Decltype (revision 7): proposed wording
Programming Language C++
Document no: N2343=07-0203

Jaakko Jirvi Bjarne Stroustrup Gabriel Dos Reis
Texas A&M University AT&T Research Texas A&M University
College Station, TX and Texas A&M University College Station, TX
Jjarvi@cs.tamu.edu bs@research.att.com gdr@cs.tamu.edu
2007-07-18

1 Introduction

We suggest extending C+ with the decltype operator for querying the type of an expression.

This document is a revision of the documents N2115=06-0185 [JSR06b], N1978=06-0048 [JSR06a], N1705=04-
0145 [JSR04], 1607=04-0047 [JS04], N1527=03-0110 [JS03], and N1478=03-0061 [JSGS03], and builds also on [Str02].
We only include the proposed wording; for rationale and other discussion of the feature, see the earlier revisions.

2 Proposed wording

Section 2.11 Keywords [lex.key]

Add decltype to Table 3.

Chapter 5 Expressions [expr]
Paragraph 8 should read:

ause pecifies for some operators that some of their operands-are wunevaluated operands 1n some
contexts, unevaluated operands appear (5.2.8, 5.3.3, 7.1.5.2). An unevaluated operand is not evaluated.
[Note: In an unevaluated operand, a non-static class class member may be named (5.1) and naming of
objects or functions does not, by itself, require that a definition be provided (3.2). — end note]

Section 7.1.5 Type specifiers [dcl.type]
Change paragraph 1 as indicated:

As a general rule, at most one type-specifier is allowed in the complete decl-specifier-seq of a declaration.
The only exceptions to this rule are the following:

Doc. no: N2343=07-0203

— const can be combined with any other type specifier except itself. eenst-andveolatiteean

—Howeverredund qua are-prohibited-exeep

— volatile can be combined with any other type specifier except itself.

Section 7.1.5.1 The cv-qualifiers [dclL.type.cv]

Paragraph 1 should be:
There are two cv-qualifiers, const and volatile. If a cv-qualifier appears in a decl-specifier-seq, the init-

declarator-list of the declaration shall not be empty. [Note: 3.9.3 describes how cv-qualifiers affect object and
function types. — end note] Redundant cv-qualifications are ignored. [Note: For example, those could be introduced

by using typedefs. — end note]

Section 7.1.5.2 Simple type specifiers [dcl.type.simple]

In paragraph 1, add the following to the list of simple type specifiers:

decltype (expression)

To Table 9, add the line:

| decltype (expression) | the type as defined below

Add a new paragraph after paragraph 3:

The type denoted by decltype (e) is defined as follows:

1. If e is an id-expression or a class member access (5.2.5 [expr.ref]), decltype (e) is defined as
the type of the entity named by e. If there is no such entity, or e names a set of overloaded functions,
the program is ill-formed.

2. If e is a function call (5.2.2 [expr.call]) or an invocation of an overloaded operator (parentheses
around e are ignored), decltype (e) is defined as the return type of that function.

3. Otherwise, where T is the type of e, if e is an lvalue, decltype (e) is defined as T&, otherwise
decltype (e) is defined as T.

The operand of the decltype specifier is an unevaluated operand (clause 5 [expr]).

[Example:
const inté&& fool();
int i;
struct A { double x; }
const Ax a = new A();
decltype (foo()); /typeis constint&&
decltype (1) ; // type is int
decltype (a->x) ; // type is double
decltype ((a—>x)); /typeis const double&

— end example]

Doc. no: N2343=07-0203 3

Section 14.6.2.1 [temp.dep.type] Dependent types

Add a case for decltype in paragraph 6:

A type is dependent if it is:

e denoted by decltype (expression), where expression is type-dependent ([temp.dep.expr]).

Section 9.3.2 The this pointer ([class.this])

Paragraph 1 should start:

In the body of a nonstatic (9.3) member function, the keyword this is anen-tvalae an rvalue expression

Editing note: this change is not intended to change semantics, and it is not strictly necessary for decltype.

References

[JS03]

[JS04]

[JSGS03]

[JSROA4]

[JSRO6a]

[JSRO6b]

[Str02]

J. Jarvi and B. Stroustrup. Mechanisms for querying types of expressions: Decltype and auto revis-
ited. Technical Report N1527=03-0110, ISO/IEC JTC 1, Information technology, Subcommittee SC 22,
Programming Language C++, September 2003. http://anubis.dkuug.dk/jtcl/sc22/wg21l/
docs/papers/2003/n1527.pdf.

Jaakko. Jarvi and Bjarne Stroustrup. Decltype and auto (revision 3). Technical Report N1607=04-0047,
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming Language C++, March 2004.

Jaakko Jarvi, Bjarne Stroustrup, Douglas Gregor, and Jeremy Siek. Decltype and auto. C++ standards com-
mittee document N1478=03-0061, April 2003. http://anubis.dkuug.dk/Jjtcl/sc22/wg2l/
docs/papers/2003/n1478.pdf.

Jaakko. Jdrvi, Bjarne Stroustrup, and Gabriel Dos Reis. Decltype and auto (revision 4). Technical Report
N1705=04-0145, ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming Language
C++, September 2004.

Jaakko. Jérvi, Bjarne Stroustrup, and Gabriel Dos Reis. Decltype (revision 5). Technical Report N1978=06-
0048, ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming Language C++, April
2006.

Jaakko Jarvi, Bjarne Stroustrup, and Gabriel Dos Reis. Decltype (revision 6): proposed wording. Technical
Report N2115=06-0185, ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming
Language C++, November 2006.

Bjarne Stroustrup. Draft proposal for "typeof”. C++ reflector message c++std-ext-5364, October 2002.

3 Acknowledgments

We are grateful to Jeremy Siek, Douglas Gregor, Jeremiah Willcock, Gary Powell, Mat Marcus, Daveed Vandevoorde,
David Abrahams, Andreas Hommel, Peter Dimov, and Paul Mensonides, Howard Hinnant, Jens Maurer, and Jason
Merrill for their valuable input in preparing this proposal.

