglung	150,616	117,997	268,613	68.83	0.730	65.54	0.655	3.91	0.261	898	0.361	0.538	0.478
Gulmi	159,165	120,995	280,160	68.09	0.718	65.58	0.656	3.92	0.261	752	0.337	0.526	0.464
Palpa	145,340	115,840	261,180	68.27	0.721	70.82	0.708	4.35	0.290	985	0.382	0.557	0.500
Nawalparasi	339,833	303,675	643,508	67.81	0.714	63.75	0.637	3.97	0.265	1157	0.409	0.545	0.493
Rupandehi	44,8003	432,193	880,196	68.29	0.721	64.39	0.644	4.20	0.280	1123	0.404	0.549	0.498
Kapilbastu	286,337	285,599	571,936	95'29	0.709	47.10	0.471	2.83	0.189	066	0.383	0.490	0.432
Arghakhanchi	111,366	86,266	197,632	68.56	0.726	65.57	0.656	4.01	0.267	606	0.368	0.540	0.482
Pyuthan	128,049	100,053	228,102	64.33	0.655	58.01	0.580	2.91	0.194	681	0.320	0.476	0.413
Rolpa	121,406	103,100	224,506	66.28	0.688	50.74	0.507	2.44	0.163	643	0.311	0.464	0.395
Rukum	109,408	99,159	208,567	68.39	0.723	50.81	0.508	3.06	0.204	782	0.343	0.491	0.431
Salyan	126,475	115,969	242,444	08:89	0.730	55.50	0.555	3.17	0.211	786	0.344	0.505	0.441
Dang	291,524	261,059	552,583	67.33	0.705	62.41	0.624	3.83	0.255	1127	0.404	0.537	0.485
Baanke	247,058	244,255	491,313	68.35	0.723	56.31	0.563	3.59	0.239	1133	0.405	0.528	0.475
Bardiya	221,496	205,080	426,576	67.26	0.704	56.54	0.565	3.46	0.231	1086	0.398	0.519	0.466
Surkhet	181,383	169,421	350,804	67.28	0.705	00.79	0.670	3.88	0.258	911	0.369	0.535	0.476
Dailekh	134,780	126,990	261,770	68.03	0.717	52.30	0.523	3.06	0.204	684	0.321	0.485	0.422
Jajarkot	292'58	85,537	171,304	66.45	0.691	46.92	0.469	2.70	0.180	611	0.302	0.455	0.393
Dolpa	18,462	18,238	36,700	61.20	0.603	44.22	0.442	2.53	0.169	1040	0.391	0.448	0.401
Jumla	54,023	54,898	108,921	63.14	0.636	44.43	0.444	7.62	0.174	1007	0.385	0.459	0.409
Kalikot	68,115	68,833	136,948	63.64	0.644	45.30	0.453	2.54	0.169	578	0.293	0.432	0.374
Mugu	27,261	28,025	55,286	65.57	9/9:0	39.25	0.393	2.50	0.167	998	0.360	0.451	0.397
Humla	25,025	25,833	50,858	64.15	0.653	37.22	0.372	2.22	0.148	794	0.346	0.432	0.376
Bajura	69,106	908'59	134,912	63.92	0.649	44.52	0.445	2.46	0.164	523	0.276	0.425	0.364
Bajhang	102,365	92,794	195,159	65.22	0.670	45.03	0.450	2.53	0.168	487	0.264	0.430	0.365
Acdram	137,469	120,008	257,477	67.14	0.702	45.08	0.451	2.52	0.168	536	0.280	0.446	0.378
Doti	114,494	97,252	211,746	66.74	9690	47.68	0.477	2.53	0.169	774	0.341	0.470	0.407
Kailali	397,292	378,417	775,709	66.46	0.691	58.86	0.589	3.62	0.241	942	0.374	0.513	0.460
Kanchanpur	235,206	216,042	451,248	67.08	0.701	63.04	0.630	3.97	0.264	938	0.374	0.528	0.475
Dadeldhura	75,538	955'99	142,094	06.79	0.715	57.26	0.573	3.34	0.223	764	0.339	0.503	0.442
Baitadi	133,491	117,407	250,898	68.88	0.731	54.85	0.548	3.13	0.209	573	0.291	0.486	0.416
Cl. 145% C	033 03	63 605	122 774	1000	ACT 0	0 0	0 0 0 0	4		1000			

TABLE A4.2: GDI values by region, 2011

	Percentage of population	age of ation			Health						Education	tion						Income	ev		8	_
				5	Life expectancy			Adul	Adult literacy		Meany	ears of s	Mean years of schooling	Educati	Education index		R	GNI per capita (PPP \$)	(PPP \$)			
	Female Male	Male	Fen	Female	Male	Equally	Female	e Male	Female	Male		Female Male	Female	Arithme-	Geomet-	Female		Male Female Male	Male	Equally	Arithmetic	Geometric
Area/region	Share	Share	Value	Index	Share Share Value Index Value Index	distributed	i Value	Value	a Index	Index	Value	Value	Index	tic mean		Value	Value Value	Index	Index	distributed index	mean (old methodology)	mean (new methodology)
Nepal	0.515	0.485		70.90 0.723	67.00 0.742	0.732	2 48.78	3 71.66	5 0.488	0.717	3.28	4.55	0.219	0.469	0.382	606	1427	0.368	0.444	0.401	0.534	0.482
Mountains	0.516	0.484		69.79 0.705	64.54 0.701	0.703	37.66	5 66.83	3 0.377	. 0.668	2.34	3.75	0.156	0.382	0.302	844	1094	0.356	0.399	0.376	0.487	0.430
Hills	0.523		71.44	0.477 71.44 0.732	66.83 0.739	0.735	5 56.39	9 78.86	5 0.564	0.789	3.85	5.13	0.257	0.532	0.436	1095	1558	0.399	0.458	0.426	0.564	0.515
Tarai	0.508	0.492	70.57	0.718	67.49 0.750	0.733	3 43.25	5 66.14	4 0.433	0.661	2.91	4.16	0.194	0.423	0.344	769	1345	0.341	0.434	0.381	0.512	0.458
Eastern development region	0.520	0.480	70.73	0.721	0.520 0.480 70.73 0.721 67.52 0.750	0.735	5 50.61	1 72.31	1 0.506	0.723	3.44	4.58	0.229	0.481	0.393	908	1393	0.348	0.440	0.387	0.534	0.481
Central development region	0.499		0.501 71.45	0.733	68.58 0.768	0.750	09'.47'.60	79:69 (7 0.476	0.697	3.42	4.79	0.228	0.466	0.388	1113	1744	0.407	0.477	0.437	0.551	0.503
Western development region	0.535	0.465	71.55	0.734	0.535 0.465 71.55 0.734 66.55 0.734	0.734	1 55.57	7 76.49	955'0 6	0.765	3.64	4.68	0.243	0.515	0.415	805	1447	0.348	0.446	0.388	0.546	0.491
MidWestem development region	0.519	0.481		69.29 0.696	64.61 0.702	0.699	9 44.43	3 68.74	1 0.444	. 0.687	2.70	3.88	0.180	0.427	0.336	839	978	0.355	0.381	0.367	0.498	0.442
Far Western development region	0.523	0.477	70.42	0.715	0.523 0.477 70.42 0.715 63.69 0.687	0.701	1 40.19	3 73.32	2 0.402	0.733	2.50	4.12	0.167	0.410	0.324	612	937	0.302	0.373	0.332	0.481	0.423

TABLE A4.3: GEM values by region, 2011

			Percentage	e of parlia. tic	Percentage of parliamentary representa- tion	enta-	Perce	ntage of a	Percentage of administrative and managerial positions	pu	Percenta	ge of prot cal pc	Percentage of professional and technical positions	echni-	Combined administrative/			Income			
Area/region	Percentage of population Female	ge of ion e	Female	Male	Equally distributed equivalent	Index	Female	Male	Equally distributed equivalent		Female	Male	Equally distributed equivalent	Index	managerial and professional/ technical positions indexes	Female	Male	Female	Male	Equally Distributed Income	GEM
	Female	Male	Female Male Percent Percent	Percent	Percent		Value	Value		Index	Value	Value	Value		Female	Value	Value	Value	Index	Index	
Nepal	0.515 0.485	0.485	30.09	16:69	41.57	0.831	31.98	68.02	43.04	0.861	30.37	69.63	41.80	0.836	0.848	606	1427	0.020	0.033	0.025	0.568
Mountains	0.516	0.484	18.60	81.40	29.69	0.594	33.90	66.10	44.36	0.887	27.08	72.92	38.93	0.779	0.833	844	1094	0.019	0.025	0.021	0.483
Hills	0.523	0.477	28.92	71.08	40.34	0.807	34.24	92.79	44.40	0.888	32.93	67.07	43.50	0.870	0.879	1095	1558	0.025	0.037	0.029	0.572
Tarai	0.508	0.492	32.86	67.14	43.87	0.877	27.56	72.44	39.63	0.793	27.11	72.89	39.22	0.784	0.788	692	1345	0.017	0.031	0.022	0.563
Eastem development region	0.520	0.480	31.47	68.53	42.51	0.850	34.10	06:59	44.39	0.888	29.51	70.49	40.93	0.819	0.853	908	1393	0.018	0.032	0.023	0.575
Central development region	0.499	0.501	29.38	70.62	41.55	0.831	31.70	68.30	43.35	0.867	30.45	69.55	42.40	0.848	0.857	1113	1744	0.025	0.041	0.031	0.573
Western development region	0.535	0.465	28.16	71.84	39.27	0.785	36.16	63.84	45.30	906:0	34.07	65.93	43.95	0.879	0.893	805	1447	0.018	0.034	0.023	0.567
Mid Westem development region	0.519	0.481	30.43	69.57	41.73	0.835	29.56	70.44	41.01	0.820	28.80	71.20	40.37	0.807	0.814	839	978	0.019	0.022	0.020	0.556
Far Western development region	0.523 0.477	0.477	32.65	67.35	43.29	998.0	20.08	79.92	31.25	0.625	25.69	74.31	37.35	0.747	989'0	612	937	0.013	0.021	0.016	0.523

TABLE A4.4:

HPI values by region, 2011

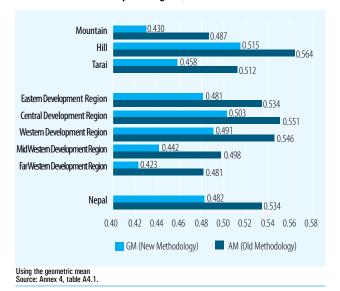
Area/region/district	Percentage of people not expected to survive to age 40	Adult illiteracy rate	Percentage without safe water	Percentage of children under age five who are malnourished	Deprivation in economic provisioning	НРІ
Nepal	7.52	40.43	17.09	40.50	28.80	31.12
Urban	5.32	20.73	16.36	26.70	21.53	18.51
Rural	7.94	45.02	17.27	41.80	29.53	33.96
Mountains	10.62	48.54	23.48	52.90	38.19	38.51
Hills	7.11	33.23	24.90	42.10	33.50	29.20
·	<u></u>					
Tarai	7.44	45.76	8.35	37.40	22.88	33.04
Eastern Development Region	7.50	39.28	11.01	37.00	24.00	29.22
Central Development Region	6.35	41.46	18.36	38.20	28.28	31.54
Western Development Region	7.36	35.18	13.45	37.40	25.43	27.20
Mid Western Development Region	9.31	44.26	27.99	50.30	39.14	36.63
Far Western Development Region	9.53	44.69	19.86	46.40	33.13	34.80
Eastern and Central Mountains	8.69	44.59	19.58	45.20	32.39	34.51
Eastern and Central Hills (without Kathmandu)	7.75	39.61	21.78	39.40	30.59	31.21
Eastern and Central Tarai	6.93	48.76	7.13	36.40	21.77	34.81
Kathmandu Valley	4.20	17.48	28.77	28.50	28.64	21.28
Western Hills	6.74	31.45	17.38	36.00	26.69	25.62
Western Tarai	8.15	40.29	6.61	39.90	23.25	29.69
Western, Mid Western and Far Western Mountains	12.02	53.24	28.63	59.50	44.06	42.98
Mid Western and Far Western Hills	9.31	45.89	35.11	54.50	44.80	39.68
Mid Western and Far Western Tarai	8.47	40.56	13.46	38.50	25.98	30.47
Eastern Mountains	9.29	37.57	19.30	45.00	32.15	30.73
Central Mountains	8.17	49.70	19.77	45.50	32.63	37.49
Western Mountains	12.02	35.53	6.52	54.70	30.61	29.28
Mid Western Mountains	12.05	57.01	31.02	55.00	43.01	44.63
Far Western Mountains	15.72	51.11	27.91	55.50	41.71	41.21
Eastern Hills	8.27	34.67	22.99	45.50	34.25	30.17
Central Hills	5.52	27.90	25.60	31.30	28.45	24.65
Western Hills	6.74	31.45	17.38	36.00	26.69	25.62
Mid Western Hills	9.49	44.18	34.56	51.70	43.13	38.21
Far Western Hills	8.99	49.29	36.23	57.50	46.86	42.07
Eastern Tarai	7.03	41.35	4.93	31.40	18.17	29.50
Central Tarai	6.81	55.18	9.26	40.50	24.88	39.42
Western Tarai	8.15	40.29	6.61	39.90	23.25	29.69
Mid Western Tarai	8.18	41.35	19.86	43.50	31.68	32.50
Far Western Tarai	8.82	39.61	5.08	31.50	18.29	28.43
Taplejung	10.78	34.28	9.46	38.50	23.98	26.42
Panchthar	9.16	33.09	28.35	56.90	42.63	33.66
Illam	8.42	26.54	22.00	46.10	34.05	26.96
Jhapa	8.76	30.08	5.49	24.20	14.84	21.82
Morang	7.00	35.09	3.08	31.50	17.29	25.32
Sunsari	7.10	37.12	3.58	29.40	16.49	26.52
Dhankuta	7.11	31.41	18.27	44.90	31.59	27.57
Terhathum	7.99	30.64	22.29	63.40	42.85	33.01
Sankhuwasabha	8.43	36.84	32.41	47.40	39.91	33.64
Bhojpur	9.65	36.91	31.43	45.50	38.46	33.03
Solukhumbu	8.74	42.49	11.18	47.60	29.39	32.48
Okhaldhunga	7.17	43.86	17.29	56.70	37.00	35.60
Khotang	8.15	38.02	21.83	33.60	27.71	29.47
Udaypur	8.15	39.30	22.07	30.00	26.03	29.74
Saptari	5.39	54.56	3.97	33.40	18.69	38.34
Siraha	6.37	60.04	10.27	39.70	24.99	42.62
		-				
Dhanusa	7.31	58.11	11.88	43.60	27.74	41.72
Mahottari	7.55	62.96	9.58	43.60	26.59	44.75

Continued...

Area/region/district	Percentage of people not expected to survive to age 40	Adult illiteracy rate	Percentage without safe water	Percentage of children under age five who are malnourished	Deprivation in economic provisioning	НРІ
Sarlahi	7.04	62.00	11.01	37.70	24.36	43.86
Sindhuli	8.56	48.92	35.52	36.30	35.91	37.95
Ramechhap	5.92	47.90	20.39	44.40	32.40	36.35
Dolakha	7.61	46.40	22.15	44.00	33.07	35.70
Sindhupalchok	8.41	50.49	19.26	46.60	32.93	38.03
Kavrepalanchok	6.23	37.23	20.58	21.70	21.14	27.34
Lalitpur	4.03	20.32	30.48	16.20	23.34	19.18
Bhaktapur	3.31	21.87	18.25	26.90	22.58	19.43
Kathmandu	4.39	15.96	30.00	32.00	31.00	22.45
Nuwakot	6.77	49.41	12.32	37.10	24.71	35.66
Rasuwa	8.70	58.68	12.13	45.00	28.57	42.24
			15.39	26.30	20.85	33.38
Dhading	7.68	46.74				
Makwanpur	7.94	38.21	21.55	25.10	23.32	28.44
Rautahat	7.27	66.11	4.87	39.70	22.29	46.43
Bara	6.24	56.75	3.96	39.60	21.78	40.09
Parsa	5.30	51.31	4.62	37.20	20.91	36.37
Chitwan	6.45	27.77	15.77	42.00	28.88	24.80
Gorkha	6.57	41.83	37.16	31.30	34.23	33.58
Lamjung	5.70	36.38	11.68	32.20	21.94	26.98
Tanahu	7.27	31.68	24.76	47.30	36.03	29.75
Syangja	6.85	29.63	17.20	39.10	28.15	25.31
Kaski	4.59	21.43	7.55	22.90	15.22	16.50
Manang	12.02	29.18	2.42	54.70	28.56	25.52
Mustang	12.02	38.65	8.32	54.70	31.51	31.16
Myagdi	7.27	34.84	12.56	47.50	30.03	28.54
Parbat	6.11	32.43	17.47	26.20	21.84	24.62
Baglung	8.52	34.46	11.12	42.90	27.01	27.33
Gulmi	8.26	34.42	11.42	43.30	27.36	27.42
Palpa	7.25	29.18	20.93	35.90	28.42	25.23
Nawalparasi	8.09	36.25	13.11	38.90	26.01	27.99
Rupandehi	7.30	35.61	2.50	37.70	20.10	26.15
Kapilbastu	9.24	52.90	4.82	48.70	26.76	38.26
Arghakhanchi	7.71	34.43	23.48	31.00	27.24	27.37
Pyuthan	11.61	41.99	20.87	48.40	34.64	33.93
Rolpa	10.80	49.26	23.03	51.30	37.16	38.57
Rukum	8.14	49.20	26.41	51.30	38.85	39.02
Salyan	8.23	44.50	42.19	54.10	48.14	40.57
Dang	7.98	37.59	44.72	39.30	42.01	34.92
Baanke	7.84	43.69	4.87	44.80	24.83	32.10
Bardiya	8.84	43.46	2.14	50.60	26.37	32.30
Surkhet	8.39	33.00	37.26	57.90	47.58	36.36
Dailekh	8.63	47.70	48.12	45.60	46.86	41.35
Jajarkot	11.50	53.08	43.91	51.30	47.60	44.20
Dolpa	14.48	55.78	35.16	54.10	44.63	44.56
Jumla	11.03	55.57	19.96	54.10	37.03	42.09
Kalikot	13.38	54.70	41.99	54.10	48.04	45.20
Mugu	9.41	60.75	24.68	50.20	37.44	45.22
Humla	11.60	62.78	30.05	65.70	47.88	49.26
Bajura	13.79	55.48	31.53	50.80	41.17	43.28
Bajhang	12.81	54.97	32.91	63.20	48.05	45.32
Accham	9.50	54.92	44.31	59.20	51.76	46.68
Doti	9.40	52.32	36.45	57.60	47.02	43.57
Kailali	9.00	41.14	6.10	31.40	18.75	29.49
Kanchanpur	8.52	36.96	3.32	31.70	17.51	26.60
Dadeldhura	8.89	42.74	29.22			
				48.60	38.91	35.80
Baitadi	8.14	45.15	31.57	59.20 47.80	45.38	39.58

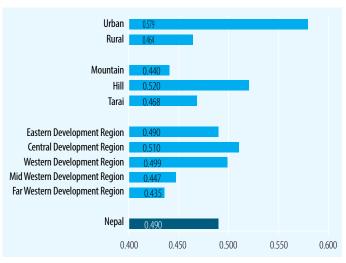
TABLE A4.5: HDI values by caste and ethnicity, 2011

Caste and ethnic groups Value All Brahman/Chhetri 73.99 Hill Brahman 73.26 All Chhetri 70.32	Life expectancy	,	2		the present of	<u>.</u>	Combined	Combined educational index	:	(4) 600/		
n/Chhetri an and Chhetri		÷.	Adult literacy	Jc)	Mean years or scnooling	chooling	-	Geometric mean of adult	Per capita income (PPP \$)	ome (PPP >)	Arithmetic	Geometric
n/Chhetri in ian and Chhetri	Value	Index	Value	Index	Value	Index	z: I weigntage	II teracy and mean years — of schooling	Value	Index		
nn ian and Chhetri	73.99	0.816	76.32	0.763	4.41	0.294	09:0	0.474	1,115	0.402	09:0	0.538
ian and Chhetri	73.26	0.804	81.89	0.819	4.79	0.319	0.652	0.511	1,247	0.421	0.626	0.557
		0.755	72.04	0.720	4.13	0.275	0.572	0.445	1016	0.387	0.571	0.507
	74.10	0.818	82.05	0.820	4.63	0.309	0.650	0.503	937	0.373	0.614	0.536
Madhesi other castes (including Yadav) 72.35		0.789	53.93	0.539	3.83	0.255	0.445	0.371	732	0.332	0.522	0.460
All Dalit 67.19		0.703	52.27	0.523	3.42	0.228	0.425	0.345	755	0.338	0.488	0.434
Hill Dalit 65.57		9/9:0	61.93	0.619	3.46	0.231	0.490	0.378	805	0.348	0.505	0.446
72.2	72.26	0.788	80.07	0.801	4.75	0.317	0.639	0.504	1,522	0.454	0.627	0.565
All Janajati excluding Newar 69.86		0.748	66.93	0.669	3.99	0.266	0.535	0.422	844	0.356	0.546	0.482
All Hill Janajati (including Newar) 70.51		0.759	71.21	0.712	4.15	0.277	0.567	0.444	1,051	0.393	0.573	0.509
All Tarai Janajati 69.44		0.741	62.24	0.622	3.99	0.266	0.504	0.407	822	0.352	0.532	0.473
Muslim 70.47		0.758	43.56	0.436	3.24	0.216	0.362	0.307	695	0.324	0.481	0.422
All Hill/Mountain groups 70.25		0.754	72.35	0.724	4.18	0.279	0.575	0.449	1,056	0.393	0.574	0.511
All Tarai/Madhesi groups 70.95		0.766	53.27	0.533	3.76	0.251	0.439	0.365	744	0.335	0.513	0.454
Others 72.87		0.798	79.49	0.795	4.36	0.291	0.627	0.481	2,316	0.524	0.650	0.586
Tarai/Madhesi Dalits 70.4	70.45	0.758	34.58	0.346	3.35	0.223	0.305	0.278	616	0.304	0.455	0.400
Chhetri only 70.33		0.755	72.13	0.721	4.13	0.275	0.573	0.446	1,001	0.384	0.571	0.506
Other Hill castes 70.2	70.20	0.753	70.33	0.703	4.14	0.276	0.561	0.441	1,113	0.402	0.572	0.511
Yadav 73.42		0.807	51.78	0.518	3.91	0.261	0.432	0.367	671	0.318	0.519	0.455
Tarai Madhesi castes excluding Yadav 71.91		0.782	54.80	0.548	3.79	0.253	0.450	0.372	751	0.336	0.523	0.461
Thakali 69.50		0.742	73.88	0.739	4.15	0.277	0.585	0.452	1,561	0.459	0.595	0.536
Mountain Janajati excluding Thakali 69.37		0.740	63.43	0.634	3.78	0.252	0.507	0.400	1,115	0.402	0.550	0.492
Hill Janajati excluding Newar 70.12		0.752	68:99	0.690	4.00	0.267	0.549	0.429	842	0.356	0.552	0.486
All Janajati 68.92		0.732	72.10	0.721	5.41	0.361	0.601	0.510	1,779	0.480	0.604	0.564


TABLE A4.6:

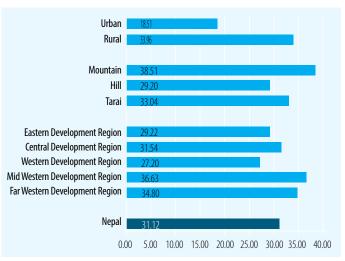
Per capita income by caste and ethnicity, 2011

Caste and ethnic groups	Per capita income (rupees)
All Brahman/Chettri	49,878
Hill Brahman	55,763
Hill Chhetri	45,420
Madhesi Brahman/Chhetri	41,889
Madhesi other caste	32,737
All Dalit	33,786
Hill Dalit	36,021
Madhesi Dalit	27,562
Newar	68,060
All Janajati excluding Newar	37,726
Hill Janajati	46,986
Tarai Janajati	36,765
Muslim	31,096
All Hill/Mountain groups	47,208
All Tarai/Madhesi groups	33,288
Others	103,579
Source: Nepal Living Standards Survey 2011.	


FIGURE A4.2:

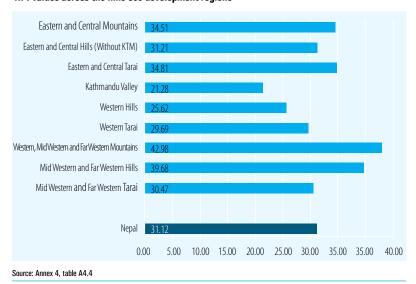
GDI values across development regions, 2011

FIGURE A4.1:

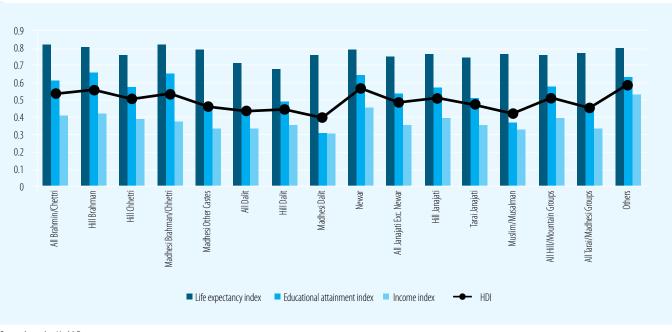

HDI values by region, 2011

Using the geometric mean Source: Annex 4, table A4.1.

FIGURE A4.3:


HPI values by region, 2011

Source: Annex 4, table A4.4.


FIGURE A4.4:

HPI values across the nine eco-development regions

FIGURE A4.5:

The HDI and its components by major caste and ethnicity, 2011

Source: Annex 4, table A4.5.

ANNEX 5: Per Capita Gross National Income

							;							Se	p	əɔ							
Area/region/district	Vriculture and forestry	Pining	gnivneup bne gniniM	QuinutoeiuneM	Electricity, gas and water	Construction	əbert listər bns əlszəlodW	estaurants and restaurants	Transport, storage and communications	noitsibəmrətni laionani7	Real estate, renting and business activities	Public administration and defense	Education Health and social work	Other community, social and personal service	activities Total economy including financial intermediation service indirectly measure dealed)	inq sized se vmonose latoT (fotal kalue added)	GDP at market price	Factor income	ENI	noitsluqo¶	Per capita income, Rs. at market price	Per capita income, \$	Per capita income, PPP \$
Nepal	473,270	4,879	926'9	80,531 16	16,001 8	89,356 1	17,9306 2	21,057 1	105,834 5	50,111 10	106,236 24	24,830 67,	67,739 16,992	92 46,947	1,290,047	1,248,482	1,366,953	3 7,549	1,374,503	3 26,494,504	1 51,879	718	1,160
Eastern development region	126,040	1,592	1,108 1	15,399 3	3,029 1	17,291	36,438 3	3,935	16,086	6,600 1	19,427 4	4,019 7,6	7,637 3,333	33 2,267	26,4200	256,605	280,955	1,831	282,785	5 5,811,555	48,659	673	1,088
Central development region	14,0829	1,864	3,583 4	45,927 8	8,082 4	43,995	83,467 10	10,012 6	64,594 3	30,011 5	52,869 1.	12,188 38,	38,997 7,059	59 39,588	583,065	562,350	615,713	3 1,528	617,241	1 9,656,985	63,917	884	1,429
Western development region	95,639	668	929 1	14,020 3	3,438 1	14,595	28,893 3	3,992	18,077	8,364 1	16,962 3	3,605 12,	12,249 2,765	65 2,529	226,957	220,204	241,100	760'7	243,197	7 4,926,765	49,362	683	1,104
Mid Western development region	68,541	383	807 3	3,290	854 8	8,952	17,934 1	1,831	4,753	3,258 1	11,286 3	3,029 5,2	5,219 2,447	47 1,573	134,155	130,229	142,587	7 1,173	143,760	3,546,682	40,534	561	906
Far Western development region	42,220	141	530 1	1,895	298	4,524	12,575 1	1,287	2,324	1,878	5,692	1,989 3,6	3,638 1,389	066 68	81,670	79,094	86,599	920	87,519	2,552,517	34,287	474	191
Mountains	38,633	-	544 1	1,506	197 (6,175	6,803 1	1,093	4,101	1,645	4,840 2	2,139 2,7	2,113 1,041	41 1,398	72,228	69,915	76,549	386	76,936	1,781,792	43,179	265	965
Hills	194,574	, 19	4,279 24	24,914 6	6,622 4	47,597	84,238 10	10,270 6	61,553 3	30,806 5	55,679 1	15,719 45,	45,641 8,104	04 41,168	631,226	609,315	667,135	5 3,611	670,746	5 11,394,007	898'85	815	1,316
Tarai	24,0063	4,817	2,133 54	54,112 9	9,182 3	35,583	88,266 9	6,695	40,180	17,660 4	45,717 6	6,972 19,	19,985 7,847	47 4,381	586,593	569,252	623,270	3,552	626,822	2 13,318,705	47,063	651	1,052
Eastern Mountains	14,714	0	94	318	. 98	13,38	1,585	238	1,011	426	1,931	447 4	410 189	9 299	23,037	22,438	24,568	111	24,679	392,089	62,941	871	1,407
Central Mountains	11,119	1	134	553	127	2,346	2,295	292	2,081	888	1,609	502 7-	744 408	8 303	23,401	22,646	24,795	136	24,931	517,655	48,161	999	1,077
Western Mountains	955	0	35	34	1	232	68	189	332	45	64	148 1	18 21	100	2,263	1,900	2,080	2	2,082	19,990	104,152	1,441	2,329
Mid Western Mountains	6,491	0	192	324	18	1,481	1,279	180	489	236	803	592 4	412 213	3 416	13,126	12,866	14,086	14	14,100	388,713	36,274	502	811
Far Western Mountains	5,353	0	06	277	15	779	1,553	194	188	49	433	450 5.	529 211	1 280	1,0401	10,065	11,020	124	11,144	463,345	24,051	333	538
Eastern Hills	44,428	11	494	18,89	364	5,286	7,019	624	3,145	923	4,617 1	1,528 2,1	2,113 1,109	09 794	74,344	71,902	78,725	548	79,273	1,601,347	49,504	685	1,107
Central Hills	53,615	25	1, 777 1	17,729 4	4,651 2	27,034	52,338 6	6,594 4	45,457 2	24,061 3	35,747 9	9,548 32,	32,269 3,625	25 37,661	352,931	339,357	371,559	9 639	372,199	9 4,431,813	83,983	1,162	1,878
Western Hills	55,795	23	636 3	3,552 1	1,457	9,424	14,973 2	2,179	70,789	4,761 1	10,340 2	2,421 8,3	8,371 2,110	1,664	128,495	125,022	136,886	1,411	138,297	7 2,811,135	49,196	189	1,100
Mid Western Hills	28,456	2	323 1	1,321	105	3,947	6,662	582	1,592	889	3,868 1	1,443 1,8	1,826 891	1 689	52,395	50,716	55,529	199	56,196	1,687,497	33,301	461	745
Far Western Hills	12,280	0	248	421	45	1,907	3,247	290	570	374	1,107	779 1,0	1,063 369	9 360	23,061	22,318	24,436	346	24,781	862,215	28,742	398	643
Eastern Tarai	868'99	1,581	519 13	13,192 2	2,629	10,667	27,834 3	3,073	11,930	5,251 1	12,879 2	2,044 5,7	5,114 2,035	35 1,174	166,819	162,265	177,662	2 1,172	178,834	1 3,818,119	46,838	648	1,047
Central Tarai	76,095	1,838	873 2	27,645 3	3,305 1	14,615	28,834 3	3,126	17,056	5,061 1	15,513 2	2,138 5,9	5,984 3,026	26 1,624	206,733	200,348	21,9359	9 752	220,111	1 4,707,517	46,757	647	1,045
Western Tarai	38,889	877	257 10	10,434	1,981	4,939	13,831 1	1,625	956'9	3,558	6,559	1,036 3,8	3,860 634	4 764	96,199	93,282	10,2134	4 685	102,818	3 2,095,640	49,063	6/9	1,097
Mid Western Tarai	3,3594	380	292	1,644	730	3,524	9,992	1069	2,672	2,334 (6,615	994 2,9	2,981 1,343	43 469	68,634	66,647	72,972	493	73,464	1,470,472	49,960	691	1,117
Far Western Tarai	24,587	141	192 1	1,197	537	1,838	7,775	803	1,566	1,455	4,152	760 2,0	2,046 809	9 350	48,208	46,711	51,143	451	51,594	1,226,957	42,050	582	940
Eastern Mountains																							
Taplejung	4.723	0	41	96	6	479	491	27	123	101	431	148 1	163 67	7 94	7,021	6,803	7,448	39	7,487	127,461	58,741	813	1,313
Sankhuwasabha	4,569	0	59	134	25	494	659	78	403	141	936	158 1	155 80) 95	7,955	7,688	8,417	54	8,471	158,742	53,364	738	1,193
Solukhumbu	5,422	0	24	68	2	365	436	103	485	184	292	141 9	93 42	2 110	8,061	7,948	8,702	18	8,720	105,886	82,356	1,140	1,841
Eastern Hills																							
Panchthar	5,206	—	46	168	21	651	880	69	478	16	341	189 29	298 154	4 99	8,694	8,413	9,212	73	9,285	191,817	48,405	0/9	1,082
llam	9,723	-	9	223	80	982	1,302	110	837	296	918	220 34	343 137	7 110	15,348	14,852	16,262	94	16,355	290,254	56,348	780	1,260
Dhankuta	4,695	0	9	140	27	717	770	9/	424	51	978	219 2	269 198	8 106	8,614	8,335	9,126	19	9,187	163,412	56,223	778	1,257
																							politici too

yrtearof bne anul	би				,		-0	əuis	_	əjəb l			rect	ot) 9					rke		
Area/region/district কুল	Ymeup bne gniniM	gn'nutɔetuneM	Electricity, gas and water	noitzurtzno)	ebert lister bns elszelodW	stneruetsen bne sletoH	Transport, storage and con munications	Financial intermediation	sectivities	Public administration and	Health and social work	Other community, social a personal services activities	nñ gnibubni ymonosə letoT iibni ssivrəs noistibəməsni debe əulev (totəl bəsussəm	Total economy at basic price	GDP at market price	Factor income	CNI	Population	Per capita income, Rs. at mar price	Per capita income, \$	\$ 999 \$ pPP \$
4,054 0	17	114	19	307	437	49	241	76 2	260 1	125 163	89	95	6,046	5,850	6,406	42	6,447	101,577	63,470	878	1,419
4,561 0	71	114	9	504	781	64	394	32 5	533 1	190 219	9 176	95	7,640	7,384	8,084	99	8,150	182,459	44,666	618	666
3,422 0	51	81	3	591	199	55	140	32 3	367 1	163 214	96 ‡	86	5,973	5,748	6,294	40	6,334	147,984	42,800	592	957
7,143 0	32	156	12	265	845	17	205	23	39 2	206 247	7 127	88	6,793	9,477	10,376	71	10,446	206,312	50,634	10/	1,132
5,625 8	198	892	165	942	1,342	125	425	322 1,	1,332 2	217 358	3 182	103	12,237	11,842	12,965	103	13,068	317,532	41,156	695	920
19,099 153	3 129	1,927	612	2,510	6,152	672	2,825	1,345 3,0	3,034 4	431 1,794	4 435	346	41,465	40,370	44,201	351	44,552	812,650	54,823	759	1,226
16,963 312		980'9	1,178	2,766		993	5,200 1	1,752 3,				439	50,055	49,026	53,678	349	54,027	965,370			1,251
11,829 163	3 129	4,079	169	2,290	5,630	976	2,531 1	1,629 4,0	4,066 4	490 893	3 261	148	35,404	34,261	37,512	189	37,701	763,487	49,380	(83	1,104
11,230 561	1 70	099	103	1,570	3,833	418	783	241 9	970 3	336 354	1 266	120	21,518	20,823	22,799	112	22,911	639,284	35,838	496	801
195 777,7	1 69	438	45	1,531	3,827	413	592	284 1,	1,671 2	267 713	3 239	121	18,378	17,784	19,472	171	19,643	63,7328	30,820	426	689
Central Mountains																					
7,869 0	69	700	41	2/26	848	101	191	308 8	818	177 322	228	106	7,225	6,992	7,655	41	7,697	186,557	41,256	571	922
6,645 0	52	300	73	1,171	1,268	165	1,805	518 5	574 2	233 358	3 145	103	13,409	12,976	14,208	83	14,291	287,798	49,657	189	1,110
1,605 0	13	53	13	198	179	76	115	62 2	217	92 64	35	94	2,767	2,677	2,931	12	2,943	43,300	67,973	941	1,520
5,714	42	165	73	166	1,153	95	333	156 5	558 2	231 527	77 77	86	10,214	9,884	10,822	89	10,890	296,192	36,767	, 509	822
4,775 0	37	105	31	783	880	78	131	20 5	568	171 345	98	85	8,095	7,836	8,579	38	8,617	202,646	42,524	288	951
11,746	92	513	245	1,567	1,705	378	1,907	724 1,	1,747 3	305 915	340	319	22,504	21,778	23,844	20	23,894	381,937	62,559	998	1,399
3,733 3	489	2,578	846	4,066	6,111	969	3,002 3	3,363 5,	5,353 4	499 5,464	451	733	37,386	36,179	39,612	46	39,658	468,132	84,715	1,172	1,894
2,781 2	99	1,232	318	1,267	1,894	117	1,629	1,286 3,7	3,376 2	250 3,001	193	303	17,714	17,142	18,769	24	18,793	304,651	61,686	854	1,379
6,010 3	1,556	8,600	2,451	14,103	35,686 4	4,619	29,426 17	17,298 20,	20,616 7,	7,170 20,436	36 19,63	35,602	205,540	196,723	21,5397	199	215,590	1,744,240	0 12,3601	1,710	2,764
6,335		163	118	1,218		321						86	12,676	12,267	13,431	50	13,481	277,471			1,086
6,054	42	682	134	1,212		132	2,011	148 7		231 472	2 182	122	13,838	13,392	14,662	91	14,753	336,067	43,899	209	982
6,466 13	3 127	3,691	434	1,827	2,083	159	2,657	870 1,	1,855 4	468 794	4 218	301	24,963	24,157	26,449	74	26,523	420,477	63,079	873	1,410
10,305 536	6 148	4,986	213	2,638	4,522	482	1,027	689 2,	2,183 3	342 816	5 410	786	29,584	28,727	31,453	211	31,664	754,777	41,951	280	938
		009	272	1,909		384						82	17,861	17,284	18,924	177	19,101	627,580			681
12,977 183	3 287	735	141	2,227	4,144	457	592		2,897 2	271 702	255	89	26,187	25,341	27,746	101	27,847	769,729	36,177	, 501	809
9,960 150	0 55	278	108	1,723	3,316	376	2,511	189 1,	1,555	224 835	5 204	115	21,900	21,193	23,204	34	23,238	686,722	33,840	468	757
14,611 353	3 88	14,495	834	1,920	3,982	374	2,955	415 1,	1,317 2	277 813	3 258	105	42,797	41,527	45,468	42	45,509	802,708	66,175	916	1,480
8,897 154	4 83	4,789	1,128	1,722	4,789	586	3,537 1	1,533	1,594 3	314 856	5 622	401	31,006	30,005	32,852	27	32,879	710'109	54,706	757	1,223
11,594 100	0 132	1,462	609	2,477	4,574	467	5,931	1,712 4,9	4,954 4	432 1,379	9 1,029	546	37,398	36,271	39,713	160	39,873	579,984	68,748	156	1,537
Western Mountains																					
396 0	17	12	0	103	28	149	16	8	78 (62 3	9	45	874	845	925	1	976	6,538	14,1588	8 1,959	3,166
0 655	- 18	22	0	129	61	40	316	37	36	86 15	14	55	1,389	1,055	1,155	—	1,156	13,452	85,957	1,189	1,922
5,392 2	83	349	93	1,060		156	1,305			230 398	3 183	119	11,801	11,420	12,503	88	12,601	271,061		643	1,039
4,418	40	196	94	909	839	85	407	235 6	666	173 355	5 117	96	8,327	8,058	8,823	75	8,898	167,724	53,050	734	1,186

1, 10, 1, 10, 1, 10, 1, 10, 10, 10, 10,	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Aras/roaian/dictrict	griculture and forestry	Bujysi	gniyrseup bne gninif	gnirutostuns	lectricity, gas and water	notruction	ebert lister bns elszelodV	etherueteer bne eleto	ransport, storage and com- nunications	noitsibərmətni İsizneni	eal estate, renting and busi- ess activities	bns noitertsinimbs lubic etense	noitesub	lealth and social work	ersonal services activities	nancial intermediation service rdirectly measured (total alue added)	otal economy at basic price fotal value added)	eping teakert price	emooni notos	IN	noiteludo	er capita income, Rs. at Antet price	èr capita income, \$	er capita income, PPP \$
1	1,10, 1,10	Tanahu	7,153	4		327	205	1,084	1,674	141	1,518	397		9		12		4,474	14,006	15,336	158	15,494	323,288	47,925	663	1,072
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1. 1. 1. 1. 1. 1. 1. 1.	Syangja	8,245	2		260	68	268	1,409	122	1,297	248	724					4,653	14,180	15,526	185	15,710	289,148	54,333	752	1,215
1874 1874	1, 10, 10, 10, 11, 11, 11, 11, 11, 11,	Kaski	7,175	6		,444		1,876		1,089			4,262					1,683	31,245	34,210	141	34,351	492,098	908'69	996	1,561
Maintained 1, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19	1, 11, 11, 11, 11, 11, 11, 11, 11, 11,	Myagdi	2,710	0		91		340	574	90	81		399					6/8/1	4,722	5,170	99	5,226	113,641	45,986		1,028
1,000 1,00	1	Parbat	3,128	-		156	46	573	734	89	143	130	546					5,205	6,004	6,574	99	6,639	146,590	45,289	627	1,013
1, 10, 10, 10, 10, 10, 10, 10, 10, 10,	1356 1 6 6 10 1 6 10 1 1 1 1 1 1 1 1 1 1 1	Baglung	4,762	0		183	80	916	1,241	105	280	421	640					111/4	9,397	10,289	138	10,427	268,613	38,819	537	898
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	Gulmi	3,696	-		200	54	850	1,309	136	631	216	595					669'8	8,418	9,217	203	9,420	280,160	33,625	465	752
1, 10, 11, 11, 12, 11, 12, 11, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	1 1 20 12 13 14 15 15 15 15 15 15 15	Palpa	4,994	2		225	102		1,202	104	848	236	823					0,720	10,374	11,358	142	11,500	261,180	44,031	609	985
Manual M	1,000 1,00	Arghakhanchi	4,121	-		121	36	339	946	84	955	221	362					7,438	7,198	7,881	150	8,031	197,632	40,635	295	606
Manual control Manu	1,209 1,204 1,20	Western Tarai																								
Maintain	Montanion Mathematica Ma	Nawalparasi	12,209	163						452			1,573					1,146	30,140	33,000	736	33,296	643,508	51,742		1,157
1,577 28 28 29 28 28 28 28 28	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Rupandehi	14,003	505						816			3,872					1,283	40,139	43,948	247	44,195	880,196	50,210		1,123
Mathematical mat	Numuration:	Kapilbastu	12,677	708		901		1,183	3,258	356	1,832	345	1,115					3,770	23,003	25,186	141	25,327	571,936	44,283	613	066
1,056 0 25 47 2 2 2 2 2 2 2 2 2	1,156 0 25 47 2 165 139 130 2 2 2 2 2 2 2 2 2	Mid Western Mountains																								
1,116 6 6 6 10 6 6 6 10 6 6 4 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. 1. 1. 1. 1. 1. 1. 1.	Dolpa	757	0		47	2	185	137	19	37	70	87	107				1,540	1,558	1,706	0	1,707	36,700	46,502	643	1,040
1,066 0	1,166 0	Jumla	2,316	0		100	9	491	359	52	202	148	409					4,579	4,475	4,900	4	4,904	108,921	45,022	623	1,007
Hills 13.51 0 2 2 4	Hills 1573 0 2 3 4 7 2 219 186 25 8 4 11 174 10 6 4 31 57 1996 1956 1956 1950 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Kalikot	1,766	0		26	4	351	422	28	0/	15	100	118				3,336	3,228	3,534	_	3,541	136,948	72,860	358	578
Heliote 1353 0 2 3 4 4 2 25 176 27 96 8 6 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	High High High High High High High High	Mugu	1,017	0		47	2	219	186	25	84	11	124					966′1	1,955	2,141	-	2,142	55,286	38,743	536	998
High High High High High High High High	High High High High High High High High	Humla	989	0		34	4	235	176	77	%	42	83					1,675	1,649	1,806	-	1,806	50,858	35,515	491	794
333	333	Mid Western Hills																								
314 0 50 114 17 538 876 81 136 37 429 161 214 89 85 5972 5779 6377 6375 131 6459 204506 6450 6	114 0 50 114 17 558 876 83 136 37 429 161 14 95 5972 5792 5379 5371 131 5184 0 45 288 11 512 843 849 126 513 469 469 170 115 115 579 5379 5379 5379 5379 5379 5184 0 45 288 11 41 12 464 125 513 489 489 170 115	Pyuthan	3,353	0		126	77	515	296	82	161	74	494					3,398	6,192	6/2/9	167	6,946	228,102	30,452	421	681
3244 0 45 288 11 522 83 69 126 57 475 179 241 448 92 6807 6535 720 73 720 73 720 444 5183 0 29 114 12 467 92 78 149 12 67 349 15 140 12 140 1	3,744 0	Rolpa	3,114	0		114	17	258	9/8	83	136	37	429					5,972	6/1/9	6,327	131	6,459	224,506	28,768	398	643
5183 0 29 14 12 467 917 78 149 63 35 15 217 128 102 7961 7704 8455 82 8451 71244 71544 715 7154	5,183 0, 29 144 12 467 927 78 149 65 354 156 177 18 10 19 1359 1292 14/15 1359 14/15 131 14/15 12. 464 125 551 349 1554 456 177 18 1359 1359 1292 14/15 1359 14/15 1	Rukum	3,744	0		268	11	522	833	69	126	27	472					2,807	965'9	7,220	73	7,294	208,567	34,970	484	782
6,536 2 9 66 469 2 5 99 1,464 125 51 34 0, 1531 468 465 177 115 115 115 1150 1150 1150 1150 11	6536 2 9 469 55 9 14,71 1464 125 51 340 1531 469 153 140 153 1415 113 113 113 113 113 113 113 113 113 1	Salyan	5,183	0		114	12	467	927	78	149	63	336					1,961	7,704	8,435	82	8,517	242,444	35,131	486	786
Maintaines 1,245 0 38 130 10 2 385 11 10 169 150 219 99 99 4,397 4,595 4,599 99 99 130 10 10 10 10 10 10 1	ntacis 12505 0 30 101 2 3 363 665 53 111 101 169 150 219 99 99 750 7507 7509 550 550 12507 0 30 101 2 363 665 53 111 101 169 150 219 90 99 750 7509 750 750 750 750 750 750 750 750 750 750	Surkhet	6,536	2		469	25	991	1,464	125	551	340	1,537					3,350	12,925	14,151	135	14,286	350,804	40,724	563	911
1,291 1,29	nt farai 1294 6 135	Dailekh	4,223	0		130	10	531	066	93	358	17	431					605'	7,267	7,956	95	8,012	261,770	30,609	424	684
1,2,34 6.2 135 409 212 1,499 3,832 4.66 6.96 9.27 3,939 3.53 1151 2.38 146 2.6,079 2,5,240 2,6537 2,7538 2,7538 2,5,283 2,	Tack	Jajarkot	2,305	0		101	2	363	909	53	111	101	169					4,397	4,255	4,659	23	4,682	171,304	27,330	378	611
12914 62 135 409 212 1499 3832 406 696 927 3199 335 1151 238 146 26,079 25,240 27,655 233 27,888 552,583 1,472 192 67 302 133 916 2,612 304 587 116 1,397 239 773 197 107 19,414 18,787 20,570 146 20,716 42,676 1,472 192 67 302 133 916 2,612 304 587 116 1,397 239 773 197 107 19,414 18,787 20,570 146 20,716 42,676 1,472 192 67 302 133 916 2,612 304 587 116 1,397 239 773 197 107 19,414 18,787 20,570 146 20,716 42,676 1,472 192 67 302 133 916 2,612 304 587 116 1,397 239 773 197 107 19,414 18,787 20,570 146 20,716 42,676 1,472 192 67 302 133 916 2,612 304 62 1 10 12 10 12 62 94 2,947 2,851 3,122 36 3,158 13,971 1,472 192 67 302 133 14,88 55 66 20 198 10 15 12 62 94 2,947 3,817 4,179 70 4,249 195,159 1,470 0 44 79 3 321 458 55 66 20 198 160 163 81 94 3,511 3,397 3,70 18 3,737 13,374 1,411s	1,2914 62 135 409 212 1,499 3832 406 696 907 3,099 353 1151 238 146 26,079 25,240 27,653 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 23,244 27,652 24,262 24	Mid Western Tarai																								
9,208 127 89 934 386 1,109 3,549 359 1,138 1,129 1,218 403 1057 908 215 21,141 21,620 24,766 123 24,889 491,313 1Mountains 1552 0 22 89 5 209 474 65 43 12 47 120 152 62 94 2,947 3,817 4,19 7,057 146 20,716 4,26,76 1MILS 2,031 0 44 79 3 321 458 55 66 20 198 160 163 81 94 3,511 3,397 3,70 18 3,71 3,397 3,70 18 3,71 3,397 3,70 18 3,71 3,397 3,70 18 3,71 3,397 3,70 18 3,71 3,397 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,7	1,402 127 89 934 386 1,109 3,549 3,59 1,389 1,291 2,118 403 1057 908 215 2,3141 2,2620 24,766 123 140 14,72 192 67 302 1,109 3,549 3,59 1,389 1,291 2,118 403 1057 908 215 2,514 18,787 2,0570 146 14,72 14,72 192 67 302 4,74 65 4,4 65 4,4 120 152 62 94 2,947 3,817 4,179 70 14,118 14,170 14,189 14,1	Dang	12,914	62									3,099						25,240	27,635	223	27,858	552,583	50,415		1,127
11,472 192 67 302 133 916 2,612 304 587 116 1,397 239 773 197 107 19,414 18,787 20,570 146 20,716 426,576 1,472 192 67 302 133 916 2,612 304 587 116 1,397 239 773 197 107 19,414 18,787 20,570 146 20,716 426,576 1,770 0 44 79 3 321 458 55 66 20 198 160 163 81 94 3,511 3,397 3,720 18 3,737 133,74 1,710 0 44 79 3 321 458 55 66 20 198 160 163 81 94 3,511 3,397 3,720 18 3,737 133,74 1,710 0 58 106 11 457 840 84 162 71 452 279 221 74 93 6,809 6,591 7,216 109 7,325 11,746 2,329 0 55 67 19 390 541 46 92 138 335 141 191 96 98 4,539 4,539 4,539 4,539 13,276 12,746 3,127 0 85 108 10 616 900 77 159 37 244 168 302 88 94 6,016 5,821 6,374 53 6,426 250,898 1,710 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nountains 11,472 192 67 302 133 916 2,612 304 587 116 1,397 239 773 197 107 19,414 18,782 20,570 146 1552 0 22 89 5 209 474 65 43 12 47 12 12 46 69 29 13,44 18,78 3,17 13 13 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14	Banke	9,208	127		934							2,118						22,620	24,766	123	24,889	491,313	50,659		1,133
1,552 0 22 89 5 209 474 65 43 12 47 120 152 62 94 2947 2,851 3,122 36 3,158 134,912 13,121 14,118 14,170 0 44 79 3 3,21 458 55 66 20 198 160 163 81 94 3,511 3,397 3,720 18 3,737 135,774 191 191 192 192 193 193,737 133,774 193,730 13,229 0 55 67 19 390 541 46 92 138 335 141 191 96 98 4,539 5,747 5,748 142,094 14,799	1,552 0 22 89 5 209 474 65 43 12 47 188 17 188 17 244 65 43 18 4179 18	Bardiya	11,472	192		302	133	916	2,612	304	287		1,397					9,414	18,/87	20,570	146	20,716	426,576	48,564	6/2	1,086
1,772 1, 22 1, 22 1, 23 1, 24 1, 25 1, 2	HILLS 1,770	Rainra	1557	c		08	7	300	NTA	65	43	12	47					1047	7.951	3 100	38	3 159	13/4 017	23 ADS	324	203
1,770	HILLS 1,770 0 44 79 3 321 458 56 20 198 160 163 81 94 3,511 3,397 3,701 18 1,2923 0 51 140 5 445 965 88 165 17 450 77 190 849 111 75 5,698 5,514 6,016 109 2,329 0 55 67 19 390 541 645 965 100 77 159 37 141 191 96 98 6,016 5,811 6,374 53 1,12nai 1,201 0 44 455 205 738 738 1,279 1,549 2,60 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,2	Dajbara	100.0			9 6		240	103	3 5	6	71	100					1044	2 017	4 170	8 8	001,0	10,101	CDT,C.2		704
1,770 0 44 79 3 24 45 45 45 45 45 45 45	Hills 2,923 0 1,770 0 445 965 83 156 17 77 190 349 111 75 5,698 5,574 6,037 138 1,700 0 58 166 11 450 84 162 77 190 349 111 75 5,688 5,514 6,037 138 138 2,329 0 58 106 11 457 840 84 162 77 77 191 96 98 4,539 6,899 6,591 72,16 109 1,10 3 6 10 30 541 46 92 138 335 141 191 96 98 4,539	Dajirang	150,2			901 02	0 0	271	120	+/ CC	67	2 8	100					7,544	7,017	4,11,4	0,00	747'h	4C1,CC1			/04
2,923 0 51 140 5 445 965 83 156 127 77 190 349 111 75 5,698 5,514 6,037 138 6,175 257,477 3,900 0 58 106 11 457 840 84 162 71 452 279 221 74 93 6,809 6,591 7,216 109 7,325 211,746 2,329 0 55 67 19 390 541 46 92 138 335 141 191 96 98 4,539 4,392 4,809 45 4,805 142,094 3,127 0 85 108 10 616 900 77 159 37 2,44 168 302 88 94 6,016 5,821 6,374 53 6,426 250,898 15,361 87 98 742 332 1,040 4,996 506 1,202 1,069 2,604 461 1,220 542 235 30,495 29,570 32,376 287 32,663 775,709	2,923 0 51 140 5 445 965 83 156 127 77 190 349 111 75 5,688 5,514 6,037 138 138 138 156 2,714 150 2,714 13	Far Western Hills	0///1	>		61	7	120	470	2	3	07	021					1100	16010	02 /,C	0	101,0	+ /7,001			770
15320 0 58 106 11 457 840 84 162 71 452 279 221 74 93 6,809 6,591 7,216 109 7,325 211,746 2,329 0 56 67 19 390 541 46 92 138 335 141 191 96 98 4,539 4,839 4,839 742 33 1,040 4,996 506 1,202 1,069 2,604 461 1,220 542 235 30,495 29,570 32,376 287 32,663 775,709	1520 0 58 106 11 457 840 84 162 71 452 279 21 74 93 6809 6591 7216 109 120 120 120 120 120 120 120 120 120 120	Achbam	2,002	0		140	7	AAE	065	03	156	107	17					609	5 514	6.037	130	6 175	757 A77	22.004	333	253
15.25	1329 0 55 67 19 390 541 46 92 138 335 141 191 96 98 4539 6,016 5,821 6,374 53 13424	Dofi	3 900			106	1 1	457	840	84	167	71	457					3,809	6.591	7.716	109	7375	711,46	34 595		774
15.25 U 55 O/ 19 550 541 40 72 156 555 141 151 50 50 4,535 4,635 45 4,635 144,054 45 156 156 156 156 156 156 156 156 156 15	1,227 U 53 O 1 19 550 34 400 77 159 37 244 168 302 88 94 6,016 5,821 6,734 53 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14	Section 1	0000			3 5	: 5	5 6	2 2	5 3	20 20	130	335					1,500	1 200	0004	Ar.	1000	147.00	47140		177
1. Tarai 1. 15. 16. 17. 15. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	1 Jarai 15, 261 87 98 742 332 1,040 4,996 506 1,202 1,069 2,604 461 1,220 542 235 30,495 29,70 32,376 287 9,225 54 94 455 205 798 2,779 297 364 387 1,548 299 826 266 115 17,713 17,141 18,767 164	Dadeldnura Poitodi	711 5			100	6	350	241	9 5	150	158	335					4,539	4,592	4,809	£ 5	4,855	142,094		95.4	104
15,361 87 98 742 332 1,040 4,996 506 1,202 1,069 2,604 461 1,220 542 235 30,495 29,570 32,376 287 32,663 775,709	15,361 87 98 742 332 1,040 4,996 506 1,202 1,069 2,604 461 1,220 542 235 30,495 29,570 32,376 287 52,570 32,376 287 52,52 54 94 455 205 738 2,779 297 364 387 1,548 299 826 266 115 17,713 17,141 18,767 164	Dalidui	3,12/			00	2	010	300	-	139	2/	++7					0100	170'C	0,3/4	6	0,420	060'007			0/10
2016-11 DOUTS 107 OUTS CELLO CC7 THE OTT I DE LOUIS 2001 TOT OF OLEAN OFFI THE OFFI I INTELLO	9,225 54 94 455 205 798 2,779 297 364 387 1,548 299 826 266 115 17,713 17,141 18,767 164	Far Western Iarai	15 361	7.0						506	1 202		2,604					707	077.00	37.5 (.5	780	37 663	007 377	701 CV	583	CNO
001 131 150 01 171 171 171 171 371 370 001 0031 100 171 001 170 001 170 170 170 170 17	9,725 54 94 455 205 798 2,779 297 364 387 1,548 259 826 266 115 17,713 17,141 18,767 164	Ndlidii	וטנינו זרר ה	0/						200	707'		7,004					0,447	010,72	U1C,2C	107	10,001	901,C11	42,107		746

ANNEX 6:

Construction of the Principal Component Analysis based indexes

The report constructed one composite index encompassing multidimensional aspects of productive ability using the three Nepal Living Standards Survey from 1995, 2003 and 2011. Based on existing literature and with some innovation, a sufficiently large number of theoretically important and policy relevant variables were selected.1 The variables included both public and private goods that potentially contribute to various aspects of individual, household and regional productive ability. They comprised education, health, access to facilities, housing, water supply, sanitation, irrigation, ownership of land, dwelling value and size, value of assets, property and durable goods owned by a family, dependency ratio and social assistance schemes, to name a few.

Among the three surveys, the third is the most extensive both in terms of number of households surveyed and information included. For the household well-being index, the number of households was 3,374 for the first survey, 3,912 for the second and 5,988 for the third. The number of variables included was 63, 48 and 47, respectively.

The methodology

Principal component analysis² was employed to generate the individual, household and regional indexes in order to overcome many problems associated with traditional methods of calculation, such as simple aggregation, summation of standardized variables or the use of equal weights for all sub-components. Al-

though principal component analysis produces as many components as the total number of variables, following the eigenvalue rule or Kaiser criterion, the report retained only those factors accounting for at least as much variance as a variable (that is, an eigenvalue of 1 or greater). In the first Nepal Living Standards Survey, for household status, for example, 11 factors with eigenvalues greater than one explain 61.37 percent of total variance in the data. In the second survey, nine factors explain 62.92 percent of total variance; 16 factors explain 63.33 percent of total variance in the third survey.

In this way, principal component analysis reduces a large number of variables into a smaller number of factors or principal components. These factors can be further analysed and categorized into some distinct dimensions of capability. First, they can be classified into broad types of capital. Factors measuring infrastructure and other productive resources such as housing characteristics, sanitation, drinking water, light, telephone, farming equipment, irrigation, and access to facilities can be considered physical capital. Human capital incorporates factors representing health and education. Factors capturing monetary resources available to households in terms of amounts borrowed and lent, total income, value of property and assets owned by a family symbolize financial capital. Social capital, as captured by factors representing social assistance programmes like public food distribution, food for work, cash for work, and nutritional programmes for children and mothers, is considered only in the third Nepal Living Standards Survey.

The list of variables along with the scoring method is provided in the Technical Appendix table A6.2.

An intuitive description of principal component analysis was presented at the steering committee meeting for the Nepal Human Development Report in November 2012. The PowerPoint presentation is available on request.

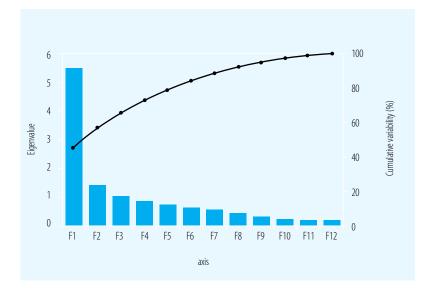
The three indexes

A non-standardized index was first computed for the respective units (individual, household and regional) taking a weighted average of the factor scores, where the weights are the proportion of the variance explained by each factor to total variance:

$$NSI = \sum_{i} w_{i} Factorscore_{i}$$

Where w_i is the weight of the ith factor. This index gives the *relative* position of an individual (or household or region) in terms of ability on a linear scale. The index computed in this way can be positive or negative, making it difficult to interpret. Therefore, a standardized index was developed, the value of which ranges from 0 to 100, using the following formula, for example, for the household well-being index:

$$SI = \frac{(NSI\ of\ HH_j - Min\ NSI)}{(Max\ NSI - Min\ NSI)} \times 100$$


where j is the number of households.

The report's analysis is based on this standardized index.

The creation of the regional access to facilities index for the first Nepal Living Standards Survey is shown below.

Calculating the "development status" index of a region

The first Nepal Living Standards Survey has 12 variables comprising "access to facilities." Scores, described in the text, were attached to each household for each facility. Principal component analysis produced 12 factors as below, of which only the first three, with eigenvalues greater than one, were retained for further analysis. These three components explain 65.8 percent of the total variability in access to facilities.

	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
Eigenvalue	5.4	1.4	1.0	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.1
Variability (%)	45.6	11.7	8.4	7.1	6.0	5.1	4.6	3.7	2.7	1.7	1.5	1.3
Cumulative %	45.6	57.4	65.8	73.0	79.0	84.2	88.9	92.6	95.3	97.1	98.6	100.0

A Varimax rotation was performed, yielding the following matrix of squared cosines, where the numbers in bold identify the variables with the highest scores.

	D1	D2	D3
ATFR.101	0.015	0.002	0.687
ATFR.102	0.341	0.001	0.196
ATFR.103	0.748	0.023	0.017
ATFR.104	0.686	0.004	0.014
ATFR.105	0.091	0.519	0.020
ATFR.106	0.173	0.353	0.004
ATFR.107	0.026	0.070	0.421
ATFR.108	0.027	0.427	0.000
ATFR.109	0.652	0.014	0.019
ATFR.110	0.714	0.007	0.018
ATFR.111	0.763	0.014	0.022
ATFR.112	0.797	0.001	0.018

As discussed in the text, the first component placed the highest weights on access to health posts, paved roads, bus stops, markets, cooperatives, agricultural centres and commercial bank branches. The second principal

component is defined mainly by access to dirt roads and haat bazaars, while the third by access to primary schools and local shops.³

Constructing the index entailed using the factor scores after the Varimax rotation. Scores for five of the survey's 3,373 households are presented as an example.

	D1	D2	D3
400101	-1.288	-0.603	-0.678
400202	-0.811	-0.852	1.317
400404	-1.137	-0.012	-0.281
400505	-1.097	-0.275	0.855
400707	-0.743	-1.004	0.728

The index for the household is a weighted average of the factor scores, where the weights are determined by the share of each component in the total variance explained by all three factors. Thus, the weights W1, W2 and W3 are:

	D1	D2	D3
Variability (%)	41.950	11.966	11.973
Cumulative %	41.950	53.915	65.888
Weights	W1	W2	W3
	0.63668	0.181605	0.181714

Household	D1	W1	D2	W2	D3	W3	Non-standard- ized index	NUM	Standardized index
400101	-1.288	0.63	-0.603	0.180	-0.678	0.180	-0.23063	0	0
400202	-0.811	0.63	-0.852	0.180	1.317	0.180	0.083735	0.314368	93.82156
400404	-1.137	0.63	-0.012	0.180	-0.281	0.180	-0.05269	0.177944	53.10643
400505	-1.097	0.63	-0.275	0.180	0.855	0.180	0.104437	0.33507	100
400707	-0.743	0.63	-1.004	0.180	0.728	0.180	-0.04969	0.180942	54.00123
						Maximum	0.104437		
						Minimum	-0.23063		
·						Range	0.33507		

The next step involves calculating the weighted average and producing the standardized index using the formula above.

The non-standardized index is the sum of the Di's multiplied by the corresponding Wi. The index can be negative, and therefore, difficult to interpret for our purpose. The column NUM is the difference between the index and the minimum value of the series. The lowest value it can take is 0. The final step is the calculation of the standardized index, with a value that lies between 0 and 100. The higher the value of this index, the better the access to facilities. Taking the average of all the household indexes of the nine eco-development regions used in this report produces a score for the region that represents its "development status," defined in terms of the access to facilities it offers to households.

Essentially, identical procedures were followed to generate the household well-being and individual ability indexes.

Please refer to Table A6.1 for the full form of the abbreviated variables.

TABLE A6.1:

Details of codes and facilities

Nepal I	Living Standards Survey 2011		Nepal I	Living Standards Survey 2003	Nepal I	iving Standards Survey 1995
101	Early childhood development centre	AECDR	101	Primary school	101	Primary school
102	Primary school	APSR	102	Health post	102	Health post
103	Secondary school	ASSR	103	Bus stop	103	Bus stop
104	Higher secondary school	AHSSR	104	Paved road	104	Paved road
105	Health post/sub-heal	AHPR	105	Dirt road vehicle	105	Dirt road, vehicle passable
106	Public hospital/PHC	APHR	106	Dirt road no vehicle	106	Dirt road, vehicle impassable
107	Clinic/private hospital	ACPHR	107	Local shop	107	Local shop/shops
108	Bus stop	ABSR	108	Haat bazaar	108	Haat bazaar
109	Paved road	APRR	109	Market centre	109	Market centre
110	Dirt road, vehicle passable	ADRVPR	110	Agriculture centre	110	Krishi centre
111	Dirt road, vehicle impassable	ADRVIMPR	111	Cooperative	111	Sajha (cooperative)
112	Local shop/shops	ALSCR	112	Bank	112	Commercial bank branch
113	Haat bazaar	AHBR	113	Source of drinking water		
114	Market centre	AMCR	114	Post office		
115	Agriculture centre	AACR	115	Telephone booth		
116	Sajha (cooperatives)	ASCR				
117	Bank	ABR				
118	Drinking water in ra	ADWRSR				
119	Drinking water in dr	ADWDSR				
120	Post office	APOR				
121	Telephone booth	ATBR				
122	Police station	APSTR				
123	Internet access	AIAR				
124	Community library	ACBR				

TABLE A6.2:

Variables in the household well-being index

Variables listed are based on the third Nepal Living Standards Survey and the scoring method. Similar lists are available for the first and second surveys but are omitted here in the interest of space.

Variables	Numerica values
Water supply and sanitation:	
1 Source of drinking water	
i. Piped water	7
ii. Covered well	6
iii. Hand pump/tube-well	5
iv. Open well	
v. Spring water	3
vi. River	2
vii. Other source	1
2. Sanitation system for liquid waste	
i. Underground drain	3
ii. Open drains	Ĩ
iii. Soak pit	
iv. No	(
3. Garbage disposal method	
i. Collected by garbage truck	6
ii. Private collector	- T
iii. Dumped	4
iv. Burned/buried	3
v. Dumped and used for fertilizer	2
vi. Other	
4. Type of toilet used	
i. Flush—municipal sewer	4
ii. Flush—septic tank	5
iii. Non-flush	2
iv. Communal latrine	
v. No toilet	(
Land holding and irrigation facilities	
5. Household has own agricultural land	
i. Yes	
ii. No	(
6. Ratio of irrigated plots to total number of plo	ots
Education (household head)	
7. Where did person learn?	
i. Formal schooling	<u>.</u>
ii. Taught at home	2
iii. Government literacy course	
iv. Non-governmental organization literacy course	3
v. Other	1

8. Educational background	
i. Never attended school	(
ii. Attended school/college in past	
iii. Currently attending school/college	
9. Type of school/college	
i. Community/government	
ii. Institutional/private	
iii. Technical/vocational	
iv. Gurukul/madarsha/gumba	
v. Community (public) campus	
vi. Private campus	
vii. Constituent campus	
viii. Other	
10. Highest level completed	
i. Nursery/kindergarten/pre-school	
ii. Class 01	
iii. Class 02	
iv. Class 03	
v. Class 04	
vi. Class 05	
vii. Class 06	
viii. Class 07	
ix. Class 08	
x. Class 09	1
xi. Class 10	1
xii. SLC	1.
xiii. Intermediate	1.
xiv. Bachelor's	1.
xv. Master's	1:
xvi. Professional degree	10
xvii. Level less	
Inventory of durable goods	
11. Current sale value (sum of resale values of all durable goods)	
Dependency rates	
12. Ratio of earning members to household size	
Housing	
13. Material of outside wall	
i. Cement-bonded bricks/stones	(
ii. Mud-bonded bricks/stones	
iii. Wood	

Continued...

v. Unbaked bricks	2
vi. Other material	1
vii. No outside walls	0
14. Foundation of dwelling	
i. Pillar bonded	5
ii. Cement bonded	4
iii. Mud bonded	3
iv. Wooden pillar	2
v. Other	1
15. Main roofing material	
i. Concrete/cement	7
ii. Tiles/slate	6
iii. Galvanized iron	5
iv. Wood/planks	4
v. Earth/mud	3
vi. Straw/thatch	2
vii. Other	1
16. Types of window	
i. Shutters	3
ii. Screens/glass	2
iii. Other	1
iv. No windows/no covering window	0
17. Area inside the dwelling (square feet)	
18. Sale value (Rs.)	
Electricity and fuel	
19. Source of light	
i. Electricity	5
ii. Solar	4
iii. Bio-gas	3
iv. Kerosene	2
v. Other	1
20. Amount paid for electricity (Rs.)	
21. Does household own (0 if no, 1 if yes):	
i. Telephone	
ii. Mobile phone	
iii. Cable TV	
iv. Email/Internet	
22. Amount paid for facilities (Rs.)	
23. Main cooking fuel	
i. Cylinder gas	7
ii. Kerosene	6
iii. Bio-gas	5

iv. Firewood	4
v. Dung	3
vi. Leaves/rubbish/straw/thatch	2
vii. Other	1
Health	
24. Present health status (of household head)	
i. Excellent	4
ii. Good	3
iii. Fair	2
iv. Poor	1
Expenditures on fertilizers and insecticides	
25. Amount paid (Rs.)	
Ownership of farming assets	
26. Equipment owned (number)	
27. Selling value (Rs.)	
Borrowing	
28. Amount borrowed (entered as a negative value)	
Lending	
29. Amount lent (Rs.)	
30. Value of other property (Rs.)	
31. Value of other assets (Rs.)	
32. Income	
33. Per capita consumption	
Social assistance (yes/no, 1/0)	
34. Receive public food distribution system	
35. Receive nutritional programme for child	
36. Receive nutritional programme for mother	
37. Receive food for work	
38. Receive cash for work	
39. Receive RCIWP programme	
Access to facilities	
40. Time taken to reach closest facility:	
i. Facility next to household	6
ii. Less than 30 minutes	5
iii. 30 minutes to 1 hour	4
iv. 1 to 2 hours	3
v. 2 to 3 hours	2
vi. 3 hours and more	1
VI. 3 HOURS AND THORE	

Considering each of the facilities separately, there are an additional 24 variables. So the total number of variables is (39+24) = 63.

ANNEX 7:

Percentage of Households by the Nine Eco-development Regions and Deciles

TABLE A7.1

Calculations for 1995

Eco-development region							N=3	,373					
	Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	Overall	Mean	Standard deviation
Kathmandu Valley	42.3	33.2	14.5	4.9	2.2	.3	.4	.1	0.0	0.0	6.5	41.3	8.2
Eastern and Central Tarai	28.1	28.6	37.9	41.7	31.1	35.4	34.0	32.0	25.8	16.7	31.3	26.8	8.9
Eastern and Central Hills	4.9	4.7	12.8	9.5	16.1	15.5	15.9	19.0	24.8	23.6	15.8	22.4	8.2
Eastern and Central Mountains	.9	2.7	4.4	4.9	3.5	6.5	5.6	4.7	5.3	6.9	4.8	23.3	8.2
Western Tarai	9.3	9.0	6.2	10.9	13.7	9.9	7.5	4.6	1.6	.7	7.2	28.9	7.7
Western Hills	6.7	10.4	11.8	13.6	14.3	14.7	13.2	13.8	11.8	19.1	13.5	24.5	9.9
Mid Western and Far Western Tarai	5.3	8.7	7.0	6.5	12.2	8.4	9.3	6.7	5.3	3.6	7.4	26.6	8.7
Mid Western and Far Western Hills	2.6	2.7	5.3	8.1	6.8	8.5	11.5	14.5	17.5	17.4	10.3	21.4	7.6
Western, Mid Western and Far Western Mountains	0.0	0.0	0.0	0.0	.1	.7	2.7	4.7	7.8	11.9	3.1	16.0	3.9
Total	100	100	100	100	100	100	100	100	100	100	100	25.8	9.8

 $Source: Computed from \ raw\ Nepal\ Living\ Standards\ Survey\ data\ using\ principal\ component\ analysis.$

TABLE A7.2

Calculations for 2003

Eco-development region							N=3	,373					
	Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	0verall	Mean	Standard deviation
Kathmandu Valley	57.3	31.6	18.7	7.7	3.6	1.6	.3	0.0	0.0	0.0	8.7	31.3	8.0
Eastern and Central Tarai	15.8	27.3	35.7	41.5	47.1	46.0	44.6	32.4	13.8	3.1	31.7	18.0	6.9
Eastern and Central Hills	4.2	5.3	8.8	7.5	7.8	10.2	13.3	17.3	27.2	42.2	15.3	11.5	8.0
Eastern and Central Mountains	0.0	0.0	0.0	.8	2.2	4.6	6.6	10.4	9.9	6.8	4.6	10.7	4.0
Western Tarai	6.3	10.0	16.0	16.1	8.7	7.5	4.6	3.1	1.2	0.0	7.1	21.6	7.2
Western Hills	10.7	12.3	9.0	11.7	10.5	12.9	12.4	16.6	20.2	16.1	13.5	15.4	9.4
Mid Western and Far Western Tarai	5.8	10.6	9.3	12.4	15.5	11.3	9.2	6.0	4.1	.6	8.5	19.0	7.1
Mid Western and Far Western Hills	0.0	3.1	2.4	2.3	3.8	4.0	6.3	10.0	19.3	20.0	7.7	10.3	6.4
Western, Mid Western and Far Western Mountains	0.0	0.0	.2	0.0	.9	1.7	2.7	4.2	4.3	11.2	2.8	8.4	4.6
Total	100	100	100	100	100	100	100	100	100	100	100	16.9	9.3

TABLE A7.3

Calculations for 2011

Eco-development region	N=3,373												
	Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	0verall	Mean	Standard deviation
Kathmandu Valley	43.2	28.7	19.3	9.4	5.9	3.0	2.4	2.8	2.7	.3	9.6	41.8	6.7
Eastern and Central Tarai	9.3	23.4	21.6	25.8	32.2	38.3	41.8	41.8	28.4	26.9	30.4	32.3	7.9
Eastern and Central Hills	6.4	10.0	18.5	18.7	17.7	17.8	14.5	14.0	14.2	14.5	15.0	32.8	8.5
Eastern and Central Mountains	2.0	3.4	5.4	3.5	2.8	3.7	2.9	4.4	7.0	5.7	4.1	31.6	8.5
Western Tarai	8.0	5.9	4.6	7.2	4.7	5.4	4.0	4.2	7.4	16.1	6.7	30.6	10.8
Western Hills	18.7	13.3	13.6	16.6	17.3	13.1	12.6	13.7	11.6	4.9	13.4	35.3	7.4
Mid Western and Far Western Tarai	6.4	7.8	7.9	8.4	7.9	5.7	7.4	7.1	12.4	14.2	8.6	31.4	9.6
Mid Western and Far Western Hills	5.5	6.0	7.8	9.2	9.4	10.1	10.9	8.2	10.8	13.1	9.4	31.8	8.8
Western, Mid Western and Far Western Mountains	.6	1.5	1.3	1.2	2.1	2.8	3.5	3.8	5.6	4.3	2.8	29.5	7.6
Total	100	100	100	100	100	100	100	100	100	100	100	33.3	8.8

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

ANNEX 8:

Labour Productivity by Districts and Regions

TABLE A8.1

Districtwise Labour Productivity (in Rs.) and in index

Districts	Economically active pop	GDP (Value Added) Rs. in million	Labour Productivity (in Rs.)	Labour Productivity Relalative to National Average	Labour Productivity Relative to Kathmandu
Eastern Mountain					
Taplejung	59245.5	6802.8	114823.9	97.2	35.9
Sankhuwasabha	89076.7	7687.8	86304.8	73.1	27.0
Solukhumbu	61606.7	7947.9	129009.8	109.2	40.3
Eastern Hills					
Panchthar	85951.2	8413.5	97886.7	82.9	30.6
llam	141851.1	14852.2	104702.7	88.7	32.7
Dhankuta	91035.6	8335.4	91561.8	77.5	28.6
Terhathum	55401.7	5850.4	105600.1	89.4	33.0
Bhojpur	94178.8	7383.7	78400.6	66.4	24.5
Okhaldhunga	69635.9	5748.3	82547.3	69.9	25.8
Khotang	92356.8	9476.5	102607.9	86.9	32.0
Udayapur	133579.3	11841.7	88648.9	75.1	27.7
Eastern Tarai					
Jhapa	329345.2	40370.2	122577.2	103.8	38.3
Morang	377416.8	49026.1	129899.0	110.0	40.6
Sunsari	268482.7	34261.1	127610.1	108.0	39.9
Saptari	242521.9	20822.9	85859.9	72.7	26.8
Siraha	214341.9	17784.3	82971.8	70.3	25.9
Central Mountain					
Dolakha	94343.0	6991.9	74111.6	62.7	23.1
Sindhupalchok	150026.5	12976.4	86494.0	73.2	27.0
Rasuwa	20983.0	2677.4	127598.9	108.0	39.9
Central Hills					
Sindhuli	134796.1	9884.1	73326.2	62.1	22.9
Ramechhap	97912.6	7835.8	80029.0	67.8	25.0
Kavrepalanchok	177423.3	21777.6	122743.5	103.9	38.3
Lalitpur	190394.8	36179.0	190021.1	160.9	59.3
Bhaktapur	129495.4	17142.0	132375.4	112.1	41.3
Kathmandu	614432.4	196723.1	320170.5	271.1	100.0
Nuwakot	132394.6	12266.7	92652.5	78.4	28.9
Dhading	166200.1	13391.6	80575.2	68.2	25.2
Makwanpur	195841.7	24156.7	123348.0	104.4	38.5
Central Tarai					
Dhanusa	213443.4	28727.1	134588.7	114.0	42.0
Mahottari	183092.2	17283.9	94400.2	79.9	29.5
Sarlahi	224676.7	25341.1	112789.0	95.5	35.2
Rautahat	197110.0	21193.0	107518.8	91.0	33.6
Bara	215822.1	41527.0	192413.1	162.9	60.1

Continued...

Districts	Economically active pop	GDP (Value Added) Rs. in million	Labour Productivity (in Rs.)	Labour Productivity Relalative to National Average	Labour Productivity Relative to Kathmandu
Parsa	182168.9	30004.6	164707.6	139.5	51.4
Chitawan	244209.7	36270.9	148523.4	125.8	46.4
Western mountain					
Manang	3635.0	845.0	232453.5	196.8	72.6
Mustang	7784.1	1055.0	135529.1	114.8	42.3
Western Hills					
Gorkha	132186.2	11419.7	86391.0	73.1	27.0
Lamjung	77771.7	8057.9	103610.0	87.7	32.4
Tanahu	132363.9	14006.5	105817.8	89.6	33.1
Syangja	131011.8	14179.9	108234.0	91.6	33.8
Kaski	172638.7	31244.7	180983.4	153.2	56.5
Myagdi	54146.6	4721.8	87204.6	73.8	27.2
Parbat	70704.4	6004.5	84924.0	71.9	26.5
Baglung	110679.6	9397.1	84903.3	71.9	26.5
Gulmi	130876.6	8418.2	64322.0	54.5	20.1
Palpa	118916.3	10373.8	87236.1	73.9	27.2
Arghakhanchi	101715.0	7198.2	70768.0	59.9	22.1
Western Tarai					
Nawalparasi	308398.0	30140.2	97731.5	82.7	30.5
Rupandehi	318001.9	40138.8	126221.9	106.9	39.4
Kapilbastu	207804.3	23002.8	110694.4	93.7	34.6
Mid Western Mountai		25002.0	110051.1		31.0
Dolpa	17932.0	1558.5	86910.1	73.6	27.1
Jumla	49969.4	4474.9	89552.7	75.8	28.0
Kalikot	57077.5	3227.9	56552.9	47.9	17.7
Mugu	25305.0	1955.1	77259.5	65.4	24.1
Humla	23934.6	1649.2	68905.1	58.3	21.5
Mid Western Hills	23734.0	1047.2	00703.1	50.5	21.5
Pyuthan	109540.0	6191.9	56526.1	47.9	17.7
Rolpa	94440.0	5779.0	61192.1	51.8	19.1
Rukum	77523.0	6594.6	85066.7	72.0	26.6
Salyan	101158.3	7703.8	76155.6	64.5	23.8
Surkhet	144505.2	12925.0	89443.0	75.7	27.9
Dailekh		7266.7	65334.0	55.3	20.4
Jajarkot	111223.4 63063.6	4255.4	67477.8	55.3 57.1	20.4
Mid Western Tarai	0.0000	42,3,4	0/1//0	5/.1	۷۱.۱
Dang	230846.6	25240.2	109337.5	92.6	34.1
Banke	170010.9	23240.2	133048.2	92.6	41.6
Bardiya Far Western Mountai	186231.2	18787.4	100882.1	85.4	31.5
	n 59300.7	2851.5	48084.7	40.7	15.0
Bajura					
Bajhang	87487.2	3816.6	43624.1	36.9	13.6
Darchula	59530.7	3397.2	57067.1	48.3	17.8

Continued...

Districts	Economically active pop	GDP (Value Added) Rs. in million	Labour Productivity (in Rs.)	Labour Productivity Relalative to National Average	Labour Productivity Relative to Kathmandu
Far Western hills					
Achham	114446.9	5513.8	48177.7	40.8	15.0
Doti	92243.8	6590.6	71447.5	60.5	22.3
Dadeldhura	67848.7	4392.4	64738.8	54.8	20.2
Baitadi	105879.9	5821.3	54979.9	46.6	17.2
Far Western Tarai					
Kailali	300447.2	29569.9	98419.8	83.3	30.7
Kanchanpur	171333.6	17140.6	100042.4	84.7	31.2
Total	10570707.9	1248481.6	118107.7	100.0	

Source: Based on labour productivity calculated from district level GDP and Economically active population provided by Central Bureau of Statistics

TABLE A8.2

Regionwise Labour Productivity (in Rs.) and Relative to National Average

Regions	Primary	Secondary	Tertiary	Average
Kathmandu Valley	87084.8	158987.1	278999.8	214189.0
Eastern and Central Hills	69866.1	269247.0	195206.4	94616.5
Western Hills	64114.7	155287.8	203021.8	96763.1
Mid Western and Far Western Hills	47990.4	139256.4	126416.8	60834.9
Eastern and Central Mountains	79231.2	232904.4	218761.1	103057.2
Mid Western, Far Western & Western Mountains	64169.1	271847.6	170798.2	86879.4
Eastern and Central Tarai	80258.9	241082.2	193582.8	125321.6
Western Tarai	72238.1	204818.9	189528.2	111549.3
Mid Western and Far Western Tarai	79791.0	122766.6	200199.3	108346.0
Nepal (Average)	68562.8	198486.2	225684.3	118107.7
Regiowise Labour Productivity Index (Rela	ative to National Averag	je)		
Kathmandu Valley	73.7	134.6	236.2	181.4
Eastern and Central Hills	59.2	228.0	165.3	80.1
Western Hills	54.3	131.5	171.9	81.9
Mid Western and Far Western Hills	40.6	117.9	107.0	51.5
Eastern and Central Mountains	67.1	197.2	185.2	87.3
Mid Western Far Western and Western Mountains	54.3	230.2	144.6	73.6
Eastern and Central Tarai	68.0	204.1	163.9	106.1
Western Tarai	61.2	173.4	160.5	94.4
Mid Western and Far Western Tarai	67.6	103.9	169.5	91.7
Total	58.1	168.1	191.1	100

Source: Based on labour productivity calculated from district level GDP and Economically active population provided by Central Bureau of Statistics

TABLE A8.3

Ranking of top 10 districts by labour productivity

Primary	Secondary	Tertiary	Total
Manang	Dhanusa	Kathmandu	Kathmandu
Taplejung	Bara	Makwanpur	Manang
llam	Khotang	Rasuwa	Bara
Mustang	Mugu	Gorkha	Lalitpur
Solukhumbu	Manang	Chitawan	Kaski
Bara	Dolpa	Sankhuwasabha	Parsa
Kathmandu	Panchthar	Kaski	Chitawan
Panchthar	llam	Nuwakot	Mustang
Kaski	Makwanpur	Parsa	Dhanusa
Jhapa	Humla	Jumla	Banke

Source: Based on labour productivity calculated from district level GDP and Economically active population provided by Central Bureau of Statistics

ANNEX 9:

Nepal Standard Industrial Classification Codes

S.N.	Codes	Types of industries
1	15	Manufacture of food products and beverages
2	16	Manufacture of tobacco products
3	17	Manufacture of textiles
4	18	Manufacture of wearing apparel, dressing and dying of fur
5	19	Tanning and dressing of leather; manufacture of luggage, handbags, saddlery, harness and footwear
6	20	$Manufacture\ of\ wood\ and\ of\ products\ of\ wood\ and\ cork, except\ furniture; manufacture\ of\ articles\ of\ straw\ and\ plaiting\ materials$
7	21	Manufacture of paper and paper products
8	22	Publishing, printing and reproduction of recorded media
9	23	Manufacture of coke, refined petroleum products and nuclear fuel
10	24	Manufacture of chemical and chemical products
11	25	Manufacture of rubber and plastic products
12	26	Manufacture of other non-metallic mineral products
13	27	Manufacture of basic metals
14	28	Manufacture of fabricated metal products, except machinery and equipment
15	29	Manufacture of machinery and equipment NEC
16	31	Manufacture of electrical machinery and apparatuses
17	32	Manufacture of radio, television and communication equipment and apparatuses
18	33	Manufacture of medical, precision and optical instruments, watches and clocks
19	34	Manufacture of motor vehicles, manufacture of trailers and semi-trailers
20	35	Manufacture of other transport equipment
21	36	Manufacture of furniture, manufacturing NEC

Source: Census of Manufacturing Establishments 2007, Central Bureau of Statistics.

ANNEX 10: Number of Firms by Nepal Standard Industrial Classification Codes and the Nine Eco-development Regions

Cadaa	Number of firms 1997 2002 2007		5	For development waster -		Numbers of firm	s
Codes	1997	2002	2007	Eco-development regions	1997	2002	2007
15	661	723	863	Kathmandu Valley	1,338	847	798
16	38	25	28	Eastern and Central Hills	162	176	161
17	828	457	519	Western Hills	235	212	258
18	136	115	36	Mid Western and Far Western Hills	32	24	35
19	77	59	36	Eastern and Central Mountains	60	33	31
20	198	195	271	Western, Mid Western and Far Western Mountains	6	5	17
21	118	85	91	Eastern and Central Tarai	1,164	1,265	1,447
22	79	81	105	Western Tarai	280	371	350
23	3	2	7	Mid Western and Far Western Tarai	280	280	349
24	92	95	109	Total	3,557	3,213	3,446
25	146	201	162				
26	623	624	657				
27	22	74	67				
28	183	127	124				
29	19	10	18				
31	29	35	33				
32	5	5	5				
33			1				
34	5	6	5				
35			3				
36	295	294	306				
Total	3,557	3,213	3,446				

Source: Census of Manufacturing Establishments 1997, 2002 and 2007, Central Bureau of Statistics.

ANNEX 11:

Numbers of People Employed in Different Industries and by Region

Nepal Standard Industrial Classification code	1997	2002	2007	Regions	1997	2002	2007
15	24,261	32,082	30,930	Kathmandu Valley	99,383	63,993	38,909
16	3,213	2,896	2,618	Eastern and Central Hills	9,211	7,492	8,227
17	75,303	43,873	41,138	Western Hills	5,352	6,175	6,887
18	15,126	18,389	4,864	Mid Western and Far Western Hills	544	451	524
19	2,025	2,107	1,239	Eastern and Central Mountains	1,383	802	537
20	3,825	3,875	5,058	Western, Mid Western and Far Western Mountains	70	53	125
21	3,557	3,072	3,784	Eastern and Central Tarai	59,196	83,832	92,360
22	2,621	3,999	3,997	Western Tarai	12,376	17,589	18,092
23	158	80	434	Mid Western and Far Western Tarai	9,193	11,466	11,889
24	5,107	7,820	8,871	Total	196,708	191,853	177,550
25	3,457	5,423	7,218				
26	43,988	52,367	49,022				
27	1,234	2,887	3,724				
28	5,290	4,983	6,127				
29	298	208	414				
31	1,612	2,103	2,256				
32	275	392	370				
33	0	0	28				
34	82	270	213				
35	0	0	169				
36	5,276	5,027	5,076				
Total	196,708	191,853	177,550				

Source: Census of Manufacturing Establishments 1997, 2002 and 2007, Central Bureau of Statistics.

ANNEX 12:

Technical Note on the Total Factor Productivity Methodology

Generally, total factor productivity is calculated based on the estimation of production functions. After deriving the coefficients of traditional inputs using the ordinary least squares (OLS) technique, the residuals are treated as total factor productivities. For estimation at the firm or industrial levels and types a similar method is also popular. But Gal (2013) points out that the coeffcients obtained through such an exercise are likely to be inconsistent and biased. In the case of the labour coeffcient, for instance, firms with higher productivity hire more workers, but productivity is not directly observed during production function estimation, hence it enters an error term. Firms' behaviour may thus introduce a positive correlation between the error term and the labour input, rendering standard OLS inconsistent and biased. To solve this problem, a firm-specific dummy is used to

control for cases where productivity shocks occur differently across firms. The same technique has been applied in this report.

The report encountered some problems with both labour and capital inputs, given the absence of data in the required format for the estimation. If labour input data do not contain the number of hours worked, and instead provide information only on the number of employees, some complication arises. The absence of data on the characteristics of employees in terms of types of workers (i.e., low-skilled or high-skilled) also creates problems. These are solved by assuming that total labour costs are a measure of quality and intensity-adjusted labour. Hence, as in Saliola and Seker (2011), total compensation of workers, including wages, salaries and bonuses, is used. This report used data on compensation of employees

BOX A12.1

Illustration of total factor productivity methodology

Measuring total factor productivity requires an empirical specification of the production function (Subramanian et. al. 2005). Normally in economic literature, the following production function is used.

$$Y = f(K, L)$$

where Y represents value added, K represents capital inputs and L represents labour inputs. With Nepal's manufacturing survey data, there was a need to compute total factor productivity in cross-sectional data that defines some index of relative total factor productivity for each firm 'i' as:

$$\omega_i = \frac{Y_i}{f(K_i, L_i)}$$

such that $\omega=1$ indicates the central tendency of total factor productivity in the crosssection. A value of ω>1 indicates high total factor productivity relative to the firms in the cross-section, while a value below 1 indicates low total factor productivity (ibid.). Rearranging:

$$Y_i = f(K_i, L_i)\omega_i$$

If we use the Cobb-Douglas production function, then:

$$Y_i = A_i K_i^{\alpha} L_i^{\beta}$$

Taking the natural logs of the production function results in a linear production function:

$$logY_i = logA_i + \alpha logK_i + \beta logL_i + \varepsilon_i$$

Estimated productivity can then be calculated as follows (Beveren 2007)

$$\widehat{\omega}_i = logY_i - \widehat{\alpha}logK_i - \widehat{\beta}logL_i$$

While $\widehat{\omega}_i$ is in index number, productivity in levels can be obtained as the exponential of $\widehat{\omega}_i$

as it was readily available. Following the same authors (ibid.), the replacement value of fixed assets was used for the capital stock.

The report took a two-step approach to compute total factor productivity. First, the production function was estimated by taking different industrial types into consideration, as follows:

$$\begin{split} logY_i &= \beta_0 + \beta_1 \log(wage_i) + \beta_2 \log(fixedassets_i) + \sum_{N=1}^K \alpha_N \, D_N * \log(wage_i) \\ &+ \sum_{N=1}^K \delta_N \, D_N * \log(fixedassets_i) + \sum_{N=1}^K \gamma_N D_N + \varepsilon_i \end{split}$$

where Yi represents value addition in each firm, and N=1 to K represents industrial types, grouped by the two-digit Nepal Standard Industrial Classification codes. This

equation gives different elasticity coefficients for each industrial type and also controls industry-specific mean differences. After calculating total factor productivity for each firm, considering the industry-specific production function, average total factor productivity is computed for different industrial groups and eco-development regions.

Sources of data

Manufacturing survey data from 1997, 2002 and 2007 were used for computing labour and total factor productivity. Data have been further regrouped for the calculations. Industrial groups with less than five firms were merged to increase the sample size. See also box A12.1.

ANNEX 13:

Total Factor Productivity Index (Log) of Different Industrial Types by Regions and Over Time

	Calculations by	v the nine ed	co-development	regions.	1997
--	-----------------	---------------	----------------	----------	------

Regions ->	1	2	3	4	5	6	7	8	9
Industry 🗸									
15	0.49	0.08	0.26	-0.49	0.35	0.76	0.42	0.20	0.31
16		1.58					-0.32	-0.50	-1.01
17, 18	0.89	0.47	0.30	0.27	0.44	0.64	0.96	0.05	0.48
19	-1.75	-1.07	-1.69				-0.79	-1.15	-1.20
20	2.92	2.79	2.50	1.57	1.99		2.89	2.73	2.47
21	0.41	0.28	-0.02	0.29	0.13		0.48	0.17	-0.25
22	-0.55	-0.92	-0.73		-0.52		-0.44	-1.11	-0.40
23, 29, 32, 33, 34,35	-0.18						-1.22	0.44	
24	1.27	2.01	1.37				1.52	1.30	1.14
25	0.72	0.82	1.04				0.83	0.31	1.49
26	0.72	0.85	0.64	0.53	0.36	1.51	0.87	0.85	0.62
27, 28	0.13	-0.69	0.07	-0.07			-0.13	0.01	0.63
31	1.41	2.45	0.65				1.66	1.60	
36	0.89	0.38	0.51	0.10	0.55	0.31	0.84	0.70	0.64

Source: Calculated from Census of Manufacturing Establishments 1997, 2002 and 2007, Central Bureau of Statistics.

TABLE A13.2

Calculations by the nine eco-development regions, 2002

Regions ->	1	2	3	4	5	6	7	8	9
Industry 🗸									
15	0.21	0.13	0.02	0.17	-0.47		0.20	0.25	0.15
16		1.37	-0.04				0.12	-3.05	
17, 18	0.81	0.95	0.07	1.61	0.29		0.82	0.29	0.57
19	0.24	0.31					0.32	0.03	
20	0.83	0.33	0.69	0.31			0.60	1.03	0.89
21	-0.16	0.13	-0.20	0.18	0.06	0.50	0.28	-0.11	
22	1.26		1.63				1.26	1.51	0.56
23, 29, 32, 33, 34,35	0.47	-0.15					0.49	-0.23	-0.31
24	0.11	0.73	1.52				0.32	0.69	0.11
25	0.24	0.04	0.76				0.27	0.36	0.28
26	0.59	0.91	0.49	0.87	1.34		0.53	0.77	0.57
27, 28	0.09	-0.68	-0.08	1.44			0.24	-0.25	-0.09
31	-0.17	0.40	0.46				0.43	0.33	-0.13
36	0.23	0.20	0.16	0.33	0.16	-0.22	0.18	0.21	0.21

Source: Calculated from Census of Manufacturing Establishments 1997, 2002 and 2007, Central Bureau of Statistics.

TABLE A13.3

Calculations by the nine eco-development regions, 2007

Regions ->	1	2	3	4	5	6	7	8	9
Industry 🗸									
15	0.85	0.51	0.34	0.52	0.71	-0.32	0.81	0.87	0.30
16		0.34					-0.64	0.76	
17, 18	1.18	0.73	0.79	0.82	0.24		1.20	0.72	0.81
19	0.49	0.32					0.68	0.65	
20	1.37	0.84	0.82	1.92	0.07		1.26	1.05	1.11
21	0.33	0.24	0.07	0.34	0.23	1.12	0.32	0.74	
22	0.46		0.22				0.26	-0.21	0.12
23, 29, 32, 33, 34,35	1.27	0.08	0.11				0.89	-0.93	0.75
24	0.11	0.88	0.27				0.65	1.10	1.50
25	0.26	0.60	0.05				0.51	0.43	1.15
26	0.64	0.36	0.12	0.32	0.05		0.59	0.88	0.33
27, 28	0.90	1.09	0.19	1.38	1.70		0.69	-0.02	0.38
31	0.40	0.56	-0.15				0.33	1.14	1.11
36	0.79	0.67	0.69	0.57	0.95	-2.29	0.71	0.76	0.60

Source: Calculated from Census of Manufacturing Establishments 1997, 2002 and 2007, Central Bureau of Statistics.

TABLE A13.4

Average total factor productivity by industry in 1997, 2002 and 2007

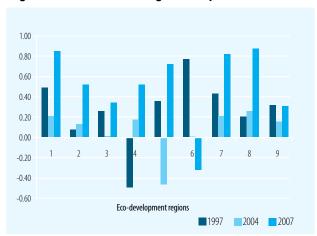
Nepal Standard Industrial Classification Code	1997	2002	2007
15	0.35	0.18	0.69
16	-0.33	0.04	-0.55
17	0.94	0.94	1.17
18	0.11	0.08	0.49
19	-1.02	0.25	0.64
20	2.78	0.70	1.14
21	0.28	0.07	0.36
22	-0.54	1.27	0.26
23	-2.43	0.83	1.28
24	1.45	0.35	0.69
25	0.77	0.27	0.46
26	0.75	0.59	0.55
27	-2.74	0.16	0.68
28	0.33	0.03	0.57
29	0.79	0.13	0.23
31	1.56	0.31	0.47
32	-2.65	0.70	1.07
33			2.85
34	-2.87	-0.14	0.11
35			0.68
36	0.73	0.20	0.69
Overall	0.69	0.43	0.72

Source: Calculated from Census of Manufacturing Establishments 1997, 2002 and 2007, Central Bureau of Statistics.

TABLE A13.5

Total factor productivity averages for the nine eco-development regions

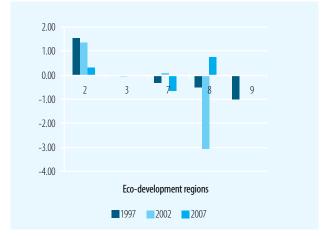
Eco	-development regions		Average total factor produ	ıctivity
		1997	2002	2007
1	Kathmandu Valley	0.77	0.60	0.95
2	Eastern and Central Hills	0.52	0.36	0.56
3	Western Hills	0.45	0.23	0.47
4	Mid Western and Far Western Hills	0.24	0.47	0.58
5	Eastern and Central Mountains	0.32	-0.06	0.42
6	Western, Mid Western and Far Western Mountains	0.72	0.35	0.24
7	Eastern and Central Tarai	0.76	0.39	0.72
8	Western Tarai	0.43	0.39	0.75
9	Mid Western and Far Western Tarai	0.70	0.39	0.49


Source: Calculated from Census of Manufacturing Establishments 1997, 2002 and 2007, Central Bureau of Statistics.

ANNEX 14:

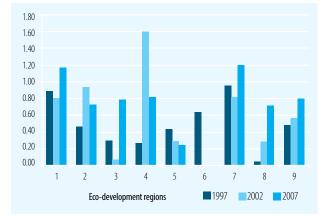
Average Total Factor Productivity by Industry and Eco-development Region Over Time

FIGURE A14.1:


Average TFP of Food and Beverage Industry

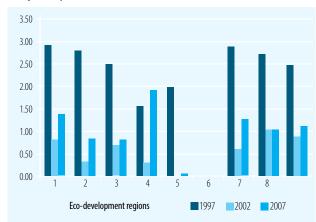
Source: Annex 13, table A13.1 to table A13.3

FIGURE A14.2:


Average TFP of Tobacco Industry

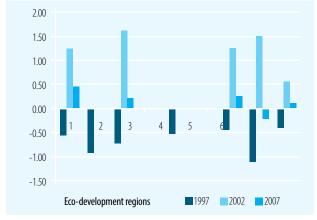
Source: Annex 13, table A13.1 to table A13.3

FIGURE A 14.3:


Average TFP of Textile and Apparel Industry

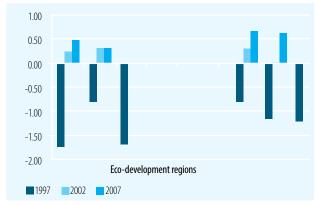
Source: Annex 13, table A13.1 to table A13.3

FIGURE A14.5:


Average TFP of Saw Mill, Plywood and Other Wood-based Industry (except furniture)

Source: Annex 13, table A13.1 to table A13.3

FIGURE A14.7:


Average TFP of Publishing, Printing and Reproduction of Recorded Media

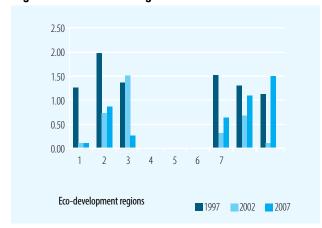
Source: Annex 13, table A13.1 to table A13.3

FIGURE A14.4:

Average TFP of Tanning and Dressing of Leather, Manufacture of Luggage and Handbags

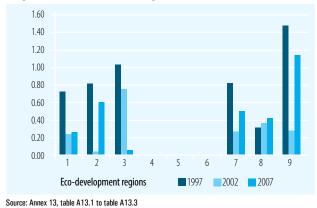
Source: Annex 13, table A13.1 to table A13.3

FIGURE A14.6:


Average TFP of Manufacture of Paper and Paper Products

Source: Annex 13, table A13.1 to table A13.3

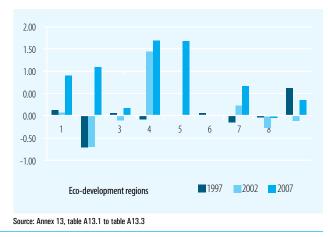
FIGURE A14.8:


Average TFP of Firms Producing Chemical and Chemical Products

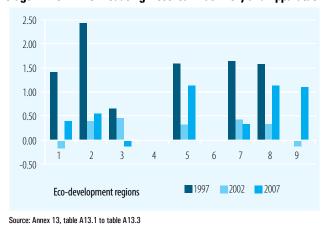
Source: Annex 13, table A13.1 to table A13.3 $\,$

FIGURE A14.9:

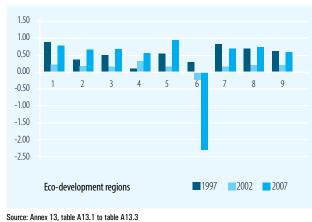
Average TFP of Firms Producing Rubber and Plastic Products


FIGURE A14.10:

Average TFP of Firms Producing Non-metallic Mineral Products


FIGURE A14.11:

Average TFP of Firms Producing Basic Metals and Fabricated Metal Products (except machinery and equipment)


FIGURE A14.12:

Average TFP of Firms Producing Electrical Machinery and Apparatus

FIGURE A14.13:

Average TFP of Firms Producing Furniture

ANNEX 15:

Regional Composition of Ability Deciles

TABLE A15.1

Calculations for 1995

Region		Nepal Living Standards Survey, percent									
	Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	_
Kathmandu Valley	42.9	45.1	31.9	13.0	3.6	1.1	.7	1.0	3.4	.6	14.3
Eastern and Central Tarai	16.4	19.3	22.8	29.7	35.9	33.3	29.1	25.6	19.8	24.7	25.6
Eastern and Central Hills	9.0	10.1	11.3	16.8	12.5	14.8	17.8	15.4	18.6	12.6	13.9
Eastern and Central Mountains	2.6	1.7	3.7	6.4	7.1	5.6	7.1	5.9	8.0	9.1	5.7
Western Tarai	4.1	3.5	7.8	7.3	9.0	8.9	7.6	3.6	3.0	5.7	6.1
Western Hills	15.6	8.9	10.0	10.0	9.3	11.8	9.5	10.3	15.9	17.8	11.9
Mid Western and Far Western Tarai	4.3	6.9	6.9	8.9	10.5	12.1	9.0	6.9	4.7	5.8	7.6
Mid Western and Far Western Hills	4.2	4.2	4.9	6.3	10.6	8.7	11.5	18.1	11.7	16.1	9.6
Western, Mid Western and Far Western Mountains	.8	.4	.6	1.6	1.6	3.7	7.7	13.2	15.0	7.6	5.2
Overall	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

TABLE A15.2

Calculations for 2003

Region		Nepal Living Standards Survey, percent									
	Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	
Kathmandu Valley	39.6	14.7	19.7	22.3	14.4	4.6	10.9	3.2	4.2	2.7	13.6
Eastern and Central Tarai	24.3	26.4	22.7	23.3	29.2	26.5	33.0	32.8	41.0	30.1	28.9
Eastern and Central Hills	6.7	14.5	12.7	11.8	11.3	19.6	12.5	13.8	17.9	14.8	13.6
Eastern and Central Mountains	.2	9.4	6.0	4.0	3.7	8.2	6.1	6.7	5.0	4.5	5.4
Western Tarai	7.6	5.0	7.3	6.7	6.1	4.5	7.7	5.6	3.6	4.6	5.9
Western Hills	8.7	13.6	14.3	12.9	14.6	14.0	6.9	7.2	9.1	9.4	11.1
Mid Western and Far Western Tarai	9.4	9.2	10.2	8.8	9.3	11.4	15.4	9.4	7.6	13.6	10.4
Mid Western and Far Western Hills	2.9	5.1	5.0	7.8	8.2	7.4	4.9	12.3	7.5	13.0	7.4
Western, Mid Western and Far Western Mountains	.6	2.0	2.1	2.3	3.2	3.8	2.6	9.0	4.1	7.4	3.7
Overall	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

TABLE A15.3

Calculations for 2011

Region		Nepal Living Standards Survey, percent									
	Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	
Kathmandu Valley	32.9	19.1	26.4	16.5	27.1	17.8	17.7	12.1	6.0	7.6	18.3
Eastern and Central Tarai	20.0	17.0	20.6	26.0	18.9	23.8	23.9	27.9	35.0	33.1	24.6
Eastern and Central Hills	8.9	19.0	9.2	14.5	12.1	16.3	13.9	16.4	14.6	15.1	14.0
Eastern and Central Mountains	1.6	3.7	3.9	4.2	4.3	2.8	3.4	3.7	3.7	3.6	3.5
Western Tarai	7.5	8.5	8.6	6.3	6.4	7.6	7.1	8.3	9.9	7.9	7.8
Western Hills	16.7	15.1	9.8	11.2	10.1	11.0	7.9	8.5	5.4	4.1	10.0
Mid Western and Far Western Tarai	8.1	9.1	10.6	10.8	9.0	9.4	12.1	9.1	9.7	9.3	9.7
Mid Western and Far Western Hills	3.1	7.1	8.3	8.0	9.9	9.7	11.9	10.7	10.6	14.8	9.4
Western, Mid Western and Far Western Mountains	1.2	1.4	2.7	2.5	2.3	1.5	2.1	3.3	5.2	4.6	2.7
Overall	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

ANNEX 16:

Employment by Sector

TABLE A16.1

Calcu	lations	for	1995
-------	---------	-----	------

Gender												Total
		Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	
	Wage employment in agriculture	8.8	5.0	9.1	13.1	20.9	24.5	30.1	27.1	23.6	17.8	19.3
	Wage employment in non-agriculture	27.3	27.9	33.4	23.6	18.5	20.1	18.2	21.7	24.0	20.0	23.0
Male	Self-employment in agriculture	37.2	37.8	40.1	51.6	53.2	46.3	45.7	44.8	46.9	51.4	45.6
	Self-employment in non-agriculture	26.7	29.4	17.5	11.7	7.5	9.0	5.9	6.4	5.6	10.8	12.1
	Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Wage employment in agriculture	9.6	7.7	9.1	12.6	17.2	22.2	26.7	24.4	20.5	26.4	18.8
	Wage employment in non-agriculture	14.6	12.3	11.6	5.8	2.5	2.4	1.9	1.6	3.1	1.9	4.7
Female	Self-employment in agriculture	55.8	61.3	65.9	73.9	73.5	70.0	67.7	69.8	71.6	65.4	68.8
	Self-employment in non-agriculture	20.0	18.7	13.4	7.7	6.8	5.4	3.8	4.2	4.8	6.3	7.7
	Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Wage employment in agriculture	9.1	6.1	9.1	12.9	19.1	23.4	28.5	25.8	22.0	22.4	19.0
	Wage employment in non-agriculture	23.0	21.4	23.4	15.3	10.9	11.8	10.3	11.9	13.5	10.4	14.5
Total	Self-employment in agriculture	43.5	47.5	52.0	62.0	62.9	57.4	56.4	56.9	59.3	58.8	56.4
	Self-employment in non-agriculture	24.4	24.9	15.6	9.8	7.2	7.3	4.9	5.4	5.2	8.4	10.1
	Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Source: Computed from raw Nepal Living Standards Survey data using principal component analysis.

TABLE A16.2

Calculations for 2003

Gender											Decile 10	Total
delidel		Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9		
	Wage employment in agriculture	1.7	5.1	8.3	8.4	8.5	15.7	21.2	21.1	33.8	21.1	12.0
	Wage employment in non-agriculture	26.7	18.8	21.6	22.4	26.5	19.6	19.7	23.5	19.0	20.0	21.8
Male	Self-employment in agriculture	41.4	62.2	59.0	54.6	51.5	54.6	48.1	46.8	39.8	50.5	52.9
	Self-employment in non-agriculture	30.2	14.0	11.1	14.6	13.4	10.2	11.0	8.6	7.4	8.4	13.3
	Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Wage employment in agriculture	4.7	6.4	8.5	4.6	5.4	12.1	14.7	16.8	23.6	21.0	13.9
	Wage employment in non-agriculture	21.2	6.1	13.9	13.6	5.3	2.9	4.4	1.8	1.4	2.4	4.8
Female	Self-employment in agriculture	53.4	81.4	67.7	66.6	78.3	80.6	73.7	77.5	72.0	71.3	74.6
	Self-employment in non-agriculture	20.8	6.1	9.8	15.2	11.1	4.4	7.2	3.9	3.0	5.4	6.7
	Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Wage employment in agriculture	2.6	5.5	8.4	7.4	7.0	13.9	17.2	17.7	26.0	21.0	13.0
	Wage employment in non-agriculture	25.0	15.2	19.9	20.0	16.5	11.4	10.4	6.5	5.5	8.8	13.3
Total	Self-employment in agriculture	45.1	67.5	61.0	57.9	64.1	67.3	63.6	70.8	64.4	63.7	63.7
	Self-employment in non-agriculture	27.3	11.8	10.8	14.8	12.3	7.4	8.7	4.9	4.1	6.5	10.0
	Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Source: Computed from raw Nepal Living Standards Survey data.

TABLE A16.3

Calculations for 2011

	Gender											Total
	delluei	Decile 1	Decile 2	Decile 3	Decile 4	Decile 5	Decile 6	Decile 7	Decile 8	Decile 9	Decile 10	ivtai
	Wage employment in agriculture	2.6	5.7	2.6	4.2	4.5	5.5	4.0	11.0	16.6	16.8	6.6
	Wage employment in non-agriculture	37.9	27.3	34.1	33.7	37.5	37.6	36.1	38.1	34.2	34.5	35.3
Male	Self-employment in agriculture	33.6	48.0	43.2	42.3	35.9	36.2	32.9	34.1	33.1	35.7	37.6
	Self-employment in non-agriculture	25.9	19.1	20.2	19.8	22.0	20.7	27.0	16.8	16.1	13.1	20.5
	Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Wage employment in agriculture	7.4	7.2	8.0	6.5	7.1	7.1	10.5	12.0	17.7	17.8	11.3
	Wage employment in non-agriculture	28.2	16.2	19.6	18.9	18.8	12.0	13.4	11.8	9.3	12.5	14.9
Female	Self-employment in agriculture	43.5	59.7	52.1	57.9	54.7	58.0	59.3	59.7	59.6	59.1	57.1
	Self-employment in non-agriculture	20.8	16.9	20.3	16.6	19.4	22.9	16.8	16.5	13.3	10.6	16.7
	Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Wage employment in agriculture	5.1	6.4	5.1	5.0	5.5	6.2	7.2	11.6	17.3	17.5	9.0
	Wage employment in non-agriculture	32.8	22.2	27.4	28.7	30.3	26.4	24.8	23.8	17.3	18.4	24.9
Total	Self-employment in agriculture	38.8	53.3	47.3	47.6	43.2	45.7	46.1	48.0	51.1	52.8	47.5
	Self-employment in non-agriculture	23.2	18.1	20.2	18.7	21.0	21.7	22.0	16.6	14.2	11.3	18.6
	Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Source: Computed from raw Nepal Living Standards Survey data.

Nepal is presently making efforts to move out of an extended political transition and has resolved to accelerate its graduation from a least developed to a developing country by 2022. The importance of inclusive growth and human development to sustain peace, achieved after a long conflict, has been deeply ingrained among all stakeholders. The agenda for the years to come is high-quality growth and equitable development.

This report explores spatial inequalities in productive abilities at the level of regions, households and individuals and presents a picture that is both sobering and encouraging. Broad regional inequalities in human development and productive abilities persist, but these seem to be narrowing over time. This indicates the need to maintain, with renewed vigour, the path of inclusive growth and development, encompassing all regions as well as socio-economic groups that have been left behind.

The report argues that the unambiguous focus of state policies should be to accelerate the narrowing of regional inequalities in human development and productive abilities. The pace of economic growth needs to accelerate, and be accompanied by large-scale employment generation and enhanced productivity in sectors such as high-value agricultural niches, industry and infrastructure development. Efforts should be oriented towards harnessing the tremendous potential and energy of a growing population of young people.

