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1 Introduction

We suggest extending C+ with the decltype operator for querying the type of an expression.

This document is a revision of the documents N2115=06-0185 [JSR06b], N1978=06-0048 [JSR06a], N1705=04-
0145 [JSR04], 1607=04-0047 [JS04], N1527=03-0110 [JS03], and N1478=03-0061 [JSGS03], and builds also on [Str02].
We only include the proposed wording; for rationale and other discussion of the feature, see the earlier revisions.

2 Proposed wording

Section 2.11 Keywords [lex.key]

Add decltype to Table 3.

Chapter 5 Expressions [expr]
Paragraph 8 should read:

ause pecifies for some operators that some of their operands-are wunevaluated operands 1n some
contexts, unevaluated operands appear (5.2.8, 5.3.3, 7.1.5.2). An unevaluated operand is not evaluated.
[ Note: In an unevaluated operand, a non-static class class member may be named (5.1) and naming of
objects or functions does not, by itself, require that a definition be provided (3.2). — end note ]

Section 7.1.5 Type specifiers [dcl.type]
Change paragraph 1 as indicated:

As a general rule, at most one type-specifier is allowed in the complete decl-specifier-seq of a declaration.
The only exceptions to this rule are the following:
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— const can be combined with any other type specifier except itself. eenst-andveolatiteean

—Howeverredund qua are-prohibited-exeep

— volatile can be combined with any other type specifier except itself.

Section 7.1.5.1 The cv-qualifiers [dclL.type.cv]

Paragraph 1 should be:
There are two cv-qualifiers, const and volatile. If a cv-qualifier appears in a decl-specifier-seq, the init-

declarator-list of the declaration shall not be empty. [ Note: 3.9.3 describes how cv-qualifiers affect object and
function types. — end note ] Redundant cv-qualifications are ignored. [Note: For example, those could be introduced

by using typedefs. — end note]

Section 7.1.5.2 Simple type specifiers [dcl.type.simple]

In paragraph 1, add the following to the list of simple type specifiers:

decltype (expression )

To Table 9, add the line:

| decltype (expression) | the type as defined below

Add a new paragraph after paragraph 3:

The type denoted by decltype (e) is defined as follows:

1. If e is an id-expression or a class member access (5.2.5 [expr.ref]), decltype (e) is defined as
the type of the entity named by e. If there is no such entity, or e names a set of overloaded functions,
the program is ill-formed.

2. If e is a function call (5.2.2 [expr.call]) or an invocation of an overloaded operator (parentheses
around e are ignored), decltype (e) is defined as the return type of that function.

3. Otherwise, where T is the type of e, if e is an lvalue, decltype (e) is defined as T&, otherwise
decltype (e) is defined as T.

The operand of the decltype specifier is an unevaluated operand (clause 5 [expr]).

[Example:
const inté&& fool();
int i;
struct A { double x; }
const Ax a = new A();
decltype (foo()); /typeis constint&&
decltype (1) ; // type is int
decltype (a->x) ; // type is double
decltype ((a—>x)); /typeis const double&

— end example]
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Section 14.6.2.1 [temp.dep.type] Dependent types

Add a case for decltype in paragraph 6:

A type is dependent if it is:

e denoted by decltype (expression), where expression is type-dependent ([temp.dep.expr]).

Section 9.3.2 The this pointer ([class.this])

Paragraph 1 should start:

In the body of a nonstatic (9.3) member function, the keyword this is anen-tvalae an rvalue expression

Editing note: this change is not intended to change semantics, and it is not strictly necessary for decltype.
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