
29

Revisiting The Vertex Cache: Understanding and Optimizing

Vertex Processing on the modern GPU

BERNHARD KERBL, MICHAEL KENZEL, ELENA IVANCHENKO, DIETER SCHMALSTIEG,
and MARKUS STEINBERGER, Graz University of Technology

In this paper, we question the premise that graphics hardware uses a post-transform cache to avoid redundant

vertex shader invocations. A large body of existing work on optimizing indexed triangle sets for rendering

speed is based upon this widely-accepted assumption. We conclusively show that this assumption does not

hold up on modern graphics hardware. We design and conduct experiments that demonstrate the behavior

of current hardware of all major vendors to be inconsistent with the presence of a common post-transform

cache. Our results strongly suggest that modern hardware rather relies on a batch-based approach, most

likely for reasons of scalability. A more thorough investigation based on these initial experiments allows us

to partially uncover the actual strategies implemented on graphics processors today. We reevaluate existing

mesh optimization algorithms in light of these new indings and present a new mesh optimization algorithm

designed from the ground up to target architectures that rely on batch-based vertex reuse. In an extensive

evaluation, we measure and compare the real-world performance of various optimization algorithms on

modern hardware. Our results show that some established algorithms still perform well. However, if the

batching strategy of the target architecture is known, our approach can signiicantly outperform these previous

state-of-the-art methods.

CCS Concepts: · Computing methodologies→ Graphics processors; Massively parallel algorithms;

Additional Key Words and Phrases: Mesh Optimization, Vertex Processing, GPU, Post-transform Cache

ACM Reference Format:

Bernhard Kerbl, Michael Kenzel, Elena Ivanchenko, Dieter Schmalstieg, and Markus Steinberger. 2018. Revis-

iting The Vertex Cache: Understanding and Optimizing Vertex Processing on the modern GPU. Proc. ACM

Comput. Graph. Interact. Tech. 1, 2, Article 29 (August 2018), 16 pages. https://doi.org/10.1145/3233302

1 INTRODUCTION

The same transformed vertex is on average required six times during rendering of a typical triangle
mesh. To avoid redundant vertex transformation, graphics processors have traditionally employed
a post-transform cache, often simply referred to as the vertex cache. The optimization of rendering
sequences to maximize locality of vertex references and, thus, increase rendering performance
given such hardware is a well-researched area. The resulting mesh optimization algorithms have
seen widespread adoption and are routinely found in art asset pipelines for real-time rendering.

However, public information on the actual implementation details in graphics hardware is scarce,
driving researchers to adopting micro-benchmarks to enable understanding of crucial hardware
behavior [Barczak 2016; Jia et al. 2018]. The lack of mention of a concept as well-established as the
post-transform cache in some of the more recent articles [Kubisch 2015; Purcell 2010] raises the
question to which degree many widely-accepted assumptions concerning eicient vertex processing
still align with the reality of modern graphics processors. The prevailing assumption that modern

Authors’ address: Bernhard Kerbl, bernhard.kerbl@icg.tugraz.at; Michael Kenzel, michael.kenzel@icg.tugraz.at; Elena

Ivanchenko, elena.ivanchenko@icg.tugraz.at; Dieter Schmalstieg, schmalstieg@tugraz.at; Markus Steinberger, steinberger@

icg.tugraz.at, Graz University of Technology.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The deinitive

Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:

//doi.org/10.1145/3233302.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

https://doi.org/10.1145/3233302
https://doi.org/10.1145/3233302
https://doi.org/10.1145/3233302

29:2 Kerbl, B. et al.

graphics processors employ a simple, centralized vertex cache has previously been challenged by
others in the computer graphics community [Barczak 2016; Giesen 2011]. However, no detailed
analysis beyond faint suspicions has been published on this matter.

In this work, we put the hypothesis that graphics hardware is using a post-transform cache to the
test. We design and conduct experiments that clearly show that the behavior of vertex processing
on a modern graphics processing unit (GPU) is not consistent with the presence of a traditional
post-transform cache. As demonstrated in [Kenzel et al. 2018], a batch based approach seems to
more closely match the behavior of modern GPUs, which is not surprising considering that a
central cache would likely become an obstacle to scalability as devices grow more and more parallel.
Through thorough analysis, we are able to reveal some of the details of reuse strategies which
current GPUs from three major contemporary manufacturers seem to be following. Armed with
the knowledge gathered in these reverse-engineering attempts, we are able to predict the way in
which a speciic GPU will process a given input stream with great accuracy. We then turn our
attention towards the topic of mesh optimization and outline a general algorithmic framework for
optimizing indexed triangle sets for batch-based vertex processing, given that the concrete batching
routine used by the target hardware is known. Finally, we present an extensive evaluation of the
real-world performance of previous mesh optimization algorithms as well as our own approach.

2 RELATED WORK

The idea of exploiting vertices being shared by neighboring triangles to remove redundancy and
thereby reduce vertex processing load is not new. Early attempts approached the issue as a problem
of compressing and decompressing the input geometry, which led to the conception of triangle
strips as well as algorithms that turn arbitrary meshes into a stripiied representation. [Chow 1997;
Deering 1995; Evans et al. 1996]

Hoppe [1999] introduced the idea of relying on a post-transform cache in the graphics processor
to dynamically take advantage of locality of reference when possible, without requiring all geometry
submitted for rendering to be encoded irst. They also presented their now widely-known mesh
processing algorithm to generate cache-optimized triangle strips from input geometry data. In order
to maximize the cache hit rate, triangles are reordered by greedily growing strips and introducing
cuts when they become too long to efectively exploit the cache during their processing. An
implementation of Hoppe’s algorithm was included as part of the D3DX library from DirectX
9 onward and has since been migrated to be part of the DirectXMesh library. Its popularity and
efectiveness gave rise to several other, conceptually similar optimization methods. The speciics
of cache operations is thereby often abstracted to avoid sensitivity to diferences in hardware
architectures. Nevertheless, most algorithms assume either a irst-in-irst-out (FIFO) or least-
recently-used (LRU) cache and aim to minimize the average cache miss rate (ACMR) by reordering
the input vertex indices according to their spatial and topological traits. Details on cache behavior
of early GPU architectures can be found in corresponding documentation [Riguer 2006], as well as
hardware proposals and simulation frameworks [Sheafer et al. 2004; Wang et al. 2011].
Generalizing from triangle strips to arbitrary indexed triangles sets has allowed more recent

work to consider highly elaborate reordering schemes. Lin and Yu [2006] describe the K-Cache
algorithm, which iteratively selects focus vertices and subsequently outputs all connected faces,
before marking the focus vertex as visited. The selection of an adequate focus vertex includes a
predictive simulation of the cache evolution in each iteration, which renders their approach quite
time-consuming. Forsyth [2006] presents a linear-speed mesh optimization algorithm that employs
a similar metric, but assumes an exponential fallof for the probability of a cache hit. Hence, it omits
predictive simulation for inal cache positions and requires no parameterization. As a consequence,

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

Understanding and Optimizing Vertex Processing on the modern GPU 29:3

low ACMR values comparable to those of Lin and Yu can be achieved at a signiicantly lower
preprocessing cost. Its low runtime make the algorithm a popular choice for processing by industry.
Sander et al. [2007] have presented an extremely fast, scalable algorithm named Tipsify for

reordering vertex indices as part of their mesh optimization tool chain. Their considerations
concerning overdraw can also be extended to animated scenes [Han and Sander 2016]. Tipsify
works particularly well for larger cache sizes, as has been shown by experimental simulations.
Its low cost and intuitive nature led to the inclusion of Tipsify as part of AMD’s Triangle Order
Optimization Tool (Tootle), which provides an approachable implementation for end users.
Recent work on out-of-core geometry processing has shown, that the fact that data can be

rearranged without changing the mesh itself can be exploited to yield a successful strategy for
improving performance even in applications beyond rendering [Isenburg and Lindstrom 2005].

Cache considerations may not only be applied when rendering geometry, but also when process-
ing or transmitting geometry. Chhugani and Kumar [2007] have explored the concept of cache-based
optimization to achieve a compression-friendly topology representation. The authors report cache
miss rates on par with those of Lin and Yu, as well as extremely low storage requirements of only
∼8 bits per triangle. Considering the entire cache hierarchy from hard drive to main memory
to rendering system, appropriately reordering geometry data can signiicantly increase transfer
[Tchiboukdjian et al. 2008, 2010; Yoon and Lindstrom 2007].

While cache simulations are usually applied when reordering meshes, a fast alternative is to use
space-illing curves on top of the mesh to create locality between triangles [Vo et al. 2012]. Although
the achieved cache hit rates are ∼5% below simulation-based approaches, the high eiciency and
reduced storage requirements can be favorable under highly constrained execution environments.

3 GPU VERTEX REUSE STRATEGIES

To go about answering the question whether a modern GPU uses a traditional vertex cache or not,
we conduct the following experiment: We set up a vertex bufer holding three vertices and an index
bufer containing the sequence {0, 1, 2, 0, 1, 2, 0, . . .} up to a given maximum length. We then draw
an increasingly larger portion of this sequence. Using a Direct3D 11 pipeline statistics query, we
record the number of times the vertex shader is invoked when drawing each portion. To account
for efects from the size of transformed vertex data, we repeat the experiment for diferent numbers
of output vertex attributes, ranging from 0 to the maximum 124 supported by Direct3D.

Fig. 1 shows the behavior of the vertex shader invocation count as the number of indices drawn
increases for a selection of GPUs, which are representative of the behavior we have observed for
diferent vendors. Assuming the presence of a common post-transform cache of reasonable size,
for this input stream, we would expect each vertex to be transformed exactly once. However, on
almost all GPUs that we tested, we observe the vertex invocation count rising continuously with the
stream length passing certain thresholds. The only exception we have seen stem from older Intel
GPUs, which did in fact exhibit the behavior expected of a post-transform cache. This is consistent
with documentation publicly available for these models [Intel Corporation 2013].

To summarize our indings so far: None of the assessed modern GPU models employ a central
post-transform cache. The number of output vertex attributes does not seem to afect any GPU’s
ability to take advantage of vertex reuse. Furthermore, we can also rule out the presence of multiple
post-transform caches instead of a single shared one, as such an architecture would lead the vertex
invocation count to eventually plateau. However, even when drawing up to 30 million triangles,
the vertex invocation count kept consistently rising on all modern GPUs.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

29:4 Kerbl, B. et al.

3
387

771
1155

1539
1923

2307
2691

indices drawn

0

3

6

9

12

15

18

21

s
h
a
d
e
r
 i
n
v
o
c
a
t
io

n
s

(a) AMD Radeon R7 260X

3
387

771
1155

1539
1923

2307
2691

indices drawn

0

9

18

27

36

45

54

63

72

s
h
a
d
e
r
 i
n
v
o
c
a
t
io

n
s

(b) Intel HD Graphics 520

3
387

771
1155

1539
1923

2307
2691

indices drawn

0

9

18

27

36

45

54

63

72

81

90

s
h
a
d
e
r
 i
n
v
o
c
a
t
io

n
s

(c) NVIDIA GeForce GTX 1080 Ti

Fig. 1. The number of times the vertex shader is invoked on a selection of GPUs of diferent vendors when
drawing a recurring 0, 1, 2 index sequence of increasing length. A post-transform cache of reasonable size
would achieve perfect reuse in this scenario, processing every vertex exactly once and leading to an overall
number of three shader invocations independently of input size. The observed łstaircasingž is indicative of
a batch-based approach for processing of the input primitive stream where vertex reuse is only considered
locally within the same batch.

3.1 Measuring vertex reuse

To quantify vertex processing eiciency, we use the average shading rate (ASR), i.e., the average
number of vertex shader invocations per triangle drawn. A similar measure that has been commonly
used in the past is the average cache miss rate (ACMR). However, in light of our indings, we would
argue that thinking about vertex reuse in terms of caching is not necessarily beneicial.

In order to measure the ASR achieved on a particular GPU for a given triangle mesh, we can use
the same approach as before where we relied on a Direct3D 11 pipeline statistics query that allows
us to measure the total number of vertex shader invocations. On more recent hardware, a more
ine-grained result can be obtained by using atomic operations to increment a per-vertex counter
from within the vertex shader.

3.2 Collecting detailed batching information

Computation on modern GPUs is organized around parallel lock-step execution of small groups of
logical threads in the lanes of single instruction multiple data (SIMD) cores. These smallest thread
groups that form the units of SIMD-wide parallel computation are typically referred to as warps,
wavefronts, or simply waves.
In order to gain further insight as to how vertex processing is orchestrated on a modern GPU,

our next step is to collect more detailed information about which vertices are processed together in
the same wavefront. Luckily, experimental support for Shader Model 6.0 (recently added to the
Direct3D 12 API) exposes wave-level operations that allow cross-communication between threads
sharing a wavefront. Although not oicially supported for vertex shading, we found that they can
in fact be used even then, at least on all GPUs with Direct3D 12 that we tested. Based on these
instructions, we are able to write a vertex shader that outputs the information of exactly which
vertex indices were processed in parallel within the same wave. We start by determining how many
threads are currently running the vertex shader in a given wave. The thread with the lowest lane id
then atomically increments a counter to allocate space in an output bufer and communicates the
start index to all other threads in the wave. Using a parallel preix sum, we assign a unique index
to each active thread. Finally, each thread writes the vertex index they are currently assigned to
process into the output bufer at the given ofset. The irst thread additionally outputs the number
of vertex indices contained within the recorded batch.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

Understanding and Optimizing Vertex Processing on the modern GPU 29:5

3.3 Identifying batch paterns and boundaries

We describe here a set of reproducible experiments that we used to conirm the trends and patterns
we observed from the collected batch information. Their description also serves to outline the
logic and constraints for forming batches on NVIDIA and AMD GPUs from recent generations
with practical examples. The results from our initial assessment give us a starting point to further
investigate batching behavior: The locations at which steps for the vertex invocation count occur
actually give us the irst indicator, namely the maximum size of batches in an ideal case (i.e., perfect
reuse throughout the mesh). For the sake of brevity, we will refer to this parameter henceforth
as MAX_SIZE. For NVIDIA, we can consistently observe steps every 96 indices (see Figure 1c).
This makes sense, in so much as we know warps on NVIDIA to run 32 threads in lockstep. Thus,
in an ideal scenario, a batch size of 96 indices allows every thread to process a separate triangle,
consisting of 3 indices. On the AMD R7 200, we ind theMAX_SIZE to be 384 (see Figure 1a). It
should be mentioned that, on the RX Vega 56, this igure seems to vary, relative to the number of
indices in the index bufer, peaking at 384 as well. We have not investigated this behavior further,
as even the smallest of our test cases triggers the maximum batch size of 384 to take efect. Finally,
we conirm these numbers by drawing from an index bufer where each assumed batch is illed
with a diferent, repeating triplet of unique indices. For a MAX_SIZE of 6, e.g., the index bufer
would be constructed as {0, 1, 2, 0, 1, 2 | 3, 4, 5, 3, 4, 5 | 6, 7, . . .}. On Intel models HD 520 and HD
630 we found that vertex reuse seems to be more dynamic, largely depending on the number of
diferent indices being rendered. For the repeating test sequence of 3 unique indices, full reuse only
happens within 66 indices and partial reuse up to 208 (see Figure 1c); however, for other data we
have found a maximum reuse window of up to 1791 indices.

Next, we vary the data within each assumed batch of lengthMAX_SIZE, to see if other limitations
apply. For this, we can ill the index bufer with a consistently increasing sequence of N indices,
where N is divisible by 3 and N < MAX_SIZE, followed by (MAX_SIZE − N) indices in triplets
{N − 4,N − 3,N − 2}. Simply put, the index bufer contains N

3 unique triangles and then repeats the
second-but-last triangle until we hitMAX_SIZE. Assuming that vertex reuse in a batch works at
least over two consecutive triangles, the average shading rate must therefore remain at N ·3

MAX _SIZE

as long as the batch goes on. On NVIDIA, we found that this condition failed at N = 33 and the

ASR jumped to (N+1)·3
MAX _SIZE . We found this number to be curiously close to the NVIDIA warp size.

Further variations based on this procedure have indeed conirmed that one batch may reference
no more than 32 unique vertices. Formulating it as a rule to apply to batch formation, we refer
to the igure of maximum allowed unique vertices as MAX_UNIQUES . We also noticed that
occurrences of later ASR steps were shifted according to batches being terminated early due to the
MAX_UNIQUES constraint. Hence, it follows that NVIDIA GPUs can dynamically choose start
and end positions for portions of the index bufer that qualify as a batch where reuse applies. In
contrast, the identiied boundaryMAX_SIZE always applies on AMD GPUs without fail. There is
no value forMAX_UNIQUES that causes irregularities in development of the ASR. For generality
and notational convenience, we can therefore deine that MAX_UNIQUES = MAX_SIZE on
AMD. For Intel, we observedMAX_UNIQUES to equal 128, which has been reported on Haswell
before [Barczak 2016]. For 128 diferent indices,MAX_SIZE = 1791 can also be observed. It seems
that Intel’s behavior can be described asMAX_SIZE being proportional to the number of diferent
indices already being found, introducing batch boundaries depending on howmany diferent indices
have been recorded. A closer analysis of the hardware behavior also indicated that Intel internally
completely sorts all indices and assigns them in alternating orders to 8-wide SIMD execution units.
Finally, we need to determine if and when the reusability of vertex information inside a batch

can expire. We begin by considering the separating distance between indices as a potential factor.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

29:6 Kerbl, B. et al.

We start from our default repeating index bufer {0, 1, 2, 0, 1, 2, 0, . . .} of length MAX_SIZE and
replace one entry at location i with a new index X > 2. Another instance of X will be placed at
a distance n from the irst, at position i + n. Increasing n towards the limitMAX_SIZE, a step in
the ASR will then indicate that this particular vertex could not be reused over that distance. On
NVIDIA GPUs, we found that this is the case for n = 41. We noted a slight diference in the general
retention behavior, depending on the API being used. On OpenGL, the identiication of reusable
vertices is always equivalent to a look-back of distance 42 into the index bufer. With DirectX, this
behavior changes to a variable 42±3 look-back, depending on the local index within the a triangle,
i.e., the index bufer location modulo 3. Speciically, reuse is detected between two positions in the
index bufer i and j (i < j) if they reference the same vertex and their distance is d :

d ≤ 44, if i ≡ 0(mod 3)

d ≤ 40 ∨ d = 42, if i ≡ 1(mod 3)

d ≤ 42 ∧ d , 40, if i ≡ 2(mod 3)

In terms of data structures, the retention can thus be modeled as a FIFO cache of length ∼42
that always pushes queried entries, regardless of whether it already contains them or not. Any
index that is not found in the retention model will count towards the number of unique vertices.
On AMD, we could not identify a simple limiting separation distance within a batch. Instead, we
tested whether the number of unique indices separating two instances of X would have an efect
on the ASR. In fact, we found that reuse inside a batch on AMD does not work for two indices that
are separated by more than 14 unique indices. Hence, the retention model of AMD for vertex reuse
inside a batch can be expressed by an LRU cache of size 15. In contrast to NVIDIA, this "forgetful"
behavior does not inluence how batches are formed, however it will obviously afect the ASR,
since "forgotten" vertices that reoccur need to be shaded once more. On Intel, we could not identify
a predictable condition for expiration of previously computed vertices above the already stated
relationship between MAX_SIZE and MAX_UNIQUES . Interestingly, we could observe certain
vertices being shaded more often than others for no apparent reason, e.g., for the repetitive sequence
{0, 1, 2, 0, 1, 2, . . . }, vertex 2 is shaded three times as often as 0 and 1, whereas for a sequence
{0, 1, 2, 3, 0, 1, 2, 3, . . . } all vertices are shaded equally and overall fewer shader invocations occur
than in the irst case. Based on these observations, it seems impossible to capture Intel’s retention
model with a simple construct. Thus, assuming the best reuse scenario with suiciently many
diferent indices being rendered, we approximate Intel with a FIFO cache of sizeMAX_UNIQUES .

Although we were able to identify these peculiarities in the architectures and veriied them using
the batch information produced according to Section 3.2, we can still observe unresolved artifacts
in the batching behavior. For NVIDIA, we found that the FIFO reuse does not hold if indices cross
over a multiple of 216, i.e., 16 bit boundary. For instance, if two indices Ia and Ib are placed in a batch
where ⌊Ia/2

16⌋ , ⌊Ib/2
16⌋, reuse according to the look-back retention may not occur. A potential

explanation is an internal optimization for processing 16-bit wide indices, which can be handled
more eiciently. For AMD, we found that the LRU size is also not always 15, but might sometimes
be slightly longer or shorter. However, we were unable to ind a comprehensive model to reproduce
these exceptions. Analyzing the information of concurrently processed indices by wavefronts, we
found that parts of diferent batches might be forwarded to the same wavefront on AMD, which
ensures near perfect occupancy of the compute units. We assume that this combination can be
modeled as a separate step after creating batches and identifying reuse within a batch with the sole
goal of avoiding idle threads.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

Understanding and Optimizing Vertex Processing on the modern GPU 29:7

3.4 Predicting batch breakdown for the GPU

Given the information that we obtained by means described in Section 3.2 and interpreted in
Section 3.3, we are able to make a qualiied prediction about how a full list of triangle indices is
split into separate batches on the GPU. Our base approach for predicting the batch breakdown is
listed in Algorithm 1. Note that the properties that we identiied for individual architectures can
be abstracted by allowing the parameterization of the MemoryModule , as well as the boundary
valuesMAX_SIZE andMAX_UNIQUES . TheMemoryModule encapsulates the behavior of how
previously shaded data is maintained for quick reuse. MAX_SIZE and MAX_UNIQUES deine
the maximum allowed number of indices in a batch and of unique vertices used, respectively. The
algorithm processes the index bufer in groups of three, assuming the input to be a triangle mesh.
Shaded and available vertices (uniques) are tracked by the algorithm, as well as the total number
of indices (size) in the current batch. If one of the boundary conditions is detected (line 16), we
terminate the current batch and start a new one. This includes resetting the memory for available
vertex information andÐif a termination condition is detected mid-triangleÐreloading its already
visited indices (lines 22 to 27).

We evaluate the accuracy of our prediction scheme by simulating the batch breakdown for our
full test suite on GPUs available to us. NVIDIA-style batching, as discerned above, can be achieved
by settingMAX_SIZE to 96 andMAX_UNIQUES to 32. Availability of vertex data is tracked by
theMemoryModule . For lack of a more accurate solution, we use a 15-wide LRU cache on AMD
here and precise retention on NVIDIA, according to the description in Section 3.3. As AMD shows
no limitation of unique vertices for a batch, we set bothMAX_SIZE andMAX_UNIQUES to the
hard boundary of 384 indices. This efectively takes care of the irst stage of AMD’s two-tiered
batching process. Although the second tier of AMD’s approach inluences the assignment and
combination of vertices to wavefronts, it does not afect batching boundaries, nor the number of
shader invocations. Thus, for the purpose of predicting or improving vertex reuse, the second stage
can simply be ignored.
As a guideline for accuracy, we use the number of invocations returned by each simulation to

compute the ASR. We compare our results to global FIFO/LRU cache-based simulations of variable
size. This is equivalent to the optimization scenarios used e.g. by Hoppe [1999] and Lin and Yu
[2006], which use look-ahead simulations to minimize the predicted ASR. Assessing the cache
simulation accuracy at various sizes serves two relevant purposes: First, in order to disprove a
centralized post-transform vertex cache, we need to ensure that no reasonably-sized cache can
produce the ASR values we measured. Since we make no assumptions about the size of such a
ictitious structure, we need to check a wide range of diferent sizes in order to conclusively rule out
centralized caching. Second, it serves as an insight into which cache sizes actually come closest to
the actual experienced behavior. This information may guide researchers and developers to select
the appropriate sizes, if they choose to continue using cache-based approaches. As will be shown, it
also allows us to pick the best possible coniguration for cache-based algorithms to compare against
in our evaluation. We omit this step for Intel models, since Intel’s behavior cannot be captured
by our batch-based approach based on what we have learned from hardware analysis. The mean
squared error (MSE) to the actual measured ASR on the GPU (averaged over our full test suite) is
shown in Figures 2a and 2b. Evidently, our batch-based approach is signiicantly more accurate
than cache-based simulations. At their best coniguration (i.e., with a cache size of 10/15), the MSE
of FIFO and LRU variants is still more than 3× that of ours on NVIDIA, and 2× on AMD. In fact, our
prediction for batches and ASR on NVIDIA are completely accurate for models that contain fewer
than 216 indices. The remaining reported error stems from our inability to predict handling of larger
scenes. As mentioned above, NVIDIA appears to employ an (as of yet unidentiied) mechanism

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

29:8 Kerbl, B. et al.

Algorithm 1: Predicting batch breakdown

1 in unsigned int Indices[]

2 out unsigned int invocations← 0

// Initialize

3 unsigned int pos← 0

4 unsigned int size← 0

5 unsigned int uniques← 0

6 MemoryModule Available← ∅

7 for each triangle △ in the index bufer Indices do

8 added ← 0

9 Available′← Available

10 for i ← 0 to 2 do

11 id ← ith index △(i) of triangle △

12 if {id} 1 Available′ then

13 added ← added + 1

14 else

15 Notify Available′ of id at (pos + i)

16 if (uniques + added) > MAX_UNIQUES or (size + i) > MAX_SIZE then

17 Found batch in Indices from (pos − size) to pos

18 Reset Available, initialize its contents to ∅

19 Available′← Available

20 size← 0

21 uniques← 0

// Continue with current triangle △, load its i indices into

Available′

22 for j ← 0 to i do

23 if △(j) 1 Available′ then

24 Store △(j) in Available′

25 added ← added +1

26 else

27 Notify Available′ of △(j) at (pos + j) .

28 else

29 Store id in Available′

30 Available← Available′

31 pos← pos + 3

32 size← size + 3

33 uniques← uniques + added

34 invocations← invocations + added

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

Understanding and Optimizing Vertex Processing on the modern GPU 29:9

0 64 128 192 256 320 384 448 512

Simulated cache size

10 3

10 2

10 1

100

M
S
E
 o

f
s
im

u
la

t
e
d
 a

n
d
 a

c
t
u
a
l
A
S
R

FIFO Cache

LRU Cache

Batch-based

(a) Cache-based vs ours on NVIDIA

0 64 128 192 256 320 384 448 512

Simulated cache size

10 3

10 2

10 1

100

M
S
E
 o

f
s
im

u
la

t
e
d
 a

n
d
 a

c
t
u
a
l
A
S
R

FIFO Cache

LRU Cache

Batch-based

(b) Cache-based vs ours on AMD (RX Vega 56)

Fig. 2. Accuracy of shading rate predictions using diferent simulation techniques. For NVIDIA, the MSE
with our batch-based approach is less than a third, for AMD it is half of the closest cache-based simulation.
On NVIDIA, the minimum occurs at a cache size of 10 for FIFO, on AMD at 15 for LRU. Although based
on a centralized cache instead of multiple parallel ones, these results seem to confirm our assumption for
retention on the respective architectures.

(a) Bunny prediction (b) Bunny measured (c) Buddha prediction (d) Buddha measured

Fig. 3. Rendering of the predicted and actually reported batches as they are processed on NVIDIA for the
bunny and happy_buddha models. Random colors are used to distinguish batch boundaries. For scenes with
a vertex count < 216, such as bunny, we can accurately predict how batches are formed (a,b). For larger
scenes, our model is not exact, but can still predict ASR and overall batch generation more accurately than
cache-based simulations (c,d).

that avoids reuse of indices lower and higher than 216 in the same batch. We visualize the efect of
this property on our batch prediction in Figure 3. On AMD, the slightly higher residual error is due
to behavior not fully captured by our prediction, including the deviation of the actual size used for
LRU retention, as discussed in Section 3.3.

4 BATCH-BASED MESH OPTIMIZATION

In order to determine whether knowledge of batch boundaries can be beneicial for preprocessing
algorithms, we design a simple and thus eicient mesh reordering algorithm based on the knowledge
we gathered from the hardware behavior. Focusing on low runtime, our algorithm follows a greedy
strategy that continuously grows batches by choosing an origin and iteratively adding faces to the
batch. Similarly to existing approaches, the selection of the next face to be ładdedž to the mesh in
each step is governed by a cost or priority function that identiies the most suitable candidate. The
entire algorithm and its integration with the batch prediction function is outlined in Algorithm 2.
Our algorithm considers four parts for the priority of each face: Vertex Reuse R, Vertex Valence

V , Face Distance D and Batch Neighborhood N . The priority p for each triangle △ is computed by

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

29:10 Kerbl, B. et al.

Algorithm 2: Batch-based Mesh Optimization

1 in VertexInformation vI []

2 in unsigned int Indicesorig[]

3 out unsigned int Indicesopt[]

4 BatchingPredictor bp

5 Set reuseVertices← ∅

6 Map distance← ∅

7 PriorityQueue queue← ∅

8 for each triangle △ ∈ Indicesorig do

9 V (△) ←
∑2

i=0 vI[△(i)].valence

10 Insert △ with score V (△) · kv into queue

11 while queue , ∅ do

12 △ ← highest-scoring entry in queue

13 if can add △ according to bp then

14 Add △ to Indicesopt
15 Erase △ from queue

// add R(·) and reduce V (·), add D(·) according to new △

16 for i ← 0 to 2 do
17 ri ← 0 if △′(i) ∈ reuseVertices else 1

18 for △′ ∈ vI[△(i)].faces do

19 adjust p(△′) by (ri · kr − kv)

20 for △′ ∈ neighbors of △ do

21 D△,△′ ← shortestPath(△, △′)

22 adjust p(△′) by kd · D△,△′

23 distance(△′) ← kd · D△,△′

24 Add indices of △ to reuseVertices

// update R(·) for ’forgotten’ vertices

25 for v ∈ reuseVertices do

26 if v can no longer be reused according to bp then

27 remove v from reuseVertices

28 for △′ ∈ vI[v].faces do

29 adjust p(△′) by −kr

30 else

// remove R(·) due to batch boundary, remove D(·) and add N (·)

31 for v ∈ reuseVertices do

32 for △′ ∈ vI[v].faces do

33 adjust p(△′) by −kr

34 for △′ ∈ neighbors of △ do

35 adjust p(△′) by kn − distance(△
′)

36 Reset bp for new batch

37 reuseVertices← ∅

38 distance← ∅

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

Understanding and Optimizing Vertex Processing on the modern GPU 29:11

weighing the four factors with appropriate coeicients:

p(△) = kr · R(△) + kv ·V (△) + kd · D(△) + kn · N (△). (1)

• Vertex Reuse captures the number of vertices of a triangle that will result in a reuse of the
vertex shading information when the triangle is added to the current batch, i.e., how many
of its vertices are already in the batch and will be identiied for reuse when this triangle is
added. Obviously, choosing a high priority kr is important to build batches that result in
as few vertex shader invocations as possible. To determine how many vertices of a triangle
actually will be reused, it is essential to know how and when the hardware introduces batch
boundaries and how it identiies reusable vertex information.
• Vertex Valence corresponds to the sum over all vertex valences of the triangle, whereby
whenever a triangle is added to the index bufer, the valence for all its vertices is reduced by
one. One can think of this as making a copy Mcopy of the input mesh on which the vertex
valence is tracked and whenever a triangle is added to the index bufer, it is removed from the
mesh copy. Using a negative priority kv will prioritize triangles with low valence, i.e., those
which will likely have a low chance of leading to reuse if they are left over. This approach also
guarantees that the algorithm will start batches from mesh boundaries (and from boundaries
of previous batches) and not randomly grow isolated batches all over the mesh.
• Face Distance is computed on the dual graph of the mesh and corresponds to the sum over
all distances from all faces currently in the batch to all surrounding faces, i.e., triangles that
can be reached from all triangles in the batch over few other triangles show a small D. This
means that a negative kd will prioritize those triangles that can be reached easily, and will
thus lead to more łcircularž batches. On the other hand, a positive kd will lead to elongated
batches. Especially under the assumption that vertex reuse is possible among all triangles
within a batch, łcircularž batches intuitively are preferable as they will show the highest
potential reuse.
• Batch Neighborhood is 1 for triangles that are direct neighbors to triangles which have been
added to completed batches, i.e., are part of the boundary of Mcopy but are not part of the
boundary in the original mesh. Thus, N allows to guide batches along already existing batches
(positive kn) or slightly push batches away from already existing ones (negative kn). The
former helps to avoid fragmentation of batches; the latter helps to avoid elongated batches,
especially when kd = 0.

In order to increase the probability of a cache hit, previous work usually considers the immediate
neighborhood of the last processed triangle irst, thereby catering to the presumed, underlying
cache architecture. In contrast, we argue that the order of faces within a batch is irrelevant for
mesh optimization, as long as the hardware can identify that the same vertices are referenced.
Furthermore, knowing when the hardware inserts a batch boundary, allows an optimization
algorithm additional freedom, as there is no possibility for the next triangle to create any reuse
with previously referenced vertices. Thus, the optimization algorithm can łjumpž to any other
mesh location. Especially for a hardware that inserts batch boundaries often, e.g., NVIDIA, these
jumps have a signiicant impact on the overall performance. In the mindset of previous algorithms,
they can be seen as very frequent cache resets.

Computing and updating these factors for all triangles whenever a triangle is added to the current
batch or a batch is completed, continuously changes the priority of all potential triangles. Using
a priority queue with low update complexity when the priorities are increased or decreased is
essential for eicient processing. To this end, we employ a Fibonacci Heap as our priority queue.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

29:12 Kerbl, B. et al.

Empiric assessment has shown that the coniguration

kc = 1024,kv = −4,kd = −1,kn = −1 (2)

yields consistently good results. In terms of computational efort, distance information D is by far
the most expensive factor of our cost function, since its maintenance requires updates to all faces
that are neighbors to the current batch. In order to reduce processing time while maintaining low
average shading rate, we can eliminate D from the cost function and set kv = kn = −3.
The previously discussed algorithm is based on some simpliied views on the hardware. As

mentioned above, we have found that indices that go across multiples of 216 on NVIDIA will prohibit
reusewithin a batch. Thus, we added a simple additional step that operates on the preprocessedmesh,
to make sure that the simulated batch boundaries are not destroyed by this behavior. Whenever
we determine (based on our simulation) that a batch contains indices that cross a 16-bit boundary,
we duplicate conlicting vertices and add them to the end of the vertex bufer. Obviously, this can
again result in the batch crossing over 16-bit boundaries (if the previously largest index is not in
the same 16-bit boundary as the new vertex bufer size), which may require us to copy another set
of vertices to the back. Instead of referencing the original lower vertices, the indices are then recast
to reference the newly added ones. Note, that this step increases the vertex count and thus reduces
the ideal reuse potential across the entire mesh. However, it will result in better achieved reuse
within batches and thus improve ASR on NVIDIA.

5 EVALUATION

To compare with previous work, we use readily available libraries for algorithms by Hoppe [1999]
and Sander et al. [2007] from DirectXMesh and Tootle, respectively. For the work by Forsyth [2006],
we used the standalone version, provided by Adrian Stone, as referenced in the original publication.
Regarding K-Cache optimization [2006], we consider our own, faithful C/C++ implementations as
representatives of their mesh optimization method. For all techniques, we record the actual ASR
yielded by diferent GPU models, as described in section 3.1. Hence, these results serve not only
as a baseline to compare against, but also as a survey on the efectiveness of previous approaches
on modern hardware. For input data, we include a variety of commonly used test scenes from the
graphics community, as well as clip-space geometry that we captured from ive recent video games
and an NVIDIA technical demo: Age of Mythology (abbreviated am), Assassin’s Creed: Black Flag
(as), Deus Ex: Human Revolution (dx), Stone Giant animation (sg), Total War: Shogun 2 (sh), Rise of
the Tomb Raider (tr), and The Witcher 3 (tw). All models were rendered as indexed triangle lists
using 32-bit indices. For smaller models, we have also tested 16-bit indices and found that this does
not inluence the resulting ASR in any way.

To enable a fair comparison, we selected the cache sizes for K-Cache and Tipsify that produced
the best results on those devices (see Figure 4). The lowest shading rate with K-Cache was achieved
with 10 entries on NVIDIA and AMD. For Tipsify, we used a cache size of 11 on NVIDIA, and 14 on
AMD. This is in accordance with our previous assessment regarding cache-based ASR prediction:
given that these algorithms simulate and optimize the ASR based on the existence of a cache, they
perform best at the coniguration where a cache-based prediction is closest to the actual behavior,
i.e., at a cache size between 10 and 16. On Intel, as previously assumed, the best value for cache size
equals itsMAX_UNIQUES igure (128).
For NVIDIA GPUs, we tested all techniques on the Geforce GTX 780Ti, 980Ti, 1060, 1080 and

1080Ti, covering three diferent hardware generations (Kepler, Maxwell and Pascal). Recorded
shading rates were identical in all cases, regardless of the particular model used, and are shown in
Table 1. For reference, we also give the ideal ASR values, i.e., shading rates that would be achieved

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

Understanding and Optimizing Vertex Processing on the modern GPU 29:13

5 8 9 10 11 14 16 24 32 64 96 128 164

Cache Size

1.0

1.2

A
S
R

K-Cache ASR on NVIDIA

5 8 9 10 11 14 16 24 32 64 96 128 164

Cache Size

1.0

1.2

A
S
R

Tipsify ASR on NVIDIA

(a) NVIDIA (Kepler, Maxwell and Pascal)

5 8 9 10 11 14 16 24 32 64 96 128 164

Cache Size

0.8

1.0

1.2

A
S
R

K-Cache ASR on AMD

5 8 9 10 11 14 16 24 32 64 96 128 164

Cache Size

0.8

1.0

A
S
R

Tipsify ASR on AMD

(b) AMD (RX Vega 56)

5 8 9 10 11 14 16 24 32 64 96 128 164

Cache Size

0.6

0.8

A
S
R

K-Cache ASR on Intel

5 8 9 10 11 14 16 24 32 64 96 128 164

Cache Size

0.6

0.8

A
S
R

Tipsify ASR on Intel

(c) Intel (HD 630)

Fig. 4. We evaluate the ASR of meshes processed with diferently parameterized optimization methods
K-Cache and Tipsify on NVIDIA, AMD and Intel hardware. Similar to our prediction models, NVIDIA and
AMD achieve best performance with cache-based optimizations at sizes between 10 and 16. On Intel, as
expected, best reuse occurs at a cache size of 128, corresponding to the maximum number of retained vertices.

with absolute reuse of shaded vertex output. As documented by these results, our simple, batch-
based algorithm yields the lowest shading rate out of all contestants in every test scenario but
one. For large, carefully crafted meshes, the beneit of our algorithm over the best contender is
signiicant: for the Happy Buddha statue, we report a 15% improvement over the best alternative,
K-Cache. For the dragon model, this igure jumps to a 25% improvement over the best result yielded
from previous work by Hoppe. For weakly structured meshes, such as the tree model and scenes
obtained from captured video game frames, the improvement of the ASR is smaller, but usually still
signiicant in the 3-10% range. A large portion of this improvement is hinged on our post-processing
step, which makes sure indices within a batch will not cross 16-bit boundaries. As shown above,
we cannot exactly predict NVIDIA’s batching for arbitrary input models that contain more than
216 unique vertices (see Figure 3). Note that ignoring this property would mean that the algorithm
assumes reuse within batches that do not align with those constructed by the GPU, and virtually all
potential beneit is annulled. For game scenes, optimizing without this post-processing step usually
results in a 1-10% increase of the ASR. In contrast, for happy_buddha and xyz_dragon, ignoring
16-bit boundary constraints yields a much higher ASR of 1.01 and 1.15, respectively.

For AMD, we considered an R7 200 from the GCN2 generation, as well as an RX Vega 56. For
the AMD models, the results of batching were much less rewarding than for NVIDIA. Although
our batch-based algorithm is on par with more elaborate techniques, it is usually bested by either
K-Cache and TomF. We note here once more that the identiication of the AMD batching functions

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

29:14 Kerbl, B. et al.

Table 1. Achieved ASR with diferent mesh optimization techniques applied, on recent NVIDIA generations.
For all cases but one, our simple, batch-based mesh optimization can outperform elaborate methods, most
prominently for the happy_buddha and xyz_dragon test cases. For reference, we also include the ASR that
would be possible with perfect reuse (e.g., using a centralized cache of infinite size).

Hoppe K-Cache Tipsify TomF Batching Perfect Reuse

sphere 0.83 0.82 0.83 0.88 0.81 0.50

bunny 0.84 0.84 0.86 0.88 0.82 0.50

happy_buddha 0.98 0.95 0.98 0.99 0.81 0.50

xyz_dragon 1.07 1.10 1.08 1.16 0.82 0.50

tree 2.07 2.09 2.09 2.08 2.06 2.06

am01 0.97 0.86 0.88 0.87 0.84 0.60

am02 0.95 0.81 0.81 0.81 0.78 0.48

as01 0.87 0.85 0.88 0.86 0.83 0.59

as02 1.27 1.26 1.28 1.26 1.24 1.11

dx01 0.88 0.85 0.90 0.85 0.89 0.61

dx02 0.87 0.84 0.88 0.85 0.84 0.62

sg01 0.87 0.83 0.88 0.84 0.83 0.53

sg02 0.89 0.85 0.89 0.85 0.84 0.56

sh01 1.01 0.97 1.00 0.97 0.92 0.74

sh02 0.98 0.95 0.98 0.95 0.94 0.74

tr01 0.95 0.89 0.93 0.89 0.87 0.68

tr02 0.93 0.89 0.92 0.89 0.88 0.66

tw01 0.87 0.87 0.89 0.89 0.84 0.55

tw02 1.43 1.39 1.41 1.39 1.37 1.23

is likely incomplete. However, the properties of the AMD architecture also reduce the impact that
correct batching can have. Given the combination of large batches and small cache size, elaborate
algorithms focusing on cache optimization achieve ASR rates that are already close to ideal. While
fully understanding and incorporating knowledge about batch boundaries into a sophisticated
algorithm is guaranteed to yield better reuse, our simple optimization algorithm mostly relies on
ASR improvement through approximate batching, which is insuicient for AMD GPU models.
Recorded ASR values are listed in Table 2a.

Similar trends can be observed for our evaluation on Intel GPUs (Table 2b). Since their architecture
features the biggest batch size and the largest cache, the achieved ASR values with cache-based
algorithms are even closer to ideal reuse rates. Additionally, as previously mentioned, batching
alone does not suice to fully explain the formation of the shading rate on Intel. Hence, our simple
batch-focused algorithm is on par with Hoppe’s optimization, but newer, cache-focused algorithms
provide a better choice overall.

6 DISCUSSION

Although modern GPU hardware evolves at a staggering speed, the existence of a central, post-
transform vertex cache is still considered to be self-evident by many. Our experiments conclusively
show that this assumption does no longer match the behavior that we observe on these massively
parallel devices. The most reasonable, and in fact, most likely alternative is the batch-driven de-
composition of input vertex data, so that it can be eiciently handled in separate, independent
processing units. By drawing a strong association between the hardware design and information

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

Understanding and Optimizing Vertex Processing on the modern GPU 29:15

Table 2. ASR for all test scenes with optimization techniques applied. We provide recorded results for AMD
RX Vega 56 (virtually identical to those by the R7 200) and Intel HD 630. Although the performance of our
simple batch-based method is usually on par with more sophisticated techniques, it is commonly bested by
K-Cache and Tipsify.

(a) AMD

Hoppe K-Cache Tipsify TomF Batching

sph 0.66 0.67 0.68 0.77 0.72
bun 0.68 0.70 0.72 0.77 0.72
bud 0.73 0.71 0.75 0.74 0.75
dra 0.67 0.69 0.71 0.77 0.72
tree 2.06 2.07 2.07 2.06 2.06

am1 0.85 0.74 0.76 0.77 0.77
am2 0.81 0.68 0.68 0.69 0.68

as1 0.74 0.73 0.75 0.74 0.75
as2 1.19 1.19 1.20 1.19 1.20
dx1 0.77 0.75 0.79 0.75 0.82
dx2 0.75 0.73 0.76 0.74 0.74
sg1 0.73 0.71 0.75 0.73 0.74
sg2 0.77 0.73 0.77 0.75 0.76
sh1 0.88 0.84 0.86 0.84 0.84
sh2 0.87 0.85 0.88 0.86 0.86
tr1 0.83 0.78 0.81 0.79 0.80
tr2 0.81 0.78 0.81 0.79 0.79
tw1 0.72 0.73 0.75 0.78 0.75
tw2 1.35 1.31 1.33 1.32 1.32

(b) Intel

Hoppe K-Cache Tipsify TomF Batching

sph 0.59 0.58 0.52 0.58 0.60
bun 0.60 0.53 0.53 0.57 0.58
bud 0.61 0.55 0.55 0.55 0.62
dra 0.60 0.53 0.52 0.57 0.60
tree 2.06 2.06 2.06 2.06 2.06

am1 0.72 0.60 0.60 0.65 0.69
am2 0.67 0.48 0.48 0.55 0.60
as1 0.62 0.59 0.60 0.60 0.64
as2 1.14 1.11 1.12 1.12 1.14
dx1 0.64 0.63 0.65 0.62 0.73
dx2 0.63 0.62 0.62 0.62 0.65
sg1 0.57 0.54 0.55 0.55 0.60
sg2 0.61 0.56 0.57 0.58 0.63
sh1 0.79 0.74 0.74 0.75 0.77
sh2 0.77 0.74 0.75 0.77 0.78
tr1 0.72 0.68 0.68 0.69 0.71
tr2 0.70 0.66 0.67 0.67 0.70
tw1 0.63 0.57 0.57 0.60 0.63
tw2 1.29 1.23 1.24 1.24 1.27

obtained through indirect measurements, we have shown that it is possible to predict this de-
composition process with high accuracy. Understanding the clustering and distribution of vertex
information on GPUs has several important implications for research into mesh optimization
algorithms: previous work commonly uses cache-based software simulations to illustrate the merit
of their work. However, during our evaluation, we have shown that the actually achieved vertex
shading rates difer signiicantly from those reported by such simulations. Knowledge of the GPU
batch functions provides us with a reliable tool for of-line simulation and evaluation of mesh
optimization algorithms. Given the exact parameters of the batch function, we were able to devise
a preprocessing algorithm to improve the vertex shading rate on modern GPUs beyond the capabil-
ities of previous work. Furthermore, since hardware simulation and state prediction is oftentimes
included in the optimization algorithm itself, our work opens the door for the development of new
algorithms that may achieve even lower shading rates and better vertex reuse on contemporary
GPU hardware. We have made our source code for reuse analysis and optimization available to the
public at https://github.com/GPUPeople/vertex_batch_optimization. Lastly, challenging a concept
as established as the post-transform cache and inding a more precise it raises the question what
other, long-held assumptions about the conventional graphics pipeline should be revisited. We hope
our work can be a irst step in the reevaluation of GPU processing as it is generally understood.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

https://github.com/GPUPeople/vertex_batch_optimization

29:16 Kerbl, B. et al.

ACKNOWLEDGMENTS

This research was supported by the German Research Foundation (DFG) grant STE 2565/1-1, and
the Austrian Science Fund (FWF) grant I 3007.

REFERENCES

Joshua Barczak. 2016. Vertex Cache Measurement. http://www.joshbarczak.com/blog/?p=1231 Retrieved: June 4th, 2018.

Jatin Chhugani and Subodh Kumar. 2007. Geometry Engine Optimization: Cache Friendly Compressed Representation of

Geometry. In Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games (I3D ’07). ACM, New York, NY,

USA, 9ś16. https://doi.org/10.1145/1230100.1230102

Mike M. Chow. 1997. Optimized Geometry Compression for Real-time Rendering. In Proceedings of the 8th Conference on

Visualization ’97 (VIS ’97). IEEE Computer Society Press, Los Alamitos, CA, USA, 347śf. http://dl.acm.org/citation.cfm?

id=266989.267103

Michael Deering. 1995. Geometry Compression. In Proceedings of the 22Nd Annual Conference on Computer Graphics and

Interactive Techniques (SIGGRAPH ’95). ACM, New York, NY, USA, 13ś20. https://doi.org/10.1145/218380.218391

Francine Evans, Steven Skiena, and Amitabh Varshney. 1996. Optimizing Triangle Strips for Fast Rendering. In Proceedings

of the 7th Conference on Visualization ’96 (VIS ’96). IEEE Computer Society Press, Los Alamitos, CA, USA, 319ś326.

http://dl.acm.org/citation.cfm?id=244979.245626

Tom Forsyth. 2006. Linear-speed vertex cache optimisation. https://tomforsyth1000.github.io/papers/fast_vert_cache_opt.

html

Fabian Giesen. 2011. A trip through the Graphics Pipeline 2011. https://fgiesen.wordpress.com/2011/07/03/

a-trip-through-the-graphics-pipeline-2011-part-3/ Retrieved: June 4th, 2018.

Songfang Han and Pedro V. Sander. 2016. Triangle Reordering for Reduced Overdraw in Animated Scenes. In Proceedings of

the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D ’16). ACM, New York, NY, USA, 23ś27.

https://doi.org/10.1145/2856400.2856408

Hugues Hoppe. 1999. Optimization of Mesh Locality for Transparent Vertex Caching. In Proceedings of the 26th Annual

Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co.,

New York, NY, USA, 269ś276. https://doi.org/10.1145/311535.311565

Intel Corporation 2013. Developer’s Guide for Intel® Processor Graphics For 4th Generation Intel® Core™ Processors. Intel

Corporation.

Martin Isenburg and Peter Lindstrom. 2005. Streaming meshes. In IEEE Visualization. 231ś 238.

Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele Paolo Scarpazza. 2018. Dissecting the NVIDIA Volta GPU

Architecture via Microbenchmarking. CoRR abs/1804.06826 (2018). arXiv:1804.06826 http://arxiv.org/abs/1804.06826

Michael Kenzel, Bernhard Kerbl, Wolfgang Tatzgern, Elena Ivanchenko, Dieter Schmalstieg, and Markus Steinberger. 2018.

On-the-ly Vertex Reuse for Massively-Parallel Software Geometry Processing. Proc. ACM Comput. Graph. Interact. Tech.

1, 2, Article 28 (Aug. 2018), 17 pages. https://doi.org/10.1145/3233303

Christoph Kubisch. 2015. Life of a triangle ś NVIDIA’s logical pipeline. Technical Report. NVIDIA Corporation. https:

//developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline

Gang Lin and Thomas P. Y. Yu. 2006. An improved vertex caching scheme for 3D mesh rendering. IEEE TVCG 12, 4 (July

2006), 640ś648. https://doi.org/10.1109/TVCG.2006.59

Tim Purcell. 2010. Fast Tessellated Rendering on the Fermi GF100. In High Performance Graphics Conf., Hot 3D presentation.

Guennadi Riguer. 2006. The Radeon X1000 Series Programming Guide.

Pedro V. Sander, Diego Nehab, and Joshua Barczak. 2007. Fast Triangle Reordering for Vertex Locality and Reduced Overdraw.

ACM Trans. Graph. 26, 3, Article 89 (July 2007). https://doi.org/10.1145/1276377.1276489

Jeremy W. Sheafer, David Luebke, and Kevin Skadron. 2004. A Flexible Simulation Framework for Graphics Architectures.

In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS ’04). ACM, New York,

NY, USA, 85ś94. https://doi.org/10.1145/1058129.1058142

Marc Tchiboukdjian, Vincent Danjean, and Bruno Rain. 2008. A Fast Cache-Oblivious Mesh Layout with Theoretical

Guarantees. In International Workshop on Super Visualization (IWSV’08). Kos, Greece. https://hal.inria.fr/inria-00436053

Marc Tchiboukdjian, Vincent Danjean, and Bruno Rain. 2010. Binary Mesh Partitioning for Cache-Eicient Visualization.

IEEE TVCG 16, 5 (Sept 2010), 815ś828. https://doi.org/10.1109/TVCG.2010.19

Huy T. Vo, Claudio T. Silva, Luiz F. Scheidegger, and Valerio Pascucci. 2012. Simple and Eicient Mesh Layout with

Space-Filling Curves. Journal of Graphics Tools 16, 1 (2012), 25ś39. https://doi.org/10.1080/2151237X.2012.641828

Po-Han Wang, Chia-Lin Yang, Yen-Ming Chen, and Yu-Jung Cheng. 2011. Power Gating Strategies on GPUs. ACM Trans.

Archit. Code Optim. 8, 3, Article 13 (Oct. 2011), 25 pages. https://doi.org/10.1145/2019608.2019612

Sung-eui Yoon and Peter Lindstrom. 2007. Random-Accessible Compressed Triangle Meshes. IEEE TVCG 13, 6 (Nov 2007),

1536ś1543. https://doi.org/10.1109/TVCG.2007.70585

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 29. Publication date: August 2018.

http://www.joshbarczak.com/blog/?p=1231
https://doi.org/10.1145/1230100.1230102
http://dl.acm.org/citation.cfm?id=266989.267103
http://dl.acm.org/citation.cfm?id=266989.267103
https://doi.org/10.1145/218380.218391
http://dl.acm.org/citation.cfm?id=244979.245626
https://tomforsyth1000.github.io/papers/fast_vert_cache_opt.html
https://tomforsyth1000.github.io/papers/fast_vert_cache_opt.html
https://fgiesen.wordpress.com/2011/07/03/a-trip-through-the-graphics-pipeline-2011-part-3/
https://fgiesen.wordpress.com/2011/07/03/a-trip-through-the-graphics-pipeline-2011-part-3/
https://doi.org/10.1145/2856400.2856408
https://doi.org/10.1145/311535.311565
http://arxiv.org/abs/1804.06826
http://arxiv.org/abs/1804.06826
https://doi.org/10.1145/3233303
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://doi.org/10.1109/TVCG.2006.59
https://doi.org/10.1145/1276377.1276489
https://doi.org/10.1145/1058129.1058142
https://hal.inria.fr/inria-00436053
https://doi.org/10.1109/TVCG.2010.19
https://doi.org/10.1080/2151237X.2012.641828
https://doi.org/10.1145/2019608.2019612
https://doi.org/10.1109/TVCG.2007.70585

	Abstract
	1 Introduction
	2 Related Work
	3 GPU Vertex Reuse Strategies
	3.1 Measuring vertex reuse
	3.2 Collecting detailed batching information
	3.3 Identifying batch patterns and boundaries
	3.4 Predicting batch breakdown for the GPU

	4 Batch-based mesh optimization
	5 Evaluation
	6 Discussion
	Acknowledgments
	References

